人工蜘蛛丝的合成

人工蜘蛛丝的合成
人工蜘蛛丝的合成

人工蜘蛛丝的合成

摘要:蜘蛛丝具有非常优异的性能特征,如其具有综合的钢性、强度和弹性及生物可降解性等,这些特点使得蜘蛛丝在许多领域具有广阔的应用前景。本文主要分析了蜘蛛丝的结构和组成,重点介绍了蜘蛛丝的人工合成并举了国内外成功的例子,同时对人造蜘蛛丝的应用和发展前景做了说明。

关键词:蜘蛛丝人工合成工艺应用

The synthesis of artificial spider silk

Abstract:the spider silk has very excellent performance characteristics, if has the comprehensive rigidity, strength and elasticity and biodegradable property, etc., these characteristics make spider silk in many fields has a broad application prospect. This paper mainly analyzes the structure and composition of spider silk, introduced the synthetic spider silk, citing examples of success at home and abroad, and at the same time to man-made spider silk application and development prospect are explained.

Keywords: spider silk synthetic technology application

蜘蛛丝是一种高分子蛋白纤维,具有其他纤维不可比拟的强度大、弹性好、柔软、质轻、抗断裂、耐紫外线等优点,并且可生物降解和回收,不会对环境造成污染,是生产绿色织物优异的纺织材料。蜘蛛丝优异的机械性能和特殊的理化性质已引起世界各国研究人员的关注。随着生物技术的发展,蜘蛛丝的开发生产取得了突破,使其在纺织、军事、航天航空、组织工程等领域有着广阔的应用前景。

1蜘蛛丝的结构和组成

1.1 蜘蛛丝纤维的组成

蜘蛛丝的主要成份是蛋白质,基本组成单元为氨基酸。蜘蛛丝含l7种左右氨基酸,各种氨基酸的含量因蜘蛛的种类不同而存有一定的差异。蜘蛛丝中较大的7种氨基酸含量占其总量的90%,它们分别为甘氨酸、丙氨酸、谷氨酸、脯氨酸、丝氨酸、亮氨酸和精氨酸。

表1 不同种类蜘蛛丝的主要氨基酸组成

氨基酸(主壶腹腺)十字圆蛛大腹圆蛛络新妇蛛

甘氨酸 42.30 35.30 48.69

丙氨酸 18.30 17.88 24.85

谷氨酸 11.86 12.73 10.49

脯氨酸 9.55 12.68 2.15

丝氨酸 4.74 4.90 2.11

亮氨酸 1.76 1.35 2.63

精氨酸 0.49 1.55 1.94

,)微

1.2 蜘蛛丝纤维的微观结构

蜘蛛丝由前纺器纺区、中纺器纺区、后纺器纺区三组喷嘴喷射形成,分子结构是由原纤丝组成,而原纤丝又由120nm微原纤组成,微原纤是由蜘蛛丝蛋白构成的高分子化合物。蜘蛛丝横截面接近圆形,直径为6.9μm,是单丝,由两组丝腺组成,中间没有丝胶,没有覆盖于表面的水溶性物质。蜘蛛丝的纵向形态是丝中央有一道凹缝痕迹,在水中有大的溶胀性,截面会发生膨胀,径向则会发生明显的收缩。

1.3 蜘蛛丝纤维的空间结构

蜘蛛丝蛋白主要由非结晶状态部分和结晶状态部分构成;结晶状态部分主要由丙氨酸残基序列组成,并形成反向平行的β—折叠片层,多个β—折叠片层的部分而成为结晶状态;非结晶状态的部分由富含甘氨酸的单链多肽构成,形成α—螺旋起连接晶体部分的作用。β—片层之间以β—转角相连,而α—螺旋所构成的非结晶状态的部分将各β—片层连成一个线状整体。

1.4 蜘蛛丝纤维的分子构象

蜘蛛丝的分子构象为β—折叠链,分子链沿着纤维轴线的方向呈反平行排列,相互间以氢键结合,形成折曲的栅片,其多肽链排列整齐、密集形成结晶区,栅片间为非结晶区。

2蜘蛛丝的人工合成

蜘蛛的产丝量小,提取工艺复杂,且同类相食,无法高密度养殖以获取蜘蛛

丝。随着科学技术的发展,开发生产蜘蛛丝已成为可能。人们在获取蜘蛛丝蛋白基因后,利用已清楚的氨基酸重复序列信息,人工合成其类似12+ 片段,通过

微生物、动物、植物等途径表达蜘蛛丝蛋白后进行溶液纺丝,以获取蜘蛛丝纤维。

2.1微生物途径

将蜘蛛基因转入微生物中,通过微生物的分裂繁殖来达到生产具有蜘蛛丝特性的纤维,该方法成本低,生产效率高。如将产丝的蜘蛛基因植入细菌中,产丝基因演变成独立的细菌,进行几百万次繁殖生产出丝。这种细菌的出现,不但降低了产丝的成本,而且还会提高丝的质量。

2.2动物途径

在某些哺乳动物如山羊、奶牛等动物体内注入蜘蛛基因之后,从所产的乳液中可提取一种特殊的蛋白质,这种含有蜘蛛丝基因的蛋白质可用来生产蜘蛛丝纤维。加拿大研究人员发现山羊乳液中所含的奶蛋白同蜘蛛的丝蛋白生成模式是一样的,利用转基因技术,把蜘蛛丝牵引丝基因转移到山羊乳腺细胞中,从山羊的乳液提取出类似蜘蛛丝的可溶性蛋白,生产高性能蛋白纤维,开发出新一代动物纤维材料,实验证明这种新的轻型纤维材料强度比钢材更高,而弹性十分好。美国科学家利用转基因法,将一种称为“黑寡妇”蜘蛛的蛋白质注入奶牛的胎盘内进行特殊培育,这些奶牛所产的牛奶中就含有蜘蛛丝基因。

加拿大魁北克的蒙特利尔Nexia 技术研究组,采用转基因技术,成功地将蜘蛛

牵引丝基因转入到山羊的乳腺细胞中,由此生产含有蜘蛛丝蛋白的羊奶,再从羊

奶中提取蜘蛛丝蛋白。2000 年1 月两只公山羊被成功接入了蜘蛛牵引丝基因,

在每只山羊70 000 个基因中接上一个蜘蛛丝基因,随后在极安全的环境中让两

只公山羊同50 只强壮的母山羊交配、生仔,在其后代长大后就能规模化生产含大量蜘蛛丝蛋白的乳液,再把这种丝蛋白纺制成丝。研究人员已将分子量为60 kd 的人工合成蜘蛛丝蛋白ADF - 3 纺成纤维,这种被命名为“Biosteel”的蛋白质纤维,具有与天然十字圆蛛牵引丝相似的断裂比功,但断裂强度较小,断裂伸长大。这是目前为止最成功的利用基因技术得到的人造蜘蛛丝。

2.3植物途径

将蜘蛛丝基因移植入植物,培育出能够产生丝蛋白的转基因植物。该方法是将蜘蛛体内丝蛋白基因注入土豆和烟草等植物中,以使这些植物在它们的组织中制

造大量的丝蛋白,通过植物大面积的种植,获取丝蛋白。提取这类植物中的类似于蜘蛛丝蛋白的蛋白质,用作纺纱的原料。用所得到的植物蛋白质进行纺丝,这种丝可制织具有超强韧性的工程材料及能自行分解的化学织物,减少了对环境的污染,成本可能还要低廉。因此成功地培育出能够生产丝蛋白的转基因植物,将大量制取丝蛋白开辟新途径。

德国Gatersleben 研究所的Udo Conrad 制成了Nephila clavipe 丝蛋白基因的人造变体并把它们拼接入几种植物的基因组,他们发现,有些植物的蛋白质总量中有2 %以上由蜘蛛丝蛋白构成,研究人员估计,在转基因植物中制造蜘蛛丝的成本仅及细菌遗传工程的十分之一到二分之一,与细菌不同,植物能从初始原材料制造自身氨基酸,而且转入植物中的蜘蛛丝蛋白基因不易发生重组丢失。但是目前用从这种植物中提取的蜘蛛丝蛋白纺丝并不成功。

