金属药物的设计与应用

金属药物的设计与应用
金属药物的设计与应用

金属药物的设计与应用

重庆大学

药物发现简史八组

撰写者:

刘德政20141876

摘要

随着科学技术及理论的不断发展,单一学科方向的发展已经很难满足人们的各种需求,尤其是对人们所关注的健康问题。现在,医学、生物以及化学在这方面得到了很好的融合与应用。比如无机化学在药物设计上已经有很久的历史了,尤其是金属在药物中的应用也有很多。近代对金属药物的研究与实践充分证明了,金属药物的探索与发展对各类疾病的治疗有着重大意义。作为一种备受瞩目的药剂,金属药物促进了无机化学与生物卫生的融合,在我们的医疗乃至日常生活中都起到了较大的作用。

本文通过严谨的分析,概述了金属药物的设计,并进一步阐明了金属药物的几个应用,展现了金属药物在几个重点领域的研究成果。金属药物从无到有,设计技术不断创新,应用范围逐渐扩大,我们相信它在未来有更加巨大的作用。

关键词:金属药物设计应用抗癌

目录

摘要.......................................................................................................................... I 关键词 ..................................................................................................................... I 引言.................................................................................................................... - 1 - 一、金属药物的设计.................................................................................. - 1 -

(一)以蛋白质为靶点......................................................................... - 1 - (二)以核酸为靶点.............................................................................. - 2 - 二、金属药物的应用.................................................................................. - 2 -

(一)作为抗癌剂................................................................................ - 2 -

1、第一代铂族抗癌药物顺铂 ....................................................... - 2 -

2、第二代铂族抗癌药物卡铂 ....................................................... - 3 -

3、第三代铂族抗癌药物奥沙利铂 .............................................. - 3 -

4、新型铂类抗癌金属配合物 ....................................................... - 3 -

(二)作为抗药剂................................................................................ - 3 -

1、银抗感染 ............................................................................................. - 3 -

2、锑抗寄生虫 .................................................................................. - 3 -

3、铋抗溃疡....................................................................................... - 4 -

(三)作为诊断剂................................................................................ - 4 - 结论.................................................................................................................... - 4 - 参考文献与注释 ............................................................................................. - 5 -

金属药物的设计与应用

引言

在科研届,金属药物的应用与相关研究是一个重要的领域。自从人类合成金属药物以来,金属药物发挥了巨大的作用,广大的科研工作者也致力于“让金属药物更好地服务于人们的生活”。事实也确实如此。

尽管在上世纪中期,金属药物乃至于整个无机药物的使用都处于低谷,但到了上世纪70 年代,铂类抗癌药物的研究与开发为金属药物带来了复兴。金属药物也不仅仅用于抗癌,它也可以用作诊断剂和抗药剂。金属药物的加入,让多种疾病的治疗方法更加多元化,让癌症这样的疾病有了更好的治疗前景。科研界成果不断,不断创新,本文也系统地阐述了一些先进的科研成果。

一、金属药物的设计

在20世纪60年代美国Rosenberg等发现广谱的抗癌活性,这一工作为无机金属配合物进入生物无机药物化学奠定了基础。后来人们渐渐认识到,金属配合物,特别是多元金属配合物在生命过程中起着十分重要的作用。这些配合物的药理及理化性质已经引起药物研究者极大的兴趣。

金属配合物对人体产生作用主要是通过有机药物分子进入人体后,与人体内的微量元素、细菌、病毒或者癌细胞中的金属蛋白、金属酶与核酸之间相互作用,促进机体正常代谢的恢复或破坏病原体的正常代谢,所以金属药物在设计时主要以蛋白质和核酸为靶点。

(一)以蛋白质为靶点

以蛋白质为作用靶点的金属药物主要有:钒化合物的抗糖尿病作用、砷化合物治疗白血病、锑化合物治疗利什曼虫寄生病、铋化合物治疗胃溃疡(幽门螺旋杆菌)、硒蛋白的抗氧化作用、治疗动脉粥样硬化。主要是利用这些金属合成一些相应的配合物,能够与病原体选择性的结合,从而起到抑制病原体增加以及灭杀病原体的作用。

如阿尔海滋默病,其发病的一个主要原因有tau蛋白的聚集导致神经纤维缠结,以及细胞外的淀粉样多肽沉积。而Cu2+过量则会促进tau蛋白和Aβ多肽的聚集。利用这一点就可以设计相应的金属配合物,使之于Cu2+结合。氯碘羟喹(clioquinol , CQ) 是一种可以顺利通过血脑屏障并对Cu2+和其他金属离子都有较强亲合力的双齿配体。CQ在体外可以使Aβ聚集体快速解聚,一般认为因为CQ 与Aβ聚集体中的金属(Cu2+或Zn2+等) 结合,从而使Aβ聚集体解聚。CQ 还能显著减少转基因小鼠脑内Aβ的聚集。在临床上曾被广泛使用,但实验发现CQ 减缓机体功能的衰退不明显,其对机体有不可忽视的副作用,故在一些国家被禁用。

(二)以核酸为靶点

目前以核酸为靶点的金属药物主要有顺铂、卡铂以及钌配合物等。以顺铂为例,其作用机制为:使肿瘤细胞DNA复制停止,阻碍细胞分裂进入体内后,Cisplatin 可扩散通过带电的细胞膜,在Cl-离子浓度较高的条件下较稳定进入细胞后,由于细胞Cl-浓度低,药物水解为阳离子的水合物,再解离生成羟基络合物。但其水溶性差,且仅能注射给药,缓解期短。有严重的肾脏、胃肠道毒性、耳毒性及神经毒性,长期使用会产生耐药性。故需要寻找高效低毒的药物、研究构效关系和探索铂配合物分子水平抗肿瘤作用机制。用不同的胺类(乙二胺、环己二胺等)和各种酸根(无机酸、有机酸)与铂(II)络合,合成一系列铂配合物改善其性能。

现在国际上已经普遍认为,钌配合物将成为最有前途的抗癌药物之一。欧盟自1997年就成立了钌抗癌药物的研究和发展工作组(COST D8),加强相应的研究。钌(III)配合物抗癌活性的重要的假设——“还原活化”(Activation by reduction),即钌(III)配合物可能只是前体药物,在体内通过还原活化后与生物分子发生作用。目前已有多种钌的配合物被应用在抗癌一线。

二、金属药物的应用

金属离子在生物学和医药学中起着非常重要的作用。金属化合物不仅作为生物大分子的结构和功能探针被引人生物系统中,而且也用作新型诊断和治疗药物。正因为这样,世界各国投入大量入力、物力来研究金属元素在生命过程、医药学甚至环境中的作用。目前金属配合物在医学和药学研究中已经得到广泛应用。

(一)作为抗癌剂

顺铂(Cisplatin)、卡铂(Carboplatin)、奈达铂(Nedaplatin)、奥沙利铂(Oxaliplatin)、舒铂(Sunpla)和乐铂(Lobaplatin)是目前已进入临床的6种铂类抗癌药物。据最新统计,在癌症的临床联合化疗方案中,约有85%的方案以顺铂和卡铂为主药或有它们参与,其他的药物正在被医生和患者所认识,将逐步成为治疗癌症的重要药物。

第一代铂族抗癌药物顺铂(Cisp lat in) 于1978 年上市。第二代铂族抗癌药物卡铂(Carboplatin) 于1986 年上市。第三代铂族抗癌药物奥沙利铂(Oxaliplatin) 于1996 年在法国上市。随着人们对铂类药物的抗癌作用机制的进一步研究和了解, 铂族金属药物成为当前最为活跃的抗癌药物研究和开发领域之一。

1、第一代铂族抗癌药物顺铂

顺铂为顺式2二氯二氨合铂的俗称。其抗癌作用是美国生理学家Rosenberg B 于1965 年偶然发现的。顺铂为平面四边形结构的配合物。其抗癌作用机制和传统的有机药物有所不同。通过大量的研究, 人们初步认为其机理大致为: 跨膜运转, 水合离解, 靶向迁移和作用于DNA。

