材料成型工艺重要考点总结

材料成型工艺重要考点总结
材料成型工艺重要考点总结

1.铸造工艺设计的概念:

铸造工艺设计就是根据铸造零件的结构特点,技术要求,生产批量,生产条件等,确定铸造方案和工艺参数,绘制铸造工艺图,编制工艺卡等技术文件的过程。铸造工艺设计的有关文件既是生产准备、管理和铸件验收的依据,又可直接用于指导生产操作。因此,铸造工艺设计对铸件质量,生产率和成本起关键作用。

2.零件结构的液态成形工艺性是指的什么?

零件结构的业态成型工艺性是指零件的结构应符合砂型铸造生产的要求,易于保证铸件质量,以便简化工艺,降低成本。为此,首先应对产品零件图进行审查和分析,并着重注意以下两方面的问题。

第一:审查零件结构是否符合铸造工艺的要求。第二:在既定的零件结构条件下,考虑铸造过程中可能出现的主要缺陷,在工艺设计中采取措施予以制止。

3.从避免缺陷方面审查铸件结构:

(1)铸件应有合适的壁厚(2)铸件内壁应薄于外壁(3)壁厚力求均匀,减少“肥厚”部分,防止形成热节点。(4)逐渐结构不应造成严重的收缩障碍,注意壁厚过度和圆角。(5)利于补缩和实现顺序凝固(6)防止铸件翘曲变形

4.从简化铸造工艺方面改进零件结构:

(1)改进妨碍起模的凸台,凸缘,筋板。(2)取消铸件外表侧凹(3)改进铸件内腔结构以减少砂芯(4)减少和简化分型面(5)有利于砂芯的固定和排气(6)减少清理铸件的工作量

5.浇筑位置指的是什么?具体确定原则?

(1)铸件的重要部分应尽量置于下部,铸件的大平面和重要加工面应朝下或呈直立状态,避免夹砂类缺陷。(2)应保证铸件能充满(3)应有利于顺序凝固(4)避免使用吊砂,吊芯或悬臂式砂芯,使下芯,合箱及检验方便。(5)应使合箱位置,浇筑位置,和铸件冷却位置一致

6.分型面的选择:

(1)便于起模,使造型工艺简化。(2)尽量减少分型面的数目。(3)应使铸件全部或大部分置于同一平面内。(4)便于下芯,合箱和检查形箱尺寸(5)不使砂箱过高

7.确定砂芯形状及分盒面的选择的基本原则:

(1)保证铸件内腔尺寸精度(2)使砂芯的起模斜度和模样的起模斜度大小、方向一致,保证铸件的壁厚均匀。(3)尽量减少砂芯数目。

8.芯头设计:

(1)芯头的组成:包括芯头长度,斜度,间隙,压环,防压环,和集沙槽

(2)芯头长度:芯头长度是指砂芯深入铸型部分的长度,一般需要根据砂芯的长度来确定。(3)芯头间隙:芯头间隙的设计根据芯头尺寸及造型方法选择,在相同条件下干型比湿型稍大些。

(4)压环:压环在上模样芯头上车削一道半圆凹沟,造型后在上芯座上突起一道环形沙,合箱后它能把砂芯压紧,避免液体金属沿间隙进入芯头。此法只用于机器造型的湿型。

防压环:在水平芯头靠近模样的根部设置凸起圆环,高度为0.5到2mm,宽5到12mm,此环称为防压环。造型后,相应部分形成下凹的一环形缝隙,下芯、合箱时它可以防止此处砂型被压塌,因而可防止掉沙缺陷。

(5)垂直芯头:垂直芯头在设计时,根据砂芯的高度需要设计的参数有芯头高度,斜度,间隙。

9.铸造收缩率:铸件尺寸

—模样工作面的尺寸—样模件件

模L L %

100*L L -L K

10.起模斜度:为了方便起模,在模样,芯盒的出模方向留有一定的斜度,以免损坏砂型或型芯,这个斜度成为起模斜度。起模斜度应在铸件上没有结构斜度的、垂直于分型面(分盒面)的表面上应用,其大小应以摸样的高度、表面粗糙度以及造型方法而定。其三种形式为:增加铸件厚度,加减铸件厚度,减少铸件厚度。

11.浇筑系统设计:

(1)何为浇注系统:浇注系统是铸型中液态金属流入型腔的通道之总称。

(2)浇注系统作用:控制金属液填充铸型的速度及充满铸型所需的时间。使金属液平稳的进入铸型,避免湍流和对铸型的冲刷。提供必要的充型压力头,保证铸件轮廓,棱角清晰。阻止熔渣和其它夹杂物进入型腔,浇筑时不卷入气体,并尽可能使铸件冷却时符合顺序凝固原则。

(3)浇注系统的组成:浇道杯,直浇道,横浇道,内浇道,

(4)浇注系统的分类:

根据内浇道、横浇道、直浇道的各自总截面积进行分类:封闭式浇注系统,开放式浇注系统 按内浇道在铸件上的位置进行分类:顶注式浇注系统,中间注入式浇注系统,底注式浇注系统,阶梯式浇注系统。

(5)开放式浇注系统特点:该浇注系统的优缺点与封闭式浇注系统正好相反,主要用于铸钢,球墨铸铁,及有色金属轻合金铸件

封闭式浇注系统特点:封闭式浇注系统有较好的阻渣能力,可防止金属液卷入气体,消耗金属少,清理方便。缺点是进入型腔的金属液速度高,易产生喷溅和冲沙,使金属氧化,使型内金属液发生扰动,涡流和不平静。主要用于不易氧化的各种铸铁件。

12.冒口的主要作用:

(1)对于凝固过程中体积收缩不大的合金,主要作用是排放型腔中的气体和收集液流前沿混有夹杂物或氧化膜的金属液,以减少铸件上的缺陷。

(2)对于要求控制显微组织的铸件,冒口可以收集液流前沿已冷却的金属液,避免铸件上出现过冷组织。

(3)对于凝固期间体积收缩量大且区域形成集中缩孔的合金,冒口的主要作用是补偿金属液在型腔中的液态收缩和铸件凝固过程中的收缩,以获得没有缩孔的致密铸件。

13.冒口模数:

14.冒口有效补缩距离的因素:铸件的材质,逐渐的结构,铸件中的温度梯度,外冷铁的影响,补贴的应用

15.冒口发挥补缩作用的基本条件:冒口凝固时间大于或等于铸件的凝固时间,有足够的金属液补充铸件的液态收缩和凝固收缩,补偿浇筑后型腔扩大的体积,在凝固期间冒口和补缩部位之间存在补缩通道,扩张角向着冒口。

16.冷铁作用:

(1)在冒口难于补缩的部位防止缩孔,缩松。

(2)防止壁厚交叉部位及急剧变化部分产生裂纹。

(3)与冒口配合使用能加强铸件的顺序凝固条件,扩大冒口补缩距离或范围,减少冒口数或体积。

(4)改善铸件局部的金相组织和力学性能,

(5)减轻或防止壁厚铸件中的偏折。

17.冷铁放置的位置:

18.主筋的分类和作用:

割筋:防止热裂,加强冷却

拉筋:可防止u型,v型铸件开口尺寸过大的变形现象。

19.模样本体结构特点:

(1)平放式:模样平装在模底板上

(2)嵌入式:模样潜入模底板表面

20.模样尺寸标注:

模样的尺寸有两类,一类是与铸件有关的尺寸,称为关联尺寸,另一类为非关联尺寸,如芯头长度等。凡与铸件有关的尺寸,都应把铸件尺寸按收缩率加以放大,非关联尺寸按铸造工艺图上的尺寸标注,不加放收缩率。

21.钢锭组织结构:冒口部分,锭身部分,底部

22.加热的目的和方法:

