变系数(2+1)维Broer-Kaup方程新的类孤子解

变系数(2+1)维Broer-Kaup方程新的类孤子解
变系数(2+1)维Broer-Kaup方程新的类孤子解

(完整版)偏微分方程的MATLAB解法

引言 偏微分方程定解问题有着广泛的应用背景。人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。 偏微分方程 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用 1.1 MATLAB简介 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 1.2 Matlab主要功能 数值分析 数值和符号计算 工程与科学绘图 控制系统的设计与仿真 数字图像处理 数字信号处理 通讯系统设计与仿真 财务与金融工程 1.3 优势特点 1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 2) 具有完备的图形处理功能,实现计算结果和编程的可视化; 3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,

二阶变系数线性微分方程的特解

二阶变系数线性微分方程的特解 张金战 ( 陇南师范高等专科学校, 甘肃成县 742500) 摘要: 在已知二阶变系数齐次微分方程的一个非零特解的条件下, 可以得到 该齐次微分方程和与它对应的非齐次微分方程的通解, 本文给出了在二阶变系数齐次微分方程的系数满足一定条件下的特解形式. 关键词: 线性微分方程; 特解; 通解 中图分类号: O 175.1 文献标识码: A 文章编号: 1008- 9020( 2007) 02- 014- 02 1 、引言对于方程( 2) 的特解的确定, 有以下结论: 2二阶变系数线性微分方程是指定理 1 若存在实数 a,使 a+ap(x)+q(x)=0, 则方程( 2) 有特 ax 解 y=e. 1y"+p(x)y'+q(x)y=f(x) ( 1) 2axax2ax 证明 : 设 a+ap(x)+q(x)=0, 将 y=e,y'=ae, y"=ae代入方 111y"+p(x)y'+q(x)y=0 ( 2) 2axaxaxax 2程( 2) 的左端得 : ae+aep (x)+eq (x)=e[a+ap (x)+q (x)]=0, 即其中 p( x) ,q(x),f(x)都是关于 x 的连续函数, 方程( 1) 称为 ax y=e是方程( 2) 的特解. 1二阶变系数非齐次线性微分方程, 方程( 2) 称为方程( 1) 对应 x推论1 若 q(x)+p(x)+1=0,则方程( 2) 有特解 y=e. 1的齐次微分方程. 在已知方程( 2) 的一个非零特解的条件下, - x推论 2 若 q(x)- p(x)+1=0,则方程( 2) 有 特解 y=e. 1文[1]给出了求方程( 2) 的通解的刘维尔公式, 文[2]、文[3]给出 推论 3 若 q(x)=0,则方程( 2) 有特解 y=1. 1了方程( 1) 的一个通解公式.这样将求解方程( 1) 和( 2) 的问题 2 定理 2 若 k?1 且 k(k- 1)+kxp(x)+xq(x)=0,则方程( 2) 有特就转化成了找出方程( 2) 的一个非零特解的问题 , 但求方程 k解 y=x. 1( 2) 的特解没有一般方法, 通常用观察法, 多数情况下难以操 2kk- 1证明 : 设 k (k- 1)+kxp (x)+xq (x)=0, 将 y=x,y'=kx,y"=k

变系数线性常微分方程的求解

变系数线性常微分方程的求解 张慧敏,数学计算机科学学院 摘要:众所周知,所有的常系数一阶、二阶微分方程都是可解的,而变系数 二阶线性微分方程却很难解,至今还没有一个普遍方法。幂级数解法是一个非常有效的方法,本文重点讨论二阶变系数线性常微分方程的解法,从幂级数解法、降阶法、特殊函数法等方面探究了二阶微分方程的解法,简单的介绍了几种高阶微分方程的解法,并讨论了悬链线方程等历史名题。 关键词:变系数线性常微分方程;特殊函数;悬链线方程;幂级数解法 Solving linear ordinary differential equations with variable coefficients Huimin Zhang , School of Mathematics and Computer Science Abstract:As we know, all of ordinary differential equations of first, second order differential equations with constant coefficients are solvable. However, the linear differential equations of second order with variable coefficients are very difficult to solve. So far there is not a universal method. The method of power-series solution is a very efficient method. This article focuses on solving linear ordinary differential equations of second order with variable coefficients, and exploring the solution of in terms of power-series solution, the method of reducing orders, the method of special functions. Also, this paper applies the above methods to solve several linear differential equations of higher order and especially discusses the famous catenary equation. Key words:Linear ordinary differential equations with variable coefficients; Special Functions; catenary equation; Power Series Solution.

