高三化学微观结构与微粒之间的相互作用

高三化学微观结构与微粒之间的相互作用
高三化学微观结构与微粒之间的相互作用

考查点12 微观结构与微粒之间的相互作用

教学目标

1. 认识化学键的涵义

2.知道离子键和共价键的形成

3.了解离子化合物和共价化合物的概念

4. 能写出结构简单的常见离子、原子、分子的电子式

5.能从化学键变化的角度认识化学反应的实质

6.了解有机化合物中碳原子的成键特征

7. 举例说明有机化合物的同分异构现象

教学重、难点

知道离子键和共价键的形成能从化学键变化的角度认识化学反应的实质

教学过程

一、化学键:___________________________________________________________ _______

常见的化学键有:_______________________________________ 二、离子键:________

离子键的本质______________ 成键微粒

通过离子键形成的化合物是如:强碱、大多数盐和典型的金属氧化物

三、共价键:

共价键的本质成键微粒是

共价键一般存在于____________________________________________

共价化合物_________________________________常见的共价化合物有________________

四、分子间作用力_____________________________________________________分子间作用力影响物质的_________、________,一般分之间作用力越大,分子晶体的熔沸点________

五、同素异形体:_________________________________,如__________________________

同分异构体:___________________________________,如__________________________

同位素:_______________________________________,如__________________________

同系物:___________________________________________,如______________________

六、晶体类型有___________________________________________________________ ______

常见的离子晶体有___________________________;分子晶体有________________________

原子晶体有___________________________一般熔沸点_________>__________>_________

【练习1】写出下列物质的电子式:①NaCl ②Na2S ③MgCl2④CO2⑤NH3 ⑥NaOH ⑦N2⑧O2⑨Cl2⑩H2

【练习2】用电子式表示下列化合物的形成过程:①HCl ②NaCl

【巩固练习】

1、下列分子的电子式书写正确的是

A、氨

B、四氯化碳

C、氮

D、二氧化

2、下列叙述正确的是

A、共价化合物中一定没有离子键

B、阴、阳离子通过静电引力所形成的化学键叫离子键

C、离子化合物中一定没有共价键

D、非金属元素之间构成的化合物都不是离子化合物

3、下列给出的是有关元素的原子序数,其中能形成离子化合物的一组元素是

A、6和8

B、9和11

C、16和18

D、

基本粒子关系

基本粒子关系 强子就是参与强相互作用的粒子,可以分为介子和重子,目前粒子物理的夸克模型认为介子是由夸克和反夸克组成,重子则有三个夸克(或者反夸克)组成,重子可以再分为核子(包括质子和中子)和超子(因为质量超过核子的质量而得名)。电子和中微子等属于轻子,不参与强相互作用。 目前粒子物理认为轻子,夸克等没有结构,是点粒子。 电子质子等粒子带有电荷,带电粒子之间可以发生电磁相互作用,而电磁作用场的量子是光子,即带电粒子之间通过交换光子而发生相互作用。 夸克带有颜色(或者色荷),夸克之间,夸克和胶子之间,胶子之间,可以发生色相互作用,而色相互作用场的量子是胶子。 光子和胶子都是传递相互作用的媒介粒子,目前认为它们也没有结构,是个点粒子。 第一类:纯单个粒子,中微子,电子,大统一粒子,夸克。 第二类:由两个基本粒子合成的粒子,如π介子,W、Z玻色子。 第三类:由三个基本粒子合成的粒子,如:中子,质子及其它强子。 第一类粒子中的大统一粒子不能游离态存在,它们必须二个并存,构成了π介子,和W玻色子。(特别注意的是,这一点与传统理论完全不同,为什么要这样猜想呢?你如果接着往下看就明白了。)第一类中的夸克也不能单独存在,它们必须三个并存在,构成了质子与中子等强子 |评论 1. 强子和轻子是构成世界万物的两个基本类别 ①强子:由夸克组成的粒子。两个夸克组成的强子叫介子;三个夸克组成的强子叫重子。所以,不管是介子还是重子,都是强子。与之对应的是轻子。 ②轻子:目前已知的的轻子有三代,包括电子及电子中微子、缪子及缪子中微子、tau子及tau子中微子。轻子之所以叫轻子,主要是因为轻子一直到现在都没有发现其有内部结构,认为轻子是点粒子。 2. 胶子是传递强相互作用的传播子。强相互作用的粒子,即强子是有夸克组成,夸克和夸克之间形成的介子或者重子就是靠夸克间的胶子相互传递从而耦合在一起的。 3. 根据色禁闭理论,单独的夸克是不存在的,而胶子是传播子,严格意义上将,比较两者的大小根本没有任何意义,因为单独的夸克不存在,存在的夸克都以介子或强子而存在。没法和胶子进行定量的比较。胶子没有固定的尺寸,胶子和光子一样,都是传播子,只不过胶子传播强相互作用力,而光子传播电磁相互作用力。 发给我自己..强子,重子,介子,中微子,轻子 2008-07-13 23:55 强子提供强相互作用的介子 质子、中子里有些什么质子、中子里有些什么 对强子结构和标准模型研究的一再成功已表明夸克和色场是强子世界的最基本组成部分.尽管如此,强子物理还存在一些悬而未决的困难,如夸克幽禁、质子自旋危机、质子衰变等.

