初等函数2

初等函数2
初等函数2

讲义(7.3)

一、 函数的奇偶性

二、 函数的单调性

(1)函数的单调性①定义及判定方法

②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.

③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则

y

[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]

y f g x =为减.

(2)打“√”函数()(0)a

f x x a x =+

>的图象与性质

()f x 分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.

(3)最大(小)值定义

①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,

都有()f x M ≤;(2)存在0

x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大

值,记作

max ()f x M =.

②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,

都有()f x m ≥;(2)存在0x I ∈,使得0

()f x m =.那么,我们称m 是函数()f x 的最小值,记作

max ()f x m =.

例题:

1.证明函数x

x y 1

+=在(1,+∞)上为减函数.

三、 复合函数的单调性

四、 复合函数的单调性

五、 1、定义:

六、 设y=f(u),u=g(x),当x 在u=g(x)的定义域中变化时,u=g(x)的值在

y=f(u)的定义域内变化,因此变量x 与y 之间通过变量u 形成的一种

函数关系,记为y=f(u)=f[g(x)]称为复合函数,其中x 称为自变量,u 为中间变量,y 为因变量(即函数)

七、 2、复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性

密切相关,其规律如下: 八、 函数 单调性

九、 ()u g x = 增 增 减 减 十、 ()y f u = 增 减 增 减 十一、[]()y f g x = 增 减 减 增 十二、例题:

十三、例1、已知()1,()32y f u u u g x x ==+==-+,求[]()y f g x =的单调性。

四、导数的概念及性质

1、导数的概念

函数y =)(x f 的导数)(x f ',就是当Δx →0时,函数的增量Δy 与自变量的增量Δx 的比x

Δ y

Δ的极限,即

)(x f '=0x Δlim

→x

Δ y

Δ=

x Δlim

→x Δf(x)

-x) Δ(+x f

说明:分子和分母中间的变量必须保持一致 2、导函数

函数y =)(x f 在区间( a, b )内每一点的导数都存在,就说在区)(x f 间( a, b )内可导,其导数也是(a ,b )内的函数,叫做)(x f 的导函数,记作)(x f '或x y ',

函数)(x f 的导函数)(x f '在0x x =时的函数值)(0x f ',就是)(x f 在0x 处的导数。

3、导数的几何意义

设函数y =)(x f 在点0x 处可导,那么它在该点的导数等于函数所表示曲线在相应点),(00y x M 处的切线斜率。 4、求导数的方法 (1)基本求导公式

0='c )()(1Q m mx x m m ∈='-

x x cos )(sin ='x x sin )(cos -='

x x e e =')(a a a x x ln )(='

x x 1)(ln ='x a 1

)(log =

'

(2)导数的四则运算

v u v u '±'='±)(v u v u uv '+'=')(

)0()(2

≠=

''

-'v v v u v u v u

(3)复合函数的导数

设)(x g u

=在点x 处可导,y =在点)(x f 处可导,则复合函数)]([x g f 在点x 处可导,

)()())(('''x u f x f x ??=

1、函数的单调性

2、可导函数的极值

3、函数的最大值与最小值

最新基本初等函数讲义(全)

一、一次函数 二、二次函数 (1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

图像 定义域 (),-∞+∞ 对称轴 2b x a =- 顶点坐标 24,24b ac b a a ??-- ??? 值域 24,4ac b a ??-+∞ ??? 24,4ac b a ?? --∞ ?? ? 单调区间 ,2b a ??-∞- ??? 递减 ,2b a ?? -+∞ ??? 递增 ,2b a ? ?-∞- ??? 递增 ,2b a ?? -+∞ ??? 递减 ①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为 ,2b x a =-顶点坐标是24(, )24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减, 在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,] 2b a -∞-上递增,在[,)2 b a -+∞上递减,当2b x a =-时,2max 4()4ac b f x a -=. 三、幂函数 (1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象 2b x a =- 2b x a =-

