宜兴抽水蓄能电站设计特点

宜兴抽水蓄能电站设计特点
宜兴抽水蓄能电站设计特点

宜兴抽水蓄能电站设计特点

陈顺义 姜长飞 时雷鸣

(中国水电顾问集团华东勘测设计研究院杭州 310014)

1 工程概况

宜兴抽水蓄能电站位于江苏省宜兴市西南郊约10km的铜官山区,距上海、无锡、常州分别为200km、75km和71km。电站装机容量4×250MW,电站建成后,以2回500kV出线接入岷珠变,在电网中承担调峰、填谷、调频、调相和事故备用等任务。电站主要由上水库、下水库、输水系统、地下厂房洞室群和地面开关站等组成。

上水库位于铜官山主峰东北侧,利用沟源坳地挖填形成,集水面积0.21km2。上水库库盆采用全库盆钢筋混凝土面板防渗,主坝采用钢筋混凝土面板混合堆石坝,最大坝高75m,坝顶长494.9m,坝顶高程474.2m;副坝采用碾压混凝土重力坝,最大坝高34.9m,坝顶长216m,坝顶高程474.2m;上水库总库容535.70万m3,有效库容510.75万m3,正常蓄水位471.5m,死水位428.6m。

下水库位于铜官山东北山麓,利用原会坞水库所在冲沟,在原大坝基础上加高改建而成,集水面积 1.87km2,来水量不足,另设有下水库补水工程。下水库大坝采用粘土心墙堆石坝,最大坝高50.4m,坝顶长483m,坝顶高程83.4m;下水库总库容577.35万m3,有效库容526.70万m3,正常蓄水位78.9m,死水位57.0m。

输水系统设置在上下水库之间的山体内,输水系统总长度(包括上、下水库进/出水口)为3082.33~3061.0m,由上游引水系统和下游尾水系统组成。引水隧洞(包括上水库进/出水口)长1242.12~1153.47m,洞径为 6.0~2.4m,除上水库进/出水口段采用钢筋混凝土衬砌外,其余均采用钢板衬砌,引水岔管采用对称Y形月牙肋钢岔管。尾水隧洞(包括下水库进/出水口)长1840.21~ 1907.68m,洞径为5.0~7.2m,其中机组尾水管下游至尾水闸门井中心线下游28.5m段采用钢板衬砌,其余采用钢筋混凝土衬砌,尾水岔管采用卜型钢筋混凝土岔管。尾水调压室布置在尾水岔管下游,采用阻抗式带上室结构型式,调压室大井直径为10.0m。

地下厂房洞室群位于输水系统中部,埋深310~370m。主副厂房洞(包括安装场)开挖尺寸为155.3m×22.0m×52.4m(长×宽×高),岩梁以上开挖跨度为23.5m;主变洞开挖尺寸为134.65m×17.5m×20.7m(27.5m)(长×宽×高);尾闸洞开挖尺寸为111.0m×8.0m×19.05m(长×宽×高)。开关站位于地下厂房洞室北部约500m 的山坡上,建基面高程195m,开挖平面尺寸130m×37m(长×宽),500kV高压电缆通过出线斜井引至地面开关站GIS室。

2005年12月,概算重编审定的工程总投资为46.39亿元,静态总投资为39.79亿元。

宜兴抽水蓄能电站由华东勘测设计研究院(以下简称我院)和上海勘测设计研究院负责勘测设计,勘测工作由我院承担,前期设计工作由上海院承担;从招标阶段开始,由我院为设计单位牵头方,负责电站地下工程及机电工程设计;上海勘测设计研究院负责上水库和下水库及进/出水口的设计工作。本电站主体工程于2003年7月31日正式开工,2008年4月30日1号机组投入商业运行,同年12月全部机组投入运行。

2 工程技术特点

2.1 上水库

上水库主坝选用钢筋混凝土面板混合堆石坝坝型,即钢筋混凝土面板坝加下游重力挡墙,挡墙最大高度45.9m,悬臂段最大高度25.0m,挡墙顶长347.75m,挡墙基础布置钢筋混凝土抗剪桩和预应力锚索;上水库主坝坝轴线下游135.5m处为混凝土衡重式重力挡墙断面,重力挡墙以上至上游坝面为混凝土面板堆石坝断面。副坝采用碾压混凝土重力坝。上水库采用钢筋混凝土面板全库盆防渗。

根据世界银行特咨团第三次咨询报告建议,鉴于上水库主坝下游陡倾斜坝基特殊性,设置“增模区”,对减少下游坝坡的不均匀沉降很有必要,是防止面板结构性开裂的重要措施。在主坝填筑设计中采取了下列措施:将主堆石填筑明确分为高程426.5m以下和以上两部分,高程426.5m以下的主堆石Ⅱ区为增模区,,主坝筑坝材料全部采用库盆开挖料。

2.2 下水库

下水库大坝采用粘土心墙堆石坝,平面上呈折线型,左坝头折向上游,最大坝高50.4m。根据三维有限元应力应变分析成果,大坝粘土心墙存在拱效应。施工过程中将粘土料含砾量放宽到平均不大于30%,个别点不大于40%。使用砂石料加工厂生产的砂料作为粘土心墙反滤料,节省可观的工程投资。

2.3 地下厂房

地下厂房围岩为中~厚层岩屑砂岩夹薄层泥质粉砂岩,节理较为发育,顶拱与边墙部位Ⅲ类围岩分别占59%与75%,其余为Ⅳ类围岩,地下水丰富,断层构造带发育,为保证地下洞室的稳定,支护设计采用了喷钢纤维混凝土、锚杆、钢筋拱肋、预应力锚索等多种支护手段,开创了国内复杂工程地质条件和水文地质条件下兴建大型地下工程的成功范例,得到世界银行特别咨询团的高度评价。

地下厂房内安装两台250t的桥机,主机段采用常规岩壁吊车梁,安装场段由于围岩较差(IV~V类)结合边墙支护设计采用壁式牛腿结构,为保证岩梁安全裕度及耐久性,主机段岩梁下部结合防潮墙构造柱布置设置支撑柱,支撑在主厂房上下游实体混凝土边墙上。

地下洞室群位于地下水位以下,为减少施工和运行期厂房主要洞室的渗水量,保证工程安全,设置了四层厂区排水廊道:厂顶灌浆兼排水廊道、上层排水廊道、中层及下层排水廊道,所有渗水汇入渗漏集水井内,最后采用泵抽排至下水库。

2.4 输水系统

输水系统采用二洞四机布置,总长度为3082.33~3061.0m。引水系统全部采用全洞段钢板衬砌,引水岔管采用对称Y形月牙肋钢岔管。尾水系统中的尾水支管在靠近厂房处的113m段,也采用钢板衬砌,尾水岔管采用卜型钢筋混凝土岔管。上库闸门井断面扩大兼作上游调压室,尾水调压室采用阻抗式带上室结构型式。

2.5 机电设备

电站装设4台250MW可逆式蓄能机组,以两回500kV出线接入华东电网。机组主变压器组合方式为联合单元接线,500kV侧的电气主接线为内桥接线。采用地面户内500kVGIS开关站,500kV 高压引出线采用XLPE电缆斜洞引出。

电站由华东网调、江苏中调进行调度,设有计算机监控系统。华东网调、江苏中调的计算机监控系统对本电站进行控制和运行信息交换,电站按“无人值班,少人值守”的原则设计。

机组的运行工况主要包括:发电、发电调相、抽水、抽水调相、进相和静止6种。水泵工况启动以静止变频器(SFC)启动为主,背靠背启动为备用。

电站上库无天然来水,通过外加泵向上水库充水,首机启动方式采用水轮机工况起动。完成了必要的空载调试项目后,以水泵工况启动,完成后序调试项目。

电站主要机电设备利用世界银行贷款通过国际竞争性招标采购,主机设备由GE Canada Hydro 联营体供货,主变由Siemens AG供货,500kVGIS由ABB供货,500kV电缆由JPS供货。

3 工程设计特点

3.1 工程设计优化

在招标、施工图设计阶段,作为设计牵头方,我院根据可研审查意见、评估咨询意见和世界银行特咨团咨询意见,综合我院抽水蓄能电站勘测设计经验,对工程设计进行了一系列设计优化工作。实践证明,这些设计优化工作对工程顺利建设和投资控制起到了重要作用。