2.4“蚕吐丝”途径

利用转基因技术,将蜘蛛“牵引丝”部分的基因通过“电穿孔”的方法注入蚕卵中,在家蚕的基因重链中就产生部分蜘蛛牵引丝的基因。从而使蚕丝的易折皱变形、弹性小等性能得到改进。中科院上海生命科学研究院[6]用转基因方法,在国际上首次实现了绿色荧光蛋白与蜘蛛丝融合基因在家蚕丝基因中的插入,并获得了荧光茧———一种高级的绿色环保材料。

3 蜘蛛丝的应用

3.1 用于纺织制衣

蜘蛛丝弹性好、柔软,穿着舒适,是很好的纺织纤维。蜘蛛丝制成的织物会成为新一代的时尚面料,可制成服装、围巾、帽子等。人们已经相当成功地利用蜘蛛丝进行纺丝加工和织造加工。

3.2 高强度材料

蜘蛛丝的强度高,韧性大和一定的热稳定性,在极高温度下才会分解,因此蜘蛛丝可用于结构材料、复合材料和宇航原装等高强度材料。对蜘蛛丝进行进一步加工,可用于织造车轮外胎、高强度的鱼网等.在建筑方面,蜘蛛丝可用做结构材料和复合材料,代替混凝土中的钢筋,应用于桥梁、高层建筑和民用建筑等,可大大减轻建筑物自身的重量。

3.3 用于医疗

蜘蛛丝的优越性还在于它是蛋白质纤维,与人体具有“兼容性”。通过转基因技术得到具有蜘蛛丝特点的“生物钢”制成人工关节、韧带、人类使用的假肢、人造肌腱等产品,具有韧性好、可降解等特性。蜘蛛丝在医学和医疗方面有广泛用途。

3.4 电子领域

其半晶体结构可以发展生物半导体技术,其稳定的室间构象和在一定条件下可逆的自装配行为可作为生物计算机的优良材料。

4 总结

蜘蛛丝具有优异的力学性能,可用于制造防弹头盔、防弹服等,同时研究还表明蜘蛛丝和生物体之间具有良好的相容性,蜘蛛牵引丝还具有促进伤口痊愈和凝血的功能。将牵引丝植入老鼠体内,丝纤维对老鼠的纤维状巨细胞无毒性反应。牵引丝植入猪的皮下后的研究也表明,在植入区周围没有异样的反应。因此,蜘蛛丝在军事、生物医学领域具有广泛的用途。如果将其他材料与蜘蛛丝纤维复合可以制成功能性复合材料,进一步扩大其用途。如将各种纳米级微粒加入聚合物溶液中,可以制得各种具有不同功能的人造蜘蛛丝纤维。虽然目前人造蜘蛛丝的纺丝方法还在实验阶段,纺出的丝纤维性能和天然蜘蛛丝相比还有很大差距,但由于这种人造纤维制备过程的可控制性,相信可以通过对纺丝方法和纺丝工艺参数的研究,生产出具有优异性能的仿真及超真蜘蛛丝纤维,实现蜘蛛丝的工业化生产。

5 参考文献

[1]Prince J T ,et al . Construction ,cloning and expression of synthetic genes encoding spider dragline silk [J ] .Biochemistry ,1995 , (34) :10879 - 10884.

[2] Lewis RV ,et al . Expression and purification of a spider silk protein : a new strategy for producing repetitive proteins [J ] . Protein Exp Purif ,1996 , (7) :400- 406.

[3]Fukushima ,et al . Genetically engineered syntheses of tandem repetitive polypeptides consisting of glycine - rich sequence of spider dragline silk[J ] .Biopolymers ,1998 ,45(4) :269 - 279.

[4] Fahnestock S R ,et al . Production of synthetic spider dragline silk

protein in pichia pastoris[J ] . Appl microbiol Biotechnol ,1997 , (47) :33 - 39.

[5]王晓玉,等. 生物钢性及弹性蛋白———蜘蛛丝研究进展[J ] . 第四军医大学学报, 2002 , (23) .

[6] Anthoula Lazaris. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells[J ] . Science ,2002 , (295) :472 - 476.

[7] 黄君霆. 人工丝蛋白的研究[J ] . 蚕桑通报,2001 ,32(3) :1 - 6.

[8]李敏,等. 蜘蛛基因组DNA Cos mid 文库构建和拖丝蛋白基因的克隆[J ] . 动物学报,2001 ,47(6) :713 - 717.

[9]ML Ryder.蜘蛛丝在纺织品中的应用探讨[J]. 朱红译. 国外纺织技术,2000(12):33-35

[10]潘志娟.蜘蛛丝优异力学性能的结构机理及其模化[D].苏州大学,2O02.

[11]黄君霆.蜘蛛丝研究的动向[J].丝绸,1999(9):47~49.

[12]盛家镛,潘志娟,陈宇岳.蜘蛛丝的化学组成与结构初探[J].丝绸,2OO0(4):8~10.

路缘石施工方案

路缘石施工方案 一、分项工程概况: 1、本分项工程主要是机动车道外侧的10*20*的混凝土平缘石。 2、工程数量:本项工程3144米。 3、工程特点:路缘石施工要在石灰粉煤灰稳定碎石基层施工完毕 后进行。工期紧,任务重,外观质量要求较高。 二、施工方案: 施工前业主已经对路缘石供应厂家进行了考察,对厂家资质、准入情况、路缘石质量情况等进行全面考察,确定合格后开始进货。路缘石为业主指定厂家供货。运输时注意成品的保护,装车及卸车时要轻拿轻放,码放整齐,避免缺棱断角,如果发现缺棱断角的要挑选出来,不能使用。路缘石进场后,由质控员对其外观、尺寸、色泽等方面进行全面的检查,确认合格后方可使用。 路缘石的基础是与路面基层同时填挖和碾压的,然后按测量员给定的平面位置与高程位置刨槽、找平、夯实后再安砌立道牙。安砌时依据其顶面线设计标高,直线段每10—15m设1控制点、曲线段每5—10m设1控制点、路口每1—5m设1控制点并挂线安砌。安砌时施工人员要随时用水准尺校核相邻两块高差,不合格的随时调整。 安装立缘石时,先将卧底砂浆铺好,抹平,再由两名工人抬着将路缘石就位,仔细对正,整平,并注意竖直度。 路缘石卧底及勾缝的砂浆要严格按照图纸给定的配合比投料、拌匀。砂浆要随用随拌,已凝结的砂浆不得使用。卧底砂浆为水泥:砂子=1:3(此比例为体积比),厚度为2cm。现场拌制时在二灰基层上铺一块薄铁板,先放三份砂子,再放一份水泥,然后干拌使砂子、水泥混合均匀,最后放入适量的水拌和,稠度以能够捏成团不散为宜。卧底砂浆要保证厚度足够并充满整个路缘石底面。路缘石安装接缝为1cm,用1:3水泥砂浆勾满、勾实接缝。勾缝时要注意保护路缘石不受砂浆污染,即先用塑料胶条将路缘石接缝两侧粘好再开始沟缝。路缘石做到安砌稳固,顶面平整,缝宽均匀,勾缝密实,线条直顺、曲线圆滑美观。缘石标高要严格控制,保证外露高度为15cm。 路缘石施工时先做100米的试验段,试验段做好后由质控员对其外观、直顺度、线形、位置、标高等各项指标进行自检,自检合格后请监理验收。监理验收合格后开始进行全面安砌,质控员随时对安砌质量进行检查,不合格的及时返工,发现不符合设计配合比的砂浆和已经凝结的砂浆要坚决清理出施工现场。

