2-1矩阵的定义

2-1矩阵的定义
2-1矩阵的定义

第二章矩阵

第一节线性方程组与矩阵第三节逆矩阵第二节矩阵的运算第五节矩阵的初等变换

第四节分块矩阵v 矩阵概念的引入第一节线性方程组与矩阵

v

矩阵的定义

?????í

ì=+++=+++=+++n

n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L L L L L L L L L L L L L L L 22112

2222121112121111. 线性方程组的解取决于

(),

,,2,1,n j i a ij L =系数

()

n ,,,i b i L 21=常数项一、矩阵概念的引入

÷÷÷

÷÷

?

??????è?n nn n n n n

b a a a b a a a b a a a L L L L L L L L 21

2222211112

11

对线性方程组的

研究可转化为对

这张表的研究.

线性方程组的系数与常数项按原位置可排为

2. 某航空公司在A,B,C,D 四

城市之间开辟了若干航线,如图所示表示了四城市间的航班图,如果从A 到B 有航班,则用带箭头的线连接A 与B.

A

B

C D

四城市间的航班图情况常用表格来表示:

发站

到站A B C

D A

B C D

其中表示有航班.

为了便于计算, 把表中的改成1,空白地方填上

0, 就得到一个数表:

1111111

0000

000

00这个数表反映了四城市间交通联接情况.

A B C D

A B

C D

二、矩阵的定义

由个数排成的行列的数表

n m ′m n ()

n j m i a ij ,,2,1;,,2,1L L ==称为矩阵.n m ′÷÷

÷

÷÷

?

?

???

??è?=mn m m n n a a a a a a a a a A L L L L L L L 11

222

21

11211简记为().

n m ij n m a A A ′′==元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵.例如

÷?

??è?-34695301是一个实矩阵,42′÷÷÷?

?

???è?2222222613i 是一个复矩阵,33′几种特殊矩阵

(1)只有一行的矩阵()12,,,n A a a a =L 称为行矩阵.

(2)当时称为阶方阵.

m n =n 12n a a B a ??

?÷?÷

=?÷?÷è?M 只有一列的矩阵

称为列矩阵.

方阵

上三角矩阵1112

122200

0n n nn a a a a a a ??

?

÷

?÷?÷

?

÷

è?L L L L L L L 下三角矩阵112122

12000n n nn a a a a a a ??

?

÷

?÷?÷

?

÷

è?

L L L L

L L L 对角矩阵÷÷÷

÷÷?

????

??

è

?n l l l L L L L L L

L 0000002

1不全为0方阵

数量矩阵0

00000

l l

l ??

?

÷?÷?÷

?

֏?

L L L L

L L L 单位矩阵

100010001???÷

?÷?÷?÷è?

L L L L L L L 记为E 或I .注意0

000000000000

00

0???÷?÷

?÷?÷è?

不同阶数的零矩阵是不相等的.

例如()0000.

1(3)元素全为零的矩阵称为零矩阵,零矩阵记作或.

n m o ′o n m ′

两个同型矩阵的对应元素相等,即

(),

,,2,1;,,2,1n j m i b a ij ij L L ===则称矩阵A 与B 相等, 记作A = B

两个矩阵的行数和列数都相等时,称为同型矩阵.例

设,131,213321÷?

?

?

è?=÷?

?

?

è?=z y

x B A .,,,z y x B A 求已知=解

,

B A =Q .

2,3,2===\z y x 思考题

矩阵与行列式的有何区别?

思考题解答

矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同.

矩阵的基本概念

§1 矩阵及其运算 教学要求:理解矩阵的定义、掌握矩阵的基本律、掌握几类特殊矩阵(比如零矩阵,单位矩阵,对称矩阵和反对称矩阵 ) 的定义与性质、注意矩阵运算与通常数的运算异同。能熟练正确地进行矩阵的计算。 知识要点: 一、矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写 字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常 用小写字母其元素表示,其中下标都是正整数, 他们表示该元素在矩阵中的位置。比如,或 表示一个矩阵,下标表示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。