目的:提高金属的塑性,降低变形能力,使金属容易变形流动,不容易产生破坏,并且在热态下锻造变形可以使金属中的各种缺陷在高温高压下得到压实焊合,改善组织性能,因此加热时锻造过程中的重要方法。

方法:火焰加热,电加热

23.冷却裂纹是由于冷却过程中产生的应力所引起。其中包括:热应力,相变应力,

24.p73页镦粗变形程度和变形分布。

25.自由锻造工艺过程制定:绘制自由锻件图,选择自由锻造设备,变形工艺确定,

26.模锻特点和方式:

特点:

方式:(1)终锻膛有飞边槽和无飞边槽的闭式锻模。

(2)一副锻模上一次操作中只有一个模膛的单膛锻模和有多个模膛的多膛锻模。

(3)在一副锻模上一次操作中只出一个锻件的单件锻模和同时出两个以上锻件的多件模锻。

使用这种带有飞边槽的模膛进行锻造,叫做开始模锻,飞边槽分为成桥部和仓部两个部分。

27.绘制模锻件图:确定分模面,确定加工余量和锻造公差,确定斜模度,确定圆角半径,冲孔连皮,

28.冲裁件质量主要包括断面质量,表面质量,形状误差和尺寸精度。

29.冲裁间隙是范围值(p131)

30.冲裁模刃口尺寸确定原则:(p133页继续理解)

(1)设计落料模时以凹模为基准,按落料件,先确定凹模刃口尺寸,然后根据选取的间隙值再确定凸模刃口尺寸。设计冲孔模时以凸模为基准,按冲孔件先确定凸模刃口尺寸,然后根据选取的间隙在确定凹模刃口尺寸。

(2)为了保证模具的使用寿命,设计落料时应在靠近落料件公差范围内的最小极限尺寸附近取落料凹模刃口尺寸;设计冲孔模时应在靠近孔的公差范围内的最小极限尺寸附近取落料凹模刃口尺寸,设计冲孔模时应在靠近孔的公差范围内最大极限尺寸附近确定冲孔凸模刃口

Z。

尺寸。无论是落料模还是冲孔模,凸凹模间隙均应采用最小合理间隙

min

(3)在确定冲裁模刃口制造公差时,应考虑制件的公差要求,从冲模制造成本,制造难易程度,制造周期等方面综合分析。冲模的加工方式有凸凹模分别加工和配作加工两种,其刃口尺寸计算和模具制造公差的标注也不相同。

31.圆筒形件拉深质量:

其主要质量问题为起皱和拉裂。(p136页,不全)

防起皱:采用压边圈,

32.盒型件的拉深:特点是变小。(p138页)

33.金属焊接的概念和影响因素:

(1)将金属焊接定义为:金属材料在限定的施工条件下焊接成按规定设计要求的构件并满足服役要求的能力,即材料对焊接加工的适应性和使用的可靠性。

(2)影响因素:材料,设计,工艺,服役条件

34.金属焊接化学成分分析:

(1)碳当量法:碳的相当含量,被国际焊接协会采用。

(2)碳当量法:

化学成分。钢,碳当量只考虑焊缝度的非调质低合金高强此式主要适用于中高强预热,焊接性较好

无需预热,焊接性好

5

)()()(15)()(6w(Mn)w(C)CE 0.6CE 0.44.0v w Mo w Cr w Cu w Ni w CE ++++++=<<<

35.冷裂纹敏感性试验方法:

(1)斜Y 型坡口焊接裂纹试验:主要用于评价碳钢和低合金高强钢焊接影响区内的冷裂纹敏感性

(2)插销试验:插销试验是国内外广泛应用于测定碳钢和低合金高强钢焊接热影响区对冷裂纹敏感性的一种定量试验方法。

36.热裂纹敏感性试验方法:

(1)压板对焊接裂纹实验法。(2)可拘束裂纹实验法。

37.层状撕裂敏感性试验方法:z 向拉深试验方法:实验的判据为:当%25~%15>z ψ认为接头具有一定的抗层状撕裂能力。当%8~%5z ψ

38.母材的理化性质:易氧化的活泼金属不宜使用2CO 气体保护焊等对母材具有氧化作用的焊接方法,而导热系数较大的金属则更适合能量密度较高且集中地焊接方法。

39.焊接材料的选择:

(1)母材的化学成分及力学性能:焊接材料应主要保证接头的强度,而对于有耐热,耐腐蚀等特殊材料要求的母材,焊接材料的化学成分组成也应与之相符,以保证焊缝具有相同的性能。

(2)焊件的拘束条件:要求选用抗裂性较好的焊接材料,以提高接头的抗裂能力。

(3)焊接作业条件:在密闭环境下,应尽量减少焊接材料的尘毒性。

(4)焊接效率和成本:

40.确定焊接参数的原则是:在保证焊接接头不出现焊接缺陷的同时,保证焊接接头的使用性能。

41.焊接工艺措施的确定:焊前预热,焊后缓冷,焊后后热,等工艺措施,可以在不提高线能量的前提下降低冷却速度,对防止冷裂纹有重要的作用。

42.低合金强度用钢一般可根据其屈服点级别与热处理状态分成三种类型:热轧及正火钢,低碳调质钢和中碳调质钢。

43.焊接材料应满足接头的等强度要求。

45.低碳调制刚的冷裂倾向比中碳调质钢要小得多。

46.中碳调质钢的焊接可能会出现哪些问题?

焊接性分析:焊接裂纹,其中包括热裂纹和冷裂纹。焊接热影响区的脆化和软化。

47.中碳调质钢焊接工艺:中碳调质钢在焊接中有两种工艺方案可供选择:一种是在退火状态下焊接,一种是调质状态下进行焊接,其中退火状态比较好。

48.以奥氏体不锈钢为例,与碳钢的物理性相比,电阻率高五倍,线胀系数越大50%,热导率为碳钢的1/3作用,同时是非磁性。

49.腐蚀性能:均匀腐蚀,晶间腐蚀(危害性较大),点蚀(小于0.1mm的穿孔性或蚀坑性的宏观腐蚀称为点蚀。),缝隙腐蚀(金属构件缝隙处发生的斑点状或溃疡型宏观坑蚀),应力腐蚀(在拉应力和化学介质共同作用下产生的腐蚀破坏称为应力腐蚀)

50.奥氏体钢的焊接出现的问题:一是焊接接头的热裂纹问题,二是接头的耐蚀性下降问题,三是接头的脆化问题。

51.奥氏体钢的四种凝固模式:F模式,AF模式,FA模式,A模式(p287需要理解)

52.什么是475°脆化:铁素体不锈钢具有475°脆性倾向,所谓475°脆性倾向是指Cr含量大于15%的铁素体钢,铁素体含量较高(>15%)的奥氏体钢和双相不锈钢在400°~500°较长时间保温而产生的强烈催化现象,伴随着脆化,钢的强度与硬度值显著提高,由于475°是产生这种脆化的最敏感温度区间,故称为475°脆化。所以,一般采取700°~ 800°短时间加热,然后进行水冷的方法来回复钢的任性和塑性。

53.如果接头处于较大的约束度且氢含量较高时,则很容易的导致冷裂纹的产生。使接头的塑韧性显著降低。

54.灰口铸铁焊接时所表现出来的问题主要集中在:(1)焊接接头易形成白口铸铁与高碳马氏体组织(2)焊接接头易形成裂纹。

55.所谓“电弧热焊”是指将工件整体或有缺陷的局部位置预热到600°~700°,然后进行焊补,焊后进行缓冷的铸铁焊补工艺。预热温度在300°~400°时,成为半热焊。目前,我国铸铁的焊条主要是z248与z208。