新型纤维材料---蜘蛛丝

新型纤维材料——蜘蛛丝 蜘蛛是地球上最古老的物种之一,是自然界的神奇动物,经历了几百万年漫长的进化,蜘蛛已能够适应地球上几乎所有环境而生存下来,其最大的臂助正是本身独特的纺丝能力和令人惊讶的蛛丝性能。蜘蛛是自然界产丝和用丝的“专家”,它们一生都离不开丝。蜘蛛生产性能最优异的丝线,并用这种丝线织成蛛丝网,用以捕获猎物,赖以生存,繁衍后代。蜘蛛,属节肢动物门蛛形纲蛛形目,种类繁多,会吐丝结网的大约有2万多种,按吐出丝种类的多少分为古蛛亚目、原蛛亚目和新蛛亚目。 科学家们早就注意到蜘蛛丝非同一般的性能并将它利用了起来。早在1709年就出现了人类利用蜘蛛丝的记载,而且在第二次世界大战时,蜘蛛丝曾被广泛用作显微镜、望远镜、枪炮的瞄准系统等光学装置的十字准线。进入20世纪80年代,蜘蛛丝,尤其是牵引丝,以高强度、高弹性、高断裂功、低密度、良好的耐温及耐紫外线性能、良好的生物相容性等优异性能引起了各国材料、生物和化学等众多领域研究人员的极大兴趣。科技的进步,亦使得破解蜘蛛丝的生物奥秘成为了可能。1996年,美国Science杂志连载3篇文章,揭示了蜘蛛丝性质与结构的关系以及蜘蛛丝的奥秘,近几年,又连续发表了10多篇关于蜘蛛丝研究的文章。美国、瑞士、加拿大、日本、德国、丹麦等国的一些实验室先后对蜘蛛丝做了深入的研究,在利用基因和蛋白质测定技术解开蜘蛛丝奥妙的同时,在蜘蛛丝人工生产方面也取得了突破性进展。 蜘蛛丝的结构性能与用途 蜘蛛丝能大量吸收动能,同时具有高弹性形变,究其原因,在于其奇妙的分子结构。蜘蛛丝的化学本质为蛋白质,蛛丝蛋白的复杂氨基酸序列和空间结构赋予了外显的性能。蜘蛛丝中分子排列是一种介于晶区与非晶区的中间相的存在。结晶区主要为聚丙氨酸链段,构象为β- 折叠链,分子链或链段沿着纤维轴线的方向呈反平行排列,相互间以氢键结合,形成折曲的栅片,栅片间距离是变化的,在0.93~1.57nm之间。非结晶区由甘氨酸、丙氨酸以外的大侧基氨基酸组成,分子多呈α- 螺旋状结构。由丙氨酸组成的β-折叠(硬段)和富含脯氨酸的α-螺旋(软段),及其紧密堆砌的二级结构使之成为一种半结晶状态的分子弹簧结构,从而赋予蛛丝很好的抗张强度和韧性。蜘蛛拖丝抗拉力5×109Pa,断裂伸长率35%~50%,能大量吸收物体的高动能,其优越性能是包括蚕丝在内的天然纤维和合成纤维不能比拟的。 蜘蛛丝有良好的耐高温、低温性能。据报导,蜘蛛丝在300℃以上才变黄,开始分解;在零下40 ℃时仍有弹性,只有在更低的温度下才变硬。在需要高温、低温使用的场合下蛛丝纤维的优点特别显著。 蜘蛛丝的主要成分是蛋白质,目前尚未发现人体对蜘蛛丝所含的蛋白质有任何排异反应,另外蛛丝蛋白具有自装配行为,在器官移植和组织修复时可用来介导细胞和组织,或者它们相互之间的连接,以促进器官组织的复原。 由于蜘蛛丝本身的特性,决定了在纺织、医疗、军事等领域有着广泛的应用。 医疗卫生 蜘蛛丝主要成分是蛋白质,人们目前尚未发现人体对蜘蛛丝所含的蛋白质有任何排异反应,这正是蜘蛛丝应用在医学上最大的优点。又鉴于蜘蛛丝极轻、韧性好、强度大等现有材料不可比拟的优点,科学家认为用它可以生产人工关节韧带、人工肌腱、人造血管等组织,同时还可以做组织修复、用于眼外科和神经外科手术等特细和超特细生物可降解的外科手术缝合线及生物大分子的固定材料。 蜘蛛丝膜具有很好的透明性、生物可降解性和水-空气界面的通透性。与胶原蛋白和弹性蛋白相似,丝蛋白具有自装配性质,通过二级结构调节以提供机械支撑;与聚酯比较,丝的柔韧性和弹性使其经的起重压和疲劳。丝蛋白生物相容性好,与胶原起同样的细胞黏附、

导电高分子

1. 概述 1.1 导电高分子的基本概念 物质按电学性能分类可分为绝缘体、半导体、导体和超导体四类。高分子材料通常属于绝缘体的范畴。但1977年美国科学家黑格(A.J.Heeger)、麦克迪尔米德和日本科学家 白川英树(H.Shirakawa)发现掺杂聚乙炔具有金属导电特性以来,有机高分子不能作为导电材料的概念被彻底改变。 导电性聚乙炔的出现不仅打破了高分子仅为绝缘体的传统观念,而且为低维固体电子学和分子电子学的建立打下基础,而具有重要的科学意义。上述三位科学家因此分享2000年诺贝尔化学奖。所谓导电高分子是由具有共轭π键的高分子经化学或电化学“掺杂”使其由绝缘体转变为导体的一类高分子材料。它完全不同于由金属或碳粉末与高分子共混而制成的导电塑料。 通常导电高分子的结构特征是由有高分子链结构和与链非键合的一价阴离子或阳离子共同组成。即在导电高分子结构中,除了具有高分子链外,还含有由“掺杂”而引入的一价对阴离子(p型掺杂)或对阳离子(n型掺杂)。导电高分子不仅具有由于掺杂而带来的金属特性(高电导率)和半导体(p和n型)特性之外,还具有高分子结构的可分子设计性,可加工性和密度小等特点。为此,从广义的角度来看,导电高分子可归为功能高分子的范畴。 导电高分子具有特殊的结构和优异的物理化学性能使它在能源、光电子器件、信息、传感器、分子导线和分子器件、电磁屏蔽、金属防腐和隐身技术方面有着广泛、诱人的应用前景。导电高分子自发现之日起就成为材料科学的研究热点。经过近三十年的研究,导电高分子无论在分子设计和材料合成、掺杂方法和掺杂机理、导电机理、加工性能、物理性能以及应用技术探索都已取得重要的研究进展,并且正在向实用化的方向迈进。本章主要介绍导电高分子的结构特征和基本的物理、化学特性,并评述导电高分子的重要的研究进展。 迄今为止,国内外对结构型导电高分子研究得较为深入的品种有聚乙炔、聚对苯硫醚、聚苯胺、聚吡咯、聚噻吩以及TCNQ传荷络合聚合物等。其中以掺杂型聚乙炔具有最高的导电性,其电导率可达5×103~104Ω-1·cm-1(金属铜的电导率为105Ω-1·cm-1) 目前,对结构型导电高分子的导电机理、聚合物结构与导电性关系的理论研究十分活跃。应用性研究也取得很大进展,如用导电高分子制作的大功率聚合物蓄电池、高能量密度电容器、微波吸收材料、电致变色材料,都已获得成功。 但总的来说,结构型导电高分子的实际应用尚不普遍,关键的技术问题在于大多数结构型导电高分子在空气中不稳定,导电性随时间明显衰减。此外,导电高分子的加工性往往不