2、第二代铂族抗癌药物卡铂

顺铂虽然已经应用于临床, 有较好的疗效, 但由于它水溶性小, 使肿瘤细胞产生获得性耐药性, 有很强的毒副作用, 包括肾毒性、耳毒性、神经毒性及肠道毒性, 易造成病人的肾毒、恶心、厌食和神经障碍等问题。为了减少它的毒性, 人们尝试对它作结构上的修饰。卡铂便是其中之一。

卡铂化学名为1, 12环丁二羧酸二氨合铂 (配合物2)。结构式中引入了亲水性的1, 12环丁二羧酸作为配体, 因此肾毒性和引发的恶心呕吐均低于顺铂, 其作用机理与顺铂相同, 虽然其化学稳定性好, 毒性小, 但是它与顺铂有交叉耐药性(交度达90% )。

3、第三代铂族抗癌药物奥沙利铂

奥沙利铂的化学名为(1R , 2R ) 21, 22二氨环己烷草酸根合铂。(配合物3)作为第一个上市的二氨基环己烷(dach) 作为载铂配体的一类铂配合物, 它不仅改善了顺铂及卡铂的毒副作用, 而且扩大了它们的活性谱, 对许多耐顺铂或卡铂的细胞株或瘤株具有活性。该药是对结、直肠转移癌, 尤其是对耐52FU 的结、直肠癌有较好的疗效的第一个铂类药物。研究证明, 奥沙利铂的主要靶分子亦为DNA , 也是与DNA 形成加合物。与顺铂相似, 奥沙利铂与DNA 的加合物也主要是P t2GG 和P t2A G 链内交联体, 而且较顺铂有更强的DNA合成抑制作用。

4、新型铂类抗癌金属配合物

人们最初认为只有顺式铂配合物和中性的铂配合物才具有抗癌作用, 但是研究表明, 违背传统的构效关系的铂的配合物不仅也有抗癌作用, 有时甚至显示出更好的抗癌疗效。另外单核铂的配合物、四价铂类配合物、双、多核铂类抗癌药物和对新型的烃基锡衍生物配合物、有机锗化合物、茂钛衍生物、稀土配合物的研究都发现其具有特殊的抗癌活性。金属配合物作为抗癌药物虽有的已经应用于临床, 并且显示出了较好的临床效果, 但是大多数仍处于实验阶段, 人们对它们的抗癌机理仍不是十分清楚。随着人们对金属配合物的抗癌机理以及其构效关系的进一步认识, 人们必将合成出更多的高效低毒的金属配合物, 金属配合物的抗癌前景将更为广阔。

(二)作为抗药剂

1、银抗感染

银及其化合物用于医学抗菌已有很长时间,比如婴儿出生后立即向其眼睛滴注1%的AgN03溶液在很多国家普遍用于新生儿结膜炎的预防。Ag的磺胺嘧啶化合物10作为一种抗菌剂已应用于临床,并作为一种冰冷剂用于严重烧伤时引起的细菌感染。银杀菌的主要原理在于高氧化态银的还原势极高,使其周围空间产生可以灭菌的强氧化性原子氧,Ag+则强烈地吸引细菌体中蛋白酶上的巯基(一SH)迅速与其结合在一起,使蛋白酶丧失活性,导致细菌死亡。

2、锑抗寄生虫

锑化合物用于医学有几百年的历史。N一甲基葡萄糖胺锑酸酯和葡萄糖酸锑钠对由细胞内寄生虫所引起的利什曼原虫有很强的杀伤作用,这些药物中的糖类

可把Sb(V)传递给巨噬细胞,在反应部位或附近生成毒性更强的Sb(Ⅲ),从而将寄生虫杀死。但此类药物毒性很大,可引起心肌炎和肾炎。

3、铋抗溃疡

铋化合物用于治疗胃肠疾病已有200多年。这类药物主要包括铋的碳酸氢盐、硝酸盐、水杨酸盐和胶体次构橼酸盐。次水杨酸铋(BBS)临床用于治疗腹泻和消化不良,胶体枸橼酸铋(CBS)被广泛用作胃溃疡和十二指肠溃疡。枸橼酸铋雷尼替丁(RBC,11)是一种新药。由Glaxo公司开发并予1995年首先在英国上市,1996年获得美国FDA的批准,1999年国产RBC在中国独家上市。目前RBC已在世界20多个国家被使用。

(三)作为诊断剂

一些金属配合物已用作临床药物或诊断试剂,如根据癌变相关的早期因子可随尿液排出体外,并且可与某些离子发生络合反应,形成蓝色配合物这一原理,已经开发成早期肿瘤检测试纸。还可以用作MRI造影剂:大多数MRI造影剂中都含有较多未成对电子的Gd(Ⅲ)、Mn(II)或Fe(Ⅲ)离子,它们的电子自旋弛豫比较长,所以很容易检测到疾病;作为放射性药物:放射性药物是指起示踪或治疗作用的放射性核素,分放射性诊断与放射性治疗药物两类,均可作显像剂。如99mTc(d1-hm-pao)用于大脑中风灌注显像,被大脑吸收,转化成亲水性更强的物质留在大脑里,有趣的是含d1.hm.Pao的异构体在大脑里的存留时间比含中间配体的配合物长得多。

结论

通过我们的研究可以发现,金属药物的应用主要在三个方面:一是抗癌;二是抗药;三是诊断。

金属离子与人的生命活动密不可分,而金属药物叉越来越广泛地应用予人类疾病的诊断和治疗。随着分子生物学和生物化学等方面知识的发展,设计金属药物时,了解金属离子与细胞膜、蛋自质、酶和DNA的作用,从分子和细胞水平上探索金属离子抗病毒以及抗癌视理,对研究金属离子在生命体系中的作用至关重要。

而科学技术在不断进步,机械设备等硬件设施的升级为探索人体内的微观世界创造了良好的条件。同时也为金属药物的作用机制的研究、模拟提供了很好的外部环境,为金属药物的临床应用提供了保障。金属药物的应用极大的提高了医疗水平,尤其抗癌类的金属药物的研究不断取得一些成果,为癌症患者带来了新的希望。希望在不远的将来,金属药物能更好地造福人类。