论美的本质王东岳

论“美”的本质 王东岳 关于美和美学的问题,讨论方式有两种:一种是讨论美学的具体范畴,涉及美学和审美的一般问题;另一种是讨论美的本质,也就是问美这个东西究竟是什么。而第二种讨论方式只能是一种哲学方式。我今天是在哲学的意义上讨论美的本原,因此,各位同学可能会认为它和美离得比较远,然而,正因为离得比较远,于是它才可能真正把握美的本质。 一 我们首先谈谈美的问题的提出。 在哲学史上,第一个提出“美的本质” 问题的,是古希腊哲学家柏拉图。柏拉图以苏格拉底和他人对话的方式,讨论了这个问题,得出的唯一结论是“美是难的”。柏拉图认为,“美”这个问题是非常困难的,甚至几乎是无法说清楚的。在此篇中,苏格拉底用归谬法的方式否定了对“美是什么”的所有回答。换一句话说,柏拉图用这样的方式是想告诉人们,美的问题用多因素分析的方式得不出结论,必须找到它的单因素决定方向,否则这个问题就讨论不下去。 为什么说“美的本质”是一个哲学问题呢?我简单谈谈哲学的含义。哲学不同于其他学问的地方,就在于哲学是追究终极原因的学问。也就是说,它不在一般的或直观的浅层上追问形成事物个相的原因。比如说,我们讨论健康,如果站在一般的因素层面上讨论,1000个因素都说不完。哲学不这样讨论问题,而我们通常的科学或一般的学问都是多因素的讨论问题。多因素讨论问题的方式使得任何一个因素都不能成立,因此多因素讨论问题的可成立性是大可怀疑的。而哲学是追究终极因素,是讨论问题的单因素。因此,罗素对哲学有个说法:哲学和神学很有相似之处,因为哲学和神学所探讨的问题都是终极问题。哲学和神学的不同点是,哲学是用理性探讨终极问题,神学是用信仰抵达终极关怀。从另一方面说,哲学和科学又有相似之处,它们的相同之处在于它们都使用理性这个工具,它们的不同之处在于,哲学探讨的是终极问题,而科学探讨的是具体问题。“美的本质”这个问题,从具体层面上是探讨不了的,因此,探讨这个问题必须从哲学说起。 美到底是什么?众说纷纭。齐白石有句名言:美就在似与不似之间。也就是像与不像之间,他说,如果太像,就有媚俗之嫌,如果完全不像,就有欺世之嫌。美一定在似与不似之间,也就是说,美是一个很飘忽的东西。古代最早讨论美的哲学家柏拉图认为,美是一个主观理念。也就是说,美不是一个客观派生的东西。他的学生亚里斯多德提出不同的看法。亚里斯多德认为,美是有一定客观性的,美是外部对象的一种和谐。比如我们说一个人美,他一定要头有多大,四肢有多长,躯干要是怎样的状态,恐怕美包含在这种协调关系里。哲学继续发展,所有的哲学家都在探讨美的问题。到了康德和黑格尔,美的问题再度转化到纯理念方面。那么,美到底是客观的还是主观的?美到底是什么?既往哲学家那种讨论方式,我认为不能解决问题,不能得出结论。我们今天换一种方式,从远距离来讨论“美是什么”。 二 讨论“美是什么”,我们首先必须搞清“感知”和“精神”是什么,因为美是一种精神现象,或者说,是精神现象中一个心理层面的反应。如果“精神”的起源搞不清,“美”这个问题就无从谈起,或者“美的本质”就无从谈起。 我们现在把二十世纪的系统科学拉开一个幅面,那么,我们在哲学上,或者说在精神的起源上,似乎可以找到另外一个讨论问题的方式。二十世纪自然科学的重大发展,导出了

基本粒子的标准模型

12、基本粒子的标准模型 标准模型由三种理论组成: (1)量子电动力学(QED):带电轻子和夸克与电磁U(1)规范场相互作用的量子理论。最主要的部分是电子与电磁场相互作用的量子理论。(2)量子弱电统一理论(QWED):QED的推广,把电磁相互作用与弱作用统一起来,建立统一的U(1)xSU(2)的规范理论。 (3)量子色动力学(QCD):夸克与胶子的SU(3)规范场相互作用的强相互作用的量子理论。 把上述三种相互作用的规范场理论统一起来的规范场理论叫大统一理论(Grand Unification Theory, GUT)。目前尚无定型。人们倾向于SU(5)大统一理论(最简明、具有代表性、可重整化) 4、超晶格:超晶格材料是两种不同组元以几个纳米到几十个纳米的薄层交替生长并保持严格周期性的多层膜,事实上就是特定形式的层状精细复合材料。 2、团簇:团簇是由几个乃至上千个原子、分子或离子通过物理或化学结合力组成的相对稳定的微观或亚微观聚集体,其物理和化学性质随所含的原子数目而变化。团簇的空间尺度是几埃至几百埃的范围,用无机分子来描述显得太大,用小块固体描述又显得太小,许多性质既不同于单个原子分子,又不同于固体和液体,也不能用两者性质的简单线性外延或内插得到。 7、等离子体:又叫做电浆,是由部分电子被剥夺后的原子及原子被电离后产生的正负电子组成的离子化气体状物质,它是除去固、液、气外,物质存在的第四态。等离子体是一种很好的导电体,利用经过巧妙设计的磁场可以捕捉、移动和加速等离子体。等离子体物理的发展为材料、能源、信息、环境空间,空间物理,地球物理等科学的进一步发展提新的技术和工艺。 等离子体可分为两种:高温和低温等离子体。现在低温等离子体广泛运用于多种生产领域。高温等离子体只有在温度足够高时发生的。太阳和恒星不断地发出这种等离子体,组成了宇宙的99%。在宇宙中,等离子体是物质最主要的正常状态.宇宙研究、宇宙开发、以及卫星、宇航、能源等新技术将随着等离子体的研究而进入新时代. 8、激光冷却:光对原子有辐射压力作用,利用光压改变原子速度。人们发现:当原子在频率略低于原子跃迁能级差且相向传播的一对激光束中运动时,由于多普勒效应,原子倾向于吸收与原子运动方向相反的光子,而对与其相同方向的光子吸收几率较小,吸收后的光子将各向同性自发辐射。平均看来,两束激光净作用是产生一个与原子运动方向相反的阻尼作用,从而使原子的运动减缓(冷却)。 3、玻色-爱因斯坦凝聚。研究范围:质量不为零,粒子数守恒的波色粒子组成的理想气体。 概念:这种粒子不受泡利不相容原理的限制,当T→0Κ时,几乎所有的玻色子会聚集到能量为0,动量为0的基态,这是并不奇怪的。令我们感兴趣的是,研究表明,当温度降低到一个有限的低温T(大约为3K)时,就会有宏观数量的波色粒子聚集在基态。这一情况与蒸汽凝聚有些类似,因而称为玻色-爱因斯坦凝聚(BEC)。 1、费米液体:由遵从费密-狄喇克统计的粒子组成的液体,如液体He及金属中的电子体系。费密液体是一个强相互作用的多粒子体系。在温度远低于费密温度时,正常的(没有发生相变的) 费密液体的性状可以用Л.Д.朗道在1956年提出的费密液体理论很好地描述,即在液体中粒子加上与其相互作用并一同运动的近邻粒子“屏蔽云”组成准粒子(见固体中的元激发[1]),液体可以看成这些近自由的准粒子的集合,准粒子之间的相互作用可以用一些分子场来描述,有关的参量叫做朗道参量,可由实验确定。 9、夸克禁闭:夸克受到被称为色荷的强力的束缚,带色荷的夸克被限制与其他夸克在一起(两个或三个组成一个粒子),使得总色荷为零。不可能从核子中单个地分离出来,这种奇特性质被称为夸克禁闭或色禁闭。它能将粒子结合为无色的状态。 10、黑洞是一种引力极强的天体,就连光也不能逃脱。当恒星的史瓦西半径小到一定程度时,就连垂直表面发射的光都无法逃逸了。这时恒星就变成了黑洞。 哈勃膨胀、微波辐射、轻元素的合成以及宇宙的测量被认为是现代宇宙学的四大基石。 5、自组织耗散结构:一个远离平衡态的非线性的开放系统(不管是物理的、化学的、生物的乃至社会的、经济的系统)通过不断地与外界交换物质和能量,在系统内部某个参量的变化达到一定的阈值时,通过涨落,系统可能发生突变即非平衡相变,由原来的混沌无序状态转变为一种在时间上、空间上或功能上的有序状态。这种在远离平衡的非线性区形成的新的稳定的宏观有序结构,由于需要不断与外界交换物质或能量才能维持。 11、非常规超导体(non-normalsuperconductors)指不同于传统研究的超导体,机理研究有新发展和新探索。如低载流子密度超导体(包括层状结构超导体),有机超导体,超晶格超导体,非晶态超导体,磁性超导体等。在机理研究上除进深的电-声子机制外,有激子机制,双极化子,重费米子,等离子体激元,共振价键,费米液体,自旋涨落,自旋口袋模型等等,在电子配对上(包括空穴型)仍有S波配对外,有P波配对,D波配对等选择。因此称之为“耗散结构” 15、约瑟夫森效应:电子能通过两块超导体之间薄绝缘层的量子隧道效应。两块超导体通过一绝缘薄层(厚度为10埃左右)连接起来,绝缘层对电子来说是一势垒,一块超导体中的电子可穿过势垒进入另一超导体中,这是特有的量子力学的隧道效应。