56.焊前对工件不预热直接进行焊接的电弧焊方法成为电弧冷焊。同质电弧冷焊材料主要有z248和z208两种。

57.异质焊缝的电弧冷焊工艺要点:(1)选择合适的最小电流焊接(2)采用较快焊接及短弧焊接(3)采用短段焊、断续焊、分散焊、及焊后立即锤击焊接工艺。

58.铝合金焊接出现的问题:氧化,裂纹,气孔,接头软化,焊接接头的耐蚀性。

材料成型技术基础试题答案

《材料成形技术基础》考试样题答题页 (本卷共10页) 、判断题(每题分,共分,正确的画“O ”,错误的打“X ”) 、选择题(每空1分,共38分) 三、填空(每空0.5分,共26分) 1.( 化学成分) ( 浇注条件) ( 铸型性质) 2.( 浇注温度) 3.( 复杂) ( 广) 4.( 大) 5.( 补缩) ( 控制凝固顺序)6.( 球铁) ( 2 17% ) 7.( 缺口敏感性) ( 工艺)8.( 冷却速度) ( 化学成分) 9.( 低) 10.( 稀土镁合金)11.( 非加工)12.( 起模斜度) ( 没有) 13.( 非铁) ( 简单)14.( 再结晶)15.( 变形抗力) 16.( 再结晶) ( 纤维组织)17.( 敷料) ( 锻件公差) 18.( 飞边槽)19.( 工艺万能性)20.( 三) ( 二) 21.( -二二) ( 三)22.( 再结晶退火)23.( 三) 24.( -二二)25.( 拉) ( 压)26.( 化学成分) ( 脱P、S、O )27.( 作为电极) ( 填充金属)28.( 碱性) 29.( 成本) ( 清理)30.( 润湿能力)31.( 形成熔池) (达到咼塑性状态) ( 使钎料熔化)32.( 低氢型药皮) ( 直流专用)

Ct 230 图5 四、综合题(20分) 1、绘制图5的铸造工艺图(6分) ? 2J0 环O' 4 “ei吋 纯 2、绘制图6的自由锻件图,并按顺序选择自由锻基本工序(6 分)。 O O 2 令 i 1 q―1 孔U 400 圈6 3、请修改图7?图10的焊接结构,并写出修改原因。 自由锻基本工序: 拔长、局部镦粗、拔长 图7手弧焊钢板焊接结构(2 分)图8手弧焊不同厚度钢板结构(2 分) 修改原因:避免焊缝交叉修改原因:避免应力集中(平滑过 度)

材料成型工艺基础部分复习题答案

材料成型工艺基础(第三版)部分课后习题答案 第一章 ⑵.合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响? 答:①合金的流动性是指合金本身在液态下的流动能力。决定于合金的化学成分、结晶特性、粘度、凝固温度围、浇注温度、浇注压力、金属型导热能力。 ②合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。 ⑷.何谓合金的收縮?影响合金收縮的因素有哪些? 答:①合金在浇注、凝固直至冷却至室温的过程中体积和尺寸縮减的现象,称为收縮。 ②影响合金收縮的因素:化学成分、浇注温度、铸件结构和铸型条件。 ⑹.何谓同时凝则和定向凝则? 答:①同时凝则:将浇道开在薄壁处,在远离浇道的厚壁处出放置冷铁,薄壁处因被高温金属液加热而凝固缓慢,厚壁出则因被冷铁激冷而凝固加快,从而达到同时凝固。 ②定向凝则:在铸件可能出现縮孔的厚大部位安放冒口,使铸件远离冒口的部位最先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 第二章 ⑴.试从石墨的存在和影响分析灰铸铁的力学性能和其他性能特征。 答:石墨在灰铸铁中以片状形式存在,易引起应力集中。石墨数量越多,形态愈粗大、分布愈不均匀,对金属基体的割裂就愈严重。灰铸铁的抗拉强度低、塑性差,但有良好的吸震性、减摩性和低的缺口敏感性,且易于铸造和切削加工。石墨化不充分易产生白口,铸铁硬、脆,难以切削加工;石墨化过分,则形成粗大的石墨,铸铁的力学性能降低。 ⑵.影响铸铁中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否相同? 答:①主要因素:化学成分和冷却速度。 ②铸铁件的化学成分相同时铸铁的壁厚不同,其组织和性能也不同。在厚壁处冷却速度较慢,铸件易获得铁素体基体和粗大的石墨片,力学性能较差;而在薄壁处,冷却速度较快,铸件易获得硬而脆的白口组织或麻口组织。 ⑸.什么是孕育铸铁?它与普通灰铸铁有何区别?如何获得孕育铸铁? 答:①经孕育处理后的灰铸铁称为孕育铸铁。 ②孕育铸铁的强度、硬度显著提高,冷却速度对其组织和性能的影响小,因此铸件上厚大截面的性能较均匀;但铸铁塑性、韧性仍然很低。 ③原理:先熔炼出相当于白口或麻口组织的低碳、硅含量的高温铁液,然后向铁液中冲入少量细状或粉末状的孕育剂,孕育剂在铁液中形成大量弥散的石墨结晶核心,使石墨化骤然增强,从而得到细化晶粒珠光体和分布均匀的细片状石墨组织。 ⑻.为什么普通灰铸铁热处理效果没球墨铸铁好?普通灰铸铁常用热处理方法有哪些?目的是什 么? 答:①普通灰铸铁组织中粗大的石墨片对基体的破坏作用不能依靠热处理来消除或改进;而球墨铸铁的热处理可以改善其金属基体,以获得所需的组织和性能,故球墨铸铁性能好。 ②普通灰铸铁常用的热处理方法:时效处理,目的是消除应力,防止加工后变形;软化退火,目的是消除白口、降低硬度、改善切削加工性能。 第三章 ⑴.为什么制造蜡模多采用糊状蜡料加压成形,而较少采用蜡液浇铸成形?为什么脱蜡时水温不应达到沸点? 答:蜡模材料可用石蜡、硬脂酸等配成,在常用的蜡料中,石蜡和硬脂酸各占50%,其熔点为50℃~60℃,高熔点蜡料可加入塑料,制模时,将蜡料熔为糊状,目的除了使温度均匀外,对含填充料的蜡料还有防止沉淀的作用。

材料成形技术基础知识点总结

材料成形技术基础第一章 1-1 一、铸造的实质、特点与应用 铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。 1、铸造的实质 利用了液体的流动形成。 2、铸造的特点 A适应性大(铸件重量、合金种类、零件形状都不受限制); B成本低 C工序多,质量不稳定,废品率高 D力学性能较同样材料的锻件差。力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松,成分不均匀 3、铸造的应用 铸造毛胚主要用于受力较小,形状复杂(尤其是腔内复杂)或简单、重量较大的零件毛胚。 二、铸造工艺基础 1、铸件的凝固 (1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程。它由晶核的形成和长大两部分组成。通常情况下,铸件的结晶有如下特点: A以非均质形核为主 B以枝状晶方式生长为主。 结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒。晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或混合组织等。 (2)铸件的凝固方式 逐渐的凝固方式有三种类型:A逐层凝固B糊状凝固C中间凝固 2、合金的铸造性能 (1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。 生产上改善合金的充型能力可以从一下各方面着手: A选择靠近共晶成分的趋于逐层凝固的合金,它们的流动性好; B 提高浇注温度,延长金属流动时间; C 提高充填能力 D 设置出气冒口,减少型内气体,降低金属液流动时阻力。 (2)收缩性 A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中。对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。适当控制凝固顺序,让铸件按远离冒口部分最先凝固,然后朝冒口方向凝固,最后才是冒口本身的凝固(即顺序凝固方式),就把缩孔转移到最后凝固的部位——冒口中去,而去除冒口后的铸件则是所要的致密铸件。 具有宽结晶温度范围,趋于糊状凝固的合金,由于液固两相共存区很宽甚至布满整个断