参考文献与注释

1、柴晓华,王飞利,黄洁,等.金属药物研究新进展[J].化学试剂,2008,30(2):9

-104

2、徐刚,崔玉波,崔凯,等.非铂类金属抗肿瘤药物的研究进[J].化学进展,2006,18(1):107-113

3、尹富玲,申佳,邹佳嘉,等.2,2'-联吡啶和去甲基斑蝥酸根桥联双核铜(Ⅱ)配合物

的合成、结构表征及抗癌活性的研究[J].化学学报,2003,61(4):556-561

4、姜小平. 铂族金属离子生化作用机理[J]. 青海大学学报.2004, 4. 60-62

5、甘强, 刘霞 ,冯长根. 多金属氧酸盐抗肿瘤研究[J]. 科技导报. 2011, 29(31): 75-77

6、王飞利, 常艳玲, 安丽荣. 非铂类金属抗癌化合物的研究进展[J] 化学研究与应用

7、褰晓华, 王飞绷, 黄溶, 张君金. 金属药物研究新进展[J]. 化学试剂, 2008, 30(2), 99-104

金属塑性成形原理复习题

一、名词解释 1. 主应力:只有正应力没有切应力的平面为主平面,其面上的应力为主应力。 2. 主切应力:切应力最大的平面为主切平面,其上的切应力为主主切应力。 3. 对数应变 答:变形后的尺寸与变形前尺寸之比取对数 4. 滑移线 答:最大切应力的方向轨迹。 5. 八面体应力:与主平面成等倾面上的应力 6. 金属的塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。 7. 等效应力:又称应力强度,表示一点应力状态中应力偏张量的综合大小。 8. 何谓冷变形、热变形和温变形:答度以下,通常是指室温的变形。热变形:在再结晶温度以上的变形。 温变形,高于室温的变形。 9. 何谓最小阻力定律:答,物体质点将向着阻力最小的方向移动,即做最少的功,走最短的路。 10.金属的再结晶 答:冷变形金属加热到一定的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。 11. π平面 答:是指通过坐标原点并垂于等倾线的平面。 12.塑性失稳 答:在塑性加工中,当材料所受的载荷达到某一临界后,即使载荷下降,塑性变形还会继续,这种想象称为塑性失稳。 13.理想刚塑性材料:在研究塑性变形时,既不考虑弹性变形,又不考虑变形过程中的加工硬化的材料。P139 14.应力偏张量:应力偏张量就是应力张量减去静水压力,即:σij ′ =σ-δij σm 二、填空题 1. 冷塑性变形的主要机理:滑移和孪生 2. 金属塑性变形的特点:不同时性、相互协调性和不均匀性。 3. 由于塑性变形而使晶粒具有择优取向的组织称为:变形织构 。 4. 随着变形程度的增加,金属的强度 硬度增加,而塑性韧性降低,这种现象称为:加工硬化。 5. 超塑性的特点:大延伸率、低流动应力、无缩颈、易成形、无加工硬化 。 6. 细晶超塑性变形力学特征方程式中的m 为:应变速率敏感性指数。 7. 塑性是指金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力 。 8. 塑性指标是常用的两个塑性指标是:伸长率和断面收缩率。 9. 影响金属塑性的因素主要有:化学成分、组织状态、变形温度、应变速率、应力状态(变形力学条)。 10. 晶粒度对于塑性的影响为:晶粒越细小,金属的塑性越好。 11. 应力状态对于塑性的影响可描述为:(静水压力越大)主应力状态下压应力个数越多,数值越大时,金属的塑性越好。 12. 通过试验方法绘制的塑性——温度曲线,称为:塑性图 。 13. 用对数应变表示的体积不变条件为: 0x y z εεε++=。 14. 平面变形时,没有变形方向(设为z 向)的正应力为: 21311=()=()=22 z x y m σσσσσσσ=++。 15. 纯切应力状态下,两个主应力数值上相等,符号相反 。

金属抗癌药物的应用和发展

金属抗癌药物的应用与发展 摘要:癌症是二十世纪以来人类健康的主要杀手,而生物无机化学领域研究的金属抗癌药物已在癌症治疗中发挥了巨大作用,并且显示出了良好的发展前 景。本文对当前的一些铂类及非铂类金属抗癌药物的研究状况作一综述,并且就降低铂类药物的毒性和抗药性提出了新的设计策略。 关键词:金属抗癌药物铂类药物非铂类药物设计策略 生物无机化学的研究与医药学的关系十分密切。研究发现,许多金属配合物如铂、锡和铜等金属元素的配合物具有潜在抗癌活性,并且不同配合物对不同形式的癌症的作用具有一定的选择性。因此,通过对其作用机理和构效关系的研究,设计合成高效、低毒的金属抗癌药物,可为临床上化疗法治疗癌症开辟一条新的途径。 金属药物有许多其它药物无法比拟的独特性质,以顺铂为代表的铂类抗癌药物在癌症临床化疗中发挥了巨大作用。 1 铂类抗癌药物的应用研究 自美国密执安州立大学教授B Rosenberg和V Camp发现顺铂具有抗癌活性以来,铂族金属抗癌药物的应用和研究得到了迅速的发展。顺铂和卡铂已成为癌症化疗不可缺少的药物。1995年WHO对上百种治癌药物进行排名,顺铂的综合评价(疗效、市场等)位居榜前,列第二位。另据统计,在我国以顺铂为主或有顺铂参加配位的化疗方案占据化疗方案的70-80%。 1.1 第一代铂族抗癌药物——顺铂(Cisplatin) 顺铂(Cisplatin)是顺式—二氯二氨合铂(Ⅱ)的简称,分子式是cis—Pt[(NH3)C12],相对分子质量为300。其结构式为:

顺铂作为一种广谱抗癌药物,在临床上已广泛使用。它在l9世纪末就被合成出来,60年代Rosenberg和Van Camp发现它具有抗癌活性,于1978年首先在美国批准临床使用,并迅速成为治疗癌症的佼佼者(现在临床采用的联合化疗方案中,70—80%以顺铂为主或有顺铂参与配位,是治疗癌症的首选药物之一)[1]。顺铂致力于治疗的癌症有卵巢癌、肺癌、宫颈癌、鼻咽癌、前列腺癌、恶性骨肿瘤、淋巴肉瘤等等。顺铂是第一个无机抗癌药物,它不但对癌症的治疗带来了一次革命,而且带动了一门新学科——生物无机化学的形成和发展。 但早期由于顺铂具有肾毒性、胃肠道反应、水溶性差、耳毒性以及交叉抗药等缺陷,使其应用受到限制。直到1976年通过水化或使用利尿剂的方法缓解其肾毒性以及通过服用5—HT,受体拮抗剂ondansetron来减轻恶心呕吐的症状,才使顺铂应用逐渐广泛起来。 各国研究人员先后合成2000多种铂类配合物并进行筛选,研究发现:当配体被较大的有机基团取代时,顺式和反式铂的配合物都具有抗肿瘤活性。也就是在设计反式铂类抗癌配合物时,利用一些空间位阻较大的基团来减少动力学活性。 1.2 第二代铂族抗癌药物——卡铂(Carboplatin)和奈达铂(Nedaplatin) 卡铂是1,1—环丁二羧酸二氨合铂(Ⅱ)的简称,是美国施贵宝公司、英国癌症研究所以及Johnson Matthey公司合作开发的第二代铂族抗癌药物。分子式是Pt(NH3)2CBDCA。其结构式为: 卡铂与紫杉酵联用在治疗晚期头颈部癌、小细胞肺癌等方面的应用很有价值。卡铂具有:(1)化学稳定性好,溶解度比顺铂高16倍;(2)毒副作用低于