Matlab求解微分方程(组)及偏微分方程(组)

第四讲 Matlab 求解微分方程(组) 理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介 1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解. 注意,系统缺省的自变量为t 2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一. (2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t

最新二阶变系数线性微分方程的一些解法

二阶变系数线性微分方程的一些解法

第九节 二阶变系数线性微分方程的 一些解法 常系数线性齐次方程和某些特殊自由项的常系数线性非齐次方程的解法已在第七节中介绍,而对于变系数线性方程,要求其解一般是很困难的。本节介绍处理这类方程的二种方法 §9.1 降阶法 在第五节中我们利用变量替换法使方程降阶,从而求得方程的解,这种方法也可用于二阶变系数线性方程的求解。 考虑二阶线性齐次方程 22dx y d +p(x) dx dy +q(x)y =0 (9.1) 设已知其一个非零特解y 1,作变量替换,令 y =uy 1 (9.2) 其中u =u(x)为未知函数,求导数有 dx dy =y 1dx du +u dx dy 1 求二阶导数有22dx y d =y 122dx u d +2dx du dx dy 1 +u 2 12dx y d 代入(9.1)式得

y 122dx u d +(2dx dy 1+p(x)y 1)dx du +(212dx y d +p(x) dx dy 1 +q(x)y 1)u =0 (9.3) 这是一个关于u 的二阶线性齐次方程,各项系数是x 的已知函数,因为y 1是(9.1)的解,所以其中 212dx y d +p(x) dx dy 1 +q(x)y 1≡0 故(9.3)式化为 y 122dx u d +(2dx dy 1+p(x)y 1) dx du =0 再作变量替换,令dx dy =z 得 y 1dx dz +(2dx dy 1 +p(x)y 1)z =0 分离变量 z 1dz =-[1 y 2 +p(x)]dx 两边积分,得其通解 z =21 2y C e -∫p(x)dx 其中C 2为任意常数 积分得u =C 2∫21 y 1e -∫p(x)dx dx +C 1代回原变量得(9.1) 的通解 y =y 1[C 1+C 2∫21 y 1e -∫p(x)dx dx ]

MatlabPDE工具箱有限元法求解偏微分方程

在科学技术各领域中,有很多问题都可以归结为偏微分方程问题。在物理专业的力学、热学、电学、光学、近代物理课程中都可遇见偏微分方程。 偏微分方程,再加上边界条件、初始条件构成的数学模型,只有在很特殊情况下才可求得解析解。随着计算机技术的发展,采用数值计算方法,可以得到其数值解。 偏微分方程基本形式 而以上的偏微分方程都能利用PDE工具箱求解。 PDE工具箱 PDE工具箱的使用步骤体现了有限元法求解问题的基本思路,包括如下基本步骤: 1) 建立几何模型 2) 定义边界条件 3) 定义PDE类型和PDE系数 4) 三角形网格划分

5) 有限元求解 6) 解的图形表达 以上步骤充分体现在PDE工具箱的菜单栏和工具栏顺序上,如下 具体实现如下。 打开工具箱 输入pdetool可以打开偏微分方程求解工具箱,如下 首先需要选择应用模式,工具箱根据实际问题的不同提供了很多应用模式,用户可以基于适

当的模式进行建模和分析。 在Options菜单的Application菜单项下可以做选择,如下 或者直接在工具栏上选择,如下 列表框中各应用模式的意义为: ① Generic Scalar:一般标量模式(为默认选项)。 ② Generic System:一般系统模式。 ③ Structural Mech.,Plane Stress:结构力学平面应力。