3.1.1 下水库进/出水口布置优化

下水库进/出水口原设计布置在舌形山脊中部,洞脸开挖边坡高达125m。招标设计阶段进行了高边坡方案与下库进/出水口外移200m方案的比较,最终采用下库进/出水口外移200m方案,外移后下进/出水口正面边坡高约50m,边坡高度降低了75m,地质条件也有所改善,避开了较大断层F110。

3.1.2输水系统优化设计

(1)引水钢岔管位置优化:由于引水隧洞采用全洞段钢衬,不存在高压管道内水向厂房渗漏的问题,设计将引水钢岔管位置向下游调整约40m,以缩短高压支管的长度,减少工程投资,经水力学过渡过程计算分析,两台机组间水力干扰较小。

(2)尾水隧洞洞距优化:经方案比较,将两条尾水隧洞轴线距离从51.8m缩小为35m,使两个下水库进/出水口间距减小16.8m,下水库进/出水口部位的明挖范围减小,对高边坡的开挖稳定较有利,检修闸门井平台与拦污栅平台之间的工作桥均减短了16.8m,工作桥的安全性和经济性也得到提高;另外,避开了F14断层对尾水调压室的高边墙稳定的影响。

(3)尾水钢衬范围优化:为避免尾水隧洞内水向尾水事故闸门洞渗漏,保护尾水事故闸门洞内的液压启闭设备,改善工作环境,将尾水钢衬向下游延伸至尾水事故闸门洞中心线下游28.5m处,与尾水事故闸门洞下游侧排水廊道及帷幕灌浆形成了一道阻水防线。

3.1.3 厂房布置和支护形式优化设计

(1)安装场位置和中控楼位置的调整:针对地下厂房左端(北侧)存在规模较大的F204断层、右端(南侧)存在F220断层及其一定范围的影响带的地质条件,将安装场由中部移至右端(南端)布置,以减小右端墙的高度,减少F220断层下盘及影响带对4号机厂房高边墙的不利影响。将中控室从副厂房移至洞外,缩短了厂房的长度,有利于厂房洞室围岩的稳定,并改善运行人员的工作环境。

(2)吊车梁结构形式的优化:地下厂房内的吊车梁经综合论证和比较后采用岩壁吊车梁方案,安装场部位由于地质条件较差采用常规的梁柱式吊车梁结构。使岩壁吊车梁可提前投入使用,有利于保障施工工期。

(3)支护形式的优化设计:根据世行特咨团咨询意见,并参考国内外已建工程的成功经验,通过对地下厂房洞室围岩的有限元分析,地下洞室群采用喷锚支护为主的综合支护结构形式取代现浇钢筋混凝土顶拱衬砌。有利于保障施工期围岩稳定和施工安全,缩短工期。

3.1.4 地面开关站位置优化

将原布置在厂房顶部地面(310m高程)的地面开关站移到位于厂房北侧约500m处的山坡(195m 高程)上。由原竖井出线改为斜洞出线,使开关站边坡高度大为减少,降低了工程潜在风险,节约投资约1000万元。

3.1.5 电气主接线优化设计

结合电站枢纽的总体布置及接入变电所站址的选定情况,对500kV侧电气主接线进行了研究和比选,最终确定本电站500kV侧的电气主接线为内桥接线。

3.1.6 水轮机工况额定水头的优化

可研阶段确定电站机组额定水头为353m。通过论证,从提高机组运行稳定性以及水泵水轮机水力设计合理性角度出发,将机组额定水头提高了10m,机组的运行稳定性将有所改善,且电动机的最大入力降低8%左右,从而可降低发电电动机造价约1000万元。

3.1.7 电站调压方式的优化研究

根据电站接入系统设计和调压计算以及从提高电站机电设备可靠性考虑,我院进行了专题研究,取消主变压器有载调压方案,采用发电电动机机端调压的方式。

3.1.8 机电辅助设备和系统优化设计

对部分辅助设备系统进行了优化设计,以简化控制程序,提高系统可靠性和运行灵活性,节省投资。具体有:

(1)技术供水系统由由2台机组分两组集中供水方案改为单元供水,每台机一主一备,增加了供水可靠性,简化了控制程序。

(2)检修排水系统根据不同排水量要求,设置了大、小两种容量的水泵,在排除闸门漏水时可减小厂用电,便于控制和操作。

(3)渗漏排水系统从二个集水井改为一个,布置位置也从主厂房移到尾闸洞,增加了厂房安全性。

(4)从中压压气系统减压作为吹扫和主轴密封用气源,提高供气可靠性,同时节省一台检修空压机。

(5)本电站地质条件较差,为减小桥机轮压对岩臂吊车量的影响,主厂房桥机由250+250/50t双小车桥机改为单小车桥机,减小桥机轮压,同时可减少发电机层支柱,以节约工期。

(6)安装场下中间透平油罐室移入施工支洞,减少了土建开挖量。

(7)本工程的地下厂房排水不具备自流排水条件,增设柴油发电机组,确保地下厂房运行安全,同时可满足本电站作为系统黑起动电源点的功能。

3.2 充分的技术论证、试验研究和技术创新

在进行本电站主体工程和机电设备招标设计之前以及过程中,对关键工程技术课题进行了专题论证和科学试验研究。我院编制了一系列专题论证报告,涉及重大设计变更的项目,均按程序请原可研审查单位审查批准。根据本工程的技术特点,我院有针对性地编制了科研试验计划并编写了科研试验大纲和技术要求,通过有关院校和科研试验单位的试验研究以及对成果进行专家评审,为工程招标和施工图设计打下良好基础,为重大技术课题的技术处理措施提供了科学依据和技术支持。这些技术专题论证和科学试验研究,为本工程的顺利实施提供了可靠的技术保障。

在此基础上,我们对工程设计进行了多项创新,如复杂地质条件下的地下厂房支护设计,复合型的岩壁吊车梁设计,埋藏式钢岔管,柔性聚合物砂浆防渗衬砌结构的新型防渗型式,以及机械电气方面的新技术和新型式的选用,降低接地电阻至0.48欧姆的简易降阻措施等等,为工程设计增添了许多亮点。

4 完善的技术服务体系

根据我院"以促进人与自然和谐发展为使命,负责守信,优质高效,以先进的技术和完善的服务,持续满足顾客和社会的期望"的管理方针和程序作业文件的要求,我院建立了项目管理部和设代处常设机构,配备全方位的技术后勤人员,为工程建设提供“负责、高效、最好”的服务。

4.1 健全的项目管理体系和责任制

我院在宜兴工程的设计过程中,实行以“以顾客和市场为中心,以专业保障和职能保障为基础,以质量、环境、职业健康安全为核心”的项目经理负责制,为电站建设提供优质、高效的勘测、设计、咨询服务。本工程勘测、设计进度完全满足工程进度的要求,施工图设计于2006年底提交完毕,比机组投产时间提前1年。施工地质工作与工程建设同步进行,土建主体工程完成时做到外业到位、内业资料整编同步完成。

4.2 及时到位的施工地质服务

施工地质人员常驻宜兴工程现场并随时跟进现场开挖施工进度,及时编录、测绘施工揭露的地质现象,检验、修正前期工程地质勘察资料和评价结论,进行必要的取样与试验,及时提出对不良工程地质问题的处理意见和建议,并根据勘测和现场测绘结果以及我院的工程经验进行地质观测与预报。同时,还参加地基、围岩、工程边坡及其它隐蔽工程的地质评价与验收工作。及时到位的施工地质服务保证了设计工程措施的准确性和针对性,对控制工程地质风险和工程投资起到了关键作用。

4.3 强有力的技术支撑和技术咨询

院技术委员会为本工程勘察设计提供全方位技术支撑,根据项目策划要求提供技术决策和重大技术问题咨询,同时在主体工程开工后每年安排1~2次现场巡视工作,解决现场疑难问题,为项目设计和建设出谋划策。

4.4 负责、高效的设代服务

设代处以合理的人力资源,提供负责、高效的设代服务,进行专业图纸检查和现场巡视,以便先期发现问题和解决问题,参加设计图纸会审和技术交底,及时跟踪施工质量,及时提供设计修改和设计变更文件,提供度汛和施工安全措施要求,参加工程验收和现场施工协调工作,为项目业主和监理及时决策给予技术支撑。确保项目负责人和各主要专业现场设代人员在工地不间断,在工程关键节点临时加大现场服务力量。