高三化学原子结构和化学键专题

1.(全国II卷理综,9,6分)某元素只存在两种天然同位素,且在自然界它们的含量相近,其相对原子质量为152.0,原子核外的电子数为63.下列叙述中错误的是 A.它是副族元素 B.它是第六周期元素 C.它的原子核内有63个质子 D.它的一种同位素的核内有89个中子 1.答案:D 解析:(排除法)相对原子质量为152.0,近似认为该元素的平均质量数为152,质子数为63,平均中子数为89,该元素只存在两种天然同位素,且在自然界它们的含量相近,两种同位素分子的中子数一个比89多,一个比89少,二者与89的差值的绝对值相等,D错。 要点1:质量数等于质子数和中子数之和。 要点2:两种同位素原子的质量数与平均值比较,越接近平均数的原子其原子个数百分比(丰度)越大。 2.(广东化学,1,3分)我国稀土资源丰富。下列有关稀土元素144 Sm 62 与150 Sm的说法正确的是 62 A. 144 Sm与15062Sm互为同位素 B. 14462Sm与15062Sm的质量数62 相同 C. 144 Sm与15062Sm是同一种核素 D. 14462Sm与15062Sm的核外电62 子数和中子数均为62 2.答案:A 解析:质子数相同,中子数不同的核素称为同位素,具有一定数目质子数和中子数的原子称为核素。144 Sm与15062Sm质量数不同,B错;14462Sm 62 与150 Sm是不同核素,C错;14462Sm与15062Sm的中子数不同,D错。 62 要点1:核素(A X):具有一定数目质子数(Z)和中子数(N=A-Z)的原 Z 子称为核素。

要点2:同位素:质子数(左下角Z )相同,质量数(左上角A )不同的同一元素的不同核素互称同位素。 要点3:核素的量的关系:质量数(左上角A )=质子数(左下角Z )+中子数(N)。 3.(江苏化学,2,3分)下列有关化学用语使用正确的是 A. 硫原子的原子结构示意图: B .NH 4Cl 的电子式: C .原子核内有10个中子的氧原子 O 18 8 D .对氯甲苯的结构 简式: 3.答案:C 【解析】A 项: 所以A 项错误,B 项:4NH Cl 是由4NH +和离子构成,由于Cl -是阴离子,必须写出电子式 ;C 项:18 8O 表示质量数为18,质子数 为8的氧原子,所以该原子核内有10个中子,D 项:该结构简式是邻氯甲苯,因为氯原子和甲基的位置在相邻的碳原子上,对氯甲苯中的氯原子和甲基的位置应该处于相对位置。 要点1:熟记1~20号原子的原子结构结构示意图,阴离子的结构示意图与对应的原子结构示意图比较最外层电子数发生了变化,阴离子带几个单位的负电荷,最外层电子数就加上几;阳离子的结构示意图与对应的原子结构示意图比较最外层电子数发生了变化,;阳离子带

4.2.基本粒子间的相互作用

§4.2、基本粒子间的相互作用 4.2.1、 四种基本的相互作用 一切物质归根结底都是由基本粒子组成的。基本粒子间的相互作用属于基本的相互作用。实践证明,基本的相互作用有四种: 1、引力作用 在宏观上,特别是对于天体,引力作用是极其重要的。但是,对于基本粒子来说,比起其他相互作用来,引力作用极其微弱,可不予以考虑。 2、弱相互作用 强度远小于电磁相互作用和强相互作用,存在于除光子外所有粒子之间的一种短程用用。 3、电磁相互作用 直接存在于带电的粒子之间。 4、强相互作用 存在于夸克之间。介子或重子之间的相互作用是夸克间强相互作用的间接表现,核子之间的相互作用即核力属强相互作用。 这四种的基本相互作用,按由强到弱排列,它们的相对强度为 强相互作用 电磁相互作用 弱相互作用 引力相互作用 1 210- 1410- 3910- 正像电和磁是电磁相互分用的两个不同的表现方面一样,科学家们认为,电磁和弱相互作用两者是电-弱相互作用的两个不同的表现方面。近年来,电弱统一的理论获得了成功。 传递相互作用的粒子 相互作用的本质是什么呢?在电学部分,我们知道,带电粒子是通过电磁场传递力的。电磁场的传播就是电磁波,其量子是光子。所以,带电粒子是通过交换光子发生相互作用的。传递相互作用的粒子又称媒介子。光子是一切带电粒子间电磁相互作用的媒介子。