材料成形工艺基础

《材料成形工艺基础》自学指导书 一、课程名称:材料成形工艺基础 二、自学学时:50课时 三、教材名称:《材料成形工艺基础》柳秉毅编 四、参考资料:材料成形技术基础陶冶主编机械工业出版社 五、课程简介:《材料成形工艺基础》是材料成型及控制工程专业的主干课程之一,其任务是阐明液态成型、塑性成型和焊接形成等成型技术在内的内在基本规律和物质本质,揭示材料成型过程中影响产品性能的因素及缺陷产生的机理。 六、考核方式:闭卷考试 七、自学内容指导: 绪论第1章金属材料的力学性能 一、本章内容概述: 绪论:1.材料成形工艺的发展历史2.材料成形加工在国民经济中的地位 3.材料成形工艺基础课程的内容 4.本课程的学习要求与学习方法。 第一章:1)铸造成形基本原理;2)塑性成形基本原理; 3)焊接成形基本原理 二、自学学时安排:8学时 三、知识点: 1.合金的铸造性能 2.合金的收缩性; 3.铸件的缩孔和缩松 2合金的充型能力是指液态合金充满铸型型腔,获得尺;3影响合金的充型能力的因素1)合金的流动性2)浇;4合金的收缩概念液态合金从浇注温度逐渐冷却、凝固;5铸造内应力分热应力和机械应力;6顺序凝固,是使铸件按递增的温度梯度方向从一个部;7顺序凝固可以有效地防止缩孔和宏观缩松,主要适用;8缩孔和缩松的防止方法:顺序凝固 四、难点:

1)强度、刚度、弹性及塑性 2)硬度、冲击韧性、断裂韧度、疲劳。 五、课后思考题与习题:P40 1.1 区分以下名词的含义: 逐层凝固与顺序凝固糊状凝固与同时凝固 液态收缩与凝固收缩缩孔与缩松 答:逐层凝固:纯金属和共晶成分的合金是在恒温下结晶的,铸件凝固时其凝固区宽度接近于零,随着温度的下降,液相区不断减小,固相区不断增大而向中心推进,直至到达铸件中心。顺序凝固:是指在铸件上建立一个从远离冒口的部分到冒口之间逐渐递增的温度梯度,从而实现由远离冒口处向冒口方向顺序地凝固,即远离冒口的部位先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 糊状凝固:如果合金的结晶温度范围很宽,或者铸件断面上温度梯度较小,则在凝固的某段时间内,其固相和液相并存的凝固区会贯穿铸件的整个断面。 同时凝固:是指采取一定的工艺措施,尽量减小铸件各部分之间的温度差,使铸件的各部分几乎同时进行凝固。 液态收缩:从浇注温度冷却至凝固开始温度(液相线温度)期间发生的收缩。凝固收缩:从凝固开始温度到凝固终了温度(固相线温度)期间发生的收缩。 铸件在凝固过程中,由于合金的液态收缩和凝固收缩所造成的体积缩减,如果未能获得补充(称为补缩),则会在铸件最后凝固的部位形成孔洞。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 1.3拟生产一批小型铸铁件,力学性能要求不高,但壁厚较薄,试分析如何提高合金液的充型能力。 答:1)尽可量提高浇注温度。由于壁厚较薄,铸铁可取1450左右2)增大充型压力(即增大推动力)。3)选用蓄热能力强的材料作铸型。4)提高铸型温度。5)选用发气量小而排气能力强的铸型。 1.4冒口补缩的原理是什么? 冷铁是否可以补缩? 冷铁的作用与冒口有何不同? 答:在铸件厚壁处和热节部位(即铸件上热量集中,内接圆直径较大的部位)设置冒

《材料成形技术基础》习题集答案

填空题 1.常用毛坯的成形方法有铸造、、粉末冶金、、、非金属材料成形和快速成形. 2.根据成形学的观点,从物质的组织方式上,可把成形方式分为、、 . 1.非金属材料包括、、、三大类. 2.常用毛坯的成形方法有、、粉末冶金、、焊接、非金属材料成形和快速成形作业2 铸造工艺基础 2-1 判断题(正确的画O,错误的画×) 1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件。因此,浇注温度越高越好。(×) 2.合金收缩经历三个阶段。其中,液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。(O) 3.结晶温度范围的大小对合金结晶过程有重要影响。铸造生产都希望采用结晶温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔,从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。(O) 4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。(O) 5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。所以当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。(×) 6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。共晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的铸造性能。(×)7.气孔是气体在铸件内形成的孔洞。气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。(O) 8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。(O) 2-2 选择题 1.为了防止铸件产生浇不足、冷隔等缺陷,可以采用的措施有(D)。 A.减弱铸型的冷却能力; B.增加铸型的直浇口高度; C.提高合金的浇注温度; D.A、B和C; E.A和C。 2.顺序凝固和同时凝固均有各自的优缺点。为保证铸件质量,通常顺序凝固适合于(D),而同时凝固适合于(B)。 A.吸气倾向大的铸造合金; B.产生变形和裂纹倾向大的铸造合金; C.流动性差的铸造合金; D.产生缩孔倾向大的铸造合金。 3.铸造应力过大将导致铸件产生变形或裂纹。消除铸件中残余应力的方法是(D);消除铸件中机械应力的方法是(C)。 A.采用同时凝固原则; B.提高型、芯砂的退让性; C.及时落砂; D.去应力退火。 4.合金的铸造性能主要是指合金的(B)、(C)和(G)。 A.充型能力;B.流动性;C.收缩;D.缩孔倾向;E.铸造应力;F.裂纹;G.偏析;H.气孔。

工程材料与成型技术基础复习总结

工程材料与成型技术基础 1.材料强度是指材料在达到允许的变形程度或断裂前所能承受的最大 应力。 2.工程上常用的强度指标有屈服强度和抗拉强度。 3.弹性模量即引起单位弹性变形所需的应力。 4.载荷超过弹性极限后,若卸载,试样的变形不能全部消失,将保留 一部分残余成形,这种不恢复的参与变形,成为塑性变形。 5.产生塑性变形而不断裂的性能称为塑性。 6.抗拉强度是试样保持最大均匀塑性变形的极限应力,即材料被拉断 前的最大承载能力。 7.发生塑性变形而力不增加时的应力称为屈服强度。 8.硬度是指金属材料表面抵抗其他硬物体压入的能力,是衡量金属材 料软硬程度的指标。 9.硬度是检验材料性能是否合格的基本依据之一。 10. 11.布氏硬度最硬,洛氏硬度小于布氏硬度,维氏硬度小于前面两 种硬度。 12.冲击韧性:在冲击试验中,试样上单位面积所吸收的能量。 13.当交变载荷的值远远低于其屈服强度是发生断裂,这种现象称 为疲劳断裂。 14.疲劳度是指材料在无限多次的交变载荷作用而不会产生破坏的 最大应力。