当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称为付对角线。若一个阶方阵的主对角线上的元素 都是,而其余元素都是零,则称为单位矩阵,记为,即: 。如一个阶方阵的主对角线上(下)方的元 素都是零,则称为下(上)三角矩阵,例如,是 一个阶下三角矩阵,而则是一个阶上三角 矩阵。今后我们用表示数域上的矩阵构成的集合, 而用或者表示数域上的阶方阵构成的集合。 二、矩阵的运算 1、矩阵的加法:如果是两个同型矩阵(即它们具 有相同的行数和列数,比如说),则定义它们的和 仍为与它们同型的矩阵(即),的元素为和 对应元素的和,即:。

给定矩阵,我们定义其负矩阵为:。这样我们 可以定义同型矩阵的减法为:。由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列运算律: ( 1)交换律:; ( 2)结合律:; ( 3)存在零元:; ( 4)存在负元:。 2 、数与矩阵的乘法: 设为一个数,,则定义与的乘积仍 为中的一个矩阵,中的元素就是用数乘中对应的 元素的道德,即。由定义可知:。容易验证数与矩阵的乘法满足下列运算律: (1 ); (2 ); (3 ); (4 )。

矩阵的定义及其运算规则

矩阵的定义及其运算规则 1、矩阵的定义 一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。 矩阵通常是用大写字母 A 、B …来表示。例如一个m 行n 列的矩阵可以简记为: ,或 。即: (2-3) 我们称(2-3)式中的为矩阵A的元素,a的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。 当m=n时,则称为n阶方阵,并用表示。当矩阵(a ij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同的行数和相同的列数,而且它们的对应元素一一相等,即,则称该两矩阵相等,记为A=B。 2、三角形矩阵 由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。 如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都是三角形矩阵: ,,,。 3、单位矩阵与零矩阵 在方阵中,如果只有的元素不等于零,而其他元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有的彼此

都相等且均为1,如:,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示。 4、矩阵的加法 矩阵A=(a ij)m×n和B=(b ij)m×n相加时,必须要有相同的行数和列数。如以C=(c ij)表示矩阵A及B的和,则有: m ×n 式中:。即矩阵C的元素等于矩阵A和B的对应元素之和。 由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵): (1)交换律:A+B=B+A (2)结合律:(A+B)+C=A+(B+C) 5、数与矩阵的乘法 我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中的所有元素都乘上k之后所得的矩阵。如: 由上述定义可知,数与矩阵相乘具有下列性质:设A、B都是m×n矩阵,k、h为任意常数,则: (1)k(A+B)=kA+kB (2)(k+h)A=kA+hA (3)k(hA)=khA

矩阵行列式的概念与运算

知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:1112131112111221222321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ??????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如111 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列 式;算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式 展开的对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解 二元一次方程组???=+=+222 1 11c y b x a c y b x a (其中2121,,,b b a a 不全为零);记 2 211b a b a 叫做方程组的系数

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

MATLAB实验二 矩阵基本运算(一)答案

实验一 矩阵基本运算(一) (1)设A 和B 是两个同维同大小的矩阵,问: 1)A*B 和A.*B 的值是否相等? ????? ?? =763514432A ???? ? ??=94 525 313 4B A=[2 3 4;4 1 5;3 6 7]; B=[4 3 1;3 5 2;5 4 9]; A*B, A.*B ans = 37 37 44 44 37 51 65 67 78 ans = 8 9 4 12 5 10 15 24 63 2)A./B 和B.\A 的值是否相等? A=[2 3 4;4 1 5;3 6 7]; B=[4 3 1;3 5 2;5 4 9]; A./B, B./A

ans = 0.5000 1.0000 4.0000 1.3333 0.2000 2.5000 0.6000 1.5000 0.7778 ans = 2.0000 1.0000 0.2500 0.7500 5.0000 0.4000 1.6667 0.6667 1.2857 3)A/B和B\A的值是否相等? A=[2 3 4;4 1 5;3 6 7]; B=[4 3 1;3 5 2;5 4 9]; A/B, B/A ans = -0.3452 0.5119 0.3690 0.7857 -0.7857 0.6429 -0.9762 1.3095 0.5952 ans = 110.0000 -15.0000 -52.0000