高一数学第二章基本初等函数知识点整理

必修1第二章基本初等函数(Ⅰ)知识点整理 〖2.1〗指数函数 2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 表示;当n 是偶数时,正数a 的正的n n 次方根用符号0的n 次方根是0;负数 a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. ③根式的性质:n a =;当n a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0.②正数的负分数 指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底 数取倒数,指数取相反数. (3)分数指数幂的运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r a b a b a b r R =>>∈ 2.1.2指数函数及其性质 (4)指数函数

〖2.2〗对数函数 【2.2.1】对数与对数运算 (1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式: log 10a =,log 1a a =,log b a a b =. (3)常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…) . (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘: log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且 【2.2.2】对数函数及其性质 (5)对数函数

2_基本初等函数知识点小结

第二章 基本初等函数知识点小结 一.【课标要求】 1.指数函数 (1)通过具体实例(如细胞的分裂,考古中所用的14 C 的衰减,药物在人体内残留量 的变化等),了解指数函数模型的实际背景; (2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。 (3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点; (4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型 2.对数函数 (1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用; (2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点; 3.知道指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1)。 4.幂函数 (1)了解幂函数的概念 (2)结合函数y=x, ,y=x 2 , y=x 3 ,y=x 21 ,y=x 1的图象,了解它们的变化情况 二.【要点精讲】 1.指数与对数运算 (1)根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根。即若 a x n =,则x 称a 的n 次方根)1* ∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>± a a n ②性质:1)a a n n =)(;2)当n 为奇数时,a a n n =; 3)当n 为偶数时, ? ??<-≥==)0() 0(||a a a a a a n 。 (2).幂的有关概念

(完整版)六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

第二章 基本初等函数知识点

第二章 基本初等函数知识点 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m , )1,,,0(1 1*>∈>= = -n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += (2)rs s r a a =)( (3)s r r a a ab =)( (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1.

注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上, )1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ; ○ 3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ;

基本初等函数()

1.1 初等函数图象及性质 1.1.1 幂函数 1函数(是常数)叫做幂函数。 2幂函数的定义域,要看是什么数而定。 但不论取什么值,幂函数在(0,+ )内总有定义。 3最常见的幂函数图象如下图所示:[如图] 4 2 -551015 -2 -4 -6 4①α>0时,图像都过(0,0)、(1,1 注意α>1与0<α<1的图像与性质的区别. ②α<0时,图像都过(1,1)点,在区间(0 上无限接近y轴,向右无限接近x轴. ③当x>1时,指数大的图像在上方. 1.1.2 指数函数与对数函数

1.指数函数 1函数(a是常数且a>0,a 1)叫做指数函数,它的定义域是区间(- ,+ )。 2因为对于任何实数值x,总有,又,所以指数函数的图形,总在x轴的上方,且通过点(0,1)。 若a>1,指数函数是单调增加的。若0

2.对数函数 由此可知,今后常用关系式,如: 指数函数的反函数,记作(a是常数且a>0, a1),叫做对数函数。它的定义域是区间(0,+ )。 对数函数的图形与指数函数的图形关于直线y = x对称(图1-22)。 的图形总在y轴上方,且通过点(1,0)。 若a>1,对数函数是单调增加的,在开区间(0,1)内函数值为负,而在区间(1,+ )内函数值为正。 若01 0

(完整版)基本初等函数的导数公式随堂练习

1.2.2 基本初等函数的导数公式 1.下列结论不正确的是( ) A .若y =e 3 ,则y ′=0 B .若y = 1 x ,则y ′=-1 2x C .若y =-x ,则y ′=-1 2x D .若y =3x ,则y ′=3 2.下列结论:①(cos x )′=sin x ;②? ????sin π3′=cos π3;③若y =1x 2,则y ′|x =3=-227.其中正确的有( ) A .0个 B .1个 C .2个 D .3个 3.若y =ln x ,则其图象在x =2处的切线斜率是( ) A .1 B .0 C .2 D .1 2 4.正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( ) A .??????0,π4∪??????3π4,π B .[0,π) C .??????π4,3π4 D .??????0,π4∪??????π2,3π4 5.曲线y =e x 在点(2,e 2 )处的切线与坐标轴所围成的三角形的面积为( ) A.12e 2 B.94 e 2 C .2e 2 D .e 2 6.设曲线y =x n +1(n ∈N * )在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·…·x n 的值为( ) A .1n B .1n +1 C .n n +1 D .1 课后探究 1.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为 2.已知直线y =kx 是y =ln x 的切线,则k 的值为