熔点。 16.晶格:表示金属内部原子排列规律的抽象的空间格子。 晶面:晶格中各种方位的原子面。 晶胞:构成晶格的最基本几何单元。 17.体心立方晶格:α-Fe 、鉻(Cr)、钼(Mo)、钨(W)。 面心立方晶格:铝(Al)、铜(Cu)、银(Ag)、镍(Ni)、金(Au)。 密排六方晶格:镁(Mg)、锌(Zn)、铍(Be)、镉(Cd)。18.点缺陷是指长、宽、高三个方向上尺寸都很小的缺陷,如:间 隙原子、置换原子、空位。 19.线缺陷是指在一个方向上尺寸较大,而在另外两个方向上尺寸 很小的缺陷,呈线状分布,其具体形式是各种类型的位错。 20.面缺陷是指在两个方向上尺寸较大,而在另一个方向上尺寸很 小的缺陷,如晶界和亚晶界。 21.原子从一种聚集状态转变成另一种规则排列的过程,称为结晶。 结晶过程由形成晶核和晶核长大两个阶段组成。 22.纯结晶是在恒温下进行的。 23.实际结晶温度Tn低于理论结晶温度Tm的现象,称为过冷,其 差值称为过冷度ΔT,即ΔT=Tm﹣Tn。 24.同一液态金属,冷却速度愈大,过冷度也愈大。 25.浇注时,向液态金属中加入一些高熔点、溶解度的金属或合金, 当其结构与液态金属的晶体结构相似时使形核率大大提高,获得均匀细小的晶粒。这种方法称为变质处理。 26.液态金属结晶后获得具有一定晶格结构的晶体,高温状态下的 晶体,在冷却过程中晶格结构法发生改变的现象,称为同素异构转变,又称重结晶。 27.一种金属具有两种或两种以上的晶体结构,称为同素异构性。 28.当溶质原子溶入溶剂晶格,使溶剂晶格发生畸变,导致固溶体 强度、硬度提高,塑性和韧性略有下降的下降,称为固溶强化。

材料成形技术基础(问答题答案整理)

第二章铸造成形 问答题: 合金的流动性(充型能力)取决于哪些因素?提高液态金属充型能力一般采用哪些方法?答:因素及提高的方法: (1)金属的流动性:尽量采用共晶成分的合金或结晶温度范围较小的合金,提高金属液的品质; (2)铸型性质:较小铸型与金属液的温差; (3)浇注条件:合理确定浇注温度、浇注速度和充型压头,合理设置浇注系统; (4)铸件结构:改进不合理的浇注结构。 影响合金收缩的因素有哪些? 答:金属自身的化学成分,结晶温度,金属相变,外界阻力(铸型表面的摩擦阻力、热阻力、机械阻力) 分别说出铸造应力有哪几类? 答:(1)热应力(由于壁厚不均、冷却速度不同、收缩量不同) (2)相变应力(固态相变、比容变化) (3)机械阻碍应力 铸件成分偏析分为几类?产生的原因是什么? 答:铸件成分偏析的分类:(1)微观偏析 晶内偏析:产生于具有结晶温度范围能形成固溶体的合金内。(因为不平衡结晶) 晶界偏析:(原因:(两个晶粒相对生长,相互接近、相遇;(晶界位置与晶粒生长方向平行。)(2)宏观偏析 正偏析(因为铸型强烈地定向散热,在进行凝固的合金内形成一个温度梯度) 逆偏析 产生偏析的原因:结晶速度大于溶质扩散的速度 铸件气孔有哪几种? 答:侵入气孔、析出气孔、反应气孔 如何区分铸件裂纹的性质(热裂纹和冷裂纹)? 答:热裂纹:裂缝短,缝隙宽,形状曲折,缝内呈氧化颜色 冷裂纹:裂纹细小,呈连续直线状,缝内有金属光泽或轻微氧化色。 七:什么是封闭式浇注系统?什么是开放式浇注系统?他们各组元横截面尺寸的关系如何?答:封闭式浇注系统:从浇口杯底孔到内浇道的截面逐渐减小,阻流截面在直浇道下口的浇注系统。(ΣF内<ΣF横ΣF横>F直下端>F直上端) 浇注位置和分型面选择的基本原则有哪些? 答:浇注位置选择:(1)逐渐的重要表面朝下或处于侧面;(原因:以避免气孔、砂眼、缩孔、缩松等铸造缺陷) (2)铸件的宽大平面朝下或倾斜浇注; (3)铸件的薄壁部分朝下;(原因:可保证铸件易于充型,防止产生浇不足、冷隔缺陷)(4)铸件的厚大部分朝上。(原因:便于补缩)容易形成缩孔的铸件,厚大部分朝上。(原因:便于安置冒口实现自上而下的定向凝固,防止产生缩孔) 分型面的选择:(1)应尽可能使全部或大部分构件,或者加工基准面与重要的加工面处于同

工程材料与成型技术基础复习总结

. 工程材料与成型技术基础 1.材料强度是指材料在达到允许的变形程度或断裂前所能承受的最大应力。 2.工程上常用的强度指标有屈服强度和抗拉强度。 3.弹性模量即引起单位弹性变形所需的应力。 4.载荷超过弹性极限后,若卸载,试样的变形不能全部消失,将保留一部分残余成形,这种不恢复的参与变形,成为塑性变形。 5.产生塑性变形而不断裂的性能称为塑性。 6.抗拉强度是试样保持最大均匀塑性变形的极限应力,即材料被拉断前的最大承载能力。 7.。发生塑性变形而力不增加时的应力称为屈服强度 8.硬度是指金属材料表面抵抗其他硬物体压入的能力,是衡量金属材料软硬程度的指标。 9.硬度是检验材料性能是否合格的基本依据之一。 10.

11.布氏硬度最硬,洛氏硬度小于布氏硬度,维氏硬度小于前面两种硬度。 12.冲击韧性:在冲击试验中,试样上单位面积所吸收的能量。 13.当交变载荷的值远远低于其屈服强度是发生断裂,这种现象称为疲劳断裂。 14.疲劳度是指材料在无限多次的交变载荷作用而不会产生破坏的最大应力。 文档资料Word . 15.原子在空间呈规则排列的固体物质称为晶体,晶体具有固定的熔点。 16.晶格:表示金属内部原子排列规律的抽象的空间格子。 晶面:晶格中各种方位的原子面。 晶胞:构成晶格的最基本几何单元。 17.体心立方晶格:α-Fe 、鉻(Cr)、钼(Mo)、钨(W)。 面心立方晶格:铝(Al)、铜(Cu)、银(Ag)、镍(Ni)、金(Au)。 密排六方晶格:镁(Mg)、锌(Zn)、铍(Be)、镉(Cd)。18.点缺陷是指长、宽、高三个方向上尺寸都很小的缺陷,如:间隙原子、置换原子、空位。 19.线缺陷是指在一个方向上尺寸较大,而在另外两个方向上尺寸很小的缺陷,呈线状分布,其具体形式是各种类型的位错。 20.面缺陷是指在两个方向上尺寸较大,而在另一个方向上尺寸很小的缺陷,如晶界和亚晶界。 21.原子从一种聚集状态转变成另一种规则排列的过程,称为结晶。结晶过程由形成晶核和晶核长大两个阶段组成。 22.纯结晶是在恒温下进行的。 23.实际结晶温度Tn低于理论结晶温度Tm的现象,称为过冷,其差值称为过冷度ΔT,即ΔT=Tm﹣Tn。

(完整word版)材料成型工艺基础习题及答案

1.铸件在冷却过程中,若其固态收缩受到阻碍,铸件内部即将产生内应力。按内应力的产生原因,可分为应力和应力两种。 2.常用的特种铸造方法 有:、、、、和 等。 3.压力加工是使金属在外力作用下产生而获得毛 坯或零件的方法。 4.常用的焊接方法有、和 三大类。 5.影响充型能力的重要因素有、和 等。 6.压力加工的基本生产方式 有、、、、和等。 7.热应力的分布规律是:厚壁受应力,薄壁受 应力。 8.提高金属变形的温度,是改善金属可锻性的有效措施。但温度过高,必将产生、、和严重氧化等缺陷。所以应该严格 控制锻造温度。 9.板料分离工序中,使坯料按封闭的轮廓分离的工序称为; 使板料沿不封闭的轮廓分离的工序称为。 10.拉深件常见的缺陷是和。 11.板料冲压的基本工序分为和。前者指冲裁工序,后者包括、、和。 12.为防止弯裂,弯曲时应尽可能使弯曲造成的拉应力与坯料的纤维 方向。 13.拉深系数越,表明拉深时材料的变形程度越大。 14.将平板毛坯变成开口空心零件的工序称为。 15.熔焊时,焊接接头是由、、和 组成。其中和是焊接接头中最薄弱区域。 16.常用的塑性成形方法 有:、、、、 等。 16.电阻焊是利用电流通过焊件及接触处所产生的电阻热,将焊件局 部加热到塑性或融化状态,然后在压力作用下形成焊接接头的焊接方法。电阻焊分为焊、焊和焊三种型式。

