热质交换原理与设备复习题

热质交换原理与设备复习题
热质交换原理与设备复习题

当流场中速度分布不均匀时,分子传递的结果产生切应力;温度分布不均匀时,分子传递的结果产生热传导;多组分混合流体中,当某种组分浓度分布不均匀时,分子传递的结果会产生该组分的_质量扩散_;描述这三种分子传递性质的定律分别是

热质交换设备按其内冷、热流体的流动方向,可分为___顺流__式、_逆流__式、__叉流___式和__混合_____式。工程计算中当管束曲折的次数超过___4___次,就可以作为纯逆流和纯顺流来处理。

质量传递有两种基本方式:分子扩散和对流扩散,两者的共同作用称为__对流质交换__。相对静坐标的扩散通量称为绝对扩散通量,而相对于整体平均速度移动的动坐标扩散通量则称为相对扩散通量。

麦凯尔方程的表达式为:,它表明当空气与水发生直接接触,热湿交换同时进行时。总换热量的推动力可以近似认为是湿空气的焓差。

冷却塔填料的作用是延长冷却水停留时间,增加换热面积,增加换热量.。均匀布水。将进塔的热水尽量细化,增加水和空气的接触面,延长接触时间,增进水汽之间的热值交换

冰蓄冷空调可以实现电力负荷的调峰填谷(均衡) 。

一套管换热器、谁有200℃被冷却到120℃,油从100℃都被加热到120℃,则换热器效能是25% 。

吸收式制冷机可以“以热制冷”,其向热源放热Q,从冷热吸热Q,消耗热能Q,则其性能系数COP= Q1-Q2/Qo 。

一管式逆流空气加热器,平均换热温差为40℃,总换热量位40kW,传热系数为40W/(m.℃)则换热器面积为25 m。

当流场中速度分布不均匀时,分子传递的结果产生切应力;温度分布不均匀时,分子传递的结果产生热传导;多组分混合流体中,当某种组分浓度分布不均匀时,分子传递的结果会产生该组分的质量扩散;描述这三种分子传递性质的定

热质交换设备按其内冷、热流体的流动方向,可分为_顺流_式、逆流_式、_混合流_式和_叉流_式。工程计算中当管束曲折的次数超过_4__次,就可以作为纯逆流和纯顺流来处理。

相对静坐标的扩散通量称为以绝对速度表示的质量通量,而相对于整体平均速度移动的动坐标扩散通量则称为以扩散速

麦凯尔方程的表达式为:hw (ti –tw)=hmd(i-i i) ,它表明当空气与水发生直接接触,热湿交换同时进行时。总换热

__热量____传递和___质量___传递现象。

蒸发冷却所特有的性质是__蒸发冷却过程中伴随着物质交换,水可以被冷

问答及名词解释

面温度低于湿空气的露点温度,水蒸气就要凝结,从而在冷却器表面形成一层流动的水膜。紧靠水膜处为湿空气的边界层,这是可认为与水膜相邻的饱和空气层的温度与冷凝器表面上的水膜温度近似相等。因此,空气的主体部分与冷凝器表面的热交换是由空气的主流与凝结水膜之间的温差(t-ti)而产生的,质交换则是由于空气主流与凝结水膜相邻的饱和空气层中的水蒸气的分压力差,即含湿量差(d-di)而引起的。在冷却表面的两侧,分别存在湿空气的水膜和边界层以及冷却剂侧的边界层,所有的热质交换都需要克服冷却表面两侧的两层膜所带来的阻力。

吸附空气中水蒸气的吸附剂被称为干燥剂。干燥剂的吸湿和放湿是由于干燥剂表面的蒸汽压与环境空气的蒸汽压造成的:当前者较低时,干燥剂吸湿,反之放湿,两者相等时,达到平衡,既不吸湿,也不放湿。吸湿量增加,表面蒸汽压力也随之增加。当表面蒸汽压超过周围空气的蒸汽压时,干燥剂脱湿,这一过程称为再生过程。干燥剂加热干燥后,它的蒸汽压仍然很高,吸湿能力较差。冷却干燥剂,降低其表面蒸汽压使之课重新吸湿。

该冷却器能达到的ε1应该等于空气处理过程需要的ε1(2)该冷却器能达到的ε2应该等于空气处理过程需要的ε2(3)该冷却器能吸收的热量应该等于空气放出的热量

A-1:tw<露点温度,tw<t1<tA,Pq1

A-2: tw=露点温度,tw<tA,Pq1=PqA, 等湿冷却。

A-3: tw >露点温度,但<湿球温度,tw<tA和Pq3>PqA, 冷却和加湿。

A-4: tw=湿球温度,等湿球温度线与等焓线相近,空气状态沿等焓线变化而被加湿。总热交换量近似为零,而且tw<tA和Pq4>PqA, 空气的显热量减少、潜热量增加,二者近似相等。水蒸发所需热量取自空气本身。

A-5:tw>湿球温度而<干球温度,tw<tA,Pq5>PqA, 冷却和加湿。水蒸发所需热量部分来自空气,部分来自水。

A-6: tw=干球温度, tw=tA和Pq6>PqA,不发生显热交换,等温加湿。水蒸发所需热量来自水本身。

A-7: tw> 干球温度,tw>tA 和Pq7>PqA, 加热和加湿。蒸发所需热量及加热空气的热量均来自水本身。以冷却水为目的的湿

而膜总传热量是逐渐增大的;在C 。小于0时,随着C

。的逐渐减小,壁面导热量是逐渐增大的,而膜总传热量是逐渐减小的。由图可知,当C 。为正值时,壁面上的导热量明显减少,当C 。值接近4时,壁面上的导热量几乎等于零。

关系:当表面蒸汽压超过了周围空气的蒸汽压事,干燥剂脱湿,这一过程称为再生过程。干燥剂加热干燥后,它的蒸汽压仍然很高,吸湿能力较差,冷却干燥剂,降低其表面蒸汽压使之可重新吸湿。

表面分析:溴化锂溶液的蒸汽压,远低于同温下水的饱和蒸汽压,这表明溴化锂溶液有较强的吸收水的能力。在一定温度下溶液面上水蒸气饱和分压力低于纯水的饱和分压力;溶液的温度越低,液面上的水蒸气饱和分压力越低;溶液质量分数越高,液面上水蒸气饱和分压力越低;溴化锂水溶液的质量分数过高或过低均形成结晶。

箭头向上—等湿加热,表面式空气加热;箭头斜向下—等焓加湿,固体吸附

空气的质量流量:Vp=G/Ac 喷嘴系数:u=W/G 空气与水之间的焓差;空气的流动状况;水滴大小;水气比;设备的结构特性喷嘴排数、喷嘴密度

该喷淋室能达到的 应该等于空气处理过程需要的 ;该喷淋室能达到的 应该等于空气处理过程需要的 ;高喷淋塔喷出的水能吸收(或放出)的热量应该等于空气失去(获得到)的热量

4)喷嘴密度5)喷水方向6)排管间距7)喷嘴孔径8)空气与水的初参数

当v=D 或者v/D=1时,速度分布和浓度分布曲线相重合,或速度边界层和浓度边界层厚度相等。当a=D 或a/D=1

C0>0,时随着C0的增C0<0时,随着C0的逐渐减小,壁面导热量是逐渐增大的,(干工况)。如果冷凝器的表面温度低于空气的露点温度,则空气不但被冷却,而且其中所含水蒸气也将被部分地凝结出来,并在冷却器的肋片管表面上形成水膜。这种过程称为减湿冷却过程或湿冷过程(湿工况)。在这个过程中,在水膜周围将形成一个饱和空气边界层,被处理空气与表冷器之间不但发生

空气质量流速2)喷水系数3)喷嘴排数4)喷嘴密度5)喷水方向6)排管间距7)喷嘴

主要包括五个方面1)空气与水之间的焓差2)空气的流动状况3)水滴大小4)水气

()2m

W

t

t

h

q

w∞

-

=

q——流体与壁面之间的对流换热热流通量,2m

W;

h——对流换热系数,K

m

W?2;

t

t

w

,

——壁面温度,K。

对流传质的基本计算式:

()

-

=

,

,A

S

A

m

A

h

ρ

A

m——组分A的质扩散通量,s

m

kg?2;

m

h

——对流传质系数,

s

m;

∞,

,

,

A

S

A

ρ

ρ

——组分在壁面处和在主流中的质量浓度,

3

m

kg;

(2)当热质传递同时存在时,对流换热系数h和对流传质系数h m之间满足下列关系式:

3

2

-

?