92.0000 -13.0000 -43.0000 -22.0000 4.0000 11.0000 4)A/B和B\A所代表的数学含义是什么? 解: A/B是B*A的逆矩阵 B\A是B*A的逆矩阵 (2)写出完成下列操作的命令。 1)将矩阵A第2—5行中第1,3,5列元素赋给矩阵B。 A=[0.9501 0.4565 0.9218 0.4103 0.1389 0.0153 0.2311 0.0185 0.7382 0.8936 0.2028 0.7468 0.6068 0.8214 0.1763 0.0579 0.1987 0.4451 0.4860 0.4447 0.4057 0.3529 0.6038 0.9318 0.8913 0.6154 0.9355 0.8132 0.2722 0.4660 0.7621 0.7919 0.9169 0.0099 0.1988 0.4186] B=A(2:5,[1,3,5]) A = 0.9501 0.4565 0.9218 0.4103 0.1389 0.0153 0.2311 0.0185 0.7382 0.8936 0.2028 0.7468 0.6068 0.8214 0.1763 0.0579 0.1987 0.4451 0.4860 0.4447 0.4057 0.3529 0.6038 0.9318 0.8913 0.6154 0.9355 0.8132 0.2722 0.4660 0.7621 0.7919 0.9169 0.0099 0.1988 0.4186 B = 0.2311 0.7382 0.2028 0.6068 0.1763 0.1987 0.4860 0.4057 0.6038 0.8913 0.9355 0.2722 2)删除矩阵A的第7号元素。 A=rand(6,6); >> A(7)=[inf] A = 0.8385 Inf 0.1730 0.1365 0.2844 0.5155

矩阵的概念和运算

1。4 矩阵的概念和运算 教学要求 : (1) 掌握矩阵的加减、数与矩阵相乘的运算。 (2) 会矩阵相乘运算掌握其算法规则 ( 以便演示算法规则及行列间的对应关系〉 教学内容: 前面介绍了利用行列式求解线性方程组,即Cramer 法则。但是Cramer 法则有它的局限性: 1.0 2. D ≠?? ?所解的线性方程组存在系数行列式(行数=列数) 同学们接下来要学习的还是关于解线性方程组,即Cramer 法则无法用上的-――用“矩阵”的方法解线性方程组。本节课主要学习矩阵的概念。 一.矩阵的概念 123123123 23124621x x x x x x x x x -+=?? -+-=-??+-=? 它的系数行列式 1 232 4601 1 1 D -=--=- 此时Cramer 法则失效,我们可换一种形式来表示: 123124621111A ?-? ?=--- ? ?-?? 这正是“换汤不换药”, 以上线性方程组可用这张“数表”来表示,二者之间互相翻译。 这种数表一般用圆括号或中括号括起来,排成一个长方形阵式,《孙子兵法》中说道:长方形阵为矩阵。 123246111A -?? ?=-- ? ?-?? 这也是矩阵,是由以上线性方程组的系数按照原来顺序排列而成,称为“系数矩阵” 而“A ”多了一列常数列,称为以上方程组的“增广矩阵”。 注意:虽然D 和A 很相像,但是区别很大。D 是行列式,实质上是一个数,而A 是一张表格,“数是数,表是表,数不是表,表也不是数”,这是本质意义上不同。况且,行列式行数必须与列数相同,矩阵则未必。 关于以上线性方程组我们后面将介绍。 更一般地,对于线性方程组:

用矩阵概念来解决逻辑判断问题

用矩阵概念来解决逻辑判断问题(2012/12/14 9:27:49) 来源:原创 [转载] 分类:线性代数专栏 线性代数中矩阵概念的应用十分广泛,无论是在日常生活中还是在科学研究中,矩阵都是一种十分常见的数学现象,诸如学校里的课表、成绩统计表;工厂里的生产进度表、销售统计表;车站里的时刻表、价目表;股市中的证券价目表;科研领域中的数据分析表等,它是表述或处理大量的生活、生产与科研问题的有力工具.矩阵的重要作用首先在于它不仅能把头绪纷繁的事物按一定的规则清晰地展现出来,使我们不至于被一些表面看起来杂乱无章的关系弄得晕头转向;其次在于它能恰当地刻画事物之间的内在联系,并通过矩阵的运算或变换来揭示事物之间的内在联系;最后在于它还是我们求解数学问题的一种特殊“数形结合”的途径. 现在展示一个矩阵概念在解决逻辑判断问题中的一个应用. 问题:甲、乙、丙、丁、戊五人各从图书馆借来一本小说,他们约定读完互相交换,这五本书的厚度以及他们五人的阅读速度差不多,因此,五人总是同时交换书,经四次交换后,他们五人读完了这五本书,现已知: (1)甲最后读的书是乙读的第二本书; (2)丙最后读的书是乙读的第四本书; (3)丙读的第二本书甲在一开始就读了; (4)丁最后读的书是丙读的第三本; (5)乙读的第四本书是戊读到第三本书; (6)丁第三次读的书是丙一开始读的那本书. 试根据以上情况说出丁第二次读的书是谁最先读的书? 解答:设甲、乙、丙、丁、戊最后读的书的代号依次为,则根据题设条件可以列出下列 初始矩阵: 12345x y A x D y C C A B C D E ?? ? ? ? ? ? ??? 甲乙丙丁戊 其中的表示尚未确定的书名代号. 同一字母代表同一本书. 由题意知,经5次阅读后乙将五本书全都阅读了,则从上述矩阵可以看出,乙第3次读的书不可能是A 、B 或C , 另外由于丙在第3次阅读的是D , 所以乙第3次读的书也不可能是D ,因此,乙第3次读的书是E ,从而乙第1次读的书是D. 同理可推出甲第3次读的书

矩阵的认识

什么是矩阵 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了!多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵” 的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数 的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。 事实上,我并不是特例。一般工科学生初学线性代数,通常都会感到困难。这种情形在国内外皆然。瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:“如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,...,这就带来了教学上的困难。”事实上,当我们开始学习线性代数的时候,不知不觉就进入了“第二代数学模型”的 范畴当中,这意味着数学的表述方式和抽象性有了一次全面的进化,对于从小一直在“第一 代数学模型”,即以实用为导向的、具体的数学模型中学习的我们来说,在没有并明确告知 的情况下进行如此剧烈的paradigm shift,不感到困难才是奇怪的。 大部分工科学生,往往是在学习了一些后继课程,如数值分析、数学规划、矩阵论之后,才逐渐能够理解和熟练运用线性代数。即便如此,不少人即使能够很熟练地以线性代数为工具进行科研和应用工作,但对于很多这门课程的初学者提出的、看上去是很基础的问题却并不清楚。比如说: * 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用? * 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中 发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么? * 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本 质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不要觉得这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这

理解矩阵,矩阵背后的现实意义

理解矩阵,矩阵背后的现实意义作者:郭博 这是很早以前已经看过的,最近无意中又把保存的文章翻出来时,想起很多朋友问过矩阵,虽对矩阵似懂非懂,但却很想弄懂它,希望这几篇文章能帮你一下,故转之: 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了!多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。 事实上,我并不是特例。一般工科学生初学线性代数,通常都会感到困难。这种情形在国内外皆然。瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:”如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,...,这就带来了教学上的困难。”事实上,当我们开始学习线性代数的时候,不知不觉就进入了“第二代数学模型”的范畴当中,这意味着数学的表述方式和抽象性有了一次全面的进化,对于从小一直在“第一代数学模型”,即以实用为导向的、具体的数学模型中学习的我们来说,在没有并明确告知的情况下进行如此剧烈的paradig m shift,不感到困难才是奇怪的。 大部分工科学生,往往是在学习了一些后继课程,如数值分析、数学规划、矩阵论之后,才逐渐能够理解和熟练运用线性代数。即便如此,不少人即使能够很熟练地以线性代数为工具进行科研和应用工作,但对于很多这门课程的初学者提出的、看上去是很基础的问题却并不清楚。比如说: 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用? 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不

矩阵行列式的概念与运算(标准答案)

矩阵、行列式的概念与运算 知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:111213111211122122 2321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ? ?????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如1 11 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列式; 算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式展开的 对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解