④ Structural Mech.,Plane Strain:结构力学平面应变。 ⑤ Electrostatics:静电学。 ⑥ Magnetostatics:电磁学。 ⑦ Ac Power Electromagnetics:交流电电磁学。 ⑧ Conductive Media DC:直流导电介质。 ⑨ Heat Tranfer:热传导。 ⑩ Diffusion:扩散。 可以根据自己的具体问题做相应的选择,这里要求解偏微分方程,故使用默认值。此外,对于其他具体的工程应用模式,此工具箱已经发展到了Comsol Multiphysics软件,它提供了更强大的建模、求解功能。 另外,可以在菜单Options下做一些全局的设置,如下 l Grid:显示网格 l Grid Spacing…:控制网格的显示位置 l Snap:建模时捕捉网格节点,建模时可以打开 l Axes Limits…:设置坐标系范围 l Axes Equal:同Matlab的命令axes equal命令

二阶变系数齐次微分方程

毕业论文 题目二阶变系数齐次线性微分方程的若干解法 院系滨江学院 专业信息与计算科学 学生姓名xxx XX 学号xxxXX 指导教师XXX 职称教授 二O一二年五月二十日

目录 摘要 ...................................................................... 3 引言 . (3) 1、 用常数变易法求解二阶变系数齐次微分方程的解 (3) 1.1 已知方程的一个特解求通解 (3) 2、 化为恰当方程通过降阶法求解二阶变系数齐次微分方程的解 (5) 2.1求满足定理1的恰当方程的通解 ......................................... 5 2.2 求满足定理2的恰当方程的通解 (6) 3、 化为RICCAIT 方程求二阶变系数齐次线性微分方程的解 (6) 3.1若方程系数满足()'()p x q x =情况 ....................................... 8 3.2若方程系数满足()()1p x q x +=-情况 ................................... 9 3.3 若方程系数满足()()1p x q x -=情况 (10) 结束语 ................................................................... 11 参考文献 . (11)

二阶变系数齐次线性微分方程的若干解法 姓名 xx大学xx专业,南京 210044 摘要:二阶线性齐次微分方程无论是在微分方程理论上还是在应用上都占有重要位置。现在对于常系数的线性微分方程的解法研究已经比较完备。但对于变系数线性微分方程如何求解,却没有通用的方法,因此探求二阶变系数微分方程的解法就很有必要。本文主要讨论二阶变系数齐次线性微分方程的解法问题,通过利用常数变易法,和系数在满足特定条件下,化为恰当方程和riccati方程来求解二阶变系数齐次微分方程的解法,直接通过具体例题解决具有满足相同条件关系的二阶变系数齐次微分方程的解,从而进一步加深对二阶变系数齐次线性微分方程的解法的理解。 关键词:二阶变系数齐次线性微分方程;常数变易法;降阶法;恰当方程;riccati方程;通解; 引言:尽管由于计算数学和计算技术的迅猛发展,通过电子计算机可以迅速而且比较准确 地处理有关微分方程的求解问题。但是,在实际学习生活中对于一个常微分方程,不论从理论研究的角度,或从实际应用的角度看,都具有十分重要的地位。现在我们对于常系数线性微分方程的解法,已非常完备,但是对于理论比较完整的、有广泛应用的线性变系数微分方程至今却没有一般的求解方法,因此二阶变系数齐次微分方程的求解问题一直是人们感兴趣的研究课题。本文对系数满足特定条件的二阶变系数微分方程,通过观察其形式,巧妙利用常数变易法,化为恰当方程,和化为riccati方程来求解。主要针对不同类型的二阶变系数方程用不同的方法实现解决部分满足一定条件下的方程的解的目的。诣在通过具体例题的解法,解决系数满足特定条件下的二阶变系数齐次线性微分方程求解的问题,从而使我们能更进一步加深对二阶变系数齐次微分方程解法的理解,以便适应在工程技术的实际领域或学生在学习相关专业中的需要。 本文主要通过把方程转化为我们所熟悉形式,来讨论二阶变系数齐次微分方程 y p x y q x y ++= ''()'()0 (1)p x q x是关于x的连续函数。 的解,其中(),() 1、用常数变易法求解二阶变系数齐次微分方程的通解 1.1 已知方程一个特解求方程通解 在我们课本上所学的关于求解二阶常系数齐次线性微分方程,我们可以通过特征方程法求其线性无关的特解, 然后再利用微分方程解的相关性质从而求得其通解,对于这个方法我们已经很熟悉了。那对于二阶变系数齐次线性微分方程求解怎么进行?因为二阶变系数齐