金属塑性成型原理-知识点

名师整理精华知识点 名词解释 塑性成型:金属材料在一定的外力作用下,利用其塑性而使其成形并获得一定力学性能的加工方法 加工硬化:略 动态回复:在热塑性变形过程中发生的回复 动态再结晶:在热塑性变形过程中发生的结晶 超塑性变形:一定的化学成分、特定的显微组织及转变能力、特定的变形温度和变形速率等,则金属会表现出异乎寻常的高塑性状态 塑性:金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力。 屈服准则(塑性条件):在一定的变形条件下,只有当各应力分量之间符合一定关系时,指点才开始进入塑性状态,这种关系成为屈服准则。 塑性指标:为衡量金属材料塑性的好坏,需要有一种数量上的指标。 晶粒度:表示金属材料晶粒大小的程度,由单位面积所包含晶粒个数来衡量,或晶粒平均直径大小。填空 1、塑性成形的特点(或大题?) 1组织性能好(成形过程中,内部组织发生显著变化)2材料利用率高(金属成形是靠金属在塑性状态下的体积转移来实现的,不切削,废料少,流线合理)3尺寸精度高(可达到无切削或少切屑的要求)4生产效率高适于大批量生产 失稳——压缩失稳和拉伸失稳 按照成形特点分为1块料成形(一次加工、轧制、挤压、拉拔、二次加工、自由锻、模锻2板料成形多晶体塑性变形——晶内变形(滑移,孪生)和晶界变形 超塑性的种类——细晶超塑性、相变超塑性 冷塑性变形组织变化——1晶粒形状的变化2晶粒内产生亚结构3晶粒位向改变 固溶强化、柯氏气团、吕德斯带(当金属变形量恰好处在屈服延伸范围时,金属表面会出现粗超不平、变形不均匀的痕迹,称为吕德斯带) 金属的化学成分对钢的影响(C略、P冷脆、S热脆、N兰脆、H白点氢脆、O塑性下降热脆);组织的影响——单相比多相塑性好、细晶比粗晶好、铸造组织由于有粗大的柱状晶粒和偏析、夹杂、气泡、疏松等缺陷、塑性降低。 摩擦分类——干摩擦、边界摩擦、流体摩擦 摩擦机理——表面凹凸学说、分子吸附学说、粘着理论 库伦摩擦条件T=up 常摩擦力条件 t=mK 塑性成形润滑——1、特种流体润滑法2、表面磷化-皂化处理3、表面镀软金属 常见缺陷——毛细裂纹、结疤、折叠、非金属夹杂、碳化物偏析、异金属杂物、白点、缩口残余 影响晶粒大小的主要因素——加热温度、变形程度、机械阻碍物 常用润滑剂——液体润滑剂、固体润滑剂(干性固体润滑剂、软化型固体润滑剂) 问答题 1、提高金属塑性的基本途径 1、提高材料成分和组织的均匀性 2、合理选择变形温度和应变速率 3、选择三向压缩性较强的变形方式 4、减小变形的不均匀性 2、塑性成形中的摩擦特点 1、伴随有变形金属的塑性流动 2、接触面上压强高 3、实际接触面积大 4、不断有新的摩擦面产生 5、常在高温下产生摩擦 3、塑性成形中对润滑剂的要求 1、应有良好的耐压性能 2、应有良好的耐热性能 3、应有冷却模具的作用 4、应无腐蚀作用 5、应无毒 6、应使用方便、清理方便 4、防止产生裂纹的原则措施 1、增加静水压力 2、选择和控制适合的变形温度和变形速度 3、采用中间退火,以便消除变形过程中产生的硬化、变形不均匀、残余应力等。 4、提高原材料的质量 5、细化晶粒的主要途径 1、在原材料冶炼时加入一些合金元素及最终采用铝、钛等作为脱氧剂 2、采用适当的变形程度和变形温度 3、采用锻后正火或退火等相变重结晶的方法 6、真实应力-应变的简化形式及其近似数学表达式1、幂指数硬化曲线Y=B?n 2、有初始屈服应力的刚塑性硬化曲线Y=σs+B1?m 3、有初始屈服应力的刚塑性硬化直线Y=σs+B2?4、无加工硬化的水平直线Y=σs 7、为什么晶粒越细小,强度和塑性韧性都增加?晶粒细化时,晶内空位数目与位错数目都减少,位错与空位、位错间的交互作用几率减小,位错易于运动,即塑性好。位错数目少,塞积位错数目少,使应力集中降低。晶粒细化使晶界总面积增加,致使裂纹扩展的阻力增加,推迟了裂纹的萌生,增加了断裂应变。晶粒细小,裂纹穿过晶界进入相邻晶粒并改变方向的频率增加,消耗的能量增加,韧性增加。另外晶界总面积增加可以降低晶界上的杂质浓度,减轻沿晶脆性断裂倾向。 8、变形温度对金属塑性的影响 总趋势:随着温度的升高,塑性增加,但是这种增加并非简单的线性上升;在加热过程的某些温度区间,往往由于相态或晶粒边界状态的变化而出现脆性区,使金属的塑性降低。在一般情况下,温度由绝对零度上升到熔点时,可能出现几个脆性区,包括低温的、中温的、和高温的脆性区。 9、动态回复、为什么说是热塑性变形的主要软化机制? 动态回复是指在热塑性变形过程中发生的回复,2,动态回复,主要是通过位错的攀移,交滑移等,来实现的,对于铝镁合金、铁素体钢等,由于它们层错能高,变形时扩展位错宽度窄,集束容易,位错的攀移和交滑移容易进行,位错容易在滑移面间转动,而使异号位错相互抵消,结果使位错密度下降,畸变能降低,不足以达到动态再结晶所需的能量水平。因此这类金属在热塑性变形过程中,即使变形程度很大,变形温度远高于再结晶温度,也只会发生动态回复,而不发生动态再结晶。 10、什么是动态再结晶,其主要影响因素?(自己总结吧,课本太乱) 动态再结晶:在热塑性变形过程中发生的结晶。与金属的位错能高地有关,与晶界迁移的难易有关 ,金属越纯,发生动态再结晶的能力越强。

前药设计原理及应用

前药设计原理及应用 前药是药物分子的生物可逆的衍生物,在体内经酶或化学作用释放具有活性的原药,从而发挥预期的药理作用。在药物的发现和发展过程中,前药已经成为一种确切的改善原药理化性质、生物药剂学性质及药物代谢动力学性质的手段。目前在世界范围内批准上市的药品中有5%~7可以归类为前药,并且在新药研究的早期前药这一理念也越来越受到重视。 前药是一类通过结构修饰将原来药物分子中的活性基团封闭起来而导致本身 没有活性,但在体内可代谢成为具有生物活性的药物]1]。前药原理在药物设计中应用广泛,不仅可对经典的含羧基、羟基、氨基药物进行结构修饰制成酯、羧酸酯、氨基酸酯、酰胺、磷酸酯等类型的前药,还可制成偶氮型前药、曼尼希碱型前药、一氧化氮型前药及开环、闭环等新型结构的前药,既保持或增强了原药的药效,又克服了原药的某些缺点。 1. 前药设计的结构修饰类型1.1酯类前药 含有羧基、羟基和巯基的药物成酯在前药的应用中是最广泛的,将近49%勺上市药物在体内是通过酶的水解来激活的。酯类前药主要是用来提高药物的脂溶性和被动的膜渗透能力,通常通过掩蔽水溶性药物的极性基团来达到的。在体内,酯键可以很容易的被血液、肝脏以及其他器官和组织中普遍存在的酯酶水解掉。 目前临床上有许多烷基或芳基酯类前药在应用,其中B-内酰胺类抗生素匹 氨西林(Pivampicillin )就是一个成功的例子[2 ]。氨苄青霉素是耐酸、广谱、半合成青霉素,可以口服,但是口服吸收差,血药浓度只有注射给药的20%-40%。分析结构表明,氨卡青霉素分子中的C2羧基与C6侧链氨基在胃内pH 情况下解离为两性离子,将羧基形成简单的脂肪。芳香酯类不够活泼,在体内酶促分解成原药的速度很慢,将其设计成双酯型前药,末端酯键位阻较小,易于发生酶促断裂,生成的羟甲酯不稳定,自动分解,释放出甲醛和氨苄青霉素,产生药效,生物利用度提高3?5倍,口服几乎定量吸收(98%?99% )。 1.2磷酸酯/磷酸盐类前药 含有羟基和氨基的药物磷酸酯类前药主要是针对含有羟基和氨基的水溶性差的药物而设计的,目的是提高它们的水溶性来得到更好的口服给药效果。磷酸酯 类前药表现出很好的化学稳定性,同时在体内可以通过小肠和肝脏中的磷酸酯酶快速的转化为原药[3 ]o 磷苯妥英钠(fosphenytoin sodium 为抗癫痫药苯妥英(phenytoin )的胃肠 外使用的有效前药,其水溶性和稳定性较原药都有很大提高。由于苯妥英的水溶性很低(24卩g ? mL 1 ),很难有效给药,因此开发了其前药磷苯妥英钠。该药可在血红细胞、肝和许多其他组织中的碱性磷酸酯酶的作用下,迅速而完全的转 变为苯妥英。由于该药极性增加,使其水溶性增加(140 mg ? mL1 ),可制成50 mg - mL 1稳定的混合水溶液通过静脉注射或肌内注射途径给药,克服了苯妥英临床应用带来的不良反应并消除了苯妥英的药物相互作用[4 ]o 1.3 碳酸酯类与氨基甲酸酯类前药含有羧基、羟基和氨基的药物碳酸酯与氨基甲酸酯类化合物与对应的酯相比对酶的稳定性更好,碳酸酯是羧基与醇基的衍生物,氨基甲酸酯是