4.5 环境保护和水土保持

宜兴工程地处宜兴西南郊铜官山区,紧邻宜兴市环境科学工业园区,是江苏省省级水土流失重点监督区,有非常严格的环境保护和水土保持要求。我院秉承人与自然和谐发展的宗旨,以服务业主、建设绿色电站为目标,根据环境保护和水土保持实施方案和相关主管部门的审查意见,进行环境保护和水土保持监测评估,同期进行水土保持设施设计和复绿设计,使工程水土保持复绿工程和主体工程同步实施,条件成熟一处实施一处,在首台机组发电的同时,部分工程设施已成为新的景观。

5 结语

宜兴抽水蓄能电站于2008年实现“一年四投”,比原计划提前9个月,在电网中正式承担起调峰、填谷、调相和事故备用。我院在复杂地质条件区域完成的工程勘察、设计和现场服务为宜兴电站的成功投运和工程完建奠定了良好的基础。我院将以负责、高效、最好的工作精神,继续为工程完建和竣工验收提供优质服务。

当前抽水蓄能电站建设的认识与建议

当前抽水蓄能电站建设的认识与建议 一、抽水蓄能电站的作用 抽水蓄能电站是电力系统中具有调峰、填谷、调频、调相和事故备用等多种功能的特殊电源,有时也称二次电源,其运行灵活、反应快速。承担着电网调节和保障电力系统稳定运行重要任务。 二、抽水蓄能电站发展简况 世界首座抽水蓄能电站建设至今有一百多年,较具规模的开发则始于20世纪50年代,1960年全世界抽水蓄能电站装机容量342万千瓦,占总装机容量的0.62%。至1990年,全世界抽水蓄能装机容量增至8688万千瓦,已占总装机容量的3.15%,此期间的抽水蓄能电站建设多在欧美及日本发达国家进行。当前世界抽水蓄能占总装机比例平均在3%左右,部分发达国家的抽水蓄能机组占总装机的比重已超过10%,其中法国占18.7%,奥地利占16.2%,意大利占11%,日本也达到10%。 我国抽水蓄能电站建设起步较晚,但发展很快。截至2008年,我国已建成抽水蓄能电站20座,在建的11座,装机容量达到1091万千瓦,占全国总装机容量的1.35%。在建的11座抽水蓄能电站2010年左右陆续投入运行后,我国抽

蓄电站装机容量将达2171万千瓦,规模上位居世界第三。占比仍达不到3%,低于世界平均水平。 三、我国至2020年抽水蓄能电站发展预测 抽水蓄能电站的发展受诸多因素影响,是经济发展到一定水平的产物。随着可再生能源如核电、风电、太阳能发电的快速发展,电力负荷的峰谷差也将迅速增加,具有良好调峰填谷性能的抽水蓄能电站尚存广阔的发展空间。据国家电网公司预测,至2020年,我国新能源发电装机达2.9亿千瓦,约占总装机的17%,其中核电8600万千瓦,风电1.5亿千瓦,太阳能2000万千瓦,生物质能3000万千瓦。至2008年底,新能源总装机还不到2000万千瓦,仅占总装机的2.2%左右,新能源建设任重道远。 在风电、核电等清洁能源高速发展的同时,也对我国电网的系统安全、稳定运行提出了更高要求。我国核电一般为带基荷运行,不参与调峰,风电具有随机性、间歇性和反调峰性等特点。电力系统中的核电、风电、太阳能的并网规模较大时,电网系统的调峰压力大大增加,甚至会影响系统的安全稳定运行。我国目前的电力系统调峰仍主要依靠煤电,由于受煤电深度调峰能力和经济性的限制,系统调峰手段非常有限。在相当长时期内,在电力调峰技术重大突破前,抽水蓄能电站是解决电网调峰、保障系统安全稳定的主要有效手段之一。抽水蓄能电站是电力系统最可靠、最经济、寿命

我国抽水蓄能电站概况简介

目录 宝泉抽水蓄能电站 (3) 概况 (3) 工程建设 (3) 湖北白莲河抽水蓄能电站 (3) 简介 (3) 枢纽布置 (4) 丹东蒲石河抽水蓄能电站 (4) 电站概况 (4) 电站枢纽 (5) 上下水库 (5) 响水涧蓄能电站 (5) 广州抽水蓄能电站 (6) 简介 (6) 枢纽布置 (6) 水泵水轮机特性 (7) 工程相关信息 (7) 惠州抽水蓄能电站 (9) 电站概况 (9) 工程意义 (9) 枢纽布置及水工建筑物 (10) 机组参数 (10) 天荒坪抽水蓄能电站 (11) 简介 (11) 构成 (12) 桐柏抽水蓄能电站 (12) 河北张河湾抽水蓄能电站 (13) 简介 (13) 工程概况 (13) 清远抽水蓄能电站 (14) 概述 (14) 效益 (14) 仙居抽水蓄能电站 (15) 概述 (15) 地理位置 (15) 装机容量 (15) 功能 (15) 开工建设 (15) 泰安抽水蓄能电站 (16) 电站概述 (16) 上水库 (16) 下水库 (16) 电站建设 (17)

电站效益 (17) 阳江抽水蓄能电站 (17) 概述 (17) 枢纽 (18) 建设 (18)

宝泉抽水蓄能电站 概况 宝泉抽水蓄能站位于河南省辉县市薄壁镇大王庙以上2.4km的峪河上。电站与新乡市、焦作市和郑州市的直线距离分别为45km、30km和80km,对外交通十分便利。电站装机容量120万kW,年发电量20.10亿kW·h,年抽水耗电量26.42亿kW·h,综合效率0.76。电站建成后,在电网中主要担任调峰、填谷任务,同时还兼有事故备用、调频、调相等功能。 工程建设 电站的主要建筑物包括上下水库大坝、引水道、地下厂房洞群系统及地面开关站等。 上水库位于宝泉水库峪河左岸支流东沟内,距宝泉村约1km,引水道进/出水口位于水库左岸,距大坝左坝头约200m。 下水库比较了峡口下库方案和宝泉下库方案,选定了宝泉水库作为宝泉抽水蓄能电站的下水库,下水库进/出水口位于宝泉水库左岸,距宝泉水库大坝约1km。输水道在上水库进/出水口后转了一个35.8゜的角度后直达下水库。 上水库档水建筑物为混凝土面板堆石坝,下水库是利用峪河上已建成的宝泉水库,但要对大坝加高、加固。原宝泉水库大坝为浆砌石重力坝。档水坝段坝顶高程252.1m,溢流堰堰顶高程244.0m,总库容4458万m,工程等别为三等,规模为中型,大坝按3级建筑物设计。加高后堰顶高程为257.5m,堰顶上再加设2.5m橡胶坝。大坝加高后基本维持原总体布置不变,即坝轴线不变,坝顶高程268.0m,坝顶长为535.5m,其中:左岸挡水坝坝长277.0m,右岸档水坝段长197.5m。其工程等别提高为一等,规模为大(1)型,大坝按一级建筑物设计。 宝泉抽水蓄能电站引水道主洞直径为 6.5m,上游调压井前、后段及尾水段洞径均为6.5m,岔管段洞径为4.5m;上水库正常蓄水位为788.6m,下水库死水位220.0m,最大毛水头为568.6m;上水库死水位为758.0m,下水库正常蓄水位为260.0m,电站最小毛水头为498m;上水库总库容为827万m,发电库容620万m;下水库总库容6750万m,灌溉兴利库容3575万m,扩大兴利库容515万m;防洪标准为100年一遇洪水设计,1000年一遇洪水校核,最大泄量分别为3530m3/s和6760m3/s。 湖北白莲河抽水蓄能电站 简介 湖北白莲河抽水蓄能电站工程位于黄冈市罗田县境内,离武汉市公里距离为