=Le

c

h

h

p

3

2

Le

c

h

h

p

m

ρ

=

20分)

当冷却器表面温度低于被处理空气的干球温度但高于其露点温度时,空气只被冷却并不产生凝结水,此为等湿冷却过程(干冷);当冷却器表面温度低于空气的露点温度时,空气不但被冷却且其中所含水蒸气也将部分凝结出来,此为减湿冷却过程(湿冷);在湿冷过程,推动总热交换的动力湿湿空气的焓差,而不是温差。

方式:分子扩散与对流扩散。在静止的流体或垂直于浓度梯度方向作层流运动的流体及固体中的扩散,本质上由微观分子的不规则运动引起,称为分子扩散,机理类似于热传导;流体作宏观对流运动时由于存在浓度差引起的质量传递称为对流扩散,机理类似于热对流。

克定律克:在浓度场不随时间而变的稳态扩散条件下,当无整体流动时,组成二元混合物中组分A 和B 发生互扩散,其中组分A 向组分B 的扩散通量与组分A 的浓度梯度成正比,其表达式为: s m kg dy dC D m A AB A ?-=2或s m kmol dy dn D N A AB A ?-=2

A m ,A N -分别为组分A 的相对质扩散通量和摩尔扩散通量;

dy dn dy dC A A ,——分别为组分A 的质量浓度梯度和摩尔浓度梯度;

AB D ——组分A 向组分B 中的质扩散系数,单位s m /2; v A c A AB A V s m kg dy dC D m ,2+?-=

如果组分浓度比较低,界面上的质扩散通量比较小,则界面法向速度与主流速度相比很小可以忽略不计时,描述对流换热系数和对流传质的准则关联式具有完全类似的形式。此时,对流换热与对流传质的边界层微分方程不仅控制方程的形式类似,而且具有完全相同的边界条件,此时对流换热和对流传质问题的解具有完全类似的形式。

绝热增湿过程中空气降温的极限)过垂直与传质方向上单位面积的物质的量)

适度的要求)

过热质交换设备的处理再送回室内的环境中))、

)(扩散传单位体积混合物中某组分的质量)、浓度边界层(质量传

递的全部阻力集中于固体表面上一层具有浓度梯度的流层中,该流层即为浓度边界层)质量传递的全部阻力集中于固体表面上一层具有浓度梯度的流层中,该流层即为浓度边界层)、热边界层流体流动过程中.在固体壁面附近流体温度

流体传质系数hm 和定型尺寸的乘积与物

体的互扩散系数(Di 流体的运动黏度(v )与物体的扩散系数(D )的比值流体的运动黏度(v )与物体的导温系数a 的比值)

存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量

水冷和风冷冷凝器水冷,空冷,水—空气冷却以及靠制冷剂蒸发或其他工艺介质进行冷却的冷凝器。采用水冷式冷凝器可以得到比较低的温度,这对制冷系的制冷能力和运行经济性均比较有利。

辐射作用而引起的换热结果。潜热交换是空气中的水蒸气凝结(或蒸发)而放出(或吸收)汽化潜热的结果。总热交换是显热交换和潜热交换的代数和。

的能力和对风量的影响。一般空调里都有这个设备。二是空调机组内的风冷的翅片冷凝器。空调里的表冷器铝翅片采用二次翻边百页窗形,保证进行空气热交换的扰动性,使其处于紊流状态下,较大地提高了换热效率。表冷器是给制冷剂散热的,把热量排到室外,它把压缩机压缩排出高温高压的气体冷却到低温高压的气体。利用制冷剂在表冷器内吸热,使之被冷却空间温度逐渐降低。空气处理机组的风机盘管表冷器,通过里面流动的空调冷冻水(冷媒水)把流经管外换热翅片的空气冷却,风机将降温后的冷空气送到使用场所供冷,冷媒水从表冷器的回水管道将所吸收的热量带回制冷机组,放出热量、降温后再被送回表冷器吸热、冷却流经的空气,不断循环。喷水室是一种多功能的空气调节设备,可对空气进行加热、冷却、加湿及减湿等多种处理。喷水室由喷嘴、喷水管路、挡水板、集水池和外壳等组成。空气进入喷水室内,喷嘴向空气喷淋大量的雾状水滴,空气与水滴接触,两者产生热、湿交换,达到所要求的温、湿度。喷水室的优点是可以实现空气处理的各种过程;主要缺点是耗水量大,占地面积大,水系统复杂,水易受污染,目前在舒适性空调中应用不多。工程中选用的喷水室除卧式、单级外,还有立式、双级喷水室。

扩散系数是沿扩散方向,在单位时间每单位浓度降的条件下,垂直通过单位面积所扩散某物质的质量或摩尔数,大小主要取决于扩散物质和扩散介质的种类及其温度和压力。

Sc=v/di Pr=v/a

Sh=hm .l/Di Nu=hl/λ

Ua Ub:绝对速度 Um:混合物速度 Ua Ub 扩散速度 Ua=Um+(Ua-Um) 绝对速度=主体速度+扩散速度

NA=-DdCA/dz +xA ( NA+NB),适用于分子无规则热运动引起的扩散过程,传质速度即为扩散速度。

主流连续接触,并假定膜内流体与主流不相混合和扰动,在此条件下,整个传质过程相当于此薄膜上的扩散作用,而且认为在薄膜上垂直于壁面方向上呈线性的浓度分布,膜内的扩散传质过程具有稳态的特性。

hw (ti –tw)=hmd(i-i i) 湿空气在冷却降湿过程中,湿空气主流与仅靠水膜饱和空气的焓差是热值交换的推动势,其在单位时间内单位面积上的总传热量可近似的用传值系数hmd与焓差动力Δi的乘积来表示。

并指出当热质传递同时存在时,对流换热系数h和对流传质系数h m之间存在什么样的关系?

h m=0.664D AB/L Re0.5Sc1/3

点温度时,则空气只是冷却而不产生凝结水,称干工况。如果低于空气露点,则空气不被冷却,且其中所含水蒸气部分凝结出来,并在冷凝器的肋片管表面形成水膜,称湿工况,此过程中,水膜周围形成饱和空气边界层,被处理与表冷器之间不但发生显热交换还发生质交换和由此引起的潜热交换。

除湿中的缺点,节约能源,减少环境污染。

行的。空气与水的流动方式主要为逆交叉流。

量。吸附除湿既不需要对空气进行冷却也不需要对空气进行压缩,且噪声低并可以得到很低的露点温度。表冷器缺点:仅为降低空气温度,冷媒温度无需很低,但为了除湿必须较低,

当物系中存在速度、温度、浓度的梯度时,则分别发生动量、热量、质量的传递现象。动量、热量、质量的传递,既可以是由分子的微观运动引起的分子扩散,也可以是由旋涡混合造成的流体微团的宏观运动引起的湍流运动。动量传递、能量传递、质量传递三种分子传递和湍流质量传递的三个数学关系式是类似的。

解:假设当空气与水在一微元面 dA 上接触时,假设空气温度变化为 dt ,含湿量变化为 d(d) 。

(1)显热交换量:(2分)

——湿空气的质量流量,kg/s

——湿空气与水表面之间的显热交换系数,W/(m2.℃)

(2)湿交换量:(2分)

潜热交换量:(2分)

——温度为 t b时水的汽化潜热,kJ/kg

——单位时间单位面积蒸发(凝结)的水量,kg/(m2.s)

(3)总热交换量:

对空气——水系统,存在刘易斯关系式:(2分)

所以上式

(2分)

因为:当温度为 t 时,湿空气焓为:

当温度为 t b时,湿空气焓为::

如果忽略水蒸汽从0℃加热到t℃时的焓,即项,并考虑到 t 和t b差别不大,所以空气的比热和水的汽化潜热变化

不大,即有:

所以从(3)式可以得到:

(4)——麦凯尔方程

麦凯尔方程表明:在热质交换同时进行时,如果满足刘伊斯关系式,则总热交换的推动力为空气——主流湿空气与紧靠水面的饱和边界层空气的焓差。(2分)

由于是空气与水之间发生的热质交换,所以不仅空气的状态会发生变化,水的状态也会发生变化。如果在热质交换中,水的温度变化为 dt w ,则根据热平衡:

(5)(2分)

——水的质量流量,kg/s

——水的定压比热,kJ/(kg.℃)