新药设计与开发期末考试复习题版三

新药设计与开发复习题 名词解释题 1.H2受体 是组胺受体的一个亚型,主要分布于胃壁细胞、血管和心室、窦 房结上,可引起胃酸分泌过多,血管扩张、心脏收缩加强、心率加快 等生物效应。 2.H2受体拮抗剂 主要用于拮抗组胺引起的胃酸分泌,是治疗消化性溃疡很有价值 的一类药物。 3.前药原理 前药是一类由于结构修饰后的化合物分子中的活性集团被封闭了起 来而本身没有活性,但在体内可代谢成为具有生物活性的药物。 前药原理是用化学方法把具有生物活性的原药转变成为体外无活性 的衍生物,后者在体内经酶解或非酶性水解而释放出原药而发挥药 效。 4.先导化合物:简称先导物,是通过各种途径和手段得到的具有某种 生物活性和化学结构的化合物,用于进一步的结构改造和修饰,是现 代新药研究的出发点。 5.受体拮抗剂:与受体有较强亲和力而无内在活性的药物。 6.受体:指能与激动剂高度选择性的结合,并随之发生特异性效应的 生物大分子或大分子复合物。 7.受体扩散剂: 8.软药:是指一类本身有治疗效用或生物活性的化学实体,当在体 内呈现药效并达到治疗目的后,按预料的代谢途径和可控的代谢速率 的代谢,转变成无毒、无活性的代谢物。 12、合理药物设计 学生答案:根据药物发现过程中基础研究所揭示的药物作用靶点,即受体,再参考其内源性配体或天然药物的化学结构特征,根据配体理化性质寻找和设计合理的药物分子,以便有效发现、到达和选择性作用与靶点的又具有药理活性的先导物;或根据靶点3D结构直接设计活性配体。 脂水分配系数 学生答案:P-Co/ Cw化合物在互不相溶体系中分配平衡后,有机相的浓度与水相中的浓度的比值。 双前药 学生答案:无活性的药物分子在体内经过两步转化释放出有活性的药物。 定量构效关系:用数学模式来表达药物的化学结构因素与特定的生物活性强度的相互关系。 结构特异性药物:药物的作用与体内特定受体或酶的相互作用有关。其活性与化学结构的关系密切。 简答或其他 1、计算机工作站软件系统组成? 答:(1)数据库;(2)参数运算系统;(3)数据转换系统;(4)解析 系统;(5)预测系统;(6)显示系统;(7)操作系统 计算机数据库、数据转换系统组成? 答:数据库:包括了各类化合物数据、分子结构数据、基团参数数据 和生物活性数据等。数据库系统的软件中包括操作系统(O S)、数据 库管理系统(DBMS)、主语言系统、应用程序软件和用户数据库。 数据转换系统组成:数据转换管理系统主要由数据提取、数据转换、数 据加载和数据检查等模块组成。 2、新药设计的经典原理和方法有哪些?(PPT) 答:经典方法:前药原理,软药原理,拼合原理,生物电子等排 原理,相似原理等;一般方法有类型演化和结构优化等 3、类似物设计的目的和结果是什么? 答:目的是为了获得比先导化合物疗效更好,毒副作用更少,便于合 成的新药。结果:药效保持或更好,药效减小或消失,毒副作用减 少,新的药效。 4、Me too、Me better、Me new? Me too:键技术突破和集成创新,即运用一些公知的、成熟的理 论和技术,以及已有的装备和材料等,去研发出“价廉质优”的已有 产品。 Me better:运用一些公认的、成熟的理论和技术,规避已有的专 利保护去发明比母体新药更具治疗优势的新物质,从而形成专利新 药。 Me new:是以大量的重大基础科学研究成果为支撑,以独特的资 源优势为基础,应用已有筛选模型发现的全新结构的新药或先导化合 物。 三者关系:尽管将新药研发中的创新活动简单地归纳为me-too、 me-better和me-new有些偏颇,但基本上还是能够反应出其中的技术 含量和创新程度,或者说在更大的程度上能够反应出对新药生产的保 护力度。即一个me-new类创新药物的诞生,必定是站在巨人的肩膀 上进行的,必定其中蕴藏着一系列me-too和me-better的创新过程。 5.软药设计的基本原则是什么? 答:整个分子是先导物的生物电子等排体,结构极相似 易代谢的部分能被酶水解,但分子骨架是稳定的 易代谢部分的代谢是药物失活的主要或唯一途径 通过易代谢部分的代谢附近的立体和电性因素,控制可预测的代 谢速率 代谢产物无毒,低毒或没有明显的生物活性

《金属塑性成形原理》习题答案

《金属塑性成形原理》 习题答案 一、填空题 1.衡量金属或合金的塑性变形能力的数量指标有伸长率和断面收缩率。 2.所谓金属的再结晶是指冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。 3.金属热塑性变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变等。 4.请将以下应力张量分解为应力球张量和应力偏张量 =+ 5.对应变张量,请写出其八面体线变与八面体切应变的表达式。 =; =。 6.1864年法国工程师屈雷斯加(H.Tresca)根据库伦在土力学中研究成果,并从他自已所做的金属挤压试验,提出材料的屈服与最大切应力有关,如果采用数学的方式,屈雷斯加屈服条件可表述为 。

7.金属塑性成形过程中影响摩擦系数的因素有很多,归结起来主要有金属的种类和化学成分、工具的表面状态、接触面上的单位压力、变形温度、变形速度等几方面的因素。 8.变形体处于塑性平面应变状态时,在塑性流动平面上滑移线上任一点的切线方向即为该点的最大切应力方向。对于理想刚塑性材料处于平面应变状态下,塑性区内各点的应力状态不同其实质只是平均应力 不同,而各点处的最大切应力为材料常数。 9.在众多的静可容应力场和动可容速度场中,必然有一个应力场和与之对应的速度场,它们满足全部的静可容和动可容条件,此唯一的应力场和速度场,称之为真实应力场和真实速度场,由此导出的载荷,即为真实载荷,它是唯一的。 10.设平面三角形单元内部任意点的位移采用如下的线性多项式来表示: ,则单元内任一点外的应变可表示为=。 11、金属塑性成形有如下特 点:、、、。 12、按照成形的特点,一般将塑性成形分为和两大类,按照成形时工件的温度还可以分为、和 三类。 13、金属的超塑性分为和两大类。 14、晶内变形的主要方式和单晶体一样分为和。其中变形是主要的,而变形是次要的,一般仅起调节作用。