抽水蓄能电站建设项目设计管理研究

抽水蓄能电站建设项目设计管理研究 发表时间:2018-08-13T14:31:13.530Z 来源:《基层建设》2018年第20期作者:张宁宁 [导读] 摘要:抽水蓄能电站工程是重大基础设施"一般由上水库'下水库'输水系统'地下厂房洞室群'开关站'现场办公楼等部分组成"占地范围广且构筑物分散,采取必要措施提高治安防范能力'保障电站设施安全运行'保护人员生命财产安全"是每个电站建设与运行管理单位的重要职责。 中国电建集团北京勘测设计研究院有限公司北京 100024 摘要:抽水蓄能电站工程是重大基础设施"一般由上水库'下水库'输水系统'地下厂房洞室群'开关站'现场办公楼等部分组成"占地范围广且构筑物分散,采取必要措施提高治安防范能力'保障电站设施安全运行'保护人员生命财产安全"是每个电站建设与运行管理单位的重要职责。尤其近年来"随着国际形势的变化"全世界反恐'安全防范形势日益严峻"如何全面'高效'经济的保护防范对象的安全"变得日益重要。本文将分析抽水蓄能电站建设项目设计管理。 关键词:抽水蓄能电站;发展定位;前景展望;规划 1抽水蓄能电站设计管理框架构建 在抽水蓄能电站工程建设的全过程内,按时间划分可将工程各阶段分为前期、基建期和生产运维期,其中前期包括决策立项、预可研、可研、项目核准,基建期涵盖了招标设计、施工图设计、施工、竣工验收阶段,生产运维期则是从投产使用一直延续到工程报废。在工程的全过程内,设计承包商主要参与工程前期和基建期,而业主则贯穿了工程的整个过程,从前期决策立项到工程报废。随着工程所处的建设阶段不同,业主的主管部门也不同,工程前期业主设计管理的主管部门是计划部门、基建期的主管部门是工程部门,生产运维期主管部门是运维检修部门。在项目前期向基建期、基建期向生产运维期的过渡时期,主管部门交接时业主内部会涉及到管理界面。为了保持项目进程的衔接良好,在招标设计阶段,基建人员需要提前介入,基建期生产运维人员也要提前介入。基建人员和生产运维人员的提前介入有利于及早从工程建设、生产运维的需求上提出他们的设计要求,使设计成果能够同时满足基建和生产运维的需要,实现设计在全过程周期内综合设计。同时相关人员的提前介入为项目顺利过渡到下一时期,实现主管部门的无缝衔接奠定了管理基础。可构建出涵盖工程前期、基建期、生产运维期项目全过程,参建各方(业主、设计、施工单位、各供货商)参与、界面管理、沟通管理、信息管理、评价与激励全方位多角度抽水蓄能电站业主方的设计管理理论及应用体系 2建设抽水蓄能电站的必要性 抽水蓄能电站是世界公认的可靠调峰电源,启动迅速、爬坡卸荷速度快、运行灵活可靠,既能削峰又可填谷,能很好地适应电力系统负荷变化,改善火电、核电机组运行条件,提高电网经济效益,同时也可作为调频、调相、紧急事故备用电源,提高供电可靠性。结合各电网及能源资源特点,建设一定规模的抽水蓄能电站,在满足电力增长要求的同时,可优化电源结构,缓解系统调峰矛盾,增加风电和光伏发电消纳能力,提高电力系统安全稳定性和运行经济性;配合风电、太阳能发电外送,可提高输电系统稳定性,增加新能源外送能力。 3抽水蓄能电站建设项目设计管理 3.1设计总包管理模式 设计总包管理模式,即“业主设计管理+设计总包单位”的组织机构,业主通过招标选择一家综合实为强、相关设计经验丰富的设计承包商负责整个项目的设计任务,并负责设计管理,业主仅与设计总包单位有合同关系,与设计分包单位不存在合同关系。这种模式的优点是业主可将大量设计管理工作转移给设计总包单位,不用处理众多的设计问题,只需要与设计总包单位建立联系即可;缺点是这种模式对设计承包商综合能力要求较高,符合承担大型项目综合设计任务要求的设计承包商相对较少,并且业主对设计总包单位的依赖性较强,自身管理权限被弱化的同时承担较高的风险。 3.2总体设计咨询管理模式 总体设计咨询管理模式,即“业主设计管理+总体设计咨询+专业设计群公司”的组织结构。业主与设计分包单位和总体设计咨询都有合同关系,总体设计咨询单位与设计分包单位存在协调关系,这种管理模式要求业主具备相当的设计管理能力,直接参与各专业设计承包商的合同管理;总体咨询单位主要负责就业主设计管理中存在的问题进行专业指导;专业设计承包商负责完成合同约定的设计任务。该模式下,业主设计管控能为较强,但设计管理工作任务也相对较重,同时,各专业设计承包商协调工作量较大,容易造成专业交叉、设计碰撞等问题。对于我国当前抽水蓄能电站建设项目而言,设计垄断现象较为严重,无法形成符合市场的竞争机制,以上两种设计管理模式都不能很好地约束设计承包商。为提高业主设计管理水平,增强设计承包商服务意识,提高设计成果质量,提出整合两种模式,尝试“业主设计管理、专业咨询+部分设计总包、专业设计群”的管理组织结构。这样来,一方面业主可直接管控设计承包商,并保证管理水准,另一方面部分设计管理任务由总包单位承担,可减少合同协调;同时专业设计承包商的加入,可提高各设计承包商的竞争意识,对设计承包商的服务质量有积极的促进作用。 3.3入侵报警系统组成 人侵报警系统一般由四部分组成:前端探测器、传输设备、处理/控制/管理设备和显示/记录设备。抽水蓄能电站的前端探测器可在现场办公楼、开关站、地面调压井的围墙周界设周界报警,在公共走廊、财务室、重要办公室、机房等设双鉴移动探测器,用于探测非法人侵行为,探测器将人侵信号传给报警主机。对于开关站、地面调压井等距离较远的位置,可分别配置报警主机,前端探测器和报警主机之间采用总线连接。报警主机接收信息数据后,立即传给报警灯,发出声响,并与视频进行联动。报警主机就近接人安防系统的接人交换机,利用安防局域网络,接人安防中心。所有事件通过网络上传至安防中心进行联网。安防中心应能远程控制报警主机以收取报警灯发出的信号,并迅速识别其在电子地图上的对应位置,分析情况,与视频联动进行视频复核,做出相应反应。 3.4设计变更协调 抽水蓄能电站的建设过程中很难避免设计变更,为了规范设计变更的流程,业主应建立一套完整规范的工程设计变更审批流程;设计承包商采用发函形式提出重大设计变更时,经研究论证和设计承包商内部审查通过后上报业主,业主内部审查通过后并经相关管理部口批复后,组织设计承包商出具设计变更文件并转发监理单位实施变更;设计承包商提出一般设计变更时,由业主组织分级审批,依据变更设计管理的审批流程进行审批,并将批复结果转发相关单位。必要时,业主应及时组织设计、监理、施工等方参与的专题会议,就变更问题进行意见交流,设计承包商按照时间要求将变更后的初步设计成果提交至业主,批准后,督促设计承包商完成设汁变更图纸的供图、设计

响水涧抽水蓄能电站上水库主副坝设计特点

响水涧抽水蓄能电站上水库主副坝设计特点 朱爱莉 (上海勘测设计研究院 上海 200434) [摘 要] 本文介绍响水涧抽水蓄能电站上水库主坝及南北副坝混凝土面板堆石坝的布置、坝体断面与分 区,着重介绍对前期设计阶段设计方案的优化。主坝建在向下游倾斜的基础面上,下游堆石区按主堆石区 的要求设计,并将高程135m以下的堆石体设计为增模区。南、北副坝均为跨垭口修建,对上游反渗分别 采取了不同的处理措施。 [关键词] 响水涧抽水蓄能电站上水库主副坝设计特点 响水涧抽水蓄能电站由上水库、下水库、输水系统、地下厂房、地面开关站等建筑物组成。上水库由主坝、南副坝、北副坝和库周山岭围成。正常蓄水位222.00m,死水位190.00m,总库容1748万m3,有效库容1282万m3。本电站为大(2)型二等工程。上水库主坝和副坝均按2级建筑物设计。 1 坝体设计 上水库主坝及南、北副坝均为钢筋混凝土面板堆石坝,主坝最大坝高87m(从趾板基础面计算),南、北副坝最大坝高65m和53.5m。坝顶长主坝为520m,南副坝339m,北副坝174m。主副坝坝顶高程均为225.0m,上游设1.2m高的防浪墙,坝顶宽8.0m,上游面坝坡1:1.4,下游面综合坝坡1:1.42,每隔25.0m高差设有4.0m宽马道,马道之间坝坡1:1.25。 主、副坝基础为花岗岩,受坝基地形条件所限,主坝上下游方向极不对称,从下游坝趾算起坝高达163m,为增加抗滑力,将下游陡坡建基面开挖成台阶状。南副坝在上、下游方向虽然高差不大,但形成一个以坝轴线为山脊的不对称马鞍形状,因此下游基础面同样开挖成台阶状。 考虑施工期导流排水和运行期降低水位(或放空水库),在主坝坝基设置了泄水廊道,廊道平面上位于主坝沟底,城门洞型,宽×高为2.6m×3.5m,廊道内架设一根泄水钢管,钢管内径80cm。钢管头部设闸阀室,闸阀室内设一用一备两只电动闸阀。钢管尾部设锥阀室,由于锥形阀出流时水流呈减压分散状态,因此泄水管下游不需要特殊的消能措施。考虑到钢管出口紧邻下游坝脚,下泄水流对坝脚会有冲刷,因此廊道末端设置消力池及尾水渠,将水流送离坝脚以外。 主坝及南、北副坝标准断面图见图1、图2、图3。 图1 主坝标准断面图