导电高分子材料

导电高分子材料 高分子材料自问世至今,已经有一百多年的历史。1856年硝化纤维作为第一个塑料专利问世,20世纪60年代;许多性能优良的工程塑料相继投入工业化生产;20世纪80年代,材料科学已渗透各个领域,可以说已经进入高分子时代。 大多数高分子材料都是不导电的,因而高分子材料被广泛地作为绝缘材料使用。1862年,英国Letheby在硫酸中电解苯胺而得到少量导电性物质;1954年,米兰工学院G.Natta用 Et3Al-Ti(OBu)4为催化剂制得聚乙炔;1970年,科学家发现类金属的无机聚合物聚硫氰(SN)x具有超导性,有机高分子与无机高分子导电聚合物的开发研究合在一起开始了探寻之旅。1974年日本筑波大学H.Shirakawa在合成聚乙炔的实验中,偶然地投入过量1000倍的催化剂,合成出令人兴奋的有铜色的顺式聚乙炔薄膜与银白色光泽的反式聚乙炔。1980年,英国Durham大学的W.Feast得到更大密度的聚乙炔。1983年,加州理工学院的H.Grubbs以烷基钛配合物为催化剂将环辛四烯转换了聚乙炔,其导电率达到35000S/m,但是难以加工且不稳定。1987年,德国康采思巴斯夫公司BASF科学家N.Theophiou对聚乙炔合成方法进行了改良,得到的聚乙炔电导率与铜在同一数量级,达到107S/m。导电高分子材料的研究和发展开始逐渐走向成熟,并且亟待着可以走向应用领域,导电高分子材料已经在功能高分子材料及导电体中占有重要的地位。 一.导电高分子的定义与导电机理 导电高分子又称为导电聚合物,是由具有共轭π键的高分子经化学或电化学“掺杂”使其由绝缘体转变为导体的一类高分子材料。导电高分子材料是一类兼具高分子特性及导电体特征的高分子材料。按结构和制备方法不同,可将导电高分子材料(CPs)分为复合型与本征(结构)型两大类。结构性导电高分子本身具有“固有”的导电性,由聚合物结构提供导电载流子(包括电子、离子或空穴)。这类聚合物经掺杂后,电导率可大幅度提高,其中有些甚至可达到金属的导电水平。复合型导电高分子是在本身不具备导电性的高分子材料中掺混入大量导电物质,如炭黑、金属粉、箔等,通过分散复合、层积复合、表面复合等方法构成的复合材料。 根据电荷载流子的种类,导电聚合物被分为电子导电聚合物和离子导电聚合物:以自由电子或空穴为载流子的导电聚合物称为电子导电聚合物,电子导电型聚合物的共同特征是分子内含有大的线性共轭π电子体系。以正、负离子为载流子的导电聚合物被称为离子导电聚合物。离子导电聚合物的分子具有亲水性、柔性好,允许体积较大的正、负离子在电场作用下在聚合物中迁移的特性。

砼路缘石施工

(六)砼路缘石施工 本工程路沿采用C20砼,工程量为2.82m3。 1、施工准备 (1)及时做好各种材料的检验,严格把好质量关。施工所使用的水泥材料进场前需分批验收,检查其质量证明书,并按照试验规程要求进行取样检验,确认合格后再进场使用,对碎石、中砂等材料首先取样检测,合格后再组织进场,严禁不合格材料进场,各种材料必须经监理工程师同意后再使用。 (2)人员配置:施工负责人一人,现场施工员∕试验员及测量员各一人,专业技术工人5人,辅助工人5人。 2、施工方法 在路缘石施工前,首先应进行施工放样,放出路缘石的平面位置,打出基线,路缘石外侧距中线1m,高度为36cm。 施工方法:施工放样---浇筑基座---浇筑路缘石---光面---养生。 (1)路缘石采用滑膜施工,根据监理工程师批复的C25砼配合比进行砼的拌和,拌和采用JS350搅拌机拌和。 (2)运输采用小型农用车,对车厢四周及底部采用钢板焊接成一个固定的料斗,有效的防止了运输过程中泥浆泄露污染路面。 (3)将拌好的混凝土运到施工现场,人工用铁锹站在车上向路缘机料仓里送料,同时启动路缘机,通过撞锺挤推混凝土使向前运行,每一次撞锺大约使路缘机向前移动65~70mm.并检查成型的路缘石是否塌陷,若塌陷则说明混凝土的水灰比过大,此时应减少拌和用水量,直至调到合适为止,以后水灰比以此为准。待路缘石成型6~8m后,便可用成型工具对路缘石进行光面。以消除机器留下的痕迹,达到光面的目的。 (4)为防止污染路面,路缘石基座施工前须在下基层上铺一层彩条布,彩条布长可根据路上施工情况定,宽度在3m以上。 (5)路缘石每隔4m设置一条横向断缝,在断缝靠中央分隔带一侧处灌注热沥青,以防泥水流进路面。 3、质量检验标准

《材料与社会》蜘蛛丝里有学问

4.5 蜘蛛丝里有学问 你听说过用一小束细丝就能把小型飞机吊起来的事吗?这种丝就是我们许多人都看见过的蜘蛛丝。 曾经有人做过试验,发现扯断蜘蛛丝所需的力,比扯断同样粗细的钢丝所需的力足足大上100倍。通过对蜘蛛丝研究,还发现蜘蛛丝在目前已知的所有的高强度纤维里,是最柔软的,重量也最轻。 蜘蛛丝是由蛋白质分子构成的,因此,它和人体有生物的亲和性,可被微生物所分解,也有一定的吸湿性能,用它做的防弹衣将是世界上最坚固而又最轻柔、最舒适的防弹衣了。 据英国《每日邮报》报道,坚韧如钢、交错如织的蛛网无疑是大自然的神奇造物,富有弹性的蛛网甚至能抵御飓风的侵袭。日前,美国的科学家们正试图揭示蛛网的奥秘,希望能将其用于未来的建筑设计或耐用材料的研发。 美国麻省理工学院的研究人员表示,蛛网的成功之处在于:即使有多根蛛丝断掉,蛛网也不会垮掉,甚至会变得更牢固。实验中,研究人员在蛛网各处去掉了总计10%的蛛丝,蛛网的韧性不单没因此而降低,却反而增强了10%。 研究人员发现,这种韧性不单是源自每根蛛丝在质地上的强度,也同时源自蛛丝的内部结构。蛛丝纤维能够根据所承受压力的不同而变化柔韧程度,这种特性是其他任何自然纤维或人造纤维所不具有的。科学家们已经证明,蛛丝的强度是等质量钢丝的5倍。实验表明,蛛网的韧性是其他网格的6倍有余。 工程师可以将蜘蛛丝的构造原理应用到其它方面。蜘蛛丝在受到破坏时只受很小的损坏、而不影响整个结构这一特性可以应用于设计虚拟网络,如互联网,在遭受攻击期间只有本地节点被破坏,而整个系统可继续运行。了解其微观的蛋白质结构和其宏观性质,可能有助于将碳纳米管串在一起,可能有一天会用于生产太空电梯。 蜘蛛丝具有广泛的用途:这是用蜘蛛丝做成小的提琴琴弦。 在医学领域,这种精细的蜘蛛丝是外科医生手术时是理想的缝合线,和医用尼龙线相比,这种蜘蛛丝既有尼龙线的灵活和结实,而且还有可以打结的优点。此外,它还可以用来制作人造肌腱或合成韧带。 由于蜘蛛丝的强度大,人们还可利用它制作降落伞绳,或航空母舰上帮助战斗机在甲板上降落的缆绳、高强度的轮胎帘子线和高强度渔网等。 既然蜘蛛丝有这么好的性能,有人会说我们也可以像养蚕宝宝那样来养殖蜘蛛,不就能得到好多蜘蛛丝了吗?事实上,这是不可能的,因为蜘蛛是一种同类相食的动物,如将众多的蜘蛛饲养在一个房舍里,它们会相互残杀吞噬。 能不通过蜘蛛来得到蜘蛛丝呢? 科学家们告诉我们,完全有这样的可能。 这有两个方面的工作,第一要得到蜘蛛丝的蛋白质,利用转基因技术,将蜘蛛的相关基因转移到细菌、植物体、哺乳动物的乳腺上皮或肾细胞中,进行表达,生成蜘蛛丝蛋白质,并进行提纯。 第二把这蛋白质纺成丝,这样就可得到人造蜘蛛丝了。