软药设计的研究进展

[J].中国药物化学杂志,2000,10(2):143. 〔3〕 Lu J,F eng X,Sun Q,et a.l E ffect of si x flavonoid co m-pounds fro m Ixeris sonchifo lia on sti m u l us-i nduced super- ox i de generation and tyrosy l phosphory l a tion i n hu m an neu- trophil s[J].C lin Chi m A cta,2002,316(1-2):95. 〔4〕 封锡志.抱茎苦荬菜的化学成分和生物活性研究[D]. 沈阳:沈阳药科大学博士学位论文.2001.6. 〔5〕 M a Jiyuan,W ang Zhengtao.Sesqu iterpene lactones fro m Ixeris sonchifoli a[J].Phy toche m istry,1998,48(1):201.〔6〕 Feng XZ,D ong M,G ao ZJ,et a.l Th ree ne w triterpeno i d saponins from Ixeris sonchi fo lia and the ir cy t o tox i c acti v ity [J].P lan t a M ed,2003,69(11):1036. 〔7〕 孟宪贞,倪素芳,索鸿勋.苦碟子化学成分的研究1.扩冠有效成分的分离和结构鉴定[J].中草药,1981,12 (12):4. 〔8〕 柳晓琳,金艳书.苦碟子抗肿瘤作用的实验性研究[J]. 锦州医学院学报,2002,23(1):7 〔9〕 Y ee SB,L ee J H,Chung HY,et a.l Inhi b itory effec ts of luteoli n iso lated fro m Ix er is sonch i foli a H ance on t he pro l-i ferati on of H ep G2hu m an hepatoce ll u l a r carcinom a ce lls [J].A rc h i ves of Pharmacal R esearch,2003,26(2):151.〔10〕 Suh J,Jo Y,K i m ND,et a.l Cyto t ox ic constituents o f t he leaves of Ix eris sonchifoli a[J].A rc h i ves of P har m acal R e- search,2003,26(3):289. 〔11〕 冯玉书,桂绿荷.抱茎苦荬菜对心血管系统的药理作用[J].中草药通讯,1979,3:31. 〔12〕 程芳,张红梅,张宏文,等.苦碟子治疗冠心病心绞痛56例及其远期疗效观察[J].中国疗养医学,1999,8 (4):28-29. 〔13〕 卫荣,林港祥,秦忠明.苦碟子注射液对血瘀证血液流变学和血管内皮素的影响[J].贵阳中医学院学报, 2001,23(4):59. 〔14〕 K i m Ja i-Y oung,O h Se-w on,K oh Ji n-Bog.E ffec ts of godul baeg i po w er on gro w th,prote i n and li p i d concentra- tions in rats[J].H e m guk Sikp u m Yongyan g Kwahak H oech i,1998,27(3):525. 〔15〕 Sohn H ee Sook.Effects of Ix eris sonchif o li a H ance.diet on li pid m etabo lis m and li ver f unction o f rats ad m i n i steredw ith ethano l[J].H anguk Yon gyang H ankho echi, 2001,34(5):493. 〔16〕 Bae Song-Ja,R oh Sung-bae,Jung Bok-M.i E ffects of godu l baeg i ex tracts on the stab ility and fl u i d ity o f pho s- pho li pid li poso m a l m e m branes[J].H e m guk S i kp um Yongyang Kwahak H oechi,1998,27(3):508. 〔17〕 谢湘林,周鸣,刘宏雁.苦碟子口服液对小鼠及大鼠学习记忆的影响[J].吉林大学学报,2004,30(5):721.〔18〕 国家药品监督管理局.《国家中成药标准汇编》(中成药地方标准上升国家标准部分),内科心系分册[S], 2002.492. 〔19〕 邓意辉,刘丹,吴琼.苦碟子注射液中腺苷的含量测定[J].沈阳药科大学学报,2003,20(6):431. (收稿日期:2005-05-24)软药设计的研究进展 赵兴茹,李 坤,王淑月(河北医科大学药学院,河北石家庄050017) 中图分类号:R914 文献标识码:A 文章编号:1004-2407(2006)02-0096-03 药品专利法在我国的实施,给我国的新药开发带来机遇和挑战,促使我国药品生产由仿制向创制转轨。根据我国国情,开发那些结构类型已知,疗效优于现有同类产品的药物为主攻方向〔1〕。根据代谢酶与药物分子结合的规律性和选择性对原有药物进行结构改造而制备的软药,降低了药物的毒副作用,增强了疗效,为当代新药开发的一个热点。20世纪80年代以来,计算机技术以及信息技术的发展为药物设计及指导化合物的结构改造提供了方便。 1 以药物代谢为基础的软药设计 软药是产生药理作用后,按预知和可控的代谢方式,经一步代谢失活,代谢产物无毒性且不蓄留在体内产生有害后续反应而迅速排出,缩短了体内过程,避免了有毒中间体的形成,降低了药物的毒副作用,提高了治疗指数〔2〕。 1.1 软类似物的设计 在已知药物的非活性中心,引入易代谢的结构部分,并要求该结构的代谢产物不具有明显的毒性和生物活性〔3〕。软类似物的一般设计原则为:(1)利用电子等排原理进行结构改造;(2)易代谢部位能被代谢酶水解,分子骨架稳定;(3)易代谢部位为药物代谢失活的主要部位; (4)代谢产物不产生高度活性中间体;(5)通过易代谢部位附近的立体或电性因素,控制可预测的反应速度。如季铵型抗胆碱药(见图1),其分子结构以季铵醇为基本骨架,酯基和季铵部分间隔两个碳原子,水解生成季铵醇和酸,季铵醇为活性化合物,可进一步形成抗胆碱能化合物或具有药理活性的化合物,引起毒性。设想若酯基与季铵仅间隔一个碳原子,形成的代谢物可迅速水解为简单化合物排出体外,减少了毒性〔4 〕 图1 季铵型抗胆碱药及其软药的体内分解反应 1.2 活性代谢物的设计 研究药物体内代谢是发现新药的重要途径之一。活性代谢物的设计原则为:当某一药物发生氧化代谢可能经过有毒活性中间体时,应选用最高氧化态的活性代谢物。药物在体内代谢经过一相代谢和二相代谢两个过程。 1.2.1 一相代谢物设计 一相代谢物即药物的氧化过程,是药物转化为极性较高的化合物,易于体内的吸收和转运。如对乙酰氨基酚、羟布宗、奥沙西泮等为一相代谢物,具有较强的药理活性。对乙酰氨基酚为非那西汀的氧脱乙基代谢物,但对乙酰氨基酚较非那西汀作用更强,且不易导致高铁血红蛋白血症及溶血性贫血〔5〕。 96西北药学杂志 2006年4月 第21卷 第2期