(1)(2)(3)(4)(5)称为空气与水直接接触时的热湿交换基本方程式。

1 优点

1) 平衡电网峰谷荷,减缓电厂和供配电设施的建设。

2) 制冷主机容量减少,减少空调系统电力增容费和供配电设施费。

3) 利用电网峰谷荷电力差价,降低空调运行费用。

4) 电锅炉及其蓄热技术无污染、无噪声、安全可靠且自动化程度高不需要专人管理。

5) 冷冻水温度可降到1-4℃,可实现大温差、低温送风空调,节省水、风输送系统的投资和能耗。

6) 相对湿度较低,空调品质提高,可有效防止中央空调综合症。

7) 具有应急冷〔热〕源,空调可靠性提高。

8) 冷(热)量全年一对一配置,能量利用率高。

2 缺点

1) 通常在不计电力增容费的前提下,其一次性投资比常规空调大

2) 蓄能装置要占用一定的建筑空间。

3) 制冷蓄冰时主机效率比在空调工况下运行低、电锅炉制热时效率有可能较热泵低。

4) 设计与调试相对复杂。

蓄热式和热管式等类型。间壁式又称表面式,在此类换热器中,热、冷介质在各自的流道中连续流动完成热量传递任务,彼此不接触,不掺混。直接接触式又称混合式,在此类换热器中,两种流体直接接触并且相互掺混,传递热量和质量后,在理论上变成同温同压的混合介质流出,传热传质效率高。蓄热式又称回热式或再生式换热器,它借助由固体构件(填充物)组成的蓄热体传递热量,此类换热器,热、冷流体依时间先后交替流过蓄热体组成的流道,热流体先对其加热,使蓄热体壁温升高,把热量储存于固体蓄热体中,随即冷流体流过,吸收蓄热体通道壁放出的热量。热管换热器是以热管为换热元件的换热器,由若干热管组成的换热管束通过中隔板置于壳体中,中隔板与热管加热段,冷却段及相应的壳体内穷腔分别形成热、冷流体通道,热、冷流体在通道内横掠管束连续流动实现传热。

、热两种流体平行地向着同方向流动,即冷、热两种流体由同一端进入换热器。逆流式,两种流体也是平行流体,但它们的流动方向相反,即冷、热两种流体逆向流动,由相对得到两端进入换热器,向着相反的方向流动,并由相对的两端离开换热器。叉流式又称错流式,两种流体的流动方向互相垂直交叉。混流式又称错流式,两种流体的流体过程中既有顺流部分,又有逆流部分。

在进出口温度相同的条件下,逆流的平均温差最大,顺流的平均温差最小,顺流时,冷流体的出口温度总是低于热流体的出口温度,而逆流时冷流体的出口温度却可能超过热流体的出口温度,以此来看,热质交换器应当尽量布置成逆流,而尽可能避免布置成顺流,但逆流也有一定的缺点,即冷流体和热流体的最高温度发生在换热器的同一端,使得此处的壁温较高,为了降低这里的壁温,有时有意改为顺流。

换热器从构造上可分为:管壳式、胶片管式、板式、板

翘式、螺旋板式等。

管径。

:混合式换热器按用途分为以下几种类型:⑴冷却塔⑵洗涤塔⑶喷射式热交换器⑷混合式冷凝器a、冷却塔是用自然通风或机械通风的方法,将生产中已经提高了温度的水进行冷却降温之后循环使用,以提高系统的经济效益。b、洗涤塔是以液体与气体的直接接触来洗涤气体以达到所需要的目的,例液体吸收气体混合物中的某些组分除净气体中的灰尘,气体的增湿或干燥等。c、喷射式热交换器是使压力较高的流体由喷管喷出,形成很高的速度,低压流体被引入混合室与射流直接接触进行传热传质,并一同进入扩散管,在扩散管的出口达到同一压力和温度后送给用户。d、混合式冷凝器一般是用水与蒸汽直接接触的方法使蒸汽冷凝,最后得到的是水与冷凝液的混合物,或循环使用,或就地排放。

(1)开放式冷却塔(2)风筒式自然冷却塔(3)鼓风逆流冷却塔(4)抽风逆流冷却塔、抽风横流冷却塔a、开放式冷却塔是利用风力和空气的自然对流作用使空气进入冷却塔,其冷却效果要受到风力及风向的影响,水的散失比其它形式的冷却塔大。b、风筒式自然冷却塔中利用较大高度的风筒,形成空气的自然对流作用,使空气流过塔内与水接触进行传热,冷却效果较稳定。c、鼓风逆流冷却塔中空气是以鼓风机送入的形式,而抽风冷却塔中空气是以抽风机吸入的形式,鼓风冷却塔和抽风冷却塔冷却效果好,稳定可靠。

(1)淋水装置,又称填料,作用在于将进塔的热水尽可能的形成细小的水滴或水膜,增加水和空气的接触面积,延长接触时间,从而增进水气之间的热质交换。(2)配水系统,作用在于将热水均匀分配到整个淋水面积上,从而使淋水装置发挥最大的冷却能力。(3)通风筒:冷却塔的外壳气流的通道。

越高所具有的焓值也愈大,在表冷器减湿冷却中,推动总热质交换的动力是焓差,焓差越大,则换热能力就愈大。

随迎风面积Vy的增加而增加:随水流速w的增加而增加。析水系数ξ与被处理的空气的初状态和管内水温有关,所以二者改变也会引起传热系数Ks的变化。

总热交换量与由温差引起的热交换量的比值为析湿系数,用表示,定义为表示由于存在湿交换而增大了换热量,其值大小直接反映了表冷器上凝结水析出的多少。

全热交换器的工作原理

全热交换器的工作原理 2003年出现的SARS疫情,使我们人类的健康面临严峻的挑战,2009年又爆发了猪流感,于是关于人居环境的空气品质问题多有讨论,提出健康空调是今后空调的发展方向。 但究竟什么是健康的空调,怎样去实现健康舒适的空调,关于这个问题,舒适100也进行了一些分析,指出全空气系统是最佳的空调系统,它可以实现对建筑热湿控制及空气品质的全面控制,同时也为充分利用自然资源,进行全新风运行提供条件。 加大新风量是实现良好空气品质的最好方法,只从空气品质的角度来说,进行全新风运行的空调系统才是最好的系统,可是由此带来的能量消耗确实是非常大的。根据武汉的气象资料计算,当室内设计值在26℃,60%时,对于公共建筑,处理1m3/h新风量,整个夏季需要投入的冷能能耗累计约9.5kw·h左右。可见加大新风量后,能量消耗就有很大增加。因此,需要在新风与排风之间加设能量回收设备。 1 目前市场上的能量回收设备有两类: 一类是显热回收型,一类是全热回收型。显热回收型回收的能量体现在新风和排风的温差上所含的那部分能量;而全热回收型体现在新风和排风的焓差上所含的能量。单从这个角度来说,全热性回收的能量要大于显热回收型的能量,这里没有考虑回收效率的因素。因此全热回收型是更加节能的设备。 按结构分,热回收器分为以下几种: (1)回转型热交换器

(2)热回收环热交换器 (3)热管式热交换器 (4)静止型板翅式热交换器 在以上几种热交换器中,热回收环型和热管型一般只能回收显热。回转型是一种蓄热蓄湿型的全热交换器,但是它有转动机构,需要额外的提供动力。而静止型板翅式全热交换器属于一种空气与空气直接交换式全热回收器,它不需要通过中间媒质进行换热,也没有转动系统,因此,静止型板翅式全热交换器(也叫固定式全热交换器)是一种比较理想的能量回收设备。 2 固定式全热交换器的性能 2.1 固定式全热交换器 固定式全热交换器是在其隔板两侧的两股气流存在温差和水蒸 气分压力差时,进行全热回收的。它是一种透过型的空气——空气全热交换器。 这种交换器大多采用板翅式结构,两股气流呈交叉型流过热交换器,其间的隔板是由经过处理的、具有较好传热透湿特性的材料构成。 2.2 三种效率的定义 全热交换器的性能主要通过显热、湿交换效率和全热交换效率来评价,它们的计算公式为: 显热交换效率:SE= 湿交换效率:ME= 全热交换效率:EE=