有限差分法求解偏微分方程MATLAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程

一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程: 22(,)()u u f x t t x αα??-=??其中为常数 具体求解的偏微分方程如下: 22001 (,0)sin()(0,)(1,)00 u u x t x u x x u t u t t π???-=≤≤?????? =??? ==≥??? 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析; 4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1) 求解区域的网格划分步长参数如下:

几类二阶变系数常微分方程解法论文

几类二阶变系数常微分方程解法论文

二阶变系数常微分方程几种解法的探讨 胡博(111114109) (湖北工程学院数学与统计学院湖北孝感 432000) 摘要:常系数微分方程是我们目前可以完全解决的一类方程,而求变系数常微分方程的通解是比较困难的,一般的变系数常微分方程目前是还没有通用解法的。本文主要对二阶变系数常微分方程求解进行了探究,利用特解、常数变易法、变量变换等方法求出了某些二阶变系数线性微分方程的通解,并初步归纳了二阶变系数线性方程的求解基本方法及步骤。 关键词:二阶变系数线性微分方程;变换;通解;特解 To explore the solution of some ordinary differential equations of two order variable coefficient Zhang jun(111114128) (School of Mathematics and Statistics Hubei Engineering University Hubei Xiaogan 432000) Abstract:Differential equation with constant coefficients is a class of equations we can completely solve the present general solution, and change coefficient differential equations is difficult, the variable coefficient ordinary differential equation is at present there

二阶变系数线性微分方程的一些解法

第九节 二阶变系数线性微分方程 的一些解法 常系数线性齐次方程和某些特殊自由项的常系数线性非齐次方程的解法已在第七节中介绍,而对于变系数线性方程,要求其解一般是很困难的。本节介绍处理这类方程的二种方法 §9.1 降阶法 在第五节中我们利用变量替换法使方程降阶,从而求得方程的解,这种方法也可用于二阶变系数线性方程的求解。 考虑二阶线性齐次方程 22dx y d +p(x) dx dy +q(x)y =0 (9.1) 设已知其一个非零特解y 1,作变量替换,令 y =uy 1 (9.2) 其中u =u(x)为未知函数,求导数有 dx dy =y 1dx du +u dx dy 1 求二阶导数有22dx y d =y 122dx u d +2dx du dx dy 1 +u 2 12dx y d 代入(9.1)式得

y 122dx u d +(2dx dy 1+p(x)y 1)dx du +(212dx y d +p(x) dx dy 1 +q(x)y 1)u =0 (9.3) 这是一个关于u 的二阶线性齐次方程,各项系数是x 的已知函数,因为y 1是(9.1)的解,所以其中 212dx y d +p(x) dx dy 1 +q(x)y 1≡0 故(9.3)式化为 y 122dx u d +(2dx dy 1+p(x)y 1) dx du =0 再作变量替换,令dx dy =z 得 y 1dx dz +(2dx dy 1 +p(x)y 1)z =0 分离变量 z 1 dz =-[1y 2+p(x)]dx 两边积分,得其通解 z =21 2y C e -∫p(x)dx 其中C 2为任意常数 积分得u =C 2∫21 y 1e -∫p(x)dx dx +C 1代回原变量得(9.1) 的通解 y =y 1[C 1+C 2∫21 y 1e -∫p(x)dx dx ]

变系数常微分方程的解法探讨

目录 1 引言 (1) 2 一阶变系数常微分方程的解法探讨 (1) 2.1 变系数一阶微分方程的几个可积类型 (1) 2.2 应用举例 (4) 3二阶变系数线性微分方程的解法探讨 (5) 3.1用求特解的方法求二阶变系数线性微分方程的解 (6) 3.1.1对变系数线性二阶微分方程特解的探索 (6) 3.1.2 确定的通解 (7) 3.1.3用常数变易法确定的特解 (8) 3.1.4应用举例 (8) 3.2二阶变系数线性微分方程的积分因子解法 (9) 3.2.1关于二阶变系数线性微分方程的积分因子的一些结论 (9) 3.2.2讨论如何求出, (10) 3.2.3应用举例 (10) 3.3二阶线性变系数常微分方程的常系数化解法 (11) 3.3.1利用自变量的变换实现常系数化 (11) 3.3.2利用未知函数的齐次线性变换实现常系数化 (12) 3.3.3 应用举例 (13) 4 三阶变系数线性微分方程的解法探讨 (14) 4.1 方程(4.1)化为常系数方程的一种充要条件 (14) 4.2 应用举例 (16) 结束语 (17) 参考文献 (17) 致谢 (17)