抽水蓄能电站工程建设施工中安全风险管理体系研究

抽水蓄能电站工程建设施工中安全风险管理体系研究 发表时间:2019-11-27T10:15:47.357Z 来源:《基层建设》2019年第24期作者:杨溢 [导读] 摘要:抽水蓄能电站的主要作用是调峰填谷,为我国电源长期发展、改善电能质量提供了帮助,有利于优化调整电源结构,使得跨区送电具有安全性。 湖南黑麋峰抽水蓄能有限公司 摘要:抽水蓄能电站的主要作用是调峰填谷,为我国电源长期发展、改善电能质量提供了帮助,有利于优化调整电源结构,使得跨区送电具有安全性。因此,必须要认识到抽水蓄能电站工程建设施工的重要性,把握施工中可能存在的安全风险,并建立安全管理体系。 关键字:抽水蓄能电站;工程建设施工;安全风险管理 近年来,经济发展使得社会用电负荷快速增长,所以必须要进行能源缓解,大力发展抽水蓄能电站。目前我国抽水蓄能电站建设进入高峰期,但是在抽水蓄能电站的建设施工过程中,必须要重视其中的风险,做好安全监管,保证施工质量。 一、抽水蓄能电站工程建设施工中的安全风险 抽水蓄能电站工程建设施工中有下库工程、引水工程、地下厂房工程和上水库工程四个工程。在评估施工建设的安全性时必须要结合这四个工程开展,与其工程施工特点相结合。在进行施工安全风险辨识时,施工依据就是工程施工的整体规划和施工图纸,施工单位还要与历史资料和以往的施工经验结合起来,这样对危险源的划分才更加科学,需要与危险源的审查结果和相应的程度评价进行,并对相应的风险识别结果表进行编制。在实际施工时,施工单位需要落实安全风险管理工作,结合抽水蓄能水电站建设的独特属性制定生产工艺条件的复杂程度、设备本质的安全情况、施工设备的使用情况等安全管理措施,所以必须要在施工建设工作开始前进行[1]。同时施工单位要重点管理施工人员的技术能力、检测事故的技术能力和施工现场的整体环境,不断细化安全施工管理工作,提高工作中施工安全风险管理的针对性。 二、抽水蓄能电站工程建设施工中安全风险管理体系 (一)强化业主管理职能 目前我国蓄能电站工程中的建设管理体系的核心是“项目法人制”,施工过程中工程建设周期长、涉及面广、不确定因素多、风险大,所以抽水蓄能电站必须要进行目标定位,业主必须要组织落实政策处理,做好资金的筹措、工程与采购招标等工作。业主也要对包括质量、安全和环境管理体系的导入、施工组织总设计的编制、施工总平面布置的规划与控制等在内的项目总体管理策划进行负责。因此,要不断强化工程建设过程中业主对项目的计划、组织、管理和协调的宏观控制职能,发挥业主在工程实施全过程中的安全文明施工控制作用,保证抽水蓄能电站工程的安全文明施工[2]。 (二)健全管理体系 在抽水蓄能电站项目开工前,结合工程特点和管理重点,要促进三合一项目管理体系的形成,将导入质量、职业健康安全和环境管理体系纳入进来,并制定统一的抽水蓄能电站工程质量安全管理计划。企业也要做好组织评审,定期进行体系内外部的评审,评价分析工程施工中的危险源和环境因素,就每一个影响因素发生的频率和危险程度来制定管理措施。同时也要制定相应的管理方案,进行重大危险源、重大质量和环境影响因素的管理,做好技术、管理、责任人、完成时间和费用等内容的统筹,并在完成管理方案后进行效果评审。对于超标准洪水、火灾等不可预见的危险源,要提前制定应急预案,通过组织演习来对其有效性和适用性进行检验。在工程的进展和管理方案评审结案过程中,需要同时辨识、评价和管理后续施工项目的危险源和环境影响因素。在标准化管理过程中,也要强化传统的安全管理,注重其分包管理,并建立安全资格预审和年检制度,对于不合格承包商要拒绝其进场。而且也要实行安全一票否决制,如果施工作业出现严重违章,且不听劝告,就要责令其整改完毕后复工,在年度安全文明施工考核范围中也要进行重点考察,这样才可以发挥安全生产的重要性和安全监察部门的作用。施工过程中也要规范其安全管理行为,实时动态监控重要的工程现场或危险的工作面,安装多个工业电视监控装置。而且安全检查中进行整改和复检闭环很有必要,工程的安全施工离不开规范化和制度化的安全管理活动[3]。区域安全管理也有利于提高其安全监察的效率,要结合施工区域进行施工现场划分,指定每个区域的负责单位、部门和安监责任人,为区域内的安全工作的日常检查提供保障。在统一区域检查和管理性检查的基础上,安全绩效的过程监测也得到了强化。 (三)进行安全目标分解 抽水蓄能电站工程建设施工中存在很多危险源和不确定的因素,安全管理受到水电承包商的综合经济实力和管理水平参差不齐的影响难度较大。因此,要根据其工程施工阶段、年度和单位分解成量化的控制目标来确定其危险源和环境因素。这一过程中需要实施安全管理的风险抵押金制度,通过安全管理风险抵押合同、爆炸物品管理责任状和电力承发包工程安全管理等协议的签订来确定责任。工程的建设施工考核要设立安全文明施工奖励基金,并结合设计、监理和承包商的年度安全管理情况和目标指标完成情况进行,提高其积极性。更重要的是强化参建各方的安全管理意识,提前制定统一的安全设施标准,这样安全技术措施才可以更好的落实。施工过程中要进行安全检查、专业性检查、日常例行安全巡查和隐患的整改闭环等手段的规范,并提前制定重大危险源的管理方案和应急预案,为安全总体目标的实现提供保障。 (四)转变观念和意识 抽水蓄能电站工程建设施工中要改变传统的观念和意识,在招标文件中就要对安全目标、安全管理制度、重大的危险因素及其管理要求、卫生设施要求和标准、生产生活临建标准等详细要求进行明确,增加安全文明施工的评分权重,保证承包商的管理层也重视安全文明施工管理要求。在承包商进点后,全体人员的安全文明管理交底工作需要由管理方安监工程师进行,班组长以上的施工人员到工程学习取经进行分批分阶段地组织,使得施工现场整齐划一,真正改变水电人的管理观念。同时也要定期举办专业技能,将工程施工、安全和环保专家邀请到工地就危险因素的控制与防范进行讲解,让施工人员在事故案例分析中增加自我保护意识,不断强化全员的安全防范意识和环境保护意识。目前抽水蓄能电站工程中的承包商安监力量比较薄弱,电力培训中心就要积极开展相关安全员培训,在壮大安监队伍的基础上,提高其安监水平。通过安全风险管理体系构建来创建安全文明施工样板单位工程,促进项目内部参建单位之间良性竞争环境的形成。 结语 抽水蓄能电站工程建设施工中必须要加强施工现场施工建设环节的管理,特别是电站建设的安全风险管理,因为抽水蓄能电站具有特殊性。因此,要结合抽水蓄能电站工程建设施工中的安全风险进行探索,通过强化业主管理职能,健全管理体系,进行安全目标分解,转

1福建省高峰抽水蓄能电站简介

1.福建省高峰抽水蓄能电站简介 1.1 前言 高峰季调节抽水蓄能电站位于福建省邵武市晒口镇附近,距邵武市区约15km,距220kV固县变约12km。电站装机容量200MW,下水库拟在富屯溪干流安家渡村下游建低堰形成,正常蓄水位174.0m,形成调节库容137.6万m3,上水库拟利用高峰农场所在的两相邻高山盆地筑坝连通形成,水库正常蓄水位500m,调节库容为13896万m3。 根据水规总院的安排,在福建省计委、电力局和地方政府的大力支持下,华东勘测设计研究院于1991年开始进行福建省抽水蓄能电站普查工作,并于1993年2月提出《福建省抽水蓄能电站普查报告》,当时针对福建省水电比重大、调节性能差、枯水期出力不足及丰水期弃水电量大等特点,选择并推荐了邵武高峰、泰宁开善、永泰梧桐等3处季调节抽水蓄能电站站址,其中邵武高峰站址:①下库富屯溪截雨面积大,丰水期有充沛水量可供抽水;②上水库库容大,水头较高,电站蓄能电量较多;③下游有已建的千岭、沙溪口、水口等梯级水电站,高峰电站的建成相当于为这些电站增加了一个库容较大的上游龙头水库,减少了这些电站的汛期弃水,增加了这些电站的保证出力和枯水期发电量。由于具有以上等优点,高峰电站成为季调节抽水蓄能电站的首选站址。1993年9月福建省电力局与华东勘测设计研究院共同对高峰站址进行了复勘,于1993年12月提出的《福建省抽水蓄能电站复勘报告》中选择推荐高峰季调节抽水蓄能电站站址为进一步