路缘石施工工艺标准及施工方案

路缘石施工工艺标准及 施工方案 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

马江至梧州公路 路 缘 石 施 工 技 术 方 案 编制:王有杰 审核:谢庆思 批准:杨其生 中冶交通马梧高速公路M1项目部

2008年12月13日 路缘石施工技术方案 1、施工范围及工程数量 马梧高速公路M1-3项目部施工桩号K272+405~K296+(包括梧州B连接线、梧州C连接支线以及梧州、平浪、苍梧三个互通式立交),共计 C15混凝土4576m3。 2、编制主要应用标准和规范 中华人民共和国建材行业标准《混凝土路缘石》(JC899-2002) 中华人民共和国行业标准《公路工程质量检验评定标准》(JTG F80/1-2004)。 3、施工准备 技术准备 3.1.1熟悉和掌握施工图设计文件资料及施工现场的情况,编制路缘石施工单项工程施工工艺,向现场施工技术人员、管理人员、施工人员进行书面的一级技术交底和安全交底。 3.1.2 工地试验室对拟使用的材料如水泥、碎石、黄沙等进行检测,同时根据设计标准进行配合比试验,配合比试验结果报监理工程师签字确认。 3.1.3正式施工前,应检验各种模具尺寸是否统一,现场试验与室内试验结果是否吻合,各种资源配置是否能保证大面积施工等,并编制作业指导书。 机具准备 3.2.1 搅拌设备:WL350型双卧轴强制搅拌机 3.2.2 路缘石成型模版根据马江至梧州高速公路设计图进行路缘石模板加工制作,使其符合图纸设计要求。 3.2.3 运输设备:手推车、运输车

3.2.4 检测及施工设备:经纬仪、水准仪、水平尺 材料准备 3.3.1 原材料:水泥、碎石(砾石)、黄沙等由持证的材料员及试验员按规定进行检验,确保其质量符合相应标准。 3.3.2 C15砼配合比设计及试验:按砼设计强度要求,由试验室做出试验室配合比,根据现场材料作出施工配合比,满足路缘石用砼的要求。 作业条件 3.4.1 预制场留有足够的空间,以保证预制施工中流水作业线的形成。场地采用低强度混凝土硬化,拌和和预制场地要进行特殊硬化处理,以满足预制施工的需要; 3.4.2 在料场备有足够的石料、黄沙和水泥等原材料时,才可以正常开始路缘石的预制施工,水泥等原材必须经试验室检验合格方可使用,各种材料要做好检验状态标识。 3.4.3 临时电力线路、通风、安全设施准备就绪。 3.4.4 预制现场使用的配合比要挂牌进行标示。 3.4.5 施工作业人员要求 3.4.5.1 施工负责人负责预制及安装的总体指挥,对工人进行培训、安全技术交底。制定安全紧急救援措施。 3.4.5.2 技术负责人负责预制及安装工艺控制及质量检测,协助施工负责人进行技术管理。 3.4.5.3 工人负责预制、运输及安装,操作工人要保持稳定。 4、施工操作工艺 施工工艺流程

土木工程-合成高分子材料

第7章合成高分子材料 本章学习指导 本章共2个知识点。本章的学习目标是: ⑴熟悉合成高分子材料的性能特点及主要的高分子材料品种; ⑵熟悉土木工程中合成高分子材料的主要制品及应用,包括塑料型材、管材及胶粘剂。 本章的难点是从合成高分子材料的组成来理解它的性能,正确地根据工程实际选用合适的合成高分子材料。建议在学习中通过对比来理解不同种类的高分子材料的性能及应用。 历史回顾 铝塑复合板 20世纪60年代,为满足对材料轻、薄、表面质量好,以及提高成型性能减少加工成本的要求,德国技术人员利用工字钢原理发明了铝塑复合板。铝塑复合板是以塑料为芯层,外贴铝板的三层复合板材,并在表面施加装饰材料或保护性涂层。铝塑复合板以质量轻、装饰性强、施工方便的特点,在国内外得到广泛应用。 基础知识 7.1 合成高分子材料的分子特征和性能特点 7.1.1 合成高分子材料的分子特征 7.1.2 合成高分子材料的性能特点 7.1.1 合成高分子材料的分子特征 高分子化合物按其链节在空间排列的几何形状,可分为线型聚合物和体型聚合物两类,其中线型聚合物包括线型和支链型,见下图。线型结构的合成树脂可反复加热软化,冷却硬化,故称为热塑性树脂。体型结构的合成树脂仅在第一次加热时软化,并且分子间产生化学交联而固化,以后再加热不会软化,故称为热固性树脂。聚合物的合成是将小的有机单体,通过聚合反应,连接成分子量很大的聚合物,按聚合反应方式的不同,分为加聚聚合与缩聚聚合。 聚合物分子形状示意图 7.1.2 合成高分子材料的性能特点 一般合成高分子材料有七方面的性能优点:优良的加工性能;质轻;导热系数小;化学稳定性较好;功能的可设计性强;出色的装饰性能;电绝缘性好。需说明的是,高分子材料经特殊工艺改性也可导电。 合成高分子材料有三方面的性能缺点:易老化。 可燃性。高分子材料一般属于可燃的材料,部分高分子材料燃烧时发烟,还会产生有毒气体。一般可通过改进配方制成自熄和难燃甚至不燃的产品,但其防火性仍比无机材料差。耐热性较差。使用温度偏高会促进其老化,甚至分解;有的塑料受热会发生变形,在使用中要注意其使用温度的限制。 观察与讨论 合成高分子材料的分子特征和性能特点 线槽为何不用橡胶 请观察橡胶与塑料的变形与温度的关系(下图),讨论线槽为何用塑料而不用橡胶。 线槽为何不用橡胶 从非晶态聚合物的变形与温度的关系图可见,聚合物在低于某一温度时,会变得象硬脆的玻璃,此时聚合物处于玻璃态,抗冲击性能很差,随着温度升高,聚合物的模量下降,弹性增加,聚合物由高弹态转变为玻璃态的温度称为玻璃化温度(Tg),当温度继续升高至某一数值时,聚合物的模量急剧下降,并产生塑性变形,此温度称为聚合物的粘流态温度(Tf),聚合物的加工成型就是在此温度下进行的。

导电性高分子诞生的故事

導電性高分子誕生的故事 取材自:江文彥教授(大同大學化學工程學系) [導電性高分子的出現與科學上的偶然] (科學發展:2002年11月,359期,68~71頁) 閱讀以下文章,並回答文末的問題…. 一種能導電的塑膠 塑膠基本上是聚合物,就好像珍珠項鍊一般具有長鏈而且以固定的單元不斷重複的結構,當它要變得能導電時就必須能模擬金屬的行為,亦即電子必須能不受原子的束縛而能自由移動,要達到此目的的第一個條件就是這個聚合物應該具有交錯的單鍵與雙鍵,亦稱為「共軛」的雙鍵,透過乙炔所聚合而得的聚乙炔(下圖)即具有這樣的結構。具有這樣構造的聚合物如何特別呢? 意外發現的聚乙炔皮膜 一切要從聚乙炔皮膜開始談起。這是一個偶然開展的故事…… 一九六六年,白川英樹還是池田研究室的助理,正研究乙炔生成聚乙炔的機制。一九六七年九月,一位已在池田研究室很久的韓籍研究生邊衡直,希望嘗試乙炔聚合的研究,白川英樹指導他以常用的配方,觸媒為三乙基鋁/四丁氧鈦。而四丁氧鈦濃度是每公升0.25毫莫耳,進行聚合。由於研究生已非新人,且這個聚合並不難,白川英樹也就沒有跟隨在旁,不久研究生邊衡直發現,乙炔壓力不下降,反應都不進行,好像失敗了。原來為了使單體乙炔能溶入溶液,都會施加攪拌,可是所得的聚乙炔卻不溶於溶劑,所以攪拌必然生成粉末。當白川英樹前往觀看實驗時,果然反應瓶中沒有粉末,攪拌器也呈停止狀態,但在溶液表面,似乎有一層銀色薄膜狀物,經分析的結果,確定就是聚乙炔。 十一月十六日,白川英樹想要再現聚乙炔皮膜的合成,經檢查上次實驗之配方,才發現觸媒濃度居然加的是每升0.25莫耳,這是正常配方濃度的一千倍。事後