换热器基础知识测试题

换热器基础知识测试题 姓名:分数: 一、填空题(每空1分,共50分) 1、以在(两种流体)之间用来(传递热量)为基本目的的传热设备装置,称为换热器,又叫做(热交换器)。 2、换热器按作用原理和传热方式分类可分为:(直接接触式换热器)、(蓄热式换热器)(间壁式换热器)。 3、、离心式压缩机可用来(压缩)和(输送)化工生产中的多种气体。它具有:处理量大,(体积小),结构简单,(运转平稳),(维修方便)以及气体不受污染等特点。 4、换热器按传热面形状和结构分类可分为:(管式换热器)、(板式换热器)及特殊形式换热器。 5、管壳式换热器特点是圆形的(外壳)中装有(管束)。一种介质流经(换热管)内的通道及其相贯通部分(称为壳程)。它可分为:(浮头式换热器)、(U 型管式换热器)、套管式换热器、(固定管板式换热器)填料函式换热器等。 6、U型管式换热器不同于固定管板式和浮头式,只有一块(管板),换热管作为(U字形)、两端都固定在(同一块管板)上;管板和壳体之间通过(螺栓)固定在一起。 7、(换热管)是管壳式换热器的传热元件,它直接与两种介质(接触),换热管的形状和(尺寸)对传热有很大的影响。 8、写出下列换热管及其在管板上的排列名称分别为: (a)正三角形(b)转角正三角形(c)正方形(d)转角正方形 9、管壳式换热器流体的流程:一种流体走管内称为(管程),另一种流体走管外称为(壳程)。管内流体从换热管一端流向另一端一次,称为(一程);对U 形管换热器,管内流体从换热管一端经过U形弯曲段流向另一端一次称为(两程)。 10、管板与换热管间的连接方式有(胀接)、(焊接)或二者并用的连接方式。 11、折流板的作用是引导(壳程流体)反复地(改变方向)作错流流动或其他形式的流 动,并可调节(折流板间距)以获得适宜流速,提高(传热效率)。另外,折流板还可起到(支撑管束)的作用。 12、换热器的水压试验压力为最高操作压力的(1.25~1.5)倍。 13、换热器的清洗方法有:(酸洗法)、(机械清洗法)、(高压水冲洗法)、海绵球清洗法。 14、写出下面编号的阀门类型:H(止回阀)、D(蝶阀)、J(截止阀)、A(安全阀)Z(闸阀)、Q(球阀) 15、阀门的密封试验通常为公称压力PN的)(1.1)倍。 二、不定项选择题(每题1分,共10分)

热质交换原理与设备习题答案

第一章 第一章 绪论 1、答:分为三类。动量传递:流场中的速度分布不均匀(或速度梯度的存在); 热量传递:温度梯度的存在(或温度分布不均匀); 质量传递:物体的浓度分布不均匀(或浓度梯度的存在)。 第二章 热质交换过程 1、答:单位时间通过垂直与传质方向上单位面积的物质的量称为传质通量。传质通量等于传质速度与浓度的乘积。 以绝对速度表示的质量通量:,,A A A B B B A A B B m u m u m e u e u ρρ===+ 以扩散速度表示的质量通量:(),(),A A A B B B B A B j u u j u u u j j j ρρ=-=-=+ 以主流速度表示的质量通量:1()() A A A A B B A A B e u e e u e u a m m e ?? =+=+???? 2、答:碳粒在燃烧过程中的反应式为22C O CO +=,即为1摩尔的C 与1摩尔的2O 反应,生成1摩尔的2CO ,所以2O 与2CO 通过碳粒表面边界界层的质扩散为等摩尔互扩散。 3、答:当物系中存在速度、温度和浓度的梯度时,则分别发生动量、热量和质量的传递现象。动量、热量和质量的传递,(既可以是由分子的微观运动引起的分子扩散,也可以是由旋涡混合造成的流体微团的宏观运动引起的湍流传递) 动量传递、能量传递和质量传递三种分子传递和湍流质量传递的三个数学关系式都是类似的。 4、答:将雷诺类比律和柯尔本类比律推广应用于对流质交换可知,传递因子等于传质因子 ①22 3 3 r P 2m H D t t c G J J S S S ===?=? ② 且可以把对流传热中有关的计算式用于对流传质,只要将对流传热计算式中的有关物理 参数及准则数用对流传质中相对应的代换即可,如:r ,,,P ,,m c u h t t t c a D D S N S S S λ?????? ③当流体通过一物体表面,并与表面之间既有质量又有热量交换时,同样可用类比关系由传 热系数h 计算传质系数m h 2 3 m h h Le e φ-=? 5:答:斯密特准则 c i v S D = 表示物性对对流传质的影响,速度边界层和浓度边界层的相对关系 刘伊斯准则r P c v S D a Le v D a === 表示热量传递与质量传递能力相对大小 热边界层于浓度边界层厚度关系 6、从分子运动论的观点可知:D ∽3 1 2 p T - 两种气体A 与B 之间的分子扩散系数可用吉利兰提出的半经验公式估算: 若在压强 5 001.01310,273P Pa T K =?=时各种气体在空气中的扩散系数0D ,在其他P 、T 32 00 0P T D D P T ??= ??? (1)氧气和氮气:

GB151换热器标准考试复习题.doc

GB151复习题及答案 1、GB151适用的换热器型式及参数范围是什么? 答:GB151-1999: %1适用于固定管板式、浮头式、U形管式和填料函式。 %1本标准适用的换热器参数为: a.公称直径DNW2600mm; b.公称压力PNW35MPa;内直径(非圆形截面指其最大尺寸)W0.15m; c.公称直径和mm公称压力MPa的乘积不大于1.75X IO、 2、管壳式换热器的管箱、浮头盖在什么情况下应在施焊后进行消除应力的热处理?设备法兰密封面应在何时加工? 答:①碳素钢和低合金钢的焊有分程隔板的管箱和浮头盖以及管箱的侧向开孔超过1/3管箱壳体内径的管箱,应在施焊后进行消除应力的热处理; ② 设备法兰密封面应在消除应力的热处理后精加工。 3、浮头式换热器应按什么程序试压? 答:浮头式换热器试压程序: %1用试验压环和浮头专用试验工具进行换热管与管板连接接头试压; %1管程试压; %1壳程试压。 4、在管板和平盖的选材中,何时采用锻件?何时采用板材?采用何种用途板材?答:一?般在以下情况下采用锻件: %1管板厚度大于60mm; %1形状复杂的管板; %1带凸肩与壳体焊接的管板。

除上述情况外可■以采用板材。 板材应采用压力容器用板,并应符合GB15()的相应规定。 5、管板与换热管之间的连接方式主要的有哪几种?,使用范围如何? 答:① 主要方式有:强度焊、强度胀及胀焊并用。 ② 强度焊适用于设计压力PNW35MPa的换热器,但不适用于有较大振动 及有间隙腐蚀的场合; 强度胀适用于设计压力W4MPa,设计温度W300°C的换热器,操作中无 剧烈振动、无过大的温度变化及无严重的应力腐蚀的换热器; 胀焊并用结构适用于密封性能要求较高的场合、承受振动或疲劳载荷的场合及 有间隙腐蚀的场合。 6、管壳式换热器管程或壳程的介质进口处,什么情况下应设置防冲板? 答:①管程设置防冲板的条件: 当管程采用轴向入口或换热管内流体流速超过3m/s时,应设置防冲板, 以减少流体的不均匀分布和利换热管端的冲蚀。 ② 壳程设置防冲板的条件: 1)当壳程进口管流体的P U 2值为下列数值时,应在壳程进口处设置防冲板: a)非腐蚀、非磨蚀的单向流体:P u 2>2330kg/m ? s2者; b)其他液体,包括沸点下的液体:P v 2>740kg/m - s2者; 2)有腐蚀或有磨蚀的气体、蒸汽及气液混合物,应设置防冲板: 注:P—流体密度,kg/m3; u—流体流速,m ? So 7、什么情况下,管壳式换热器壳程介质进出口处,设置导流筒? 答:①当壳程进口管流体的P靛值符合设置防冲板的条件也可?设置导流筒; ② 当壳程进口管距管板较远,流体停滞区过大时,应设置导流简,以减小 流体停滞区,增加换热管有效长度。

新风换气机原理

新风换气机工作原理 (型号:YH--600) 全热新风换气机的核心器件是全热交换器,室内排出的污浊空气和室外送入的新鲜空气既通过传热板交换温度,同时又通过板上的微孔交换湿度,从而达到既通风换气又保持室内温、湿度稳定的效果。这就是全热交换过程。当全热交换器在夏季制冷期运行时,新风从排风中获得冷量,使温度降低,同时被排风干燥,使新风湿度降低;在冬季运行时,新风从排风中获得热量,使温度升高,同时被排风加湿。

新风换气机是一种将室外新鲜气体经过过滤、净化,热交换处理后送进室内,同时又将室内受污染的有害气体经过过滤、净化。热交换处理后排出室外,而室内的温度基本不受新风影响的一种高效节能,环保型的高科技产品。 一、新风换气机大基本结构 新风换气机主要由热交换系统、动力系统、过滤系统、控制系统、降噪系统及箱体组成。 1、热交换系统 目前,无论在国内或是国外,在新风换气机上采用的热交换器有静止和旋转两种形式其中转轮式热交换器也属于旋转式类型。从正常使用和维护角度出发,静止式优于旋转式,但大于2×10000m3/h的大型机来说,一般只能靠转轮式热交换器才能实现,因此可以说静止式和旋转式各有优缺点。 为了易于布置设备内的气流通道,以缩小整机体积,新风换气机采用了叉流、静止板式热交换器。亦即:冷热气体的运动方向相互垂直,其气流属于湍流边界层内的对流换热性质。 因此充分的热交换可以达到较高的节能效果。 2、动力系统 新风换气机动力部分采用的是高效率、降噪音风机。将经过过滤、净化和热交换处理后的室外新鲜空气强制性送入室内,同时把经过过滤,净化和热交换处理后的室内有害气体强制性排出室外。 3、过滤系统 新风换气机的过滤系统分为初效、中效、亚高效和高效四种过滤器。换气机在两个进风口处分别设置空气过滤器,可有效过滤空气中的灰尘粒子、纤维等杂质,有效地阻止室外空气中的尘埃等杂质进入室内达到净化的目的,并确保主机的热交换部件被污物附着而影响设备性能。 4、控制系统 ①新风换气机选用可靠的电器组件,以安全可靠长寿名运行实现不同风量的