工作研究对象。 1996年5月,福建省电力局委托我院开展高峰抽水蓄能电站的专题研究工作,重点论证福建省建设季调节抽水蓄能电站的必要性及高峰电站的建设规模和效益,进行初步的工程枢纽布置、投资估算及初步经济评价。我院在承接任务后,即组织专业人员进行现场查勘和调研收资工作,并委托福建省测绘局航测大队完成工程区25km2的1/5000航测地形图,地质专业于1996年9月进行了地质查勘外业工作,水库专业于1 996年1 0月进行了水库调查外业工作。同时设计内业方面加紧做了大量工作,在福建省电力局计划处,水调中心和邵武市地方有关部门的大力帮助和密切配合下,已完成专题研究阶段各项工作并正提出专题研究报告。现将本工程主要情况简述如下,仅供参考。 1.2工程建设必要性 1.2.1 电网及水电弃水现状 截止1995年底,福建省全网水火电总装机容量6358MW,其中水电装机容量3881Mw,占全网总装机容量的61%,火电装机容量2477Mw,占全网总装机容量的39%。福建省目前电源结构不合理,全网水电中,装机100MW及以上的只有水口、沙溪口、古田、安砂、池潭等5处,其余多为25MW以下的小水电。现有水电调节性能差,除古田具有年调节性能、池潭具有不完全年调节、安砂具有季调节、水口具有不完全季调节性能外,其余大多为调节性能差的或径流式水电站,电量受天制约因素大,丰水期、枯水期出力严重不均,在目前

抽水蓄能电站技术概况简介概要

抽水蓄能电站技术概况简介 安徽省电力试验研究所倪安华 1989年7月 1抽蓄能电站的作用 抽水蓄能电站是水力发电站的一种特殊形式。它兼具有发电及蓄能功能。抽水蓄能电站有上、下两个水库(池)。当上库的水流向下库时,就如常规的水力发电站,消耗水的位能转换为电能;相反,将下库的水输到上库时就是抽水蓄能,消耗电能转换为水的位能。由于机械效率和各种损耗的原因,在同样水位差和同样水流量的条件下,抽水时所消耗的电能总 是大于发电时产生的电能。那末,建设抽水 蓄能电站的经济效益表现在哪里呢? 众所周知,随着工业化水平的发展和 人民生活用电的增加,电网用电负荷的峰谷 差愈大。图1是典型的日负荷曲线。在上午 8:00左右开始和晚上19:00左右开始为两 个高峰负荷,此期间电网的发电出力必须满 足P max的要求;晚上23:00以后为低谷负荷, 电网的发电出力又必须限制在P min。 也就是说,发电出力必须满足调峰要求。随着电网的发展,大机组在电网中的比重将增加,用高压高温高效率的大机组来调节负荷不仅在经济上是不合算的,而且对设备的安全和寿命也有影响。今后核电机组更要求带固定负荷。因此,电网调峰将更为困难。抽水蓄能电站的作用就是在低谷负荷期间吸取电网中的电能将水抽至上库,积蓄能量;而在高峰负荷期间再将上库的水发电。亦即在图l中增加了“V”部分的用电负荷,使常规机组负荷不必降到P min。而在高峰负荷时,“P”部分的负荷由抽水蓄能机组承担,使常规机组的负荷不需要升高到P max塞。V的面积必然是大于P的面积,在电能平衡上是要亏损的,:然而却减小了大机组的调峰幅度,降低了大机组由于带峰荷而引起的额外的燃料消耗,提高了大机组的利用率。从全电网来衡量经济效益是显著的。 抽水蓄能电站的综合效率一般在65—75%,这—数字包括了抽水和发电时所损耗的机械效率。然而,大火电机组利用率的提高即意味着煤耗的降低。如火电厂在30—40%酌额定工况远行时,其煤耗约比额定工况增加35%,而且低负荷远行可能要用油助燃,厂用电率也要比正常增加1—2个百分点。煤耗和厂用电的减少也可认为是在同样的能耗时发电量的增加。 此外,常规水力发电站虽然也具备调峰功能,但其发电出力往往与灌溉、防洪等矛盾。因为常规水电站的水库调度是一个综合的系统工程。而抽水蓄能电站的发电量及蓄水量是可以按日调节的,可以做到按日平衡,不影响水库的中长期调度。 综上所述,抽水蓄能电站的优越性可以归纳为以下几点: (1)对电网起到调峰作用,降低火电机组的燃料消耗、厂用电和运行费用。 (2)提高火电机组的利用率,火电装机容量可有所降低。 (3)避免水电站发电与农业的矛盾,有条件按电网要求进行调度。

抽水蓄能电站规划设计研究

抽水蓄能电站规划设计研究 摘要:对抽水蓄能电站在电力系统中具有调峰填谷的独特运行特性进行了分析, 从抽水蓄能电站的选址、关键技术的引进和抽水蓄能电站的建设与环境三方面出发,给出抽水蓄能电站科学合理的规划建议。 关键词:抽水蓄能电站规划设计关键技术环境 0 引言 近二十多年来,我国经济和社会有了快速发展,电力负荷迅速增长,峰谷差 不断加大,用户对供电的要求也越来越高。抽水蓄能电站作为我国电源结构中一 种新型电源,以其调峰填谷的独特运行特性,在电力系统中发挥着调节负荷、促 进电力系统节能和维护电网安全稳定运行的功能。抽水蓄能电站将成为水电建设 的主流。因此,科学合理的规划这一有效的、不可或缺的抽水蓄能电站势在必行。 1 抽水蓄能电站选址规划 抽水蓄能电站的运行原理是利用电力负荷低谷时的电能把水抽至上水库,将 水能转化为电能,在电力负荷高峰时期再放水至下库发电,将水能转化为电能, 它将电网负荷低谷时的多余电能转变为电网高峰时期的高价电能,从而起到电网 调峰的作用。因此,建设抽水蓄能电站的关键是选好站址。 抽水蓄能电站的站址规划是在负荷中心的周围地区寻找可能开发的站址。其 可选面不象常规水电站那样只能沿着河流寻找合适的站址,它的可选面比较宽。 一般要求上、下池之间的落差愈高愈好。选址时首先要开展普查工作,调查所给 区域内所有可开发的抽水蓄能电站站址的基本建设条件,弄清所在电网的负荷水平、负荷特性和电源结构,调峰电源的缺口,以及对调频、调相、事故备用等动 态功能的需求。通过比较从中选出建设条件较好的站址,然后进行规划阶段勘测 设计工作,通过理论推正和实际考察来确定一期开发工程的实施。针对抽水蓄能 电站的特点,大多选址是在已有水库的地方寻找山头建设上池,其中上池用于蓄水,以原有水库作为下池。部分站址也可选择已有水库附近的谷地建设下池,以 原有水库作为上池。大多是汛期抽水,枯水期发电。因此,站址选对了可大量节 约建设资金。例如广州抽水蓄能电站(简称广蓄电站)是一个纯抽水蓄能电站,其 位于广东省从化县吕田镇,距广州市90km。上水库位于召大水上游的陈禾洞小 溪上,下水库位于九曲水上游的小杉盆地。广蓄电站承担广东电网的调峰、填谷、调相、事故备用要求的任务和西电东送电量不均匀性的调节作用。该站址的自然 条件较好,无论是上、下库成库条件还是落差,都比较理想,选择的合理科学, 其电站装机可达到240万kW。考虑到电力系统的需求,广蓄电站分两期建设。一、二期工程装机120万kW,年发电量分别为23.8、25.089亿kW·h。广蓄电站 的上、下水库容量,可供8台机组满负荷发电约6h,抽水约7h。经多年运行, 循环效率可达76%。 2 关键技术的引进规划 在抽水蓄能电站关键技术方面,对高悬水库基础的渗流场进行分析,提出渗 流控制标准和相应的渗流控制措施。一般防渗漏规划设计,可行方案有3种:①上游坝面喷混凝土;喷混凝土方案造价适中,施工便利,但要在实验过后准确把 握其有效性。②坝体灌浆;灌浆方案造价最低,但耐久性、可靠性不如钢筋混凝土面板。③上游坝面增设钢筋混凝土面板防渗;钢筋混凝土面板方案造价最高,但防渗及加固效果最好,耐久性强,坝体实际承受的扬压力最小。 抽水蓄能电站的关键设备是水泵、水轮、电动发电机组。抽水蓄能电站的机