矩阵的定义及其运算规则

矩阵的定义及其运算规则

矩阵的定义及其运算规则 1、矩阵的定义 一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。 矩阵通常是用大写字母A 、B …来表示。例如一个m 行n 列的矩阵可以简记为:,或 。即: (2-3)我们称(2-3)式中的为矩阵A的元素,a 的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。 当m=n时,则称为n阶方阵,并用 表示。当矩阵(a ij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同的行数和相同的列数,而且它们的对应元素一一相等,即,则称该两矩阵相等,记为A=

B。 2、三角形矩阵 由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。 如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都是三角形矩阵: ,,,。 3、单位矩阵与零矩阵 在方阵中,如果只有的元素不等于零,而其他元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有的彼此都相等且均为1,

如:,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有的元素都等于零时,叫做零矩 阵,并用符号“0”来表示。 4、矩阵的加法 矩阵A=(a ij)m×n和B=(b ij)m×n相加时,必须要有相同的行数和列数。如以C=(c ij)m ×n 表示矩阵A及B的和,则有: 式中:。即矩阵C的元素等于矩阵A和B 的对应元素之和。 由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵): (1)交换律:A+B=B+A

矩阵的概念及其线性运算

第二章 矩阵 §2.1 矩阵的概念及其线性运算 学习本节内容,特别要注意与行列式的有关概念、运算相区别。 一.矩阵的概念 矩阵是一张简化了的表格,一般地 ?????? ? ??mn m m n n a a a a a a a a a 212222111211 称为n m ?矩阵,它有m 行、n 列,共n m ?个元素,其中第i 行、第j 列的元素 用j i a 表示。通常我们用大写黑体字母A 、B 、C ……表示矩阵。为了标明矩阵的行数m 和列数n ,可用n m ?A 或() i j m n a ?表示。矩阵既然是一张表,就不能象行 列式那样算出一个数来。 所有元素均为0的矩阵,称为零矩阵,记作O 。 两个矩阵A 、B 相等,意味着不仅它们的行、列数相同,而且所有对应元素都相同。记作B A =。 如果矩阵A 的行、列数都是n ,则称A 为n 阶矩阵,或称为n 阶方阵。n 阶矩阵有一条从左上角到右下角的主对角线。n 阶矩阵A 的元素按原次序构成的n 阶行列式,称为矩阵A 的行列式,记作A 。 在n 阶矩阵中,若主对角线左下侧的元素全为零,则称之为上三角矩阵;若主对角线右上侧的元素全为零,则称之为下三角矩阵;若主对角线两侧的元素全为零,则称之为对角矩阵。主对角线上元素全为1的对角矩阵,叫做单位矩阵,记为E ,即 ???? ?? ? ??=100010001 E n ?1矩阵(只有一行)又称为n 维行向量;1?n 矩阵(只有一列)又称为n 维列向量。行向量、列向量统称为向量。向量通常用小写黑体字母a ,b ,x ,y …… 表示。向量中的元素又称为向量的分量。11?矩阵因只有一个元素,故视之为数量,即()a a =。 二.矩阵的加、减运算 如果矩阵A 、B 的行数和列数都相同,那么它们可以相加、相减,记为B A +、B A -。分别称为矩阵A 、B 的和与差。B A ±表示将A 、B 中所有对应位置的元素相加、减得到的矩阵。例如

矩阵的定义及其运算规则

矩阵的定义及其运算规则 This model paper was revised by the Standardization Office on December 10, 2020

矩阵的定义及其运算规则 1、矩阵的定义 一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。 矩阵通常是用大写字母A 、B …来表示。例如一个m 行n 列的矩阵可以简记为:,或 。即: (2-3) 我们称(2-3)式中的为矩阵A的元素,a的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。 当m=n时,则称为n阶方阵,并用表示。当矩阵(a )的元素仅有一 ij 行或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同的行数和相同的列数,而且它们的对应元素一一相等,即,则称该两矩阵相等,记为A=B。 2、三角形矩阵 由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。 如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都是三角形矩阵:

,,,。 3、单位矩阵与零矩阵 在方阵中,如果只有的元素不等于零,而其他元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有的彼此都相等且均为1,如:,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示。 4、矩阵的加法 矩阵A=(a ij ) m×n 和B=(b ij ) m×n 相加时,必须要有相同的行数和列数。如以C= (c ij ) m ×n 表示矩阵A及B的和,则有: 式中:。即矩阵C的元素等于矩阵A和B的对应元素之和。