轻子之间不存在强相互作用。轻子或重子之间都存在弱相互作用。弱相 互作用的媒介子又称为中间玻尔色子或弱介子。理论预言有 +W 、-W 、 和30Z 种弱介子。它们的质量都很大,自旋都等于1,在本世纪80年代,这三种媒介子先后被实验所证实。 夸克之间存在强相互作用。强相互作用的媒介子称为胶子。胶子的静质量为0,电荷为0,自旋等于1,但带有色荷。 夸克或胶子都没有被分离出来而直接观测到。为什么没有单个的夸克出现呢?理论上认为,夸克之间的相互作用随着夸克之间的距离增加而加大,以致巨大的撞击能量未分离开夸克,而产生了两个或三个夸克组成的强子。这个理论又称为夸克的禁闭理论。按照这个理论,单个夸克是不能从强子中分离出来的。 §4、3 其他 4.3.1、、黑洞 黑洞是指光子无法脱离其引力,因而接收不到从它射出的光子,所以称为黑洞。 可以认为光子具有质量 2c hv m =。设星体是一个质量为M ,半径为R 的均匀球。则质量为m 的光子在星球表面所受到的引力为 222c R hv M G R Mm G f ??=?= 光子以光速c 作半径为R 的圆周运动的向心加速度R c a 2 =。当引力大于 向心力时,光子不会外溢,即f>ma 有: R c c hv R c hv M G 2 222?>??

原子分子物理前沿专题

目录 摘要 (2) 1 原子论发展史与主要内容 (2) 2 原子分子学说的建立与发展 (3) 3 古代原子论的发展过程和主要内容 (4) 4 原子论哲学的产生与发展 (5) 4.1原子论哲学的理论准备 (6) 4.1.1 恩培多克勒 (6) 4.1.2 阿那克萨哥拉 (7) 4.2 原子论哲学 (8) 5 近代史——道尔顿在《化学哲学新体系》中描述的原子 (9) 6 发展史 (11) 6.1 道尔顿的原子模型 (11) 6.2 葡萄干布丁模型(枣核模型) (11) 6.3 行星模型 (12) 6.4 玻尔的原子模型 (12) 6.5 现代量子力学模型 (12)

浅谈原子论的发展 [摘要] 本文主要由六个部分组成。第一个部分由说明原子论发展史与主要内容。第二个部分主要介绍原子分子学说的建立与发展。第三个部分阐述了古代原子论的发展过程和主要内容。第四部分主要论述了原子论哲学的产生与发展。第五部分阐述了道尔顿在《化学哲学新体系》中描述的原子,最后一部分概括了原子论近现代发展史。 1 原子论发展史与主要内容 化学是以物质为研究对象,以阐明物质的结构及其变化规律为己任,所以,“物质是什么构成的?”是化学的基本问题也是核心问题。然而,从上古代的德谟克利特(公元前460~前370年)到17世纪的波义耳(1627~1691年),上下2000多年,尚未做出完全正确的回答。 到了17世纪的1661年,波义耳以化学实验为基础建立这样的元素论:那些不能用化学方法再分解的简单物质是元素。即西方的“土、气、水、火”四元素物质组成观。这种物质观已接近原子论,但还不是科学的原子论。因为,他当时称之为元素的物质,今天看来只是单质,而不是原子。 随着科学实验的深入、技术的进步、一代又一代科学家的努力,人们对物质的认识渐渐地明确起来,并发生了认识上的飞跃,产生了科学的原子论,完成这一“飞跃”的代表人物就是英国科学家道尔顿,那已经是19世纪初的事情了(1803年)。 由于原子的概念是化学的基石,是化学的灵魂,这个问题一旦解决,必然促进化学学科极大的发展。事实正是如此:从科学原子论提出,到19世纪中期,已发现的化学元素就有60多种,证明了原子论的指导作用。从此,化学进入蓬勃发展的新阶段,同时也揭开了物质结构理论的序幕,已能从微观物质结构的角度去揭示宏观化学现象的本质。使化学发展到由材料的堆积至材料的整理,并使其条理化的新时期。

粒子物理学

粒子物理学 为本词条添加义项名 粒子物理学,又称高能物理学,它是研究比原子核更深层次的微观世界中物质的结构、性质,和在很高能量下这些物质相互转化及其产生原因和规律的物理学分支。 10 本词条无基本信息模块, 欢迎各位编辑词条,额外获取10个积分。 目录 1学科简介 2学科分类 3理论分析 4发展阶段 5黑格斯粒子的实验证据 6第四种和第五种夸克 7轻子的新发现 8电弱统一理论的建立 9粒子物理的前景 展开 1学科简介 2学科分类 3理论分析 4发展阶段 4.1第一阶段(1897~1937) 4.2第二阶段(1937~1964) 4.3第三阶段(1964~) 5黑格斯粒子的实验证据 6第四种和第五种夸克 7轻子的新发现

8电弱统一理论的建立 9粒子物理的前景 粒子物理学 1学科简介 粒子物理学particle physics 研究比原子核更深层次的微观世界中物质的结构、性质,和在很高能量下这些物质相互转化及其产生原因和规律的物理学分支。又称高能物理学。 粒子物理学 2学科分类 粒子物理学专门研究组成物质和射线的基本粒子,以及它们之间的相互作用。由于在大自然的一般条件下,许多基本粒子不存在或不单独出现,物理学家使用粒子加速器,试图复制粒子高能碰撞的机制,从而生产和侦测这些基本粒子,因此粒子物理学也被称为高能物理学。 标准模型可以正确地描述基本粒子之间的相互作用。这模型能够计算12种已知的粒子(夸克和轻子),彼此之间以强力、弱力、电磁力或引力作用于对方。这些粒子会互相交换规范玻色子(分别为胶子、光子、W 及Z 玻色子)。标准模型还预测了希格斯玻色子的存在。截至2010年,使用费米实验室的垓电子伏特加速器和欧洲核子研究组织的大型强子对撞机,实验者仍旧在努力地寻找希格斯玻色子的来踪去迹。