其中适合于无气密性要求的焊件;适合于焊接有气密性要求的焊件;只适合于搭接接头;只适合于对接接头。 1.灰口铸铁的流动性好于铸钢。() 2.为了实现顺序凝固,可在铸件上某些厚大部位增设冷铁,对铸件进行补缩。() 3. 热应力使铸件的厚壁受拉伸,薄壁受压缩。() 4.缩孔是液态合金在冷凝过程中,其收缩所缩减的容积得不到补足,在铸件内部形成的孔洞。() 5.熔模铸造时,由于铸型没有分型面,故可生产出形状复杂的铸件。() 6.为便于造型时起出模型,铸件上应设计有结构斜度即拔模斜度。() 7.合金的液态收缩是铸件产生裂纹、变形的主要原因。() 8.在板料多次拉深时,拉深系数的取值应一次比一次小,即 m1>m2>m3…>mn。() 9.金属冷变形后,其强度、硬度、塑性、韧性均比变形前大为提高。() 10.提高金属变形时的温度,是改善金属可锻性的有效措施。因此,在保证金属不熔化的前提下,金属的始锻温度越高越好。()11.锻造只能改变金属坯料的形状而不能改变金属的力学性能。 () 12.由于低合金结构钢的合金含量不高,均具有较好的可焊性,故焊前无需预热。() 13.钢中的碳是对可焊性影响最大的因素,随着含碳量的增加,可焊性变好。() 14.用交流弧焊机焊接时,焊件接正极,焊条接负极的正接法常用于

西南交通大学 材料成型技术基础复习纲要

第一篇 金属铸造成形工艺 一.掌握铸造定义与实质及其合金的铸造性能。 A铸造:将熔融金属浇入铸型型腔, 经冷却凝固后获得所需铸件的方法。 B铸造实质:液态成形。 C合金:两种或两种以上的金属元素、或金属与非金属元素(碳)熔和在一起,所构成具有金属特性的物质。 D合金的铸造性能:是指合金在铸造过程中获得尺寸精确、结构完整的铸件的能力,流动性和收缩性是合金的主要铸造工艺特性。 二.掌握合金的充型能力及影响合金充型能力的因素。 A合金的充型能力:液态合金充满铸型,获得轮廓清晰、形状准确的铸件的能力。 B影响合金充型能力的因素: (1)铸型填充条件 a. 铸型材料; b. 铸型温度; c. 铸型中的气体 (2)浇注条件 a. 浇注温度(T) T 越高(有界限),充型能力越好。 b. 充型压力 流动方向上所受压力越大, 充型能力越好。 (3)铸件结构

结构越复杂,充型越困难。 三.掌握合金收缩经历的三个阶段及其铸造缺陷的产生。 A合金的收缩:合金从浇注、凝固、冷却到室温,体积 和尺寸缩小的现象。 B合金收缩的三个阶段: (1)液态收缩 合金从 T浇注→ T凝固开始 间的收缩。 (2)凝固收缩 合金从 T凝固开始→T凝固终止 间的收缩。 液态收缩和凝固收缩是形成铸件缩孔和缩松缺陷的基本原因。 (3)固态收缩(易产生铸造应力、变形、裂纹等。) 合金从 T凝固终止→T室 间的收缩。 四.了解形成铸造缺陷(缩孔,缩松)的主要原因及其防止措施。 A产生缩孔和缩松的主要原因:液态收缩 和 凝固收缩 导致。 B缩孔形成原因:收缩得不到及时补充; 缩松形成原因:糊状凝固,被树枝晶体分隔区域难以实现补缩。 C缩孔与缩松的预防: (1)定向凝固,控制铸件的凝固顺序; (2)合理确定铸件的浇注工艺 五.掌握铸件产生变形和裂纹的根本原因。 铸件产生变形和裂纹的根本原因:铸造内应力(残余内应力) 六.掌握预防热应力的基本途径。 预防热应力的基本途径:缩小铸件各部分的温差,使其均匀冷却。借助于冷铁使铸件实现同时凝固。

材料成型技术基础知识点总结

第一章铸造 1.铸造:将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状和尺寸的毛坯或零件的方法。 2.充型:溶化合金填充铸型的过程。 3.充型能力:液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力。 4.充型能力的影响因素: 金属液本身的流动能力(合金流动性) 浇注条件:浇注温度、充型压力 铸型条件:铸型蓄热能力、铸型温度、铸型中的气体、铸件结构 流动性是熔融金属的流动能力,是液态金属固有的属性。 5.影响合金流动性的因素: (1)合金种类:与合金的熔点、导热率、合金液的粘度等物理性能有关。 (2)化学成份:纯金属和共晶成分的合金流动性最好; (3)杂质与含气量:杂质增加粘度,流动性下降;含气量少,流动性好。 6.金属的凝固方式: ①逐层凝固方式 ②体积凝固方式或称“糊状凝固方式”。 ③中间凝固方式 7.收缩:液态合金在凝固和冷却过程中,体积和尺寸减小的现象称为合金的收缩。 收缩能使铸件产生缩孔、缩松、裂纹、变形和内应力等缺陷。 8.合金的收缩可分为三个阶段:液态收缩、凝固收缩和固态收缩。 液态收缩和凝固收缩,通常以体积收缩率表示。液态收缩和凝固收缩是铸件产生缩孔、缩松缺陷的基本原因。 合金的固态收缩,通常用线收缩率来表示。固态收缩是铸件产生内应力、裂纹和变形等缺陷的主要原因。 9.影响收缩的因素 (1)化学成分:碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减。 (2)浇注温度:浇注温度愈高,过热度愈大,合金的液态收缩增加。 (3)铸件结构:铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结果对铸件收缩产生阻碍。 (4)铸型和型芯对铸件的收缩也产生机械阻力 10.缩孔及缩松:铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小和分布可分为缩孔和缩松。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 缩孔的形成:主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的条件下。 缩松的形成:主要出现在呈糊状凝固方式的合金中或断面较大的铸件壁中,是被树枝状晶体分隔开的液体区难以得到补缩所致。 合金的液态收缩和凝固收缩越大,浇注温度越高,铸件的壁越厚,缩孔的容积就越大。 缩松大多分布在铸件中心轴线处、热节处、冒口根部、内浇口附近或缩孔下方。

材料成型工艺基础部分(中英文词汇对照)

材料成型工艺基础部分0 绪论 金属材料:metal material (MR) 高分子材料:high-molecular material 陶瓷材料:ceramic material 复合材料:composition material 成形工艺:formation technology 1 铸造 铸造工艺:casting technique 铸件:foundry goods (casting) 机器零件:machine part 毛坯:blank 力学性能:mechanical property 砂型铸造:sand casting process 型砂:foundry sand 1.1 铸件成形理论基础 合金:alloy 铸造性能:casting property 工艺性能:processing property 收缩性:constringency 偏析性:aliquation 氧化性:oxidizability

吸气性:inspiratory 铸件结构:casting structure 使用性能:service performance 浇不足:misrun 冷隔:cold shut 夹渣:cinder inclusion 粘砂:sand fusion 缺陷:flaw, defect, falling 流动性:flowing power 铸型:cast (foundry mold) 蓄热系数:thermal storage capacity 浇注:pouring 凝固:freezing 收缩性:constringency 逐层凝固:layer-by-layer freezing 糊状凝固:mushy freezing 结晶:crystal 缩孔:shrinkage void 缩松:shrinkage porosity 顺序凝固:progressive solidification 冷铁:iron chill 补缩:feeding