热交换新风机工作原理

热交换新风机工作原理 进入21世纪,随着城市PM2.5的不断加剧,在空气净化行业出现了一颗炙手可热的新星——热交换新风机。那么,热交换新风机的工作原理是怎样的呢? 热交换新风机是一种高效节能型空调通风装置,其核心功能是利用室内、外空气的温差和湿差,通过能量回收机芯良好的换能特性,在双向置换通风的同时,产生能量交换,使新风有效获取排风中的可用物质,从而大大节约了新风预处理的能耗,达到节能换气的目的,其节能效果非常显著。 夏季,使用全热交换器时通过热交换芯体把室外将室内的炎热、潮湿空气中的温度和湿度,传导至排出室外的室内凉爽、干燥、污浊的空气中去。 冬季,使用热交换器换气时,通过热交换芯体用室内温度的污浊空气中的温度预热将要送入室内的室外寒冷的新鲜空气。并将湿气一并导入将要送入室内的室外干燥的空气中。 广州快净环保科技有限公司生产的快净热交换新风机作为当前最受欢迎的新风系统,拥有非常突出的优势,主要包括以下几点: 一、换热效率高。产品采用先进的逆流结构设计,能够大大的提高换热效率; 二、外形紧凑小巧。全热交换器的外形为六边形,降低了模块的厚度,特殊的通风孔道有利于模块比交叉流机芯做得更短; 三、性能稳定、无需清洁。通风孔道采用了流线设计,可以有效地防止着尘,无需对交叉流机芯进行定期的清洁; 四、使用寿命长。采用了ABS框架结构,非常坚固而耐用,使用寿命相比交叉流机芯增加了一倍。 热交换新风机适用范围: 适合于住宅、写字楼、宾馆、医院、实验室、机房、棋牌室、餐饮、办公、娱乐几乎所有场所,可以根据不同户型面积、人口数量、周边环境设计不同方案,适合各种建筑和人群。 空气是每个人每时每刻都要呼吸的必需品,如果离开清新、自然的空气我们的生活将面临很多健康安全问题,只有保证室内良好的空气质量,才能营造更为舒适健康的居住环境,热交换新风机运用高新技术,可以轻松帮你实现室内空气流通,让您畅享自然健康生活。

热质交换原理与设备

1、有空气和氨组成的混合气体,压力为2个标准大气压,温度为273K,则空气向氨的扩散系数是1。405*10-5 m2/s。 2、当表冷器的表面温度低于空气的露点湿度时,就会产生减湿冷却过程。 3、某一组分的速度与整体流动的平均速度之差,成为该组分的扩散速度。 4、冷却塔填料的作用是将进塔的热水尽量细化,增加水和空气的接触面,延长接触时间,增进水汽之间的热值交换延长冷却水停留时间,增加换热面积,增加换热量,均匀布水。 5、刘伊斯关系式文中叙述为h/h mad=Cp刘伊斯关系式文中叙述为即在空气一水系统的热质交换过程中,当空气温度及含湿量在实用范围内变化很小时,换热系数与传质系数之间需要保持一定的量值关系,条件的变化可使这两个系数中的某一个系数增大或减小,从而导致另一系数也相应地发生同样的变化。 6、一套管换热器、谁有200℃被冷却到120℃,油从100℃都被加热到120℃,则换热器效能是25% 。 7、总热交换是潜热交换和显热交换的总和。 8、当流体中存在速度、温度、和浓度的梯度时,就会分别产生动量、热量和质量的传递现象。 9、锅炉设备中的过热器、省煤器属于间壁式式换热器。 10、潜热交换是发生热交换的同时伴有质交换(湿交换)空气中的水蒸气凝结(或蒸发)而放出(或吸收)汽化潜热的结果。 11、有一空气和二氧化碳组成的混合物,压力为3个标准大气压,温度为0℃,则此混合物中空气的质扩散系数为0.547*10-5m2/s。 12、一管式逆流空气加热器,平均换热温差为40℃,总换热量位40kW,传热系数为40W/(m2.℃)则换热器面积为25m2。 13、流体的粘性、热传导性和质量扩散通称为流体的分子传递性质。 14、当流场中速度分布不均匀时,分子传递的结果产生切应力;温度分布不均匀时,分子传递的结果产生热传导;多组分混合流体中,当某种组分浓度分布不均匀时,分子传递的结果会产生该组分的质量扩散;描述这三种分子传递性质的定律分别是牛顿粘性定律、傅里叶定律、菲克定律。 15、热质交换设备按照工作原理不同可分为间壁式、直接接触式、蓄热式、热管式等类型。表面式冷却器、省煤器、蒸发器属于间壁式,而喷淋室、冷却塔则属于直接接触式。 16、热质交换设备按其内冷、热流体的流动方向,可分为_顺流_式、逆流_式、_混合流_式和_叉流_式。工程计算中当管束曲折的次数超过_4__次,就可以作为纯逆流和纯顺流来处理。 17、_温差_是热量传递的推动力,而_焓差_则是产生质交换的推动力。 18、质量传递有两种基本方式:分子传质和对流传质,分子扩散和对流扩散的总作用称为对流传质 19、相对静坐标的扩散通量称为以绝对速度表示的质量通量,而相对于整体平均速度移动的动坐标扩散通量则称为以扩散速度表示的质量通量。 20、麦凯尔方程的表达式为:hw (ti –tw)=hmd(i-i i),它表明当空气与水发生直接接触,热湿交换同时进行时。总换热量的推动力可以近似认为是湿空气的传热系数与焓差驱动力的乘积 21、相际间对流传质模型主要有薄膜理论、溶质渗透理论、表面更新理论。 22、一个完整的干燥循环由___吸湿___过程、___再生___过程和冷却过程构成。 23、用吸收、吸附法处理空气的优点是_独立除湿。 24、蒸发冷却所特有的性质是__蒸发冷却过程中伴随着物质交换,水可以被冷 却到比用以冷却它的空气的最初温度还要低的程度_。

热交换器原理与设计期末复习重点

热交换器原理与设计 题型:填空20%名词解释(包含换热器型号表示法)20% 简答10%计算(4题)50% 0 绪论 热交换器:将某种流体的热量以一定的传热方式传递给他种流体的设备。(2013-2014学年第二学期考题[名词解释]) 热交换器的分类:按照热流体与冷流体的流动方向分为:顺流式、逆流式、错流式、混流式 按照传热量的方法来分:间壁式、混合式、蓄热式。(2013-2014学年第二学期考题[填空]) 1 热交换器计算的基本原理(计算题) 热容量(W=Mc):表示流体的温度每改变1℃时所需的热量 温度效率(P):冷流体的实际吸热量与最大可能的吸热量的比率(2013-2014学年第二学期考题[名词解释]) 传热有效度(ε):实际传热量Q与最大可能传热量Q max之比2 管壳式热交换器 管程:流体从管内空间流过的流径。壳程:流体从管外空间流过的流径。 <1-2>型换热器:壳程数为1,管程数为2 卧式和立式管壳式换热器型号表示法(P43)(2013-2014学年第二学期考题[名词解释]) 记:前端管箱型式:A——平盖管箱B——封头管箱

壳体型式:E——单程壳体F——具有纵向隔板的双程壳体H——双分流 后盖结构型式:P——填料函式浮头 S——钩圈式浮头 U——U形管束 管子在管板上的固定:胀管法和焊接法 管子在管板上的排列:等边三角形排列(或称正六边形排列)法、同心圆排列法、正方形排列法,其中等边三角形排列方式是最合理的排列方式。(2013-2014学年第二学期考题[填空]) 管壳式热交换器的基本构造:⑴管板⑵分程隔板⑶纵向隔板、折流板、支持板⑷挡板和旁路挡板⑸防冲板 产生流动阻力的原因:①流体具有黏性,流动时存在着摩擦,是产生流动阻力的根源;②固定的管壁或其他形状的固体壁面,促使流动的流体内部发生相对运动,为流动阻力的产生提供了条件。 热交换器中的流动阻力:摩擦阻力和局部阻力 管壳式热交换器的管程阻力:沿程阻力、回弯阻力、进出口连接管阻力 管程、壳程内流体的选择的基本原则:(P74) 管程流过的流体:容积流量小,不清洁、易结垢,压力高,有腐蚀性,高温流体或在低温装置中的低温流体。(2013-2014学年第二学期考题[简答])