一、选择题 2.已知函数f (x )=x 3 的切线的斜率等于3,则切线有( ) A .1条 B .2条 C .3条 D .不确定 4.y =x α 在x =1处切线方程为y =-4x ,则α的值为( ) A .4 B .-4 C .1 D .-1 5.f (x )= 1x 3 x 2 ,则f ′(-1)=( ) A .52 B .-52 C .53 D .-53 6.函数y =e x 在点(2,e 2 )处的切线与坐标轴围成三角形的面积为( ) A .94e 2 B .2e 2 C .e 2 D .e 2 2 二、填空题 7.曲线y =x n 在x =2处的导数为12,则n 等于________. 8.质点沿直线运动的路程与时间的关系是s =5 t ,则质点在t =32时的速度等于________. 9.在曲线y =4 x 2上求一点P ,使得曲线在该点处的切线的倾斜角为135°,则P 点坐标为________. 三、解答题 10.求证双曲线y =1 x 上任意一点P 处的切线与两坐标轴围成的三角形面积为定值. 一、选择题 11.(2014·北京东城区联考)曲线y =13x 3 在x =1处切线的倾斜角为( ) A .1 B .-π4 C .π4 D .5π4

数学1(必修)第二章:基本初等函数训练题A卷

数学1(必修)第二章 基本初等函数训练题A [基础训练A 组] 一、选择题 1.下列函数与x y =有相同图象的一个函数是( ) A .2 x y = B .x x y 2 = C .)10(log ≠>=a a a y x a 且 D .x a a y log = 2.下列函数中是奇函数的有几个( ) ①11x x a y a +=- ②2l g (1)33 x y x -=+- ③x y x = ④1l o g 1a x y x +=- A .1 B .2 C .3 D .4 3.函数y x =3与y x =--3的图象关于下列那种图形对称( ) A .x 轴 B .y 轴 C .直线y x = D .原点中心对称 4.已知13x x -+=,则3 322x x - +值为( ) A . B . C . D . - 5.函数y =的定义域是( ) A .[1,)+∞ B .2(,)3+∞ C .2[,1]3 D .2 (,1]3 6.三个数60.70.70.76log 6,,的大小关系为( ) A . 60.70.70.7log 66<< B . 60.70.70.76log 6<< C .0.760.7log 660.7<< D . 60.70.7log 60.76<< 7.若f x x (ln )=+34,则f x ()的表达式为( ) A .3ln x B .3ln 4x + C .3x e D .34x e + 二、填空题 1.985316,8,4,2,2从小到大的排列顺序是 。 2.化简11410 104 848++的值等于__________。 3.计算:(log )log log 2222545415 -++= 。

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象

过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 三、指数函数 (1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念 ①正数的正分数指数幂的意义是:0,,,m n a a m n N +=>∈且1)n >.0的正分数 指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质

人教版高中数学必修一-第二章-基本初等函数知识点总结

人教版高中数学必修一第二章基本初等函 数知识点总结 第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念: 负数没有偶次方根;0的任何次方根都是0,=0。 注意:(1)n a = (2)当 a = ,当 n 是偶数时,0 ||,0 a a a a a ≥?==?-∈>且 正数的正分数指数幂的意义:_1(0,,,1)m n m n a a m n N n a *= >∈>且 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)(0,,)r s r s a a a a r s R +=>∈ (2)()(0,,)r s rs a a a r s R =>∈ (3)(b)(0,0,)r r r a a b a b r R =>>∈ 注意:在化简过程中,偶数不能轻易约分;如122 [(1]11-≠ (二)指数函数及其性质 1、指数函数的概念:一般地,函数x y a = 叫做指数函数,其中x 是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1.即 a>0且a ≠1 2a>1