浅谈速度变化致物质质量变化

浅谈速度变化致物质质量变化 云南云维集团大为制焦电仪黄兆荣 摘要:本文分析了物质速度变化导致物质质量发生变化的理论依据和原因。 关键词:速度,质量,变化 一、概述:将纸撕碎,纸的质量(天枰称)会发生变化,将水装在密封的塑料瓶里摇动,摇动前后的质量也会发生变化,都是先重后輕,同样将热水装在密闭的瓶中,放在天枰称,质量的变化,随着热水的温度降低,质量慢慢增加。 二、分析:1、物质的速度变化(Vt-Vo=a)则需要看到一个力(F) m = F / a = F/ (Vt-Vo) 由于a都会落后F.有了F,使物质运动速度发生变化(Vt-Vo),物质内部会发生摩擦,物质与外壳也会发生摩擦,摩擦生电、声、噪音等,摩擦生电,根据电磁力与引力的统一的原理,电磁力会吸引它周边的物质,周边有一种最基本的粒子,能进出任何物质的表面上,当某种物质的力量打破平衡时间,该基本粒子就会进出该物质的表面,与其发生反应。使物质的质量发生改变。 把水装在密闭的塑料瓶里,静置,有基本的受力平衡(不是绝对的)有一个质量数,当塑料瓶在外力的作用下摇动,由于水分子之间,水分子与塑料瓶内壁的摩擦都会产生(电磁力),及单位面积引力增加,吸引外界的基本粒子,从而使自己的质量增加,,把热水装在瓶中,称其质量为ma,当热水冷却后,再称起质量为mb对比发现,mb-ma大于0,这是由于热水的密度比冷水的密度小,热水运动虽然比冷水的运动剧烈,但是震动幅度小,所以热水单位面积的引力小;冷水的单位面积的引力大,故其质量大,撕纸时,将纸撕烂时,产生的引力(即电磁力)比没有撕碎的纸的引力大,固撕纸前、后的质量有相差有,引力将周围的基本粒子或物质吸引在电磁力(引力)变化的物体上。 运动能使物体的质量增加 1、在空气中笔者将A4纸撕碎,称其重量比未撕碎前纸的质量增加了,一共用四张纸做实

基本粒子的定义与分类

基本粒子的定义与分类 基本粒子的定义与分类 (1)基本粒子的定义及其变化 基本粒子是指人们认知的构成物质的最小、最基本的单位。但是因为物理学的不断发展,人类对物质构成的认知逐渐深入,因此基本粒子的定义随时间也是有所变化的。 目前在粒子物理学中,标准模型理论认为的基本粒子可以分为夸克(quark)、轻子(lepton)、规范玻色子(boson)和希格斯粒子四大类。标准模型理论之外也有理论认为可能存在质量非常大的超粒子。 传统上(20世纪前、中期)的基本粒子是指质子、中子、电子、光子和各种介子,这是当时人类所能探测的最小粒子。而现代物理学发现质子、中子、介子都是由更加基本的夸克和胶子(gluon)构成。同时人类也发现了性质和电子类似的一系列轻子,还有性质和光子、胶子类似的一系列规范玻色子。这些是现代的物理学所理解的基本粒子。 (2)基本粒子的分类 费米子:基本费米子分为两类:夸克和轻子。 夸克:目前的实验显示共存在6种夸克,其中包括它们各自

的反粒子。这6种夸克又可分为3“代”。它们是: 第一代:u(上夸克)d(下夸克) 第二代:s(奇异夸克)c(魅夸克) 第三代:b(底夸克)t(顶夸克) 它们的质量关系是。另外值得指出的是,他们之所以未能被早期的科学家发现,原因是夸克决不会单独存在(顶夸克例外,但是顶夸克太重了而衰变又太快,早期的实验无法制造)。他们总是成对的构成介子,或者3个一起构成质子和中子这一类的重子。这种现象称为夸克禁闭理论。这就是为什么早期科学家误以为介子和重子是基本粒子。 轻子:共存在6种轻子与它们各自的反粒子。其中3种是电子和与它性质相似的子和子。而这三种各有一个相伴的中微子。他们也可以分为三代: 第一代:e(电子)、(电中微子) 第二代:(μ子)、(μ中微子) 第三代:(τ子)(τ中微子) 玻色子:玻色子是依随玻色-爱因斯坦统计,自旋为整数的粒子。 规范玻色子,这是一类在粒子之间起媒介作用、传递相互作用的粒子。之所以它们称为“规范玻色子”,是因为它们与基本粒子的理论杨-米尔斯规范场理论有很密切的关系。