数学计算机学院数学与应用数学专业2013届余小艳 摘要:求变系数常微分方程的解,迄今为止没有一种确定的方法. 本文通过寻找特解和变量代换等方法得到了一些新的求解一类二阶变系数线性微分方程通解的方法,并讨论了一阶变系数线性微分方程和三阶变系数线性微分方程化为常系数方程的几个充要条件. 又举例说明了这些方法的可行性,有效扩充了变系数微分方程可解范围. 关键词:变系数常微分方程;二阶变系数微分方程;通解;变量变换 中图分类号:O175.1 Discussion on the Solution of Ordinary Differential Equation with Variable Coefficient Abstract: So far, there hasn’t been an established method on how to solve Ordinary Differential Equation (ODE) with Variable Coefficients. This paper presents some methods of solving the second order linear ODE with variable coefficients by means of searching special solution and variable transformation, etc. This paper also gives an introduction to the necessary and sufficient conditions of first order linear ODE and 3 rd order linear ODE with variable coefficient that can be translated into constant coefficients. Moreover, we give some examples to illustrate the feasibility of these methods. Hence, the results effectively extend the solvable for the variable coefficient differential equations. Key words: variable coefficients ordinary differential equations;second order differential equations with variable coefficients;general solutions;variable transformation

变系数_非线性微分方程的求解

变系数/非线性微分方程的求解:Example1: van der Pol equation Rewrite the van der Pol equation (second-order) The resulting system of first-order ODEs is 见:vdp_solve.m及vdp.mdl vdp_solve.m vdp.mdl

Example2: 2 with x(0) = 4 x (0)=0 5(5)5sin()5 +-+= x t x t x 见:exam2_solve.m及exam2.mdl exam2_solve.m exam2.mdl

Example3: ODEs 函数实现及封装说明[以一阶微分方程为例] 510 w i t h (0)4 dx x x dt +==- 引言: 一步Euler 法求解[相当于Taylor 展开略去高阶项]: 11()k k k k k k k k k k k x x x Ax bu t x x t x x t Ax bu ++-==+??=+??=+??+ 补充说明1:对于任意方程/方程组可化为如下一阶形式[方程组]: x Ax Bu =+ 或者(,)(,)M t x x f t x = 补充说明2:ODEs 的解法不同之处在于 1、时间步长的选取(及导数的求解?):有无误差控制 变步长; 2、积分方法:选用哪几个时间状态信息。 见:my_ode_rough.m[直接求解] / test_my_ode.m[按Matlab/ODEs 方式封装] my_ode_rough.m

Matlab求解微分方程(组)及偏微分方程(组)

第四讲 Matlab 求解微分方程(组) 理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介 1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解. 注意,系统缺省的自变量为t 2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一. (2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解. (3)如果要获得微分方程问题在其他指定时间点012,,, ,f t t t t 上的解,则令 tspan 012[,,,]f t t t t =(要求是单调的). (4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供

《偏微分方程概述及运用matlab求解偏微分方程常见问题》要点

北京航空航天大学 偏微分方程概述及运用matlab求解微分方 程求解常见问题 姓名徐敏 学号57000211 班级380911班 2011年6月

偏微分方程概述及运用matlab求解偏微分 方程常见问题 徐敏 摘要偏微分方程简介,matlab偏微分方程工具箱应用简介,用这个工具箱解方程的过程是:确定待解的偏微分方程;确定边界条件;确定方程所在域的几何形状;划分有限元;解方程 关键词MATLAB 偏微分方程程序 如果一个微分方程中出现的未知函数只含有一个自变量,这个方程叫做常微分方程,也简称微分方程:如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 一,偏微分方程概述 偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。许多领域中的数学模型都可以用偏微分方程来描述,很多重要的物理、力学等学科的基本方程本身就是偏微分方程。早在微积分理论刚形成后不久,人们就开始用偏微分方程来描述、解释或预见各种自然现象,并将所得到的研究方法和研究成果运用于各门科学和工程技术中,不断地取得了显著的成效,显示了偏微分方程对于人类认识自然界基本规律的重要性。逐渐地,以物