抽水蓄能电站

抽水蓄能水电站 —21世纪海河流域特大城市经济发展的必由之路 一、海河流域概况 海河,是我国七大江河之一,她源于太行山,蜿蜒曲折东流,穿过美丽富饶的华北平原,在天津汇合注入渤海。海河流域跨8个省、直辖市、自治区,包括北京、天津两个特大城市和18个中等城市,总面积31.79万平方公里。流域内煤、石油等矿产资源丰富,工农业基础良好,特别是京、津、唐地区是技术、人才密集区,作为老牌的工业基地,战略地位十分重要。 二、抽水蓄能电站问题的提出 海河流域包括的首都北京是我国的政治、经济、文化、艺术中心,天津和唐山则是悠久的重要工业基地。因此,我们在大力重视水问题以保障人民生活的同时,更不能忘记要以同样甚至更多的目光去关注维持和促进工农业生产的电力资源。 改革开放以来,天津在党中央的正确领导下,全市各方面都取得了长足的进步。特别是“三步走”战略的提出和实施,给天津在21世纪的发展指明了方向。连续()年以来,天津都以()%的速度快速健康持续的发展,为天津迈进世界一流城市的行列奠定了坚实的基础。而“让夜晚亮起来”的号召,也让天津向美丽、和谐、温馨的城市特征迈进了一大步。

但是,与此同时,有很多实际问题也暴露在我们的面前。电力问题就是其中比较突出的一项。据统计,天津部分市区平均每天都发生停电现象。排除一小部分由于电路的改造和维修,其中一大部分是由于系统不能满足调峰填谷要求而被迫“让电”。停电的损失是巨大的,(纽约停电事例) 我们知道,电力系统的调峰电站可以为常规水电站、燃气轮机电站、柴油机电站、燃油或燃气电站、燃煤电站。 可是常规水电站只能调峰,不能填谷,而且在汛期弃水,造成水能资源的浪费,有供水灌溉任务的水电站还不能随意进行调峰。我国东、中部地区已建水电站的调节性能多数为日调节和径流式,也无法进行调峰。燃气轮机多数系进口设备,因此发电成本高,也不能频繁启动、旋转备用和调频。柴油机组虽然启动特性好,一般仅需几秒,即使是大功率柴油机,也可在15~40min 内进到全负荷,但是发电成本也较高。2000年夏,随着国际油价上涨,广东650万kW柴油发电机停止发电即是明证。燃油或燃气机组不能进行负荷控制,不能快速启动,不能调相,由于我国油气资源缺乏,也不提倡。 目前调峰大都依靠燃煤机组。然而燃煤机组从点火到满负荷运行需要较长时间:125MW机型为7h,200MW以上机组则为18h以上,启动时间太长。同时,调峰运行导致故障增多,发电煤耗上升,电厂用电率增加,检测期缩短,成本提高。目前采用燃煤机组调峰是一种不得已的办法。

我国抽水蓄能电站存在的问题及前景展望

我国抽水蓄能电站存在的问题及前景展望 摘要:抽水蓄能电站在电网中承担着调峰、填谷、调频、调相、事故备用、配 合风电储能等工程任务,抽水蓄能电站建设和调度运行,有利于更好地利用新能源,有利于提升电力系统综合效益。在对我国当前抽水蓄能电站现状情况总结的 基础上,分析了我国抽水蓄能电站面临的挑战,从投资主体、电价机制、生态环保、调峰手段等角度,分析了我国抽水蓄能电站的发展前景。 关键词:抽水蓄能电站;问题;发展前景 1国内抽水蓄能电站存在的问题 1.1 开发需求与站址资源间的协调 我国抽水蓄能电站站址资源分布不均,部分地区面临调峰需求大但站址资源 少的矛盾。在目前调峰手段多元化的新形势下,抽水蓄能电站选址可进一步研究 具有投资小、建设周期短、节省站址资源等优点的混合抽水蓄能电站;此外,可 研究废弃露天矿坑、矿洞新型抽水蓄能电站,实现废弃资源利用,达到社会、环 境和经济综合效益最大化。我国各地正在积极开展生态保护红线划定工作,部分 地区抽水蓄能电站规划选点及前期工作中所面临的生态保护红线影响更加突出。 新形势下,对于蓄能电站还未建成且调峰需求较大的地区,抽水蓄能电站的选址 和建设应更加重视对生态保护红线的研究,协调好开发与保护的关系;对于蓄能 电站布局受生态保护红线影响较大的区域,应适时调整选址思路及规划站点布局。 1.2 综合利用开发模式的完善 新形势下,抽水蓄能电站选址思路正在不断拓展,以寻求适合我国电网分布 及需求的新型抽水蓄能电站建设方式,如混合抽水蓄能、海水抽水蓄能、废弃矿 洞抽水蓄能等。目前,我国混合抽水蓄能、海水抽水蓄能、废弃矿洞抽水蓄能等 电站建设和研究尚处于起步阶段。仅混合抽水蓄能试点建成白山、潘家口等电站。从实际运行情况看,混合抽水蓄能电站具有投资小、建设周期短、节省站址资源 等优点,可成为常规抽水蓄能电站的有益补充。海水抽水蓄能、废弃矿洞抽水蓄 能等新型抽水蓄能电站虽有广阔的发展前景,但在技术方面、效益量化等方面仍 需不断完善。 1.3 电力系统调节能力的提升 随着技术创新不断进步,国家出台了相关政策,鼓励火电机组灵活性改造、 电化学储能电站建设等提升电力系统调节能力。由于调峰手段的多元化,火电机 组灵活性运行、电化学储能等技术发展将对未来抽水蓄能发展产生一定影响。火 电灵活性改造由于缺乏配套政策和市场机制,实际改造进度与规划目标仍有较大 差距,抽水蓄能电站仍有建设空间;电化学储能由于经济性和安全性的制约,仍 无法实现大规模推广,一定时期内无法取代抽水蓄能电站。 2国内抽水蓄能发展前景分析 2.1 蓄能需求空间较大 随着国家对风电、太阳能、核电等新能源的大力开发,为配合新能源消纳以 及核电并网运行,对电网调节能力提出了更高要求。另外,随着我国城镇化水平、工业化水平、电能替代水平的提升,电力系统中调节性电源建设需求仍会增加。 因此,具有良好调节性能的抽水蓄能电站仍有很大发展空间。目前,全国运行、 在建和待开发抽水蓄能规模约为 1.3 亿 kW,现有抽水蓄能规划资源基本能够满足项目开发需求。但由于生态红线的影响,新一轮抽水蓄能电站选点规划能够成立 站点有限,远期蓄能规划资源储备乏力。

福建仙游抽水蓄能电站工程概况

福建仙游抽水蓄能电站工程概况 仙游抽水蓄能电站位于福建省莆田市仙游县西苑乡,距县城约33km。为周调节的抽水蓄能电站。电站安装四台单机容量为300MW的混流可逆式水泵水轮发动机组,总装机容量为1200MW(4×300MW)。本工程属大(1)型一等工程,主要永久性建筑物按1级建筑物设计,次要永久性建筑物按3级建筑物设计。枢纽主要由上水库、输水系统、地下厂房系统、地面开关站和下水库等建筑物组成。 上水库工程主要包括主坝、湾尾副坝、虎歧隔副坝、库盆、拦渣坝及环库公路等。主坝为钢筋混凝土面板堆石坝,坝顶高程747.6m,坝轴线长337.24m,最大坝高72.6m;虎歧隔副坝坝轴线长70m,最大坝高14m,为分区土石坝;湾尾副坝坝顶全长27m,最大坝高3m,亦为分区土石坝。 输水系统连接上、下水库,为二洞四机布置方式,由上库进/出水口、2条引水洞、4条引水支管、4条尾水支管、2个尾水调压井、2条尾水洞和下库进/出水口等组成。其中单条输水隧洞总长约2254m(指1#输水系统长度,下同);单条引水隧洞总长约1103m,衬砌内径6.5m,上斜井段上、下高差270.11m,倾角50°,单条斜长约381m(包括上、下弯段);下斜井段高差219.40m,倾角502,单条斜长318m(包括上、下弯段);单条尾水隧洞总长约1105m,衬砌内径7.0m,其中927m长尾水洞纵