金属塑性成型原理

塑性变形:当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形。 塑性:外力作用下使金属材料发生塑性形变而不破坏其完整性的能力。 塑性成形:金属材料在一定的外力作用下,利用其塑性而使其成形并获得一定力学性能的加工方法。 软取向:μ=0.5或接近0.5 硬取向:μ=0或或接近0 金属塑性成形的特点:1组织性能好,金属材料在塑性成形过程中,其内部发生显著的变化2材料利用率高金属塑性成形主要是靠金属在塑性状态下的体积转移来实现的,不产生切屑,因此只有少量的工艺废料,并且流线分布合理3尺寸精度高不少成型方法已达到少或无切削的要求。4生产效率高,适于大批量生产随着塑性加工工具和设备的改进及机械化,自动化程度的提高,生产率也相应得到提高。 金属塑性成形分为板料成形和块料成形。 块料成形是在塑性成形过程中靠体积转移和分配来实现的。1一次加工:轧制,挤压,拉拔2二次加工:自由锻,模锻。 板料成形一般称为冲压,是对厚度较小的板料,利用专门的模具,使金属板料通过一定模孔而产生塑性变形。这类塑性加工方法可分为分离工序和成形工序两类。 金属塑性成形原理是研究和探讨金属在各种塑性加工过程中可遵循的基础和规律的一门学科。目的在于科学地、系统地阐明这些基础和规律,为学习后续的工艺课程作理论准备,也为合理制订塑性成形工艺规范及选择设备、设计模具奠定理论基础。 金属塑性成形工艺应要求:1使金属具有良好的塑性2使变形抗力小3保证塑性成形件质量4能了解变形力。为达到以上要求需从塑性变形的力学基础、物理基础、塑性成形问题的工程解法、塑性成形件的质量分析等发面进行论述。 晶内变形的主要方式和单晶体一样为滑移和孪生。 滑移是指晶体在力的作用下,晶体的一部分沿一定的晶面和晶向相对于晶体的另一部分发生相对移动或切变。 晶体的滑移过程实际上就是位错的移动和增殖过程。加工硬化的原因是位错增殖。 滑移系多的金属要比滑移系少的金属变形协调性好、塑性高,如面心立方金属比密排六方金属的塑性好。 临界切应力的大小取决于金属的类型、纯度、晶体结构的完整性、变形温度、应变速率和预先变形程度等因素。 孪生是晶体在切应力作用下,晶体的一部分沿着一定的晶面和一定的晶向发生均匀切变。 晶向变形的主要方式是晶粒之间相互滑动和转动。特别的,在冷态变形条件下,由于晶界强度较高,晶间变形的较小。 多晶体塑性变形的特点:1各晶粒变形的不同时性2各晶粒变形的相互协调性3晶粒与晶粒之间和晶粒内部与晶界附近区域之间变形的不均匀性。 晶粒的大小与应力场的关系:晶粒越细,金属屈服强度越大,金属塑性越好。 冷塑性变形对金属组织和性能的影响:一、组织的变化1晶粒形状的变化2晶粒内产生亚结构3晶粒位向改变。二、性能的变化强度、硬度增加越多,而塑性指标降低越甚,也即加工硬化越严重。纤维组织:(冷变形)轧制变形时,原来等轴的晶粒延伸长变形方向伸长,若变形程度很大则晶粒呈现为一片如纤维状的条纹。 变形织构:由于塑性变形的结果而使晶粒具有择优取向的组织。 冷、热、温变形的区别是再结晶温度不同。 冷变形后,对金属加热和保温会发生顺次的三个过程:回复,再结晶,晶粒长大。热塑性变形时的软化过程按性质可分为以下几种:动态回复、动态 再结晶、静态回复、静态再结晶、亚动态再结晶等。 动态再结晶:在热塑性变形过程中发生的再结晶。 热塑性变形对金属组织和性能的影响:1改善晶粒组织2锻合内部 缺陷3破碎并改善碳化物和非金属夹杂物在钢中的分布4形成纤维 组织5改善偏析。 超塑性变形状态:处于特定的条件下,如一定的化学成分、特定的 显微组织及转变能力、特定的变形温度和应变速率等,则金属会表 现出异乎寻常的高塑性状态。 超塑性:金属和合金具有超长的均匀变形能力,其伸长率达到百分 之几百,甚至百分之几千。(分为细晶超塑性和相变超塑性) 塑性指标:为了衡量金属材料塑性的好坏,需要有一种数量上的指 标。用伸长率和断面收缩率表示。 影响塑性的因素:金属的化学成分和组织,变形温度,应变速率, 变形力学条件。 冷脆:磷是钢中的有害物质,在铁中有相当大的溶解度,使钢的强 度、硬度提高,而塑性、韧性降低,在冷变形时影响更为严重。 热脆:(与O、S有关)钢未加热到变形温度,硫化物及其共晶体熔 化,形成裂纹的现象。 氢脆:氢溶入钢中使钢的塑性、韧性下降。白点:氢原子聚集产生 局部高压,在钢中组织应力或温度应力共同作用下产生的微裂纹。 变形温度对金属塑性的影响:随着温度上升,塑性增加,但非简单 的线性上升;在加热过程的某些温度区间,往往由于相态或晶粒边 界状态的变化而出现脆性区,使金属的塑性降低。 热效应:塑性变形时金属所吸收的能量,绝大部分转化为热能。温 度效应:塑性变形中的产生的热量使变形体温度升高的现象。 加工硬化:随着变形程度的增加,金属的强度、硬度增加,而塑性 韧性降低的现象。 热塑性变形:在再结晶温度以上进行的塑性变形,又称热塑性加工 从工艺性能的角度看,提高应变速度会以下有利作用:1降低摩擦 系数,从而降低金属的流动阻力,改善金属的充填性及变形的不均 匀性2减少热成形时的热量损失,从而减少毛坯温度下降和温度分 布的不均匀性3出现所谓“惯性流动效应”从而改善金属的充填性 塑性图:为了具体掌握不同变形条件下,金属的塑性随温度变化的 情形,需要试验方法绘制其塑性--温度曲线,简称塑性图。 温度效应与下列因素有关:1变形温度2应变速率3变形程度。 温度升高使金属塑性增加的原因:1发生回复或再结晶2原子动能 增加3金属的组织、结构发生变化4扩散蠕变机理起作用5晶间滑 移作用增强。 1、怎样解释静水压力越大金属的塑形越高?①拉伸应力会促 进晶间变形、加速晶界的破坏;而压缩应力能阻止或减少晶 间变形,随着静水压力的增大,晶间变形越加困难,因而提 高了金属的塑形。②三向压缩应力有利于愈合塑形变形过程 中产生的各种损伤;而拉应力则相反,它促使损伤的发展。 ③当变形体内原先存在着少量对塑形不利的杂质、液态相或 组织缺陷时,三向压缩作用能抑制这些缺陷,全部或部分地 消除其危害;反之,在拉应力作用下,将在这些地方产生应 力集中,促使金属的破坏。4增大静水压力能抵消由于不均 匀变形引起的附加拉应力,从而减轻了附加拉应力所造成的 拉裂作用。 2、主应力图:受力物体内一点的应力状态,可用作用在应力单 元体上的主应力来描述,只用主应力的个数及符号来描述一 点应力状态的简图称为主应力图。 3、等效应力的特点:①等效应力是一个不变量。②等效应力在数 值上等于单向均匀拉伸(或压缩)时的拉伸(或压缩)应力?, ?=?;③等效应力并不代表着某一平面上的应力,因而不能在 某一特定的平面上表示出来;4等效应力可以理解为代表一点 应力状态中应力偏张量的综合作用。 主应变简图:用主应变的个数和符号来表示应变状态的简图称 为主应变状态图,简称主应变简图或主应变图。 4、特征应变:三个主应变中绝对值最大的主应变,反映了该工序 变形的特征,称为特征应变。 5、三种变形类型:压缩类变形、剪切类变形、伸长类变形。 6、全量变形:反应单元体在某一变形过程中的某个阶段结束时 的应变,称为全量变量。 7、应力状态:当旋转体承受的外力对称于旋转轴分布时,则旋 转体内质点所处的应力状态称为轴对称应力状态。 8、屈雷斯加屈服准则适用于脆性材料,米赛斯屈服准则适用于 韧性材料。 9、塑形成型时应力应变关系的特点:①应力与应变之间的关系 是非线性的,因此,全量应变主轴与应力主轴不一定重合。 ②塑性变形时可以认为体积不变,即应变球张量为零,泊松 比v=0.5③对于应变硬化材料,卸载后再重新加载时的屈服 应力就是卸载时的屈服应力,比初始屈服应力要高。④塑形 变形是不可逆的,与应变历史有关,即应力应变关系不再保 持单值关系。 10、金属塑形成型中摩擦的特点:①伴随有变形金属的塑形流动 ②接触面上压强高③实际接触面积大④不断有新的接触面 产生⑤常在高温下产生摩擦 11、摩擦对塑形成型的危害主要表现在:①改变变形体内应力状 态,增大变形抗力②引起不均匀变形,产生附加应力和残余 应力③降低模具寿命 12、折叠的特征:①折叠与其周围金属流线方向一致②折叠尾端 一般呈小圆角或枝杈形③折叠两侧有较重的脱碳、氧化现 象。 13、界限法包括:1上限法2下限法 14、主应力法:实质是将应力平衡微分方程和屈服方程联立求 解。 15、塑性区的应力边界条件:1.不受力的自由表面2.无摩擦的接 触表面3.摩擦切应力达到最大值K的接触表面。4.摩擦切应 力为某一中间值的接触表面。 16、常见的滑移线场有以下几种类型:1.直线滑移线场。2简单 滑移线场.3.直线滑移线场与简单滑移线场的组合。4.由两族 相互正交的光滑曲线所构成的滑移线场 17、最大散逸功原理又称第二塑形变分原理。最大散逸功原理可 表述为:对钢塑性体一定的应变增量场而言,在所有满足屈 服准则的应力场中,与该应变增量场符合应力应变关系的应 力场所做的塑性功增量为最大。 亨盖方程 σm-2kω= ξ(β)沿α线 σm+2kω= η(α)沿β线 当沿α族(或β族)中的同一条滑移线移动时,ξ(或η)为常 数,只有当一条滑移线移动到同族的另一条滑移线是ξ(或η) 值才有改变 静可容应力场σij*:用下限法计算极限载荷时,只假设塑变区内的 应力状态。 动可容速度场ui*(或位移场ui*):用上限法计算极限载荷时,只 假设塑变区的位移状态 下限法:应力场所求得的极限载荷点是小于(最多等于)真实载荷。 上限法:速度场所求得的极限载荷总是大于(最小等于)真实载荷。