传热复习题附答案

传热复习题 1、多层平壁定态导热中,若某层的热阻最小,则该层两侧的温差__最小__。 2、一定质量的流体在Ф25mm×2.5mm的直管内作强制的湍流流动,其对流传热系数 αi=1000W/(m2·℃),如果流量和物性不变,改在Ф19mm×2mm的直管内流动,其αi=__1678__W/(m2·℃) 3、在蒸汽—空气间壁换热过程中,为强化传热,下列方案中在工程上最有效的是__A__。 A.提高空气流速 B.提高蒸汽流速 C.采用过热蒸汽以提高蒸汽流速 D.在蒸汽一侧管壁上装翅片,增加冷凝面积并及时导走冷凝液 4、在管壳式换热器中饱和蒸汽加热空气,则 (1)传热管的壁温接近___饱和蒸汽__温度 (2)换热器总传热系数将接近_____空气____对流传热系数 5、在蒸汽冷凝传热中,不凝气体的存在对α的影响是____A____ A. 不凝气体的存在会使α大大降低 B. 不凝气体的存在会使α升高 C. 不凝气体的存在对α无影响 6、大容器内饱和液体沸腾分为____自然对流____、____泡核沸腾_____和____膜状沸腾_____ 阶段。工业上总是设法在_____泡核沸腾_____下操作。 7、斯蒂芬—波尔兹曼定律的数学表达式是 4 0100?? ? ? ? = T C E b ,该式表明__黑体的辐射能力与 热力学温度的四次方成正比___ 8、物体黑度是指在___相同__温度下,灰体的__辐射能力__和__黑体辐射能力__之比,在数值上它与同一温度下物体的__吸收率__相等。 计算题 9、质量流量为7200kg/h的常压空气,要求将其温度由20℃加热到80℃,选用108℃的饱和水蒸气作加热介质。若水蒸气的冷凝传热膜系数为1×104W/(m2·℃),且已知空气在平均温度下的物性数据如下:比热容为1kJ/(kg·℃),导热系数为2.85×10-2W/(m·℃),粘度为1.98×10-5Pa·s,普兰特准数为0.7。 现有一单程列管式换热器,装有Ф25mm×2.5mm钢管200根,管长为2m,核算此换热器能否完成上述传热任务? 计算中可忽略管壁及两侧污垢的热阻,不计热损失 解:空气需要吸收的热量是已知的,蒸汽冷凝放出热量能否通过该换热器的传递为空气所获得,就与列管换热器的传热速率密切相关。核算现有的列管换热器是否合用,就是用工艺本身的要求与现有换热器相比较,最直接的方法就是比较两者的Q或S0 (1)核算空气所需的热负荷应小于换热器的传热速率,即Q需要<Q换热器 (2)核算空气所需的传热面积应小于换热器提供的传热面积,即S0需要<S0换热器 解题时,首先应确定列管换热器中流体的流径,因蒸汽安排在壳程易排出冷凝水,故蒸汽走

热质交换原理与设备知识点考题

填空题 1、有空气和氨组成的混合气体,压力为2个标准大气压,温度为273K,则空气向氨的扩散系数是1。405*10-5 m2/s。 有空气和氨组成的混合气体,压力为4个标准大气压,温度为273K,则空气向氨的扩散系数是m2/s。 2、有一空气和二氧化碳组成的混合物,压力为3个标准大气压,温度为0℃,则此混合物中空气的质扩散系数为0.547*10-5m2/s。 3、喷雾室是以实现雾和空气在直接接触条件下的热湿交换。 4、当表冷器的表面温度低于空气的露点湿度时,就会产生减湿冷却过程。 5、某一组分的速度与整体流动的平均速度之差,成为该组分的扩散速度。 2、冷凝器的类型可以分为水冷式,空气冷却式( 或称风冷式) 和蒸发式三种类型. 3、根据冷却介质的不同,冷凝器可以分为、和三类。 (水冷,空冷,水—空气冷却以及靠制冷剂蒸发或其他工艺介质进行冷却的冷凝器。) 3、冷却塔填料的作用是延长冷却水停留时间,增加换热面积,增加换热量.。均匀布水。将进塔的热水尽量细化,增加水和空气的接触面,延长接触时间,增进水汽之间的热值交换 4、冰蓄冷空调可以实现电力负荷的调峰填谷(均衡)。 5、吸附式制冷系统中的脱附—吸附循环装置代替了蒸汽制冷系统中的压缩机装置。 6、刘伊斯关系式文中叙述为h/h mad=Cp刘伊斯关系式文中叙述为即在空气一水系统的热质交换过程中,当空气温度及含湿量在实用范围内变化很小时,换热系数与传质系数之间需要保持一定的量值关系,条件的变化可使这两个系数中的某一个系数增大或减小,从而导致另一系数也相应地发生同样的变化。 7、一套管换热器、谁有200℃被冷却到120℃,油从100℃都被加热到120℃,则换热器效能是25% 。 8、总热交换是潜热交换和显热交换的总和。 9、吸收式制冷机可以“以热制冷”,其向热源放热Q1,从冷热吸热Q2,消耗热能Q0,则其性能系数COP= Q1-Q2/Qo 。 10、冬季采暖时,蒸发器表面易结霜,融霜的方法有电除霜、四通阀换相除霜、排气温度除霜 1、当流体中存在速度、温度、和浓度的梯度时,就会分别产生动量、热量和质量的传递现象。 2、锅炉设备中的过热器、省煤器属于间壁式式换热器。 4、总压力为0.1MPa的湿空气,干球温度为20℃,湿球温度为10℃,则其相对湿度为。 6、某翅片管换热器,表面对流换热系数位10W/m2·K,翅片表面温度为50℃,表面流体温度为30℃,翅片效率为2.5,则换热器的热流密度为W/m2。 12、一管式逆流空气加热器,平均换热温差为40℃,总换热量位40kW,传热系数为40W/(m2.℃)则换热器面积为25m2。 8、潜热交换是发生热交换的同时伴有质交换(湿交换)空气中的水蒸气凝结(或蒸发)而放出(或吸收)汽化潜热的结果。 1、流体的粘性、热传导性和质量扩散通称为流体的分子传递性质。 2、当流场中速度分布不均匀时,分子传递的结果产生切应力;温度分布不均匀时,分子传递的结果产生热传导;多组分混合流体中,当某种组分浓度分布不均匀时,分子传递的结果会产生该组分的质量扩散;描述这三种分子传递性质的定律分别是牛顿粘性定律、傅里叶定律、菲克定律。

全热交换器技术参数

全热交换器技术参数 1.概述 1.1 工作原理 XFHQ系列全热交换器采用先进科技及工艺,芯体用特殊纸质经过化学处理加工而成,对温度、湿度、冷热能量回收起到最佳效果。 高效换热芯体,当室内空调排风与室外新风分别呈交叉方式流经换热芯体时,由于平隔板两侧气流存在温度差,产生传热,夏季运行时,新风从空调排风获得冷能,使温度降低;在冬季运行时,新风从空调排风中获得热能,使温度升高,这样通过换热芯体的热交换过程使新风从空调排风中回收了能量。 1.2特点 双向换气功能 将室外新风空气经过过滤后送入室内的同时,将室内污浊空气排出室外,彻底改善室内空气品质; 静音设计 内置空调专用低噪音离心风机,机箱内部覆有高效的吸音材料,全静音设计,人性化体现; 能量回收 机组内置高效的热交换器,将排出去的室内空气与送进来的室外空气进行冷热交换,在提供舒适温度空气的同时回收能量,节约能源; 控制方便 电气系统采用二次回路设计,使用开关面板,启动停止机组安全快速简单,可选择远程集中控制系统,与多联机室内机联网控制。 317

MDV4+i 直流变频智能多联中央空调 318 1.3 命名法 A,B,……Z 设计序列 S-三相,单相缺省 Z-纸芯式、L-轮转式、P-普通式 D-吊顶式、L-立柜式 新风量,单位100m 3 /h XFH-显换热式新风机 XFHQ-全换热式新风机

MDV4+i直流变频智能多联中央空调 2.参数 2.200~1200m3/h的产品采用发泡风道,具备旁通功能;2500~12000m3/h机型不带网络集中控制功能。 3.表中噪音是在额定静压安装条件半消音室测得,实际使用条件下的运行噪音可能高于此值,请根据设计安装具体条件,考虑相应的消音措施。 319