理、力学等各门科学中的实际问题为背景的偏微分方程的研究成为传统应用数学中的一个最主要的内容,它直接联系着众多自然现象和实际问题,不断地提出和产生出需要解决的新课题和新方法,不断地促进着许多相关数学分支(如泛函分析、微分几何、计算数学等)的发展,并从它们之中引进许多有力的解决问题的工具。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。 在国外,对偏微分方程的应用发展是相当重视的。很多大学和研究单位都有应用偏微分方程的研究集体,并得到国家工业、科学部门及军方、航空航天等方面的大力资助。比如在国际上有重大影响的美国的Courant研究所、法国的信息与自动化国立研究所等都集中了相当多的偏微分方程的研究人员,并把数学模型、数学方法、应用软件及实际应用融为一体,在解决实际课题、推动学科发展及加速培养人才等方面都起了很大的作用。 在我国,偏微分方程的研究起步较晚。但解放后,在党和国家的大力号召和积极支持下,我国偏微分方程的研究工作发展比较迅速,涌现出一批在这一领域中做出杰出工作的数学家,如谷超豪院士、李大潜院士等,并在一些研究方向上达到了国际先进水平。但总体来说,偏微分方程的研究队伍的组织和水平、研究工作的广度和深度与世界先进水平相比还有很大的差距。因此,我们必须继续努力,大力加强应用偏微分方程的研究,逐步缩小与世界先进水平的差距 二,偏微分方程的内容

1、变系数线性微分方程的求解

本科毕业论文 题目:变系数线性微分方程的求解问题院(部):理学院 专业:信息与计算科学 班级:信计081 姓名:张倩 学号:2008121191 指导教师:庞常词 完成日期:2012年6月1日

目录 摘要 (Ⅱ) ABSTRACT (Ⅲ) 1前言 1.1微分方程的发展和应用 (1) 1.2二阶变系数线性常微分方程的重要性 (2) 1.3本文的研究内容及意义 (2) 2二阶变系数线性微分方程特、通解与系数的关系 2.1基本概念 (3) 2.2二阶变系数线性微分方程的求解定理 (3) 2.3二阶变系数线性微分方程特、通解与系数的关系 (5) 3 微分方程的恰当方程解法 3.1恰当方程的概念 (8) 3.2恰当微分方程解法 (10) 4 微分方程的积分因子解法 4.1积分因子的概念 (14) 4.2积分因子解法 (14) 5二阶变系数微分方程可积的条件 结论 (22) 谢辞 (23) 参考文献 (24)

摘要 微分方程在数学理论中占有重要位置,在科学研究、工程技术中有着广泛的应用。在微分方程理论中,一些特殊的微分方程的性质及解法也已经有了深入的研究,它们总是可解的,但是变系数微分方程的解法比较麻烦的。 如果能够确定某一类型的二阶变系数线性微分方程的积分因子或恰当方程,则该二阶变系数线性微分方程就可以求解,问题在于如何确定积分因子和恰当方程及该类方程在何种情况下可积。 本文通过对微分方程的理论研究,用不同的方法探讨这类问题,扩展了变系数线性微分方程的可积类型,借助积分因子和恰当方程的方法求解方程。 关键词:变系数;二阶微分方程;积分因子;恰当因子

S olve For Varied Coefficient Second Order Liner Differential Equation ABSTRACT Second order liner homogeneous differential equation plays an important role in mathematics theory, and use extensively in science research and technology. In differential equation theory, some special differential equation’s solve ways have already been researched. So they can be seemed as could be solved sort of equation. But varied coefficient equation, however, this solve for this sort of equation is hard. If we can make integrating factor or exact equation of some types of second order liner different equation, and this types of second order liner different equation can be solved. The problem is how to make integrating factor and exact equation, and this type equation can be integral in which condition. This article utilizes different ways to research this problem in different equation theories, which expand could be solved type of varied coefficient second order liner differential equation. By integrating factor and exact equation make varied coefficient second order liner differential equation. Key Words: varied coefficient; second order liner differential equation; integrating factor; exact equation