理解矩阵:矩阵的意义

理解矩阵(一) 前不久chensh出于不可告人的目的,要充当老师,教别人线性代数。于是我被揪住就线性代数中一些务虚性的问题与他讨论了几次。很明显,chensh觉得,要让自己在讲线性代数的时候不被那位强势的学生认为是神经病,还是比较难的事情。 可怜的chensh,谁让你趟这个地雷阵?!色令智昏啊! 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了!多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。 事实上,我并不是特例。一般工科学生初学线性代数,通常都会感到困难。这种情形在国内外皆然。瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:“如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,...,这就带来了教学上的困难。”事实上,当我们开始学习线性代数的时候,不知不觉就进入了“第二代数学模型”的范畴当中,这意味着数学的表述方式和抽象性有了一次全面的进化,对于从小一直在“第一代数学模型”,即以实用为导向的、具体的数学模型中学习的我们来说,在没有并明确告知的情况下进行如此剧烈的paradigm shift,不感到困难才是奇怪的。 大部分工科学生,往往是在学习了一些后继课程,如数值分析、数学规划、矩阵论之后,才逐渐能够理解和熟练运用线性代数。即便如此,不少人即使能够很熟练地以线性代数为工具进行科研和应用工作,但对于很多这门课程的初学者提出的、看上去是很基础的问题却并不清楚。比如说:

矩阵的概念及其线性运算

.. 第二章 矩阵 §2.1 矩阵的概念及其线性运算 学习本节内容,特别要注意与行列式的有关概念、运算相区别。 一.矩阵的概念 矩阵是一张简化了的表格,一般地 ?????? ? ??mn m m n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211 称为n m ?矩阵,它有m 行、n 列,共n m ?个元素,其中第i 行、第j 列的元素 用j i a 表示。通常我们用大写黑体字母A 、B 、C ……表示矩阵。为了标明矩阵的行数m 和列数n ,可用n m ?A 或() i j m n a ?表示。矩阵既然是一张表,就不能象行 列式那样算出一个数来。 所有元素均为0的矩阵,称为零矩阵,记作O 。 两个矩阵A 、B 相等,意味着不仅它们的行、列数相同,而且所有对应元素都相同。记作B A =。 如果矩阵A 的行、列数都是n ,则称A 为n 阶矩阵,或称为n 阶方阵。n 阶矩阵有一条从左上角到右下角的主对角线。n 阶矩阵A 的元素按原次序构成的n 阶行列式,称为矩阵A 的行列式,记作A 。 在n 阶矩阵中,若主对角线左下侧的元素全为零,则称之为上三角矩阵;若主对角线右上侧的元素全为零,则称之为下三角矩阵;若主对角线两侧的元素全为零,则称之为对角矩阵。主对角线上元素全为1的对角矩阵,叫做单位矩阵,记为E ,即 ?????? ? ? ?=10 0010001Λ ΛΛΛΛΛΛE n ?1矩阵(只有一行)又称为n 维行向量;1?n 矩阵(只有一列)又称为n 维列 向量。行向量、列向量统称为向量。向量通常用小写黑体字母a ,b ,x ,y ……表示。向量中的元素又称为向量的分量。11?矩阵因只有一个元素,故视之为数量,即()a a =。 二.矩阵的加、减运算 如果矩阵A 、B 的行数和列数都相同,那么它们可以相加、相减,记为B A +、B A -。分别称为矩阵A 、B 的和与差。B A ±表示将A 、B 中所有对应位置的元素相加、减得到的矩阵。例如

矩阵行列式的概念与运算标准答案

矩阵、行列式的概念与运算 知识点总结: 一、矩阵的概念与运算 1、 矩阵111213212223a a a a a a ?? ??? 中的行向量是()111213a a a a =,()212223b a a a =; 2、 如:111213111211122122 2321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ??????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 11111221 11121222111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如1 11 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做 二阶行列式;算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成