推斷,可能是研究生將毫莫耳聽成莫耳之故吧。這一個偶然的錯誤,又加上攪拌器又湊巧停止,才使聚乙炔皮膜因觸媒濃度提高而生成,又因無攪拌而沒被攪成粉末。真是一個「無意的」、「偶然的」、「很幸運的」發現。 導電性高分子的誕生 麥克戴阿密德教授出生於紐西蘭,在紐西蘭大學、美國威斯康辛大學、及英國劍橋大學接受高等教育後,一九五五年起擔任美國賓州大學化學系教授。一九七三年開始研究無機硫氮高分子。一九七五年開始對有機導電性高分子發生興趣,就在該年前往日本訪問時,經介紹與已經製得皮膜狀聚乙炔,時任東京工業大學資源化學研究所助理的白川英樹博士見面,目賭如同鋁箔狀的聚乙炔皮膜後,乃邀請白川英樹前往賓州大學,並與在半導體與導電性高分子材料之基礎物性方面有相當成就的希格教授共同研究。 三人於一九七六年十一月廿三日發現聚乙炔膜可以用溴和碘加以化學摻雜改質,因摻雜1%的碘,使聚乙炔膜導電度,較之未摻雜改質的聚乙炔膜導電度提升十億倍。並在一九七六年,以〈有機導電性高分子的合成-含鹵素的聚乙炔衍生物〉為題,發表在英國化學會化學通訊(J. Chem. Soc., Chem. Commun., 578, 1977)。這個現象的發現,開啟了導電性高分子的時代,也使化學和物理學兩領域產生了重大的進展。因為這個發現二○○○年諾貝爾化學獎,由日本筑波大學物質工學系白川英樹(Hideki Shirakawa)名譽教授、美國賓州大學化學系麥克戴阿密德(Alan G. MacDiarmid)教授,和加州大學聖塔巴巴拉校區物理系及高分子暨有機固體學院希格(Alan J. Heeger)院長等三人共同獲得。獲獎的理由是「導電性高分子的發現與開發」。 二○○○年諾貝爾化學獎得主,白川英樹教授(Hideki Shirakawa,圖中)、麥克戴阿密德教授(Alan G. MacDiarmid,圖左)、希格院長(Alan J. Heeger,圖右)。

高中化学:合成高分子化合物的基本方法知识点

高中化学:合成高分子化合物的基本方法知识点 一、有机高分子化合物 1.概念:由许多小分子化合物通过共价键结合成的,相对分子质量很高(104~106)的一类化合物。 2.特点 (1)相对分子质量很大,由于高分子化合物都是混合物,其相对分子质量只是一个平均值。 (2)合成原料都是低分子化合物。 (3)每个高分子都是由若干个重复结构单元组成的。 3.与高分子化合物有关的概念 (1)单体:能够进行聚合反应形成高分子化合物的低分子化合物。 (2)链节:高分子化合物中化学组成相同、可重复的最小单位。 (3)聚合度:高分子链中含有链节的数目,通常用n表示。 (4)聚合物的平均相对分子质量=链节的相对质量×n。 有机高分子化合物低分子有机物相对分子质量高达10000以上1000以下相对分子质量的数值平均值明确数值分子的基本结构若干重复结构单元组成单一分子结构性质物理、化学性质有较大差别 1.概念:一定条件下,由含有不饱和键的化合物分子以加成反应形式结合成高分子化合物的反应,简称加聚反应。 2.常见的加聚反应 (1)丙烯酸加聚

(1)加聚反应的特点 ①单体必须是含有双键、三键等不饱和键的化合物。例如,烯、二烯、炔、醛等含不饱和键的有机物。 ②发生加聚反应的过程中没有副产物(小分子化合物)产生,只生成高聚物。 ③聚合物链节的化学组成跟单体的化学组成相同,聚合物的相对分子质量为单体相对分子质量的整数倍。 (2)加聚产物的书写 加聚反应本质上是加成反应,在书写加聚产物时要把原来不饱和碳上的原子或原子团看作支链,写在主链的垂直位置上。如: 方法点拨——加聚产物确定单体的方法 (1)凡链节的主链只有两个碳原子(无其他原子)的聚合物,其合成单体必为一种,将两个半键闭合即可。 (2)凡链节的主链有四个碳原子(无其他原子),且链节无双键的聚合物,其单体必为两种,在正中央划线断开,然后两个半键闭合即可。 (3)凡链节的主链中只有碳原子,并存在碳碳双键结构的聚合物,其规律是“有双键,四个碳;无双键,两个碳”,划线断开,然后将半键闭合即单双键互换。 三、缩合聚合反应 1.概念:一定条件下,具有两个或多个官能团的单体相互结合成高分子化合物,同时有小分子(如H2O、NH3、HCl等)生成的反应称为缩合聚合反应,简称缩聚反应。 2.常见的缩聚反应 (1)羟基酸缩聚 (3)氨基酸缩聚

导电高分子材料的简介

导电高分子材料的简介、应用和发展前景 摘要:与传统导电材料相比较,导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的结构、种类及导电机理、合成方法、导电高分子材料的应用、研究现状及发展趋势。 关键词:导电高分子制备方法导电机理性能应用发展趋势 1.简介 高分子材料在很长一段时期都被用作电绝缘材料.随着不同应用领域的需要以及为进一步拓宽高分子材料的应用范围,一些高分子材料被赋予某种程度的导电性以致成为导电高分子材料。导电高分子又称导电聚合物,自从1976年,美国宾夕法尼亚大学的化学家Mac Diarmid领导的研究小组首次发现掺杂后的聚乙炔(Poly acetylene,简称PA)具有类似金属的导电性(导电高分子的导电性如图);1977年,日本白川英树等人才发现用五氟化砷或碘掺杂的聚乙炔薄膜具有金属导电的性质,电导率达到10S/m。这是第一个导电的高分子材料。人们对共轭聚合物的结构和认识不断深入。以后,相继开发出了聚吡咯、聚苯硫醚、聚酞菁类化合物、聚苯胺、聚噻吩等能导电的高分子材料。这个新领域的出现不仅打破了高分子仅为绝缘体的传统观念,而且它的发现和发展为低维固体电子学,乃至分子电子学的建立和完善作出重要的贡献,进而为分子电子学的建立打下基础,而具有重要的科学意义。 现有的研究成果表明,发展导电高分子兼具有机高分子材料的性能及半导体和金属的电性能, 具有密度小,易加工成各种复杂的形状,耐腐蚀,可大面积成膜及可在十多个数量级的范围内进行调节等特点,因此高分子导电材料不仅可作为多种金属材料和无机导电材料的代用品,而且已成为许多先进工业部门和尖端技术领域不可缺少的一类材料。 1.1导电高分子材料的分类 按结构和制备方法不同将导电高分子材料分为复合型与结构型两大类。复合型导电材料是由高分子和导电剂(导电填料)通过不同的复合工艺而构成的材料。结构型结构型导电高分子又称本征型导电高分子(Intrinsically conducting polymer,简称ICP),是指高分子材料本身或经过少量掺杂处理而具有导电性能的材料,其电导率可达半导体甚至金属导体的范围。 1.2 高分子导电材料的制备方法 复合型导电高分子所采用的复合方法主要有两种:一种是将亲水性聚合物或结构型导电高分子进行混合,另一种则是将各种导电填料填充到基体高分子中。结构型导电聚合物一般用电子高度离域的共轭聚合物经过适当电子给体或受体进行掺杂后制得。 1.3 导电机理