材料成型技术基础知识点总结

第一章铸造 1. 铸造:将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状 和尺寸的毛坯或零件的方法。 2. 充型:溶化合金填充铸型的过程。 3. 充型能力:液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力。 4. 充型能力的影响因素: 金属液本身的流动能力(合金流动性) 浇注条件:浇注温度、充型压力 铸型条件:铸型蓄热能力、铸型温度、铸型中的气体、铸件结构 流动性是熔融金属的流动能力,是液态金属固有的属性。 5. 影响合金流动性的因素: (1 )合金种类:与合金的熔点、导热率、合金液的粘度等物理性能有关。 (2 )化学成份:纯金属和共晶成分的合金流动性最好; (3)杂质与含气量:杂质增加粘度,流动性下降;含气量少,流动性好。 6. 金属的凝固方式: 1 2 3 7收缩 收缩 能使铸件产生 缩孔、缩松、裂纹、变形和内应力等缺陷。 8. 合金的收缩可分为三个阶段:液态收缩、凝固收缩和固态收缩。 液态收缩和凝固收缩,通常以体积收缩率表示。液态收缩和凝固收缩是铸件产生缩孔、 缩松缺陷的基本原因。 合金的固态收缩,通常用线收缩率来表示。固态收缩是铸件产生内应力、裂纹和变形 等缺陷的主要原因。 9. 影响收缩的因素 (1) 化学成分:碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减。 (2) 浇注温度:浇注温度愈高,过热度愈大,合金的液态收缩增加。 (3) 铸件结构:铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结 果对铸件收缩产生阻碍。 (4) 铸型和型芯对铸件的收缩也产生机械阻力 10. 缩孔及缩松:铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小和分布可分为 缩孔和缩松。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 缩孔的形成:主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的 条件下。 缩松的形成:主要出现在呈糊状凝固方式的合金中或断面较大的铸件壁中,是被树枝状 晶体分隔开的液体区难以得到补缩所致。 合金的液态收缩和凝固收缩越大,浇注温度越高,铸件的壁越厚,缩孔的容积就越大。 缩松大多分布在铸件中心轴线处、热节处、冒口根部、内浇口附近或缩孔下方。 11?缩孔、缩松的防止方法: 课件版本: 冒口、冷铁和补贴的综合运用是消除缩孔、缩松的有效措施。 (1) 使缩松转化为缩孔的方法 : ① 尽量选择凝固区域较窄的合金,使合金倾向于逐层凝固; ② 对凝固区域较宽的合金,可采用增大凝固的温度梯度办法。 逐层凝固方式 体积凝固方式或称“糊状凝固方式”。 中间凝固方式 :液态合金在凝固和冷却过程中,体积和尺寸减小的现象称为合金的收缩。

材料成形工艺基础复习题

1.三种凝固方式(逐层、糊状、中间)及其影响因素(结晶温度范围、温度梯度) 2.合金的流动性及其影响因素(合金成分) a)为什么共晶合金的流动性好? 3.合金的充型能力对铸件质量的影响(浇不足、冷隔) 4.影响充型能力的主要因素(合金的流动性、浇注条件、铸型条件) 5.合金收缩的三个阶段(液态、凝固、固态) 6.缩孔、缩松产生的原因、规律(逐层:缩孔;糊状:缩松;位置:最后凝固部位) 7.缩孔与缩松防止(定向凝固原则;措施:加冒口、冷铁) 8.铸造应力产生的原因和种类(热应力、机械应力或收缩应力) 9.热应力的分布规律(厚:拉;薄:压)及防止(同时凝固原则) 10.铸造残余应力产生的原因(热应力)及消除措施(时效处理) 11.铸件变形与裂纹产生的原因(故态收缩,残余应力) 12.变形防止办法(同时凝固;反变形;去应力退火) 13.热裂纹与冷裂纹的特征 第二节液态成形方法 1.常用手工造型方法(五种最基本的方法:整模、分模、活块、挖砂、三箱)的特点和应 用(重在应用) 2.机器造型:实现造型机械化的两个主要方面(紧砂、起模) 3.熔模铸造的原理(理解)、特点(理解)和应用。 a)为什么熔模铸件精度高,表面光洁? b)为什么熔模铸造适合于形状复杂的铸件? c)为什么熔模铸造适合于难于加工的合金铸件? 4.金属型铸造的原理(理解)、特点(理解)和应用。 a)为什么金属型铸件精度高,表面光洁? b)为什么金属型铸造更适合于非铁合金铸件的生产? 5.压力铸造的原理(理解)、特点(理解)和应用。 6.低压铸造的原理(理解)、特点(理解)和应用。 7.离心铸造的原理(理解)、特点(理解)和应用。 第三节液态成形件的工艺设计 1.浇注位置的概念及其选择原则(重在理解和应用)

材料成型工艺基础习题答案

材料成型工艺基础(第三版)部分课后习题答案第一章 ⑵.合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响? 答:①合金的流动性是指合金本身在液态下的流动能力。决定于合金的化学成分、结晶特性、粘度、凝固温度范围、浇注温度、浇注压力、金属型导热能力。 ②合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。 ⑷.何谓合金的收縮?影响合金收縮的因素有哪些? 答:①合金在浇注、凝固直至冷却至室温的过程中体积和尺寸縮减的现象,称为收縮。 ②影响合金收縮的因素:化学成分、浇注温度、铸件结构和铸型条件。 ⑹.何谓同时凝固原则和定向凝固原则?试对下图所示铸件设计浇注系统和冒口及冷铁,使其实现定向凝固。 答:①同时凝固原则:将内浇道开在薄壁处,在远离浇道的厚壁处出放置冷铁,薄壁处因被高温金属液加热而凝固缓慢,厚壁出则因被冷铁激冷而凝固加快,从而达到同时凝固。 ②定向凝固原则:在铸件可能出现縮孔的厚大部位安放冒口,使铸件远离冒口的部位最先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 第二章 ⑴ .试从石墨的存在和影响分析灰铸铁的力学性能和其他性能特征。 答:石墨在灰铸铁中以片状形式存在,易引起应力集中。石墨数量越多,形态愈粗大、分布愈不均匀,对金属基体的割裂就愈严重。灰铸铁的抗拉强度低、塑性差,但有良好的吸震性、减摩性和低的缺口敏感性,且易于铸造和切削加工。石墨化不充分易产生白

口,铸铁硬、脆,难以切削加工;石墨化过分,则形成粗大的石墨,铸铁的力学性能降低。 ⑵.影响铸铁中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否 相同? 答:①主要因素:化学成分和冷却速度。 ②铸铁件的化学成分相同时铸铁的壁厚不同,其组织和性能也不同。在厚壁处冷却速度较慢,铸件易获得铁素体基体和粗大的石墨片,力学性能较差;而在薄壁处,冷却速度较快,铸件易获得硬而脆的白口组织或麻口组织。 ⑸.什么是孕育铸铁?它与普通灰铸铁有何区别?如何获得孕育铸铁? 答:①经孕育处理后的灰铸铁称为孕育铸铁。 ②孕育铸铁的强度、硬度显著提高,冷却速度对其组织和性能的影响小,因此铸件上厚大截面的性能较均匀;但铸铁塑性、韧性仍然很低。 ③原理:先熔炼出相当于白口或麻口组织的低碳、硅含量的高温铁液,然后向铁液中冲入少量细状或粉末状的孕育剂,孕育剂在铁液中形成大量弥散的石墨结晶核心,使石墨化骤然增强,从而得到细化晶粒珠光体和分布均匀的细片状石墨组织。 ⑻.为什么普通灰铸铁热处理效果不如球墨铸铁好?普通灰铸铁常用的热处理方法有哪 些?其目的是什么? 答:①普通灰铸铁组织中粗大的石墨片对基体的破坏作用不能依靠热处理来消除或改进;而球墨铸铁的热处理可以改善其金属基体,以获得所需的组织和性能,故球墨铸铁性能好。 ②普通灰铸铁常用的热处理方法:时效处理,目的是消除内应力,防止加工后变形;软化退火,目的是消除白口、降低硬度、改善切削加工性能。

材料成型技术基础复习重点.