矩阵的定义及其运算规则

矩阵得定义及其运算规则 1、矩阵得定义 一般而言,所谓矩阵就就是由一组数得全体,在括号内排列成m行n 列(横得称行,纵得称列)得一个数表,并称它为m×n阵。 矩阵通常就是用大写字母A 、B …来表示。例如一个m 行n 列得矩阵可以简记为:,或 。即: (23) 我们称(23)式中得为矩阵A得元素,a得第一个注脚字母,表示矩阵得行数,第二个注脚字母j(j=1,2,…,n)表示矩阵得列数。 当m=n时,则称为n阶方阵,并用表示。当矩阵(a ij)得元素仅有一行或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同得行数与相同得列数,而且它们得对应元素一一相等,即,则称该两矩阵相等,记为A=B。 2、三角形矩阵 由i=j得元素组成得对角线为主对角线,构成这个主对角线得元素称为主对角线元素。 如果在方阵中主对角线一侧得元素全为零,而另外一侧得元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都就是三角形矩阵: , ,, 。 3、单位矩阵与零矩阵 在方阵中,如果只有得元素不等于零,而其她元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有得彼此都相等且均为1,如: ,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有得元素都等于零时,叫做零矩阵,并用符号“0”来表示。 4、矩阵得加法 矩阵A=(a ij)m×n与B=(b ij)m×n相加时,必须要有相同得行数与列数。如以C=(c ij)m ×n表示矩阵A及B得与,则有: 式中:。即矩阵C得元素等于矩阵A与B得对应元素之与。 由上述定义可知,矩阵得加法具有下列性质(设A、B、C都就是m×n矩阵): (1)交换律:A+B=B+A (2)结合律:(A+B)+C=A+(B+C) 5、数与矩阵得乘法 我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中得所有元素都乘上k之后所得得矩阵。如: 由上述定义可知,数与矩阵相乘具有下列性质:设A、B都就是m×n矩阵,k、h为任意常数,则: (1) k(A+B)=kA+kB (2)(k+h)A=kA+hA

(完整版)矩阵的概念教案

9.1 矩阵的概念 一、新课引入: 分析二元一次方程组的求解过程,探讨研究矩阵的有关知识: 二、新课讲授 1、矩阵的概念 (1)矩阵:我们把上述矩形数表叫做矩阵,矩阵中的每个数叫做矩阵的元素。 (2)系数矩阵和增广矩阵:矩阵???? ??-13 21 叫方程组的系数矩阵,它是2行2列的矩阵,可记作22?A 。矩阵??? ? ??-81 3 521 叫方程组的增广矩阵它是2行3列的矩阵,可记作32?A 。 (3)方矩阵:把行数与列数相等的矩阵叫方矩阵,简称为方阵。上述矩阵是2阶方矩阵, (3)方阵??? ? ??10 01 叫单位矩阵。 (5)行向量和列向量:1行2列的矩阵(1,-2)、(3 ,1)叫系数矩阵的两

个行向量,2行1列的矩阵???? ??31、??? ? ??-12叫系数矩阵的两个列向量。 2、概念巩固 1、二元一次方程组???=-=+5431 32y x y x 的增广矩阵为 ,它是 行 列的矩阵,可记作 ,这个矩阵的两个行向量为 ; 2、二元一次方程组???+=-=+7436 53x y y x 的系数矩阵为 ,它是 方阵, 这个矩阵有 个元素; 3、三元一次方程组?? ? ??=-+=--=-+0132207306z y y x z x 的增广矩阵为 , 这个矩阵的列向量有 ; 4、若方矩阵22?A 是单位矩阵,则22?A = ; 5、关于x,y 的二元一次方程组的增广矩阵为??? ? ??-73 4 112 ,写出对应的方程组 ; 6、关于x,y,z 的三元一次方程组的增广矩阵为??? ? ? ? ?--82 1 02520 1012,其对应的方程组为 3、矩阵的变换 讨论总结:类比二元一次方程组求解的变化过程,方程组相应的增广矩阵的行发生着怎样的变换呢?变换有规则吗?请讨论后说出你的看法。

矩阵的运算及其运算规则

矩阵基本运算及应用 牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则 简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减

法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 1.2.3典型举例 已知两个矩阵 满足矩阵方程,求未知矩阵.

解由已知条件知 ? 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 1.3.2典型例题 设矩阵 计算 解是的矩阵.设它为

相关文档
最新文档