换热器 复习题

一、选择题 1、高压容器的设计压力范围P为:() (a)P≥10 MPa (b) 1.6≤P<10 MPa (c) 10≤P<100 MPa (d) P≥100 2、容器标准化的基本参数有:() (a)压力Pa (b) 公称直径DN (c) 内径 (d) 外径 3、为了防止管子与管板连接处产生不同程度的泄漏,应采用哪一种管板:() (a)平管板 (b) 薄管板 (c)椭圆管板 (d) 双管板 4、下列哪一种换热器在温差较大时可能需要设置温差补偿装置?() (a)填料函式换热器 (b)浮头式换热器(c)固定管板式换热器 5、管壳式换热器属于下列哪种类型的换热器?() (a)混合式换热器 (b)间壁式换热器 (c)蓄热式换热器 (d)板面式换热器 6、U形管换热器的公称长度是指:() (a) U形管的抻开长度 (b)U形管的直管段长度 (c)壳体的长度 (d)换热器的总长度 7、换热管规格的书写方法为() (a)内径×壁厚 (b) 外径×壁厚 (c) 内径×壁厚×长 (d) 外径×壁厚×长 8、有某型号为: 2.59 8002004 1.625 BEM I ----的换热器,其中的200为() (a)公称换热面积 (b)换热器的公称长度 (c)换热器公称直径 (d) 管程压力为1000Kg/m2 9、折流板间距应根据壳程介质的流量、粘度确定。中间的折流板则尽量等距布置,一般最 小间距不小于圆筒内直径的()。 (a) 三分之一 (b) 四分之一 (c) 五分之一 (d) 六分之一 10、冷热两流体的对流给热系数h相差较大时,提高总传热系数K值的措施是( ) (a)提高小的h值; (b) 提高大的h值;(c)两个都同等程度提高;(d) 提高大的h值, 同时降低小的h值。 11、顺流式换热器的热流体进出口温度分别为100℃和70℃,冷流体进出口温度分别为 20℃和40℃,则其对数平均温差等于() A.60.98℃B.50.98℃ C.44.98℃D.40.98℃ 12、高温换热器采用下述哪种布置方式更安全?() A.逆流B.顺流和逆流均可 C.无法确定D.顺流 13、为了达到降低壁温的目的,肋片应装在() A.热流体一侧B.换热系数较大一侧 C.冷流体一侧D.换热系数较小一侧 14、有折流挡板存在时,壳程流体的流动方向不断改变, Re=(),即可达到湍流。 (a)2300; (b) 104;(c)100;(d)105。

热质交换原理与设备第三版重点总复习

热质交换原理与设备第三版重点总复习 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

一、填空题(共30分) 1、流体的粘性、热传导性和_质量扩散性__通称为流体的分子传递性质。 2、当流场中速度分布不均匀时,分子传递的结果产生切应力;温度分布不均匀时,分子传递的结果产生热传导;多组分混合流体中,当某种组分浓度分布不均匀时,分子传递的结果会产生该组分的_质量扩散_;描述这三种分子传递性质的定律分别是___牛顿粘性定律___、傅立叶定律_、_菲克定律_。 3、热质交换设备按照工作原理不同可分为_间壁式、_混合式_、_蓄热式_和热管式等类型。表面式冷却器、省煤器、蒸发器属于__间壁_式,而喷淋室、冷却塔则属于_混合式。 3、热质交换设备按其内冷、热流体的流动方向,可分为___顺流__式、_逆流__式、__叉流___式和__混合_____式。工程计算中当管束曲折的次数超过___4___次,就可以作为纯逆流和纯顺流来处理。 5、__温度差_是热量传递的推动力,而_浓度差_则是产生质交换的推动力。 6、质量传递有两种基本方式:分子扩散和对流扩散,两者的共同作用称为__对流质交换__。 7、相对静坐标的扩散通量称为绝对扩散通量,而相对于整体平均速度移动的动坐标扩散通量则称为相对扩散通量。 8、在浓度场不随时间而变化的稳态扩散条件下,当无整体流动时,组成二元混合物中的组分A和组分B发生互扩散,其中组分A向组分B的质扩散通量m A与组分A的_浓度 梯度成正比,其表达式为 s m kg dy dC D m A AB A ? - =2 ;当混合物以某一质平均速度V移动 时,该表达式的坐标应取___随整体移动的动坐标__。 9、麦凯尔方程的表达式为: ()dA i i h dQ d md z - =,它表明当空气与水发生直接接触,热 湿交换同时进行时。总换热量的推动力可以近似认为是湿空气的焓差。1、有空气和氨组成的混合气体,压力为2个标准大气压,温度为273K,则空气向氨的扩散系数是×10-5 m2/s。 3、喷雾室是以实现雾和空气在直接接触条件下的热湿交换。 4、当表冷器的表面温度低于空气的露点湿度时,就会产生减湿冷却过程。 5、某一组分的速度与整体流动的平均速度之差,成为该组分的扩散速度。 6刘伊斯关系式是 h/h mad=Cp。 2、冷凝器的类型可以分为水冷式,空气冷却式 ( 或称风冷式 ) 和蒸发式三种类型.

容积式热交换器的工作原理

容积式热交换器的工作原理1.自动控温节能型容积式热交换器,它充分利用蒸汽能源,高效、节能是一种新型热水器。普通热交换器一般需要配置水水热交换器来降低蒸汽凝结水温度以便回用。而节能型热交换器凝结出水温度在75℃左右,可直接回锅炉房重复使用。这样减少了设备投资,节约热交换器机房面积,从而降低基建造价:因此节能型容积式热交换器深受广大设计用户单位欢迎。 2.节能型容积式热交换器工作原理详图示。有立式、卧式两种类型,其技术参数详后项图表,本厂生产规格齐全,还可按用户单位特殊需要设计、加工。 3.本热交换器适用于一般工业及民用建筑的热水供应系统。热媒为蒸汽,加热排管工作压力为<0.6MPa,壳体工作压力为0~1.6MPa,出口热水温度为65℃。 4.节能型容积式热交换器,壳体材料有三种:碳素钢Q235-A、B,不锈钢IGr18Ni9Ti,碳素钢内衬铜,U型管材料有,紫铜管T2及不锈钢管ICr18Ni9Ti,可按需要加以选用。 5.卧式节能型式为钢制鞍式支座。与国际S154、S165相同。立式为柱脚支座。 6.热交换器必须设置安全装置,下列三种安全装置可选择其中一种装设于交换器上: (1)在交换器顶装安全阀,安全阀压力须与热交换器的最高工作压力相适应(向安全阀生产厂订货时需加以申明)。安全阀的安装与使用应符合劳动人事部《压力容器安全技术监督规程》的规定。 (2)在交换器顶部装设接通大气的引出管(在有条件的场合)。 (3)设膨胀水箱,与水加热器相连,以放出膨胀水量。 7.若水中含有硬度、盐类,使用热交换器时,器壁和管壁会形成水垢,导致换热率降低,能耗增加,因而影响使用,故应采用一定的软化措施。 8.钢衬铜热交换器比不锈钢热交换器经济,并且技术上有保证。它利用了钢的强度和铜的耐腐蚀性,即保证热交换器能承受一定工作压力,又使热交换器出水水质良好。钢壳内衬铜的厚度一般为 1.2mm。钢衬铜热交换器必须防止在罐内形成部分真空,因此产品出厂时均设有防真空阀。此阀除非定期检修是绝对不能取消的。部分真空的形成原因可能是排水不当,低水位时从热交换器抽水过度,或者排气系统不良。水锤或突然的压力降也是造成负压的原因。 信息来源:51承压设备论坛https://www.360docs.net/doc/7d18874646.html, 原文链接:https://www.360docs.net/doc/7d18874646.html,/thread-25638-1-1.html