坡为7.7%。 地下厂房系统主要由主/副厂房洞、进厂交通洞、母线洞、主变洞、主变运输洞、尾闸洞、出线斜井、通风兼安全洞及排水廊道等洞室群组成,另有开关站、中控楼等地面建筑物。主/副厂房洞尺寸为162.0m×24.0m×53.3m(长×宽×高),厂内安装四台单机容量为300MW的混流可逆式水泵水轮机发电机组;主变洞尺寸为135.0m×19.5m×22.0m(长×宽×高)。厂房区域的围岩为晶屑凝灰熔岩与花岗斑岩,岩石新鲜、坚硬、完整,无大的断层破碎带通过,围岩类别为II类,工程地质条件较好。 下库坝址位于西苑乡半岭村上游1km处溪口溪峡谷中,河谷呈“V”字型,主要包括大坝、溢洪道、导流放水洞及库盆等。主坝为钢筋混凝土面板堆石坝,坝顶高程299.9m,坝轴线长276.97m,最大坝高74.9m。溢洪道位于右岸,在右岸坝肩位置开挖而成。导流放水洞布置在左坝头山体内,利用前期导流隧洞改建而成。 本工程主体工程施工开始至第一台机组投产的工期为54个月(包括三个月施工准备期),总工期66个月。

达摩岭抽水蓄能电站投资建设项目可行性研究报告-广州中撰咨询

达摩岭抽水蓄能电站投资建设项目可行性研究报告 (典型案例〃仅供参考) 广州中撰企业投资咨询有限公司 地址:中国·广州

目录 第一章达摩岭抽水蓄能电站项目概论 (1) 一、达摩岭抽水蓄能电站项目名称及承办单位 (1) 二、达摩岭抽水蓄能电站项目可行性研究报告委托编制单位 (1) 三、可行性研究的目的 (1) 四、可行性研究报告编制依据原则和范围 (2) (一)项目可行性报告编制依据 (2) (二)可行性研究报告编制原则 (2) (三)可行性研究报告编制范围 (4) 五、研究的主要过程 (5) 六、达摩岭抽水蓄能电站产品方案及建设规模 (6) 七、达摩岭抽水蓄能电站项目总投资估算 (6) 八、工艺技术装备方案的选择 (6) 九、项目实施进度建议 (6) 十、研究结论 (6) 十一、达摩岭抽水蓄能电站项目主要经济技术指标 (9) 项目主要经济技术指标一览表 (9) 第二章达摩岭抽水蓄能电站产品说明 (15) 第三章达摩岭抽水蓄能电站项目市场分析预测 (15) 第四章项目选址科学性分析 (15) 一、厂址的选择原则 (15) 二、厂址选择方案 (16) 四、选址用地权属性质类别及占地面积 (17) 五、项目用地利用指标 (17) 项目占地及建筑工程投资一览表 (17) 六、项目选址综合评价 (18)

第五章项目建设内容与建设规模 (19) 一、建设内容 (19) (一)土建工程 (19) (二)设备购臵 (20) 二、建设规模 (20) 第六章原辅材料供应及基本生产条件 (20) 一、原辅材料供应条件 (20) (一)主要原辅材料供应 (21) (二)原辅材料来源 (21) 原辅材料及能源供应情况一览表 (21) 二、基本生产条件 (22) 第七章工程技术方案 (23) 一、工艺技术方案的选用原则 (23) 二、工艺技术方案 (24) (一)工艺技术来源及特点 (24) (二)技术保障措施 (24) (三)产品生产工艺流程 (25) 达摩岭抽水蓄能电站生产工艺流程示意简图 (25) 三、设备的选择 (26) (一)设备配臵原则 (26) (二)设备配臵方案 (27) 主要设备投资明细表 (27) 第八章环境保护 (28) 一、环境保护设计依据 (28) 二、污染物的来源 (29) (一)达摩岭抽水蓄能电站项目建设期污染源 (30) (二)达摩岭抽水蓄能电站项目运营期污染源 (30)

抽水蓄能电站施工用电设计导则(试行)

附件3 Q/GDW46国网新源控股有限公司企业标准 Q/GDW46XXXXXXX 抽水蓄能电站施工供电设计导则 (试行) 2012-XX-XX 发布2012-XX-XX 实施国网新源控股有限公司发布

目次 目次 (1) 前言 (1) 1. 范围 (2) 2. 规范性引用文件 (2) 3. 术语和定义 (2) 4. 总则 (2) 5. 施工用电负荷 (3) 6. 施工供电电源 (3) 7. 35kV~110kV/10kV变电站(施工变电站) (3) 8. 配电网络 (4) 附录A (5) 施工用电负荷需要系数法计算 (5) 附录B (7) 各电压等级的合理输送距离及容量 (7)

前言 目前在常规水电工程建设中实施的《水电水利工程施工压缩空气、供水、供电系统设计导则》(DL/T 5124-2001),虽能基本适用于抽水蓄能电站工程,但基于抽水蓄能电站工程的特殊性,DL/T 5124-2001标准尚不能完全覆盖,有必要在此基础上进行修改、补充和完善,故特制定本导则。 本导则由国网新源控股有限公司标准化委员会提出并解释; 本导则由国网新源控股有限公司科技信息部归口; 本导则起草单位:国网新源控股有限公司基建部; 本导则主要起草人:姜成海罗成宗项荣华丁光徐文仙赵政费伯军包俊游志刚赵志文付强王新宇曹军靳永卫毛学志张腾超常子阳; 本导则首次发布。

抽水蓄能电站施工供电设计导则 1. 范围 1.1 本导则规定了抽水蓄能电站工程施工供电设计应遵循的设计原则、设计程序、设计方法和要求。 1.2 本导则适用于抽水蓄能电站工程可行性研究阶段、招标设计阶段的施工供电设计,其它设计阶段可参照执行。 2. 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB14285 继电保护和安全自动装置技术规程 GB50059 35~110kV变电所设计规范 GB50173 35kV及以下架空电力线路施工及验收规范 GB50260 电力设施抗震设计规范 DL/T 5220 10kV及以下架空配电线路设计技术规程 DL/T 5124 水电水利工程施工压缩空气、供水、供电系统设计导则 DL/T 5137 电测量及电能计量装置设计技术规程 DL/T 5397 水电工程施工组织设计规范 SL 303 水利水电工程施工组织设计规范 工程建设标准强制性条文(电力工程部分) 3. 术语和定义 3.1 35kV~110kV/10kV变电站 作为施工用电的供电中心,进线电源为地方电网,经电力变压器变压后向施工变供电。 3.2 开闭所 作为施工用电的供电中心,进线电源为地方电网,所内只有开闭和分配电能作用的高压配电装置,母线上无主变压器。 3.3 施工变 在施工点附近建立的10kV/0.4kV施工变,进线电源来自施工变电站或开闭所,电力变压器变压后直接向用电设备供电。施工变包括变压器、开关或熔断器、用电计量设备等。 3.4 施工供电专用线路 从地方电网变电站到施工变电站(开闭所)的供电线路,专用于电站的施工用电。 3.5 施工用电线路 从施工变电站(开闭所)向施工现场供电的线路。 3.6 配电箱 从××号施工变接出的配电装置。 4. 总则 4.1 为规范抽水蓄能电站工程施工用电的设计原则和技术要求,以保障人身安全、供电可靠、经济合理和维护方便,确保设计质量,特制订本导则。 4.2 抽水蓄能电站工程施工供电设计的主要任务是:施工用电负荷确定、电源选择、供电方式选定、变电所(或开闭所)所址选择、主要设备选择及主线路布置设计等。 4.3 施工供电范围包括:施工机械、照明、供风、供水、通风、排水等施工用电,砂石混凝土生产、修配厂及其它施工工厂设施的生产用电,生活基地的生活用电等。不得将附近居民的生活用电和其他与施工无关企业的用电接入施工用电的供电范围。 4.4 供电系统设计除应执行本导则外,还应符合DL/T 5397及现行国家和行业有关标准。

相关文档
最新文档