浅谈现代粒子物理前沿问题_夸克_胶子等离子体

[摘要]夸克-胶子等离子体是当今粒子物理领域的重要研究课题,它不仅能揭示微观粒子的物理性质,还能帮助人们认识宇宙的演化过程。本文对夸克-胶子等离子体的研究现状进行了概述。[关键词]夸克-胶子等离子体;高能重离子碰撞浅谈现代粒子物理前沿问题———夸克-胶子等离子体 傅永平 郗勤 (临沧师范高等专科学校数理系,云南临沧 677000) 1研究夸克-胶子等离子体的科学意义 按照目前的实验观测结果,已知的物质最小构成单元是夸克和轻子,比如质子和中子就是由上夸克和下夸克组成的三夸克色禁闭束缚态,而介子则是双夸克色禁闭束缚态。我们熟知的电子就是轻子的一种。如果用质量来标度,夸克和轻子可以分为三代,每一代有2种夸克和轻子,其中夸克包括上夸克、下夸克、奇夸克、璨夸克、顶夸克和低夸克,轻子包括电子、电子中微子、μ子、μ子中微子、τ子和τ子中微子。 夸克-胶子等离子体是区别于强子的一种新的物质形态,夸克不再是以强子型的双夸克或三夸克色禁闭束缚态形式存在,夸克-胶子等离子体中的夸克是色相互作用渐近自由的,夸克与夸克之间,夸克与多夸克之间存在自由的色相互作用,这是一种多体夸克凝聚的新物质形态。 宇宙大爆炸初期宇宙的温度约为1028 eV,按照标准模型,当时可 能存在的物质只有轻子和夸克,此时夸克的色自由度是解禁的,就会形成夸克-胶子等离子体。之后随着宇宙不断膨胀,温度下降到100MeV时,夸克物质发生对称性破缺,开始冻结成为质子和中子。从夸克物质演化的意义来讲,研究夸克-胶子等离子体不仅对基本粒子物理研究意义重大,而且对于宇宙演化的研究来讲也具有重要意义。 2实验概况 实验表明,高能重离子碰撞有可能产生核子的多重碰撞,使能量主要集中在质心附近。也即一个核的核子有可能和另一个核的不同核子发生多次碰撞,而不是仅发生一次碰撞便飞离质心区域,这样在一个很短的驰豫时间内,能量可以集中在质心附近,从而产生夸克-胶子等离子体。为更好地解释在高能重离子碰撞过程中,能量如何主要聚集在质心附近,引入核阻塞能力的概念,它表征重离子碰撞过程中一个入射核子与另一个核碰撞时所受到核物质的阻塞程度,如果多重碰撞程度越高,阻塞能力也就越大,出射核子所携带的能量就越小,那么聚集在质心附近的能量就越高,也就越容易产生夸克-胶子等离子体。多重碰撞及核阻塞能力的研究,在高能重离子碰撞产生夸克-胶子等离子体方面具有重要作用。 实验物理学家们正在尝试着利用高能重离子碰撞实验装置,把物质的温度和密度在一个很小的时空区域内提升到大爆炸的初始阶段,即把“历史”退回到存在自由夸克物质的宇宙初期。美国布鲁海文国家实验室(BNL)的相对论重离子对撞机(RHIC)能够将金原子核加速到每核子100GeV,碰撞的质心系能量可达39.4TeV。 此外,欧洲核子研究中心(CERN)的大型强子对撞机(LHC)可以把铅原子核加速到每核子2.76TeV的质心系能量。那么碰撞的质心系能量可达到574.08TeV。未来LHC的质心系能量还将提升到每核子5.5TeV,碰撞的质心系能量将达到1144TeV。RHIC能将金原子核加速到光速的99.95%,核粒子束迎头相撞时,每秒钟将会出现上千次的碰撞,每一次碰撞都能在相撞点上产生很高的温度,大约能产生超过1012K的温度,这相当于太阳温度的1万倍。 3探测夸克-胶子等离子体 夸克-胶子等离子体一旦产生就会迅速冷却膨胀,所以其寿命是很短暂的。对于实验物理学家而言,观察其冷却过程中的粒子产生才是观测夸克-胶子等离子体的有效途径。夸克-胶子等离子体在冷却过程中将有大量新粒子产生,其中包括光子、轻子和夸克碎裂产生的强 子。标准模型预言,夸克-胶子等离子体的粒子产生多重数将远大于核子-核子深度非弹性散射的粒子产生,所以通过比较实验结果和理论预言将成为又一检验标准模型正确与否的关键。 如何观测夸克-胶子等离子体不仅是实验关心的问题,也是理论研究的热点。比如研究夸克-胶子等离子体的动力学特征。而要了解它,就必须依赖于从中心区域出射的、且未被其损坏的粒子。这些粒子的最佳候选者就是光子和轻子,因为光子和轻子只参与电磁相互作用和弱相互作用,它们都不会与夸克物质发生强相互作用,对于以强相互作用为主导的过程而言,它们几乎可以不受阻碍地从碰撞中心区域出射并被探测器捕捉到,所以光子和轻子都可以携带中心区域夸克物质的动力学信息,通过研究它们便可以了解自由夸克物质的动力学特征及规律。 在高能重离子碰撞过程中有以下三种主要的光子产生源,首先是初始冷组分部分子碰撞产生的快光子,它们包括夸克、胶子之间的湮灭和康普顿过程产生的直接光子,还包括由末态部分子在真空中碎裂产生的光子。还有喷注通过热媒介时,与热部分子相互作用也会产生光子。由于初始部分子碰撞过程中的转移动量很高,强相互作用跑动耦合常数小于1,这些光子的产生机制可以利用微扰量子色动力学和量子电动力学来处理。此外,在热夸克物质的平衡相中,热光子将由热夸克和热胶子的湮灭和康普顿过程产生,由于夸克-胶子等离子体的热光子主要集中在低横动量区域,所以微扰论很难处理。 只能依靠有限温度场论以及有效热质量截断等技术来解释夸克-胶子等离子体的热光子产生。最近,有的学者提出了一种新的理论来解释热光子的产生机制,称为共形反常。在夸克-胶子等离子体中存在共形不变对称性的破缺,这种破缺机制直接导致了色单态热部分子之间的相互作用产生热光子。光子产生的最后一个主要来源是碰撞演化末态的强子物质,热强子气体之间主要通过介子相互作用产生热光子,其中介子主要是轻介子,目前关于强子气体模型已经把奇异介子也包含进来了。来自RHIC的PHENIX实验组和LHC的CMS实验组得到的光子实验数据能较好地与理论计算结果相吻合。 对于高能重离子碰撞中双轻子的产生机制,与光子产生过程完全类似,只需要将实光子变换为虚光子即可,因为双轻子主要由虚光子衰变而来。理论表明来自于夸克-胶子等离子体的热双轻子在低不变质量区域产率最大,但是热双轻子在这个区域的贡献被众多的强子衰变谱所掩盖,热双轻子唯一占主导的区域是在中间不变质量区域。但中间不变质量区域的双轻子数据同样能用粲粒子衰变来解释。不过来自NA60实验组的数据表明较之粲粒子衰变谱,中间不变质量区域的双轻子数据有一个抬高,这个抬高有可能是来自热双轻子的贡献。 除此之外,对于RHIC的双轻子实验而言,仍存在着不少公开问题。其中之一就是低横动量双轻子数据在低不变质量区域较之强子衰变的理论预言有一个2到3倍的抬高现象。这种抬高现象可以通过热媒介中矢量介子由于手征部分恢复而发生质量移动来部分地得到解释,但仍无法完全解释抬高现象。最近,PHENIX实验组得到的高横动量双轻子不变质量谱也存在实验值高于现有理论预言的抬高现象。来自热双轻子的贡献仍无法解释现有数据。 4小节 本文就目前粒子物理的前沿热点,夸克-胶子等离子体,进行了概述。现有的夸克-胶子等离子体的光子产生实验数据能够与理论计算结果较好地吻合,但是双轻子产生的实验数据在理(下转第42页)