注意: 指数增长模型:y=N(1+p )指数型函数: y=k a3 考点:(1)ab =N, 当b>0时,a,N 在1的同侧;当b<0时,a,N 在1的 异侧。 (2)指数函数的单调性由底数决定的,底数不明确的时候要进行讨论。掌握利用单调性比较 幂的大小,同底找对应的指数函数,底数不同指数也不同插进1(=a 0)进行传递或者利用(1)的知识。 (3)求指数型函数的定义域可将底数去掉只看指数的式子,值域求法用单调性。 (4)分辨不同底的指数函数图象利用a 1=a,用x=1去截图象得到对应的底数。 (5)指数型函数:y=N(1+p)x 简写:y=ka x 二、对数函数 (一)对数 1.对数的概念:一般地,如果x a N = ,那么数x 叫做以a 为底N 的对数,记作:log a x N = ( a— 底数, N — 真数,log a N — 对数式) 说明:1. 注意底数的限制,a>0且a≠1;2. 真数N>0 3. 注意对数的书写格式. 2、两个重要对数: (1)常用对数:以10为底的对数, 10log lg N N 记为 ; (2)自然对数:以无理数e 为底的对数的对数 , log ln e N N 记为. 3、对数式与指数式的互化 log x a x N a N =?= 对数式 指数式 对数底数← a → 幂底数 对数← x → 指数 真数← N → 幂 结论:(1)负数和零没有对数

基本初等函数论文2

基本初等函数题的解题策略 随着高考改革的不断进行,对函数部分高考题出现了一定的连续性,除了重点知识重点考察外,也出现了一些新面孔,但每年的高考不注重对知识面的覆盖,却注重了对某些规律性知识的直接或者变相的考察,现就将高考中对基本初等函数函数部分常考的题型及解题策略总结如下,供高三备考同学参考。 题型一:函数的定义域问题。 例题1:(2013高考江西卷(理))函数y=x ln(1-x)的定义域为 A.(0,1) B.[0,1) C.(0,1] D.[0,1] 解析:要使函数有意义,则{010>-≥x x ,即{1 0<≥x x ,解得0≤x<1,选B. 变式1:(2013高考大纲版数学(理))已知函数f(x)的定义域为(-1,0),则函数f(2x-1)的定义域为 (A)(-1,1) (B)(-1,21) (C)(-1,0) (D)(2 1,1) 解析:因为原函数的定义域为(﹣1,0),所以﹣1<2x ﹣1<0,解得﹣1<x <. 所以则函数f (2x ﹣1)的定义域为(-1,2 1),故选B . 解题策略:高考中有关定义域问题,常常考查一类是具体函数的定义域,具体定义域常常考查五大类型,正式、分式、根式、指对式等,解题方法是分式的分母不为零,偶次根式的被开方数≥0,对数的真数>0,解题策略是搞清楚是那类函数求定义域,复合函数的定义域要注意分层,做到不重不漏,抽象函数定义域的解题策略是注意分清楚是解不等式问题还是求值域问题,还是两方面的结合,只要掌握这些解题策略这些求定义域问题就显得轻而易举。 题型二:函数的零点问题。 例题2 .(2013高考重庆(理))若a0,飞(b)<0,f(c)>0,即函数f(x)的两个零点分别在(a,b)和(b,c)内,选A. 变式;(2013高考安徽(理))若函数f(x)=c bx x ++3 有极值点1x ,2x ,且f(1x )=1x ,则关于x 的方程321))((x f +2f(x)+b 的不同实根个数是(A)3 (B)4 (C) 5 (D)6 解析:设)('x f =(x-1)(x+2)=3632-+x x ,∴f(x)=3x +2 32x -6x+c .令)('x f =0,则1x =1,2x =-2,∴f(1x )=1x ,∴c=2 9。所以f(x)在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,极小值为1。由))((' x f f =0,所以f(x)=1x 解得有两个根,f(x)=2x 解得有一个根,共3个根。故选A 。 解题策略:函数的零点问题一般分为函数零点区间的确定,解题的方法就是由零点存在性定理解决,再一类就是零点个数的确定,解决这类问题的方法就是一类是有函数图象与x 轴交点的个数确定,另一类是转化成两个函数图象的交点个数问题,解决这类问题的策略是注意