1.1 1.常用的力学性能判据各用什么符号表示?它们的物理含义各是什么? 塑性,弹性,刚度,强度,硬度,韧性 1.2 金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。 细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。 合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。 固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。1.3 铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体 1.4 钢的牌号和分类 影响铸铁石墨化的因素主要有化学成分和冷却速度 1.5 塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。 热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。 热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。 橡胶橡胶是可改性或已被改性为某种状态的弹性体。 1.6 复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。 通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。 1.8工程材料的发展趋势 据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。 今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。 2.0材料的凝固理论 凝固:由液态转变为固态的过程。 结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 粗糙界面:微观粗糙、宏观光滑; 将生长成为光滑的树枝; 大部分金属属于此类 光滑界面:微观光滑、宏观粗糙; 将生长成为有棱角的晶体; 非金属、类金属(Bi、Sb、Si)属于此类 偏析:金属凝固过程中发生化学成分不均匀的现象 宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象2.1 铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固

材料成型技术基础_模拟试题_参考答案

材料成型技术基础模拟试题 参考答案 一、填空题: 1、合金的液态收缩和凝固收缩是形成铸件缩孔和缩松的基本原因。 2、铸造车间中,常用的炼钢设备有电弧炉和感应炉。 3、按铸造应力产生的原因不同可分为热应力和机械应力。 4、铸件顺序凝固的目的是防止缩孔。 5、控制铸件凝固的原则有二个,即同时凝固和顺序凝固原则。 6、冲孔工艺中,周边为产品,冲下部分为废料。 7、板料冲裁包括冲孔和落料两种 分离工序。 8、纤维组织的出现会使材料的机械性能发 生各向异性,因此在设计制造零件 时, 应使零件所受剪应力与纤维方向垂 直,所受拉应力与纤维方向平行。 9、金属的锻造性常用塑性和变形抗力来综合衡量。 10、绘制自由锻件图的目的之一是计算坯料的质量和尺寸。 二、判断题: 1、铸型中含水分越多,越有利于改善合金的流动性。F 2、铸件在冷凝过程中产生体积和尺寸减小的现象称收缩。T 3、同一铸件中,上下部分化学成份不均的现象称为比重偏折。T 4、铸造生产中,模样形状就是零件的形状。F 5、模锻时,为了便于从模膛内取出锻件,锻件在垂直于分模面的表面应留有一定的斜度,这称为锻模斜度。T 6、板料拉深时,拉深系数m总是大于1。F 7、拔长工序中,锻造比y总是大于1。T 8、金属在室温或室温以下的塑性变形称为冷塑性变形。F 9、二氧化碳保护焊由于有CO2的作用,故适合焊有色金属和高合金钢。F 10、中碳钢的可焊性比低强度低合金钢的好。F 三、多选题: 1、合金充型能力的好坏常与下列因素有关 A, B, D, E A. 合金的成份 B. 合金的结晶特征 C. 型砂的退让性 D. 砂型的透气性 E. 铸型温度 2、制坯模膛有A, B, D, E A. 拔长模膛 B. 滚压模膛 C. 预锻模膛 D. 成形模膛 E. 弯曲 模膛 F. 终锻模膛 3、尺寸为φ500×2×1000的铸铁管,其生产方法是A, C A. 离心铸造 B. 卷后焊接 C. 砂型铸造 D. 锻造 四、单选题: 1、将模型沿最大截面处分开,造出的铸型 型腔一部分位于上箱,一部分位于下箱 的造型方法称 A. 挖砂造型 B. 整模造型 C. 分模造型 D. 刮板造型 2、灰口铸铁体积收缩率小的最主要原因是 由于 A. 析出石墨弥补体收缩 B. 其凝固 温度低 C. 砂型阻碍铸件收缩 D. 凝固温度区间小 3、合金流动性与下列哪个因素无关 A. 合金的成份 B. 合金的结晶特征 C. 过热温度 D. 砂型的透气性或预

材料成型技术基础试题及答案 ()

华侨大学材料成型技术基础考试试题及答案 1、高温的γ-Fe是面心立方晶格。其溶碳能力比α-Fe大,在1148℃时溶解度最大达到 2.11 %。 2、铸件上的重要工作面和重要加工面浇注时应朝下。 3、球墨铸铁结晶时,决定其基体组织是共析石墨化过程;为使铸铁中的石墨呈球状析出,需加入稀 土镁合金(材料),这一过程称为球化处理。 4、单晶体塑性变形的主要形式是滑移变形,其实质是位错运动。 5、如果拉深系数过小,不能一次拉深成形时,应采取多次拉深工艺,并应进行再结晶退 火。 5、镶嵌件一般用压力铸造方法制造,而离心铸造方法便于浇注双金属铸件。 6、锤上模锻的锻模模膛根据其功用不同,可分为模锻模膛、制坯 模膛两大类。 7、设计冲孔模时,应取凸模刃口尺寸等于冲孔件尺寸;设计落料模时,凹模刃口尺寸应等于落 料件尺寸,凸模刃口尺寸等于落料件尺寸减去模具间隙Z 。 8、焊接接头是由焊缝区,熔合区,及焊接热影响区组成。 9、埋弧自动焊常用来焊接长直焊缝和环焊缝。 10、要将Q235钢与T8钢两种材料区分开来,用 B 方法既简便又准确。 A、拉伸试验 B、硬度试验 C、弯曲试验 D、疲劳试验 11、在材料塑性加工时,应主要考虑的力学性能指标是 C 。 A 、屈服极限 B、强度极限 C、延伸率 D、冲击韧性 12、亚共析钢合适的淬火加热温度范围是 B 。 A、Ac1+30~50℃ B、Ac3+30~50℃ C、Acm+30~50℃ D、Accm+30~50℃ 13、有一批大型锻件,因晶粒粗大,不符合质量要求。经技术人员分析,产生问题的原因是 A 。 A、始锻温度过高; B、终锻温度过高; C、始锻温度过低; D、终锻温度过低。 14、模锻件的尺寸公差与自由锻件的尺寸公差相比为 D 。 A、相等 B、相差不大 C、相比要大得多 D、相比要小得多 15、铸件的质量与其凝固方式密切相关,灰铸铁的凝固倾向于A,易获得密实铸件。 A、逐层凝固 B、糊状凝固 C、中间凝固 16、铸件的壁或肋的连接应采用C。 A、锐角连接 B、直角连接 C、圆角连接 D、交叉连接 17、下列焊接方法中, B 可不需另加焊接材料便可实现焊接; C 成本最低。 气体保护焊D、氩弧焊 A、埋弧自动焊 B、电阻焊 C、CO 2 1、细化晶粒可提高金属的强度和硬度,同时可提高其塑性和韧性。(√) 2、由于T13钢中的含碳量比T8钢高,故前者的强度硬度比后者高。(×) 3、当过热度相同时, 亚共晶铸铁的流动性随着含碳量的增多而提高。(√ ) 4、共晶成分合金是在恒温下凝固的, 结晶温度范围为零。所以, 共晶成分合金只产生液态收缩和固态收缩,而

相关文档
最新文档