传热复习题(一)答案

《传热技术》复习题(一)参考答案 一、 填空题 1、写出三种间壁式换热器的名称: 套管式换热器 、 管壳式换热器 和 板式换热器 。 2、换热器在使用一段时间后,传热速率会下降很多,这往往是由于 传热管表 面有污垢积存 的缘故。 3、用套管换热器加热内管的空气,蒸气在管间冷凝。现欲通过实验方法测定蒸 气和空气的给热系数,需要的主要仪器有 温度计 、流量计 。 4、用饱和水蒸汽加热空气,总传热系数K 接近于 空气 侧的对流传热系数, 而壁温接近于 饱和蒸汽 侧流体的温度值。 5、蒸气冷凝分 滴 状冷凝和 膜 状冷凝。 6、冷、热气体在间壁换热器中换热,热气体进口温度T 1=400℃,出口温度T 2 为200℃,冷气体进口温度t1=50℃,两股气体的质量流量相同,物性数据可视为相同,若不计热损失时,冷气体出口温度为 250 ℃;若热损失为5%时,冷气体出口温度为 240 ℃ 7、应用准数关联式求取对流传热系数时,应注意:(1) 应用范围 ;(2) 特 征尺寸 ;(3)定性温度 。 8、列管换热器中,用饱和水蒸汽加热空气。空气走管内,蒸汽走管间,则管壁温度接近 水蒸汽 的温度,总传热系数接近 空气 的对流传热系数。 9、列管换热器,在壳程设置折流挡板的目的是 强化传热 和 支撑管束 。 10、如图所示为间壁式换热器中冷流体B 与热流体A 的稳态传热 过程的温度分布曲线,该传热过程是由 对流传热 、 热传导 和 对流传热 三个串联的热传递环节组成,由图分析可知:α1 < α2, 因此若强化该传热过程,应从 A 侧着手。 11、强化传热的方法之一是提高K 值. 而要提高K 值,则应提高对流传热系数 较 小 一侧的对流传热系数。 12、有两种不同的固体材料,它们的导热系数第一种为λ >第二种为 λ 作为换热器材料,应选用 第一 种;当作为保温材料时,应选用 第二 种。 13、某大型化工容器的外层包上隔热层,以减少热损失,若容器外表温度为150℃,

热质交换原理与设备整理版

一 当物系中存在速度、温度和浓度的梯度时,则分别发生动量、热量、和质量的传递现象。 二 单位体积混合物中某成分的质量称为该组分的质量浓度,以符号ρ表示。 组分的实际速度,称为绝对速度。 相对主体流动速度的移动速度,称为扩散速度。 绝对速度=主体流动速度+扩散速度 与热量传递中的导热和对流传热类似,质量传递的方式亦分为分子传质和对流传质。 分子传质又称为分子扩散,简称为扩散,它是由于分子的无规则热运动而形成的物质传递现象。 对流传质是指壁面和运动流体之间,或两个有限互溶的运动流体之间的质量传递。 凭借流体质点的湍流和漩涡来传递物质的现象,称为紊流扩散。 斐克定律: 在浓度场不随时间而变化的稳态扩散条件下,当无整体流动时,组成二元混合物中组分A 和组分B 将发生扩散。其中组分A 向组分B 的扩散通量与组分A 的浓度梯度成正比,这就是扩散基本定律——斐克定律: 斐克定律只适用于由于分子无规则热运动引起的扩散过程,其传递的速度即为扩散速度u A -u (或u A -u m ) 在气体扩散过程中,分子扩散有两种形式,即双向扩散(反方向扩散)和单项扩散(一组分通过另一停滞组分的扩散)。 等分子反方向扩散:设由A 、B 两组分组成的二元混合物中,组分A 、B 进行反方向扩散,若二者扩散的通量相等,则成为等分子反方向扩散。 液体中的稳态扩散过程: 液体中的分子扩散速率远远低于气体中的分子扩散速率,其原因是由于液体分子之间的距离较近,扩散物质A 的分子运动容易与邻近液体B 的分子相碰撞,使本身的扩散速率减慢。 常见有两种情况:即组分A 与组分B 的等分子反方向扩散 及 组分A 通过停滞组分B 的扩散。 固体中的稳态扩散过程: 固体中的扩散,包括气体、液体、 1 当物系中存在速度、温度和浓度的梯度时,则分别发生动量、热量、和质量的传递现象。 du dy τμ=- 表示两个作直线运动的流体层之间的切应力正比于垂直运动方向的速度变化率。不同的流体有不同的传递动量的能力,这种性质用流体的动力黏性系数μ来反映,其物理意义可以理解为,它表征了单位速度梯度作用的切应力,反映了流体黏性滞性的动力性质,因此称它为“动力”黏性系数。τ,表示单位时间内通过单位面积传递的动量,又称动量通量密度,N/㎡ dt q dy λ=-,q 为热量通量密度,或能量通量密度,表示单位时间内通过单位面积传递的热

热交换器期末复习计算题

3.某一错流式热交换器中(两流体各自均无横向混合的一次错流),以排出的热气体将2.5kg/s 的水从35℃加热到85℃,热气体的比热为1.09kJ/(kg ℃),进入热交换器的温度为200℃,离开时的温度为93℃,若该热交换器的传热系数为180W/(m 2℃),试求其传热面积和平均温度。 若水的流量减少一半,而气体的流量及两流体的进口温度保持不变,计算因水流量减少而导致换热量减小的百分比,假定传热系数不变。 解:(1)由题,2M =2.5 kg /s ,2t =35 '℃,2t =85 ''℃ ()p2c =4187 J /kg ?℃ ,()p1c =1090 J /kg ?℃,1 t =200 '℃,1t =93 ''℃,()2K=180 W /m ?℃。 ()()()()()()1212lm,12 12 200859335t ===83.27 20085ln ln 9335t t t t t t t t ''''''------?-'''--'''-c ℃, 221285350.30320035t t P t t '''--===''--,112220093 2.148535 t t R t t '''--==='''--,查图1.14得(P19),ψ=0.92。 错流的平均温差为:,0.9283.2776.61 m lm c t t ?=ψ??=?=℃。 不考虑散热损失,传热量()222 2() 2.541878535523375 W p Q M c t t '''=-=??-= 传热面积252337537.95 m 18076.61 m Q F K t ===??。 (2)1115233754891.420093Q W t t ==='''--, 22211 2.541875233.822 p W M c ==??=,所以,min 1W W =; min 18037.95 1.404891.4KF NTU W ?===,min max 4891.40.935233.8 c W R W ===,

新风全热交换原理

全热交换器工作原理就是一种将室外新鲜气体经过过滤、净化,热交换处理后送进室内,同时又将室内受污染的有害气体进行热交换处理后排出室外,而室内的温度基本不受新风影响的一种高效节能,环保型的高科技产品。 工作原理:全热交换器的核心器件就是全热交换芯体,室内排出的污浊空气与室外送入的新鲜空气既通过传热板交换温度,同时又通过板上的微孔交换湿度,从而达到既通风换气又保持室内温、湿度稳定的效果。这就就是全热交换过程。当全热交换器在夏季制冷期运行时,新风从排风中获得冷量,使温度降低,同时被排风干燥,使新风湿度降低;在冬季运行时,新风从排风中获得热量,使温度升高,同时被排风加湿。 全热交换器主要由热交换系统、动力系统、过滤系统、控制系统、降噪系统及箱体组成。 1、热交换系统 目前,无论在国内或就是国外,在全热交换器上采用的热交换器有静止与旋转两种形式其中转轮式热交换器也属于旋转式类型。从正常使用与维护角度出发,静止式优于旋转式,但大于2×10000m3/h 的大型机来说,一般只能靠转轮式热交换器才能实现,因此可以说静止式与旋转式各有优缺点。 为了易于布置设备内的气流通道,以缩小整机体积,全热交换器采用了叉流、静止板式热交换器。亦即:冷热气体的运动方向相互垂直,其气流属于湍流边界层内的对流换热性质。 因此充分的热交换可以达到较高的节能效果。 2、动力系统 全热交换器动力部分采用的就是高效率、降噪音风机。将经过过滤、净化与热交换处理后的室外新鲜空气强制性送入室内,同时把经过过滤,净化与热交换处理后的室内有害气体强制性排出室外。 3、过滤系统 全热交换器的过滤系统分为初效、中效、亚高效与高效四种过滤器。换气机在两个进风口处分别设置空气过滤器,可有效过滤空气中的灰尘粒子、纤维等杂质,有效地阻止室外空气中的尘埃等杂质进入室内达到净化的目的,并确保主机的热交换部件不被污物附着而影响设备性能。 4、控制系统 ①全热交换器选用可靠的电器组件,以安全可靠长寿命运行实现不同风量的控制。 ②根据不同的使用环境选配不同的控制方式。 ③可实现自动、定时、预置。 5、降噪系统 全热交换器主机外壳内侧粘贴聚乙烯发泡材料,钣金件结合处有长效密封材料,可有效的降低整机的噪音。 6、外壳 全热交换器外壳采用柜架结构。分别采用冷板喷塑、不锈钢板等不同材质,亦可根据用户实际需求选择不同材质加工。 全热交换器的功能 1、过滤净化空气,保证室内的空气品质。 2、保证室内的冷热负荷(温度)基本不受新风的影响。 全热交换器的特点 1、双向换气 室内外双向换气,新风与污风等量置换,根据客户要求可实现正负压操作;新风与排风完全隔开,彻底避免交叉感染发生。 2、过滤处理

相关文档
最新文档