基本初等函数2

基本初等函数 1 若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(1,0)- 和(0,1),则( ) A 2,2a b == B 2a b == C 2,1a b == D a b ==2 已知x x f 26log )(=,那么)8(f 等于( ) A 34 B 8 C 18 D 21 3 函数lg y x =( ) A . 是偶函数,在区间(,0)-∞ 上单调递增 B . 是偶函数,在区间(,0)-∞上单调递减 C . 是奇函数,在区间(0,)+∞ 上单调递增 D 是奇函数,在区间(0,)+∞上单调递减 4 若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值 是最小值的3倍,则a 的值为( ) A 42 B 22 C 41 D 21 5 已知函数=-=+-=)(.)(.11lg )(a f b a f x x x f 则若( ) A b B b - C b 1 D 1 b - 6 函数()log 1a f x x =-在(0,1)上递减,那么()f x 在(1,)+∞上( ) A 递增且无最大值 B 递减且无最小值 C 递增且有最大值 D 递减且有最小值 二、填空题 1 若a x f x x lg 22)(-+=是奇函数,则实数a =_________

2 函数() 212()log 25f x x x =-+的值域是__________ 3 已知1414log 7,log 5,a b ==则用,a b 表示35log 28= 4 设(){}1,,lg A y xy =, {}0,,B x y =,且A B =,则x = ;y = 5 计算:()()5log 22323-+ 6 函数x x e 1e 1 y -=+的值域是__________ 三、解答题 1 比较下列各组数值的大小: (1)3.37 .1和1.28.0;(2)7.03.3和8.04.3;(3)25log ,27log ,2398 2 解方程:(1)19 2327x x ---?= (2)649x x x += 3 已知,3234+?-=x x y 当其值域为[1,7]时,求x 的取值范围 4 已知函数()log ()x a f x a a =-(1)a >,求()f x 的定义域和值域;

专题一 第三讲 二次函数、基本初等函数及函数的应用

一、选择题 1.(2011·山东烟台模拟)幂函数y =f (x )的图像经过点(4,12),则f (14 )的值为( ) A .1 B .2 C .3 D .4 解析:设幂函数f (x )=x α,把(4,12)代入得α=-12 , 则f (x )=x 12--12,f (14)=(14)12-=2. 答案:B 2.(2011·福州质检)设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是( ) A .(-∞,0] B .[2,+∞) C .(-∞,0]∪[2,+∞) D .[0,2] 解析:二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0,又f (x )=a (x -1)2-a +c , 所以a >0,即函数图像的开口向上,对称轴是直线x =1. 所以f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2. 答案:D 3.设00,ab >b 2,因此A 不正确;同理可知C 不正确;由 函数y =(12)x 在R 上是减函数得,当0(12)b >(12)a >(12)1,即12<(12)a <(12 )b ,因此B 正确;同理可知D 不正确. 答案:B 4.(2011·北京高考)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为