合成高分子材料

第八章合成高分子材料 教学目的: 掌握合成高分子的结构、特性和命名;掌握常见的合成高分子材料(塑料、合成纤维、合成橡胶)的特性;熟悉几种新型高分子材料,导电高分子、医用高分子、可降解高分子、高吸水性高分子;了解复合材料的分类方法以及认识一些复合材料。 教学重点: 合成高分子的结构、特性和命名; 合成高分子材料(塑料、合成纤维、合成橡胶)的特性。 教学难点: 合成高分子的特性和命名。 第一节高分子的结构和特性 一、高分子 1. 高分子 分子由一千个以上原子通过共价键结合形成,分子量可达几万至几百万,这类分子称为高分子,或称高分子化合物。 存在于自然界中的高分子化合物称为天然高分子,如淀粉、纤维素、棉、麻、丝、毛都是天然高分子,人体中的蛋白质、糖类、核酸等也是天然高分子。 用化学方法合成的高分子称为合成高分子,如聚乙烯、聚氯乙烯、聚丙烯腈、聚酰胺(尼龙)等都是常用的合成高分子材料。 2.聚乙烯 从石油裂化可得到乙烯,由n个乙烯分子在一定的反应条件下经聚合可得到聚乙烯分子,反应可表示如下:

乙烯分子是平面分子,分子中所有原子处于同一平面,碳原子之间以双键结合,如图8-1所示。当乙烯分子在催化剂的作用下,双键被打开,CH2—CH2两端的单键可与邻近的乙烯分子连接,发生聚合反应,生成线型(长链状)的聚乙烯分子。通常把乙烯分子称为单体,单体经聚合后得到的聚乙烯分子称为聚合物,或称高聚物。聚乙烯分子中有一个重复的结构单元CH2—CH2,称为链节,n称为聚合度,也就是聚乙烯分子中所含链节的数目。 二、高分子的原料和合成方法 1. 高分子的原料 从农、林副产品、煤或石油中得到的有机小分子化合物作为单体,通过聚合反应可以合成高分子。具体的合成方法有加成聚合、缩合聚合和共聚合等。 2. 加成聚合反应 含有重键的单体分子,如乙烯(C2H4)、氯乙烯(C2H3Cl)、丙烯(C3H6)、苯乙烯等,它们是通过加成聚合反应得到聚合物的。加聚反应后除了生成聚合物外,再没有任何其他产物生成,聚合物中包含了单体中全部原子,如聚乙烯、聚氯乙烯。 C2H4是平面对称分子,当一个Cl原子取代了C2H4分子中的一个H原子后,对称性被破坏了。C2H3Cl分子中若将带氯原子的碳原子看成是头,则不带氯的碳原子就是尾了。氯乙烯分子进行加成聚合反应时,可能产生三种情况:头-头、尾-尾连接;头-尾连接;混乱无序连接,如图8-2所示。从图中看到,第一种连接方式,相邻碳原子上有氯原子;第二种连接方式,碳原子上的氯原子是间隔开的;第三种连接方式是上述两种连接的混合。连接方式不同,所形成的聚氯乙烯分子的结构不同,反映在性质上也就有差异。

关于导电高分子材料的研究进展

湖北汽车工业学院 本科生课程论文 《新材料导论》 论文题目关于导电高分子材料的研究进展学生专业班级 学生姓名(学号) 指导教师(职称) 完成时间

关于导电高分子材料的研究进展 摘要:与传统导电材料相比较,导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的概念、分类、导电机理及其应用领域,综述了近些年来国内外科研工作者对导电高聚物的研究进展状况并对其发展前景进行了展望。 关键词:导电高分子;功能材料;导电机理;应用;述评。 自从1976年美国宾夕法尼亚大学的化学家MacDiarmid领导的研究小组首次发现掺杂后的聚乙炔(Polyacetylene,简称PA)具有类似金属的导电性以后,人们对共轭聚合物的结构和认识不断深入和提高,新型交叉学科)))导电高分子领域诞生了。在随后的研究中科研工作者又逐步发现了聚吡咯、聚对苯撑、聚苯硫醚、聚噻吩、聚对苯撑乙烯撑、聚苯胺等导电高分子。导电高分子特殊的结构和优异的物理化学性能使它成为材料科学的研究热点,作为不可替代的新兴基础有机功能材料之一,导电高分子材料在能源、光电子器件、信息、传感器、分子导线和分子器件,以及电磁屏蔽、金属防腐和隐身技术上有着广泛、诱人的应用前景。到目前为止,导电高分子在分子设计和材料合成、掺杂方法和掺杂机理、可溶性和加工性、导电机理、光、电、磁等物理性能及相关机理以及技术上的应用探索都已取得重要的研究进展。本文介绍了导电高分子的结构特征、导电机理及其应用领域,综述了近些年来导电高分子材料研究领域的进展状况。 1 导电高分子材料的分类 高分子导电材料通常分为复合型和结构型两大类: ①复合型高分子导电材料。 由通用的高分子材料与各种导电性物质通过填充复合、表面复合或层积复合等方式而制得。主要品种有导电塑料、导电橡胶、导电纤维织物、导电涂料、导电胶粘剂以及透明导电薄膜等。其性能与导电填料的种类、用量、粒度和状态以及它们在高分子材料中的分散状态有很大的关系。常用的导电填料有炭黑、金属粉、金属箔片、金属纤维、碳纤维等。 ②结构型高分子导电材料。 是指高分子结构本身或经过掺杂之后具有导电功能的高分子材料。根据电导率的大小又可分为高分子半导体、高分子金属和高分子超导体。按照导电机理可分为电子导电高分子材料和离子导电高分子材料。电子导电高分子材料的结构特点是具有线型或面型大共轭体系,在热或光的作用下通过共轭π电子的活化而进行导电,电导率一般在半导

蜘蛛丝

蜘蛛丝纤维之我见 高(101)张春娟 1008093006 摘要:蜘蛛丝是一种具有特殊品质的材料,迄今为止人类还无法生产出像它那样具有超强强度和弹性极强的化合物。人类一直梦想着利用蜘蛛丝的奇特性能来造福社会大众。 关键词:蜘蛛丝,性能,应用 节肢动物门(Arthropoda)蛛形纲(Arachnida)蜘蛛目(Araneida或Araneae)所有种的通称。除南极洲以外,全世界分布[1]。蜘蛛在整个生命过程中会产生许多不同的丝,它的柔韧性和弹性都很好,耐冲击力也很强。无论是在干燥状态或是潮湿状态下都有很好的性能,是一种目前已知弹性和强度最高的天然动物纤维。首先蜘蛛丝很细而强度却很高,它比人发还要细而强度比钢丝还要大。其次它的柔韧性和弹性都很好,耐冲击力强。无论是在干燥状态或是潮湿状态下都有很好的性能。蜘蛛丝网还有很好的耐低温性能。由于蜘蛛丝是由蛋白质构成,是生物可降解的,把这些优良的性能集中在同一种纤维上十分困难。人们开始考虑,如果能够用人工的方法大量而经济地生产这种纤维,必将对纤维和纺织业的发展产生 深远的影响。目前美国、加拿大、德国和英国等发达国家已投入大量的人力和物力进行研究,并已取得相当的进展,对蜘蛛丝的研究,已成为当今纤维界的热 门课题。 1 蜘蛛丝的形成原理及其性能 1.1 形成原理 在显微镜下,我们看到丝从蜘蛛的分泌出来,蜘蛛的腹腔里有许多丝浆,它的尾端有很小的孔眼。结网的时候,蜘蛛便将这些丝浆喷出去。丝浆一遇到空气,就凝结,且富有粘性和惊人的强度。每根蜘蛛丝的抗拉强度是钢材的2倍,弹性也比人造纤维好得多。比如,蜘蛛网可以延伸到原长的10倍,而尼龙一旦延展到原长的20%就会发生断裂无论什么飞虫,一撞到网上就别想再跑掉。而蜘蛛的身上和脚上经常分泌出一层油质,粘丝是不粘油的。但是,一般飞虫是没有这层油质的,所以,蜘蛛网能牢牢地粘住飞虫却粘不住蜘蛛[2]。