变系数(2+1)维Broer-Kaup方程的新精确解P

第21卷第1期原子与分子物理学报 V o l .21,№.1 2004年1月 J O U R N A LO FA T O M I CA N D M O L E C U L A RP H Y S I C S J a n .,2004 文章编号:1000-0364(2004)01-0133-06 变系数(2+1)维B r o e r -K a u p 方程的新精确解 ? 李德生 (沈阳工业大学理学院,沈阳110023 )摘要:通过一个简单的变换,变系数(2+1)维B r o e r -K a u p 方程被简化为人们熟知的变系数B u r g e r s 方程。利用近年来广泛使用的齐次平衡法和t a n h -函数法,获得了变系数(2+1)维B r o e r -K a u p 方程的一些新的精确解。 关键词:变系数(2+1)维B r o e r -K a u p 方程;齐次平衡法;t a n h -函数法;精确解中图分类号:O 175.2 文献标识码:A S o L e n e we x a c t s o l u t i o n s t o t h e (2+1)-d i L e n s i o n a l B r o e r -K a u p e q u a t i o nw i t h v a r i a b l e c o e f f i c i e n t s L I D e -S h e n g (S c i e n c e S c h o o l o f S h e n y a n g U n i v e r s i t y o f T e c h n o l o g y ,S h e n y a n g 1 10023,P .R .C h i n a )A b s t r a c t :T h e (2+1)-d i m e n s i o n a l B r o e r -K a u p e q u a t i o nw i t h v a r i a b l e c o e f f i c i e n t s a r e r e d u c e d t o t h e f a m i l i a r B u r g e r s e q u a t i o nw i t h v a r i a b l e c o e f f i c i e n t s b y a s i m p l e t r a n s f o r m a t i o n .S o m e n e we x a c t s o l u t i o n s o f t h e (2+1)-d i m e n s i o n a l B r o e r -K a u p e q u a t i o nw i t hv a r i a b l e c o e f f i c i e n t s a r eo b t a i n e db y t h eu s eo f t h eh o m o g e n e o u s m e t h o d a n d t h e t a n h -f u n c t i o nm e t h o dw h i c h a r ew i d e l y u s e d t e c h n i q u e s i n r e c e n t y e a r s .K e y w o r d s :T h e (2+1)-d i m e n s i o n a lB r o e r -K a u p e q u a t i o n w i t hv a r i a b l ec o e f f i c i e n t s ;T h eh o m o g e n e o u s m e t h o d ;T a n h -f u n c t i o nm e t h o d ;E x a c t s o l u t i o n s 1引言 本文再次考虑变系数(2+1)维B r o e r -K a u p 方程的精确求解问题 H y t E α(t )[H x x y -2(H H x )y -2G x x ]G 1E α(t )[-G x x -2(G H )x < ╰╰] (1 )对于该方程的研究人们已获得了大量的结果。在文献[1~2]中,利用改进的齐次平衡法,作者深入细致地 研究了常系数方程的局域相干结构,给出了一些新的具有特殊形式的精确解,如多D r o m i o n 解,多L u m p 解,振荡型D r o m i o n 解,圆锥曲线孤子解,运动和静止呼吸子解和似瞬子解等。文献[3]进一步考虑了变系数(2+1)维B r o e r -K a u p 方程的精确求解问题,利用王明亮于90年代中期提出的齐次平衡法[4~5] ,导出了该方程的B T , 并由此得到了类似于文献[1~2]中的局域相干结构和一些新的精确解。?收稿日期:2003-06-25 基金项目:国家“973“项目(批准号:1998030600);国家自然科学基金(批准号:10072013 )资助的课题。作者简介:李德生(1963-),男。吉林抚松县人,沈阳工业大学理学院副教授,大连理工大学在读博士生,主要从事孤立子理论与数学机械化研究。

相关文档
最新文档