《金属塑性成型原理》复习资料

第一章绪论 1. 什么是金属的塑性什么是塑性成形塑性成形有何特点塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力;塑性成形:金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法,也称塑性加工或压力加工;塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高 2. 试述塑性成形的一般分类。 Ⅰ. 按成型特点可分为块料成形(也称体积成形)和板料成型两大类 1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。可分为一次加工和二次加工。 一次加工: ① ---------- 轧制是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。分纵轧、横轧、斜轧;用于生产型材、板材和管材。 ② ---------- 挤压是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。 ③ ---------- 拉拔是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。生产棒材、管材和线材。 二次加工: ①自由锻 --- 是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需 的形状和尺寸的加工方法。精度低,生产率不高,用于单件小批量或大锻件。 ②模锻 -- 是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变 形,从而获得与模腔形状、尺寸相同的坯料或零件的加工方法。分开式模锻和闭式模锻。2)板料成型一般称为冲压。分为分离工序和成形工序。分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。

前药原理与新药设计

前药原理与新药设计 探索前药原理在新药设计中的规律,推动新药研究工作的开展,通过文献检索,综合、归纳、分析、概括前药原理在新药设计方面的典型事例。前药原理在新药设计中广泛应用,不仅可对经典的含羧基、羟基、氨基药物进行结构修饰制成前药,还可制成偶氮型前药、曼尼希碱型前药、一氧化氮型前药及开环、闭环等新型结构的前药,既保持或增强了原药的药效,又克服了原药的某些缺点。利用前药原理设计新药投资少、风险小、成功率高,适合我国国情,是值得推广的新药研究途径。 关键词:前药原理结构修饰新药设计 进入21世纪H我国新药研究从仿制向创制转轨已成共识。然而,新药创制是系统工程,需 要多学科协同作战,难能一蹴而就。但是对我们13亿人口的大国来说,服药的重要性不亚于吃饱穿暖,是迫在眉睫一天也不能或缺的国计民生大事。根据我国的实际情况,新药研究应以开发那些结构类型已知,疗效优于或近于现有同类产品的药物作为主攻方向【1】。前药原理是将已知有生物活性而又存在某些缺点(如:生物利用度差、性质不稳定、作用时间短、有异味等)的药物经结构修饰制成新药即前药,后者体外无活性,在体内分解释放出原药产生药效。与原药相比,前药保持或增强原药的药效,又克服原药的缺点。前药属于结构类型已知,疗效优于或近于现有同类药物的创新药物类型,其特点为投资少、风险小,成功率高因而在新药研究中占有重要地位,尤其适合目前我国制药工业中既有的实际情况,为推动我国新药研究工作的发展,现按照结构修饰类型综述有关前药原理在新药设计中的应用。 1、含羧基药物的前药设计 1.1成酯前药设计 氨苄青霉素是耐酸、广谱、半合成青霉素,可以口服,但是口服吸收差,血药浓度只有注射给药的20%~40%,分析结构表明,氨卡青霉素分子中C2羧基与C6侧链氨基,在胃内pH 情况下解离为两性离子,极性大是影响口服吸收的关键,将羧基成酯,发现其简单的脂肪/芳香酯类不够活泼,在体内酶促分解成原药的速度很慢,血药浓度达不到峰值,其原因是氨苄青霉素分子中羧基邻位的两个甲基占有较大空间,其屏蔽作用阻碍酯酶水解所致。而将其设计成双酯型前药,末端酯键位阻较小,易于发生酶促断裂,生成的羟甲酯不稳定,自动分解释放出甲醛和氨苄青霉素,产生药效,生物利用度提高3~5倍,口服几乎定量吸收(98%~99%)。 近几年!这种双酯前药设计广泛应用于含羧基药物的前药设计中* 1.2成醛前药设计 含羧基药物制成醛基前药,可增加原药的脂溶性,显著提高口服吸收效果,增加血药浓度。如氟哌酸,为广谱抗菌药,作用强但口服吸收不完全,只有给药剂量的35%~40%,其原因为分子中羧基与哌嗪环上的氮原子成两性离子,不易透过生物膜,做成酯不理想,做成醛以后,在体内经氧化形成,!口服吸收好,血药浓度高。因而含羧酸药物成酯不理想时,可考虑做成醛化物一试* 2 含羟基药物的前药设计 2.1氨基酸酯前药设计 氨基酸的羧基与母药的羟基成酯,其氨基与无机酸成盐!以增加药物水溶性。如甲硝唑-N,N-二甲基甘氨酸酯盐酸盐,水溶性好,血浆浓度高,但水溶液不稳定,需在临用前配制.其原因为分子中的氨基在制pH值为3~5下质子化,有强的吸电子效应,活化了酯羰基,易受OH-离子进攻,使酯键断裂.研究发现,若在酯基和氨基之间引入一个苯基,使成为N-取代的胺甲基苯甲酸酯,可完全阻止氨基对酯键的影响,又不影响体内酶促水解反应,如甲硝唑的这种前药水溶性比母药增加,水溶液稳定性增加,同样条件下可保存14年。

新药设计作业

三种药物设计原理在新药设计中的应用综述摘要:新药设计的主要任务是药物先导化合物的发现以及先导化合物的结构优化。而结构拼合、软药原理和前药原理越来越成为设计和开发新药物先导化合物的重要方法,为新药的研制工作开创了一个新的局面。就目前有关结构拼合、软药原理和前药原理研究的基本理论、基本方法分类、发展趋势及其在研制新药的先导化合物中的应用进行了综述。 关键词:药物设计原理;先导化合物;新药设计 拼合原理 1药效结构拼合的发展 早在19世纪中叶,研究人员就将两个药物的基本结构拼合在一个分子中,以期获得毒副作用小、药理效应相加的新药的设想。当时受到科学水平的限制,可用于临床的例子不多。随着有机化学、生物化学、分子药理学的发展,这一“拼合”设想,逐渐得到完善,且已成为“拼合原理”、广泛用于新药设计之中。拼合原理主要是指将两种药物的药效结构单元拼合在一个分子中,或将两者的药效基团通过共价键兼容于一个分子中,使形成的药物或兼具两者的性质,强化药理作用,减少各自相应的毒副作用,或是两者取长补短,发挥各自的药理活性,协同完成治疗作用[1]。目前国内外许多制药公司和研究所,正致力于应用拼合原理研发新药。由于应用已知疗效的药物拼合新药,基于原料药的药理作用不难预测出拼合出的新药的药理活性,这就使新药研发具有一定的目的性和基础,从而缩短了新药研发的进程。药物拼合已经作为发现新药的快速和有效手段,成功地应用在多种药物的合成中。 2药效结构拼合分类

2·1按药理分类 2·1·1将两个作用类型相同的药物或同一药物的两个分子拼合在一起 这类药物的合成是为了产生更强的作用,或降低毒副作用,或改善药代动力学性质等,构成的两个原分子具有相同的药理作用类型。 2·1·2将两个不同药理作用的药物拼合在一起 如苯丁酸氮芥是抗肿瘤药,但其毒性较大,副作用较多,严重影响了其临床应用。罗氏公司设计以甾体为其载体,增加其靶向性,来减少它的毒副作用,这种思路指导下将泼尼松龙和苯丁酸氮芥拼合形成抗肿瘤药泼尼莫司汀,其对前列腺癌的选择性显著提高,降低了苯丁酸氮芥的毒性。 2·2按结合方法分类 在Perez的论文中,两种药效团之间的拼合分为“重叠式”和“链接式”两种类型。 2·2·1“重叠式”类型 是将两种药效团之间共同存在的结构单元(一般为氮原子)杂交在一起,两种药效团结构变化不大,新生成的杂交分子充分利用了两种药效团之间的结构部分相似性。 2·2·2“链接式”类型 是将两种药效团之间的两个氮原子用一种合适的连接基团杂交在一起,分子结构变化较大,这个连接基团称之为“连接体”,不同的连接体构成了不同的设计策略。 2·3按反应类型分类 2·3·1成酯拼合 这一类型目前在药物拼合中应用最广,一种药物分子中羧基与另一种药物分子

相关文档
最新文档