微粒之间的相互作用力教学案

微粒之间的相互作用力(第1课时) 姓名: 班级: 一、教学目标 1.通过分析实例了解离子化合物的概念,并能识别典型的离子化合物。 2.了解离子键形成过程和形成条件,为学生对物质形成奠定理论基础。 3.能用电子式表示常见物质的组成,以及常见离子化合物的形成过程。 二、教学重点、难点 教学重点:离子键、离子化合物的概念;电子式的书写 教学难点:离子化合物电子式的书写、用电子式表示离子化合物的形成过程。 三、教学过程 【情景导入】回顾钠在氯气中燃烧的实验现象,下图为NaCl 形成过程的示意图 【解释】钠原子失去 个电子,变成 电子稳定结构的 ,氯原子得到 个电子,变成 电子稳定结构的 ,钠离子与氯离子在静电作用下形成NaCl 【自主学习】阅读课本P12完成下列知识 知识点1 离子键 一、化学键 1.概念: 常见的化学键有 、 二、离子键 1.概念:______________________________作用叫做离子键 2.成键微粒 3.成键本质: 4.成键元素: 5.存在 关于离子键概念的注意事项:阴、阳离子间的静电作用既不单指相互吸引也不单指相互排斥,而是合力的作用 三、离子化合物 1.概念: 2.存在 (1)活泼金属( 第ⅠA 、ⅡA 族 )与活泼非金属( 第 ⅥA 、ⅦA 族)之间形成化合物。如NaCl Na 2O 2等 (2)活泼金属氧化物 (3)强碱、大多数盐以及典型的金属氧化物都是离子化合物。如NH 4Cl 、NaHCO 3 、Ba(OH)2、NaOH 等 +11 8 2 +11 8 2 1 失 e - +17 8 2 7 +17 8 2 8 得 e - 离子键 离子 化合物 NaCl

粒子物理与宇宙学

课程:粒子物理与宇宙学 题目: 姓名: 学号: 学院: 专业:

题目: 摘要:在宇宙大爆炸发生前,没有时间,没有空间,也没有物质和能量。大哟150亿年前,一个体积无限小的点爆炸了,时空从这一刻开始,人类在这一刻孕育,千百年来,人们对宇宙的探索从未止步,牛顿、爱因斯坦等一系列伟人为我们揭开了宇宙神秘的面纱,而哈勃发现了宇宙正在膨胀,可是最后宇宙是否能逃脱收缩的命运呢?本文——这么一个神秘的宇宙。 前言:作为一位核自院的学生,由于专业的原因,自己很少接著道宇宙学。自己所有的宇宙学知识,只是在高考前学习的一些经典宇宙学的皮毛,再加上平时书籍上的一点积累。因此不敢妄称此篇文章为论文,只能说是谈谈上完整个学期的宇宙学浅谈的一点感想。 从小在农村生活的原因,看着明亮的星空,我产生了求知的欲望。其实观察星空只是天文学的表象,离真正的宇宙学和物理学差的很远。在高中的时候我读到了霍金的《时间简史》的普及版。于是对相对论和量子理论以及宇宙的演化有了浅显的认识。但是在读霍金的《果壳中的宇宙》时,却很难读懂,再加上课业的繁重也就只能作罢。 在本学期选修了粒子物理与宇宙学,又燃起了我对于宇宙及物理学的强烈渴望。虽然我此生也许并不会投身于对于宇宙的探索及对物理学的研究。但是只要在条件允许的前提下,我一定会

主动为那些研究者提供各方面的支持,也当是圆了我儿时的梦想。 发展:宇宙是我们这个物质世界的整体,是物理学和天文学的最大研究对象。了解甚至弄清它的性质、结构和演化规律,一直是人类的梦想。可以说,人类试图认识宇宙的历史与人类认识史本身同样古老。但是,要认识整个宇宙实在是太难了,以致在相当长的时间内,只是停留在哲学性的、思辨性的思考上。宇宙学真正成为一门具有现代意义的独立的学科,那还是在近100 年内的事。 在半个世纪以前,大多数人对宇宙学还是抱有怀疑态度的。这半个世纪,宇宙学的发展,经历了彷徨、徘徊,经历了数据积累,经历了异军突起,经历了长足进步。时至今日,宇宙学已经成为了一门精确科学,它差不多达到了半个世纪之前粒子物理在人们心目中的地位。正是半个世纪以前,粒子物理领域新现象不断出现、新粒子不断被发现。新的发现触动了物理学的基本问题,就使物理学来了一个重大的飞跃。特别是吴健雄首次实验证明了李政道、杨振宁的理论,推翻了弱作用中的宇称守恒定律,使弱作用的正确机制很快确立。粒子物理成为了当时最前沿、也最活跃的学科。现在的宇宙学已经与半个世纪以前大不一样,它已经被普遍接受,成为了当今最前沿,最活跃的学科之一。 人生活在地球上。在地球之外,首先看到的当推太阳,其次是月亮,此外就是众多的星星了。起初,人们弄不清楚太阳、月

1第3讲 微粒之间的相互作用

第3讲微粒之间的相互作用 一、化学键 1.概念:通常把物质中直接相邻的原子或离子之间的强烈的相互作用叫做化学键。2.分类:常见的化学键有离子键、共价键、金属键。 3.从化学键变化的角度认识,化学反应的实质就是旧化学键的断裂和新化学键的形成。 二、化学键的形成 离子键共价键金属键成键粒子阴、阳离子未达稳定结构的原子金属阳离子、自由电子成键性质静电作用共用电子对作用静电作用 形成过程得失电子形成共用电子对金属原子失去电子 形成条件既有要得电子的原子, 又有要失电子的原子 均是未达稳定结构, 需要得电子的原子 只有要失去电子的原 子 实例NH4Cl、NaCl H2、HCl 金属单质和合金三、离子化合物和共价化合物 离子化合物:含有离子键的化合物,判断方法为寻找活泼金属和NH4+。 共价化合物:只含有共价键的化合物,判断方法为判断其不是离子化合物。 四、电子式 1.概念:用元素符号表示元素及其内层电子; 在元素符号周围用“·”或“×”表示最外层电子。 2.原子的电子式:例,;练: 3.离子的电子式:例,; 练:分别写出K+、Ca2+、O2-、F-的电子式: 4.离子化合物的电子式: 例, 练:分别写出KF、CaS、K2O、CaF2的电子式: 5.用电子式表示物质的形成过程: NaCl的形成过程:例, 练:用电子式表示MgBr2的形成过程: K2S的形成过程: 6.单质及共价化合物的电子式:(熟练记住,默写)

7.几个重要物质的电子式 NaOH:HClO: NH4Cl:NH5: Na2O2:H2O2: 五、分子间作用力和氢键 1.分子间作用力 (1)定义:把分子聚集在一起的作用力,又称范德华力。 (2)特点 ①分子间作用力比化学键弱得多; ②分子间作用力影响物质的物理性质,如物质的熔沸点和溶解性,而化学键影响物质的化学性质和物理性质。 ③只存在于由共价键形成的多数共价化合物和绝大多数气态非金属单质及稀有气体之间,如CH4、O2、Ne等。 (3)规律 一般来说,对于组成和结构相似的物质,相对分子质量越大,分子间作用力越强,物质的熔、沸点越高,例如:熔、沸点:HCl氢键>分子间作用力 ②影响物质的物理性质,使物质的熔、沸点升高等。 (3)形成条件:分子中含有得电子能力较强的元素,如N、O、F