基本初等函数2复习

基本初等函数复习题 一、选择题 1. 已知cos α=1 2 ,α∈(370°,520°),则α等于 ( ) A .390° B .420° C .450° D .480° 2. 若sin x ·cos x <0,则角x 的终边位于 ( ) A .第一、二象限 B .第二、三象限 C .第二、四象限 D .第三、四象限 3. 函数y =tan x 2 是 ( ) A .周期为2π的奇函数 B .周期为π 2的奇函数 C .周期为π的偶函数 D .周期为2π的偶函数 4. 已知函数y =2sin(ωx +φ)(ω>0)在区间[0,2π]的图象如图,那么ω等于( ) A .1 B .2 C.1 2 D.13 5. 函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则φ等于 ( ) A .-π 2 B .2k π-π 2(k ∈Z ) C .k π(k ∈Z ) D .k π+π 2 (k ∈Z ) 6. 若sin θ+cos θ sin θ-cos θ =2,则sin θcos θ的值是 ( ) A .-3 10 B.3 10 C .±3 10 D.34 7. 将函数y =sin x 的图象上所有的点向右平行移动π 10 个单位长度,再把所得各点的横坐标伸长 到原来的2倍(纵坐标不变),所得图象的函数解析式是 ( )

A .y =sin ? ????2x -π10 B .y =sin ? ????2x -π5 C .y =sin ? ????12x -π10 D .y =sin ? ?? ??12x -π20 8. 在同一平面直角坐标系中,函数y =cos ? ?? ??x 2+3π2(x ∈[0,2π])的图象和直线y =12的交点个数是 ( ) A .0 B .1 C .2 D .4 9. 已知集合M =???? ??x |x =k π2+π4,k ∈Z ,N ={x |x =k π4+π 2,k ∈Z },则 ( ) A .M =N B .M N C .N M D .M ∩N =? 10.设a =sin 5π7,b =cos 2π7,c =tan 2π 7,则 ( ) A .a

常见基本初等函数极限

66 一、常见数列极限的存在情况: (1)1,1,1,1,1,L L 。通项1n y =,极限11()n y n =??¥(收敛) 即lim11n ?¥ = (2)11111, ,,,,,234n L L 。通项1n y n =,极限1 0()n y n n =??¥(收敛) 即01 lim =¥?n n (如图2) (3) 01 n n =+ (4))?¥(收 敛)即n ( (5)2,(6)1,-(如图6) n y

67 (7) 1,2,3,,,n L L 。通项n y n =,极限()n y n n =?¥?¥(发散)(如图7) 。 (8) (1)2n n y =- 极限 (1)n n y =-(如图8) (一)当x (1) 函数y y -¥

68 (3)函数y x =-,极限lim x x ?±¥ -=¥m (); (4)函数1y x = ,极限1 lim 0x x ?±¥= 限不存 y

69 2、指数函数部分 (9)函数(1x y a a =>),极限lim (1)x x a a ?+¥ =+¥>(极限不存在)(注意:x ?+¥) (10)函数(1x y a a =>)极限lim 0 (1)x x a a ?-¥ =>;(注意:x ?-¥) (11)函数 (01)x y a a =<<,极限lim 0 (01)x x a a ?+¥ =<< (注意:x ?+¥) (12)函数 (01)x y a a =<<,极限lim (01)x x a a ?-¥ =+¥<< 极限不存在(注意:x ?-¥) (x ?+¥ (注意:x ?-¥) x x

必修一第二章基本初等函数教案

教学课题 必修一第二章基本初等函数 一、知识框架 指数与指数幂运算 1、一般地,若n x a =,那么x 叫做a 的n 次方根,其中1n >,n *∈N . 简记:n a . 例如:328=,则382= 2、像n a 的式子就叫做根式(radical ),这里n 叫做根指数(radical exponent ),a 叫做被开方数(radicand ). 注:这是一个数,其意义:( 的n 次幂= a )或:n 个n a 连乘=a 3、结论:()n n a a =. 当n 是奇数时,n n a a =;当n 是偶数时,(0) ||(0)n n a a a a a a ≥?==?-∈>; ②1、概念:函数(01)x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R 指数函数图象及性质 a >1 0