高中化学《合成高分子化合物》教案

第三章:有机合成及其应用合成高分子化合物 【课标要求】 1.通过简单实例了解常见高分子材料的合成,能举例说明高分子材料在生活等领域中的应用。 2.能说明合成新物质对人类生活的影响,讨论在化工生产中遵循“绿色化学”思想的重要性。(查阅材料:符合“绿色化学”思想的化工产品的生产。)【选修课标要求】: 1.能举例说明合成高分子的组成与结构特点,能依据简单合成高分子的结构分析其链节和单体。 2.能说明加聚反应和缩聚反应的特点。 3.举例说明新型高分子材料的优异性能及其在高新技术领域中的应用。 4、了解合成合成高分子化合物在发展经济、提高生活质量方面的贡献。【课时安排建议】2课时 第一课时合成高分子化合物 【学习目标】 1、了解高分子化合物的特点和分类 2、理解单体、链节、链节数等概念 3、理解加成聚合反应和缩合聚合反应的特点 4、了解一些常见高分子化合物的聚合反应 重点和难点 能根据加成聚合反应产物的分子式确定单体和链节 能根据单体结构式确定加成聚合反应产物的分子式 1.我们已学过哪些高分子化合物?, 其中属于天然高分子化合物的是, 属于人工合成高分子化合物的是。 2.请你写出聚乙烯、聚氯乙烯、酚醛树脂的结构简式和淀粉、纤维素的化学式。 、、、 、。 3.怎样定义高分子化合物? 什么是单体、链节、聚合度吗? 具有什么特点的有机物可以发生加聚反应? 具有什么特点的有机物可以发生缩聚反应? 4.高分子化合物是如何分类的? 5.你知道实验室保存少量苯、汽油、四氯化碳和氯仿等常见有机溶剂时选用玻璃塞好还是橡皮塞好?说出你的理由。

一、有机高分子化合物概况 (1)小分子:相对分子质量通常不上千,通常称为低分子化合物,简称小分子;如:烃、醇、醛、羧酸、酯、葡萄糖、蔗糖等 (2)高分子:相对分子质量达甚至,通常称为,简称高分子,有时又称聚合物或高聚物;如:淀粉、纤维素、蛋白质、聚乙烯、聚氯乙烯、酚醛树脂等 (3)高分子化合物的分类: ①按来源分类 ②按使用功能分类 ③按受热时的性质分类 ④按高分子结构特点分类 【问题探究1】 书写乙烯在一定条件下生成聚乙烯的反应方程式,分析高分子化合物的结构。【归纳整理】 二、高分子化合物的结构: 高分子化合物结构并不复杂,往往由简单的结构单元重复连接而成, 如聚乙烯中:-CH 2-CH 2 -叫聚乙烯的或; n表示每个高分子化合物中链节的重复次数叫; n越大,相对分子质量; 能用来合成高分子的小分子叫,如合成聚乙烯的单体是。【交流研讨】 完成课本117页交流研讨 三、合成高分子化合物的基本反应——聚合反应 1、加成聚合反应:单体通过的方式生成高分子化合物的反应, 简称 【小结】:写加聚反应的化学方程式的方法

导电高分子材料

导电高分子材料 导电高分子材料概述 摘要导电高分子材料具有高电导率等与一般聚合物不同的特性。文章综述了导电高分子的分类,研究进展,制备方法以及在作为导电材料,电极材料,显示材料,电子器件,电磁屏蔽材料及催化材料方面的应用。 关键词:导电高分子,制备,应用 Abstract :Conductive polymeric materials have the properties such as high conductivity that different from traditional polymeric materials.This paper reviews the classification of conductive polymers, research progress,Preparation methods and Conductive polymeric materials applied as the conductive material, electrode materials, display materials, electronic devices, electromagnetic shielding materials and the application of catalytic materials. Keywords: Conductive polymeric materials, Preparation,application 传统高分子材料的体积电阻率一般介于1010,1020Ω?cm之问,一直作为电绝缘材料使用。自从1997年,美国化学家MacDiarmid、物理学家Herger和日本化学家Shirakawa[1]发现掺杂聚乙炔具有良好导电性后,世界各国科学家纷纷投入到导电聚合物的研究当中,各种有机导电聚合物相继出现,其应用范围也日益扩大,广泛应用于各种家用电器、航空航天、抗静电涂料、雷达吸波材料、电磁屏蔽材料和传感器等方面,极大地丰富和改善了人们的生活。 1.导电聚合物的分类

导电高分子材料综述

课题名称:导电高分子材料的研究进展及发展趋势 检索主题词:导电高分子材料 检索工具:万方数据知识服务平台 检索途径及步骤:登录学校图书馆网站,从“中文资源”分类中找到“万方数据资源(主网站)”,选择“高级检索”,规定好想要检索的文献类型,出版时间,主题等进行检索。 导电高分子材料的研究进展及发展趋势综述 高材1208 2012012247 曹凯 摘要:介绍了导电高分子材料的类型,分析了导电材料的导电机理,对其在实际中的应用进行了研究和总结,并且在此基础上展望了导电高分子材料的未来发展趋势。 关键词:导电;高分子材料;机理;应用;发展 引言: 近年来, 导电高分子的研究取得了较大的进展, 科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究, 已成为一门相对独立的学科。按导电性质的不同,导电高分子材料分为复合型和结构型两种。前者是利用向高分子材料中加人各种导电填料来实现导电,而后者是通过改变高分子结构来实现导电。在社会的发展中,需要这种材料的地方有很多,这也使得对进行加工和应用的研究受到了人们着重地关注。 1导电高分子材料分类 按照材料的结构与组成,可将导电高分子材料分为两大类。一类是复合型导电高分子材料,另一类是结构型(或本征型)导电高分子材料。 1.1复合型导电高分子材料 复合型导电高分子材料是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的材料。几乎所有的聚合物都可制成复合型导电高分子材料。其一般的制备方法是填充高效导电粒子或导电纤维,如填充各类金属粉末、金属化玻璃纤维、碳纤维、铝纤维、不锈钢纤维及锰、镍、铬、镁等金属纤维。复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势,用量最大最为普及的是炭黑填充型和金属填充型。 1.2结构型导电高分子材料 结构型(又称作本征型)导电高分子是指那些高分子材料本身或经过掺杂后具有导电功能的聚合物。这种高分子材料本身具有“固有”的导电性,由其结构提供导电载流子,一旦经掺杂后,电导率可大幅度提高,甚至可达到金属的导电水平。从导电时载流子的种类来看,结构型导电高分子材料又被分为离子型和电子型两类。离子型导电高分子通常又称为高分子固体电解质,它们导电时的载流子主要是离子。电子型导电高分子指的是以共轭高分子为主体的导电高分子材料。导电时的载流子是电子(或空穴),这类材料是目前世界导电高分子中研究开发的重点。 2电高分子材料的导电机理 2.1复合型高分子材料导电机理 复合型导电高分子材料导电性主要取决于填料的分散状态”J。根据渗流理论,原来孤立分散的填料微粒在体积分散达到某一临界含量以后,就会形成连续的导电通路。这时离子

相关文档
最新文档