浅谈速度隐身

浅谈速度隐身 根据爱因斯坦相对论宇宙运动速度极限为光速,那宇宙力场微粒有没有可能超越光速运动呢?在超大质量中子星碰撞挤压喷射出力场微粒、黑洞内部加速挤压抛射力场微粒,当挤压力大于极限速度时空间阻力时这些力场微粒都有可能超过光速运动形成速度时间进而构成新时空。运动极限速度光速形成宇宙光速时空即基本时空,力场微粒被加速到超过光速度时间时就与光速时间不相同,由此进入高级别时空,这些超光速力场微粒已经不在光速时空中运行而突然消失。 若超光速运动力场微粒没达到接近高级别时空速度上限,会在高级时空受到空间阻力使速度逐渐回落,回到宇宙光速基本时空即又回到光速以下,这些力场微粒又突然出现在我们感知时空中。力场微粒进入高级别时空阶段成为隐身运动,回到基本时空我们可能看到宇宙空间再次出现这些力场微粒。被加速力场微粒速度若接近高级时空极限速度,所受到空间阻力也几乎为零于是保持这一速度在高级别空间继续运动,不再回到宇宙基本光速时空了。 高速运动力场微粒在相互吸力下形成运动线体,线体弯曲成各种形状成原子的基本粒子,再由基本粒子组成原子分子最终成为宏观物质,构成宏观物体力场微粒运动与宏观物体运动存在本质区别。宏观物体实质是力场微粒规则的空间运动团,宏观物体运动实质是整体力场微粒团向某个方向移动。光速时空中宏观物体移动速度小于力场微粒绝对速度,宏观移动只是力场微粒产生在移动方向上的分速度同时减小其方向分速度实现的分速度调整,总绝对速度不变。 宏观移动速度增加或减少并不代表力场微粒绝对速度增加或减少,只是在绝对速度不变情况的分速度调整,宏观移动只改变力场微粒移动方向分速度与其他分速度大小转变。移动速度越大力场微粒在移动方向分速度增加越多其他方向分速度减少越多,移动减速越小其他方向分速度增大。当移动速度接近力场微粒绝对速度即光速时,移动速度与绝对速度接近于相等,则其他方向分速度均降到几乎为零,移动速度的增加实质是力场微粒分速度集中在移动方向而已。 当移动速度超过力场微粒绝对速度即超光速时,实质是力场微粒绝对速度增加,这种情况是不可能发生的,就连接近光也不会发生。因为原子基本粒子即线体必须保持空间运动形式,才具有基本粒子构成原子的基础才能形成宏观物体,若移动速度接近绝对速度其他速度分量几乎为零,所有力场微粒就变成定向流体态状,线体崩溃基本粒子更不复存在、原子分子及宏观物体也不复存在。物体需要构成原子力场微粒团在相互强径引力与高速度扩张力平衡下处于平衡状态。 若宏观物体移动下力场微粒团在移动方向以外分速度减小到几乎为零将影响到原子结构,必需要保持基本粒子的空间运动形态。若再度增加移动速度就必须提高绝对速度给予满足其他分速度,以满足空间运动所需的各方向分速度,这时力场微粒会受到空间运动阻力作用,力场微粒速度提升力越大受到空间阻力也越大。因为原子基本粒子力场微粒各方向分速度在绝对速度中的占较大,在绝对速度不变情况下要使分速度保持不变、保持基本粒子空间运动状态,就必须降低移动速度。 若原子基本粒子增加移动速度会导致力场微粒绝对速度增加,会受到来自空间的巨大阻力,于是移动速度还远不及光速时力场微粒绝对速就已经超越光速了,就已经进入高级别时空运动,处在

微粒之间的相互作用练习

微粒之间的相互作用练习 一、选择题 1.下列物质中属于共价化合物的是() A.Na2O2 B.NaHSO4 C. HNO3 D.I2 2.下列物质中属于离子化合物的是() A.Na2O B.HNO3 C.HCl D.NH3 3.下列化合物中所有化学键都是共价键的是() A.NH4Cl B.NaOH C.CaF2 D.CH4 4.与Ne的核外电子排布相同的阴离子跟与Ar的核外电子排布相同的阳离子所形成的化合物是 () A.MgBr2 B.Na2S C.CaF2 D.KCl 5.下列物质中,既有离子键,又有共价键的是()A.H2O B.CaCl2 C.KOH D.Cl2 6.下列过程中要破坏离子键的是() A.氯化钠固体溶于水 B.氯气溶于水 C.碘晶体升华 D.钠与氯反应 7.下列说法正确的是()A.离子化合物中,一个阴离子可同时与多个阳离子间有静电作用 B.离子化合物中的阳离子,只能是金属离子 C.凡金属跟非金属元素化合时都形成离子键 D.溶于水可以导电的化合物一定是离子化合物 8.下列各数值表示有关元素的原子序数,各组中能以离子键相互结合成稳定化合物的是() A.10与19 B.6与16 C.11与17 D.14与8 9.下列关于离子键的描述中正确的是()A.离子键是由阴阳离子通过静电吸引形成的 B.离子化合物中可能含有共价键 C.非金属元素之间构成的化合物都不是离子化合物 D.共价化合物中可能有离子键 10.下列电子式中,正确的是() A . B.N…N … C . D. 11.下列变化中,不需破坏化学键的是()A.加热氯化铵 B.干冰气化 C.食盐熔化 D.氯化氢溶于水 12.下列能说明氯化氢是共价化合物事实的是()A.氯化氢不易分解 B.液态氯化氢不导电 C.氯化氢溶于水发生电离 D.氯化氢水溶液显酸性 13.下列物质中存在分子间作用力的是()A.食盐 B.金刚石 C.NaF D.干冰 14.下列各组物质中,化学键类型相同的是() A、Cl2 HCl B、F2 NaBr C、HI NaI D、H2SO4 NaCl 15.下列物质中不含离子键的是 ( ) (a)NH4HCO3 (b)NH3 (c)BaSO4 (d)KAl(SO4)2·12H2O (e)Ba(OH)2 (f)H2SO4 A.、(a)、(d)和(f) B、 (b)、(c)和(e) C、 (d)和(e) D、 (b)和(f) 16.下列化学式中,能真实表示物质的分子组成的是 ( ) A、CuSO4 B、CS2 C、Na2O D、CsOH

相关文档
最新文档