在y 轴左侧,图像从上到下相应的底数也由小变大 即无论在y 轴左侧还是右侧,底数按逆时针方向变大 在第一象限内,“底大图高” 对数概念性质与对数运算 1、概念:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数. 记作 log a x N =,其中a 叫做对数的底数,N 叫做真数 即指数式与对数式的互化:log b a a N b N =?= 2、常用对数:通常将以10为底的对数10log N 叫做常用对数,记作lg N 。 自然对数:通常将以无理数 2.71828e =???为底的对数叫做自然对数,记作ln N 3.对数的性质及对数恒等式、换底公式 (1)对数恒等式:①log N a a = (01,0)a a N >≠>且 ②= (01,0)a a N >≠>且 (2)换底公式:log a N = log log b b N a (3)对数的性质:①负数和零没有对数 ② 1的对数是零,即log 10a = ③底的对数等于1,即log 1a a = ④log log log a b c b c d ??=log a d ;特例:1log log log =??a c b c b a 4.对数的运算性质 如果01,0,0a a M N >≠>>且,那么 (1)log ()a MN = ; (2)log a M N = ;

(完整版)基本初等函数知识点

指数函数及其性质 一、指数与指数幂的运算 (一)根式的概念 1、如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根. 2 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. 3、根式的性质 :n a =;当n 为奇数时 , a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0. 2 、正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 3、a 0=1 (a ≠0) a -p = 1/a p (a ≠0;p ∈N *) 4、指数幂的运算性质 (0,,)r s r s a a a a r s R +?=>∈ ()(0,,)r s rs a a a r s R =>∈ ()(0,0,)r r r ab a b a b r R =>>∈ 5、0的正分数指数幂等于0,0的负分数指数幂无意义。 二、指数函数的概念 一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:○ 1 指数函数的定义是一个形式定义; ○ 2 注意指数函数的底数的取值范围不能是负数、零和1.

2基本初等函数

高三知识与能力达标测试题(二) (基本初等函数) 一.选择题 1.函数y =a x - 2+log (1)a x -+1(a >0,a ≠1)的图象必经过点( ) A .(0,1) B .(1,1) C .(2,1) D .(2,2) 2 . 已 知 221,0,0 x y x y +=>>,且 1 l o g (1),l o g ,l 1a a a x m n y x +==-则 等于( ). A .m n + B .m n - C . ()12m n + D .()1 2 m n - 3.函数f (x )=log a (a -a x )在其定义域上是( ). A .增函数 B .减函数 C .不是单调函数 D .单调性与a 有关 4.已知0<a <1,log log 0a a m n <<,则( ). A .1<n <m B .1<m <n C .m <n <1 D .n <m <1 5.使不等式1 2 3 x x >成立的x 的取值范围是( ) A .0x <或1x > B .0<x <1 C .x >1 D .x <1 6.函数m y x -=--12 的图象与x 轴有交点时,则 A .01<≤-m B .10≤≤m C .10≤

A .22-1 B .2-22 C .22+1 D .2+1 9.已知(3)4,1()log ,1 a a x a x f x x x --?=?≥?<, 是(-∞,+∞)上的增函数,那么a 的取值范围是 (A )(1,+∞) (B )(-∞,3) (C)?? ????3,53 (D)(1,3) 10.如果函数y 2(31)(0x x a a a a =-->且1)a ≠在区间[0,)+∞上是增函数,那么实数a 的取值范围是 (A )2(0,]3 (B ) (C ) (D )3[,)2+∞ 11.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设 63(),(),52a f b f ==5 (),2c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 12.设()2212 (3) 2(2),2log (1)2,2x t t x f x x x -+?+的解集为( ). A .(1,+∞) B .(2,+∞) C .(1,2) (2,+∞) D .(1,2] 二.填空题 13.设,0.(),0. x e x g x lnx x ?≤=?>?则1(())2g g =__________. 14.已知函数()() b x f x -=2lg (b 为常数),若[)+∞∈,1x 时,()0 ≥x f 恒成立,则b 的取值范围是___________. 15.已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f ( 2 1 )

相关文档
最新文档