拉普拉斯变换及其逆变换表

拉普拉斯变换及其逆变换表
拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表

3. 用查表法进行拉氏反变换

用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式

1

1

n 1

n n

n

1

1

m 1

m m

m

a

s a s a s a b s b s b s b )s (A )s (B )s (F ++++++++=

=---- (m n >)

式中系数n

1

n 1

a ,a ,...,a ,a

-,m

1

m 1

b ,b ,b ,b - 都是实常数;n m ,是正整数。按

代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根

这时,F(s)可展开为n 个简单的部分分式之和的形式。

=-=-++-++-+-=n

1

i i

i

n

n

i

i

2

2

1

1

s

s c

s s c s s c s s c s s c )s (F 式中,Sn 2S 1S ,,, 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )s (F )s s (lim c i

s s i

i

-=→

i

s s i

)

s (A )

s (B c

='=

式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数

[]t s n 1i i n 1

i i i

11i e c s s c L )s (F L )t (f -==--∑∑=??????-==

② 0)(=s A 有重根

设0)(=s A 有r 重根1s ,F(s)可写为

())

s s ()s s ()s s ()

s (B s F n

1

r r 1

---=

+

=

n

n

i

i

1

r 1

r 1

1

1

r 1

1

r r 1

r

s

s c

s s c s s c )s s (c )s s (c )s s (c -+

+-++-+-++-+-++-- 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:

)s (F )s s (lim c r

1

s s r

1

-=→

)]s (F )s s ([ds

d

lim c r

1

s s 1

r 1

-=→-

)s (F )s s (ds

d lim !j 1c r

1

)

j ()

j (s s j

r 1

-=→-

)s (F )s s (ds

d

lim )!1r (1c r

1

)

1r ()

1r (s s 1

1

--=--→

原函数)(t f 为 [])()(1s F L t f -=

??

?

???-+

+-++-+-++-+-=++---n

n

i

i

1

r 1

r 1

1

1

r 1

1

r r

1

r

1

s s c

s s c s s c )s s (c )

s s (c )s s (c L t

s n

1

r i i

t

s 1

2

2

r 1

r 1

r r

1e c e c t c t )!2r (c t )!1r (c ∑+=---+??

????+++-+-= (F-6)

拉氏变换常用公式

常用拉普拉斯变换总结 1、指数函数 000)(≥

拉普拉斯变换公式总结

拉普拉斯变换、连续时间系统的S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。 知识要点 1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()st f t F s f t dt e ζ∞ -- ==? 逆变换 1 [()]()()2j st j F s f t F s ds j e σσζπ+∞ -∞ == ? 双边拉普拉斯变换: 正变换 ()()st B s f t dt e F ∞ --∞ =? 逆变换1 ()()2j st B j f t s ds j e F σσπ+∞ -∞ = ? (2) 定义域

若0σσ>时,lim ()0t t f t e σ-→∞ =则()t f t e σ-在0σσ>的全部范围内收敛,积分0()st f t dt e +∞ -- ? 存 在,即()f t 的拉普拉斯变换存在。0σσ>就是()f t 的单边拉普拉斯变换的收敛域。0σ与函数()f t 的性质有关。 2. 拉普拉斯变换的性质 (1) 线性性 若11[()]()f t F S ζ=,22[()]()f t F S ζ=,1κ,2κ为常数时,则11221122[()()]()()f t f t F s F s ζκκκκ+=+ (2) 原函数微分 若[()]()f t F s ζ=则() [ ]()(0)df t sF s f dt ζ-=- 1 1()0 ()[]()(0)n n n n r r n r d f t s F s s f dt ζ----==-∑ 式中() (0)r f -是r 阶导数() r r d f t dt 在0-时刻的取值。 (3) 原函数积分 若[()]()f t F s ζ=,则(1)(0)()[()]t f F s f t dt s s ζ---∞ =+? 式中0(1) (0)()f f t dt ---∞=? (4) 延时性 若[()]()f t F s ζ=,则000[()()]()st f t t u t t e F s ζ---= (5) s 域平移

拉普拉斯变换及逆变换

第十二章 拉普拉斯变换及逆变换 拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用。我们经常应用拉普拉斯变换进行电路的复频域分析。本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用。 第一节 拉普拉斯变换 在代数中,直接计算 32 8 .95781 2028.6?? =N 5 3)164.1(? 是很复杂的,而引用对数后,可先把上式变换为 164 .1lg 53 )20lg 28.9lg 5781(lg 3128.6lg lg ++-+=N 然后通过查常用对数表和反对数表,就可算得原来要求的数N 。 这是一种把复杂运算转化为简单运算的做法,而拉氏变换则是另一种化繁为简的做法。 一、拉氏变换的基本概念 定义12.1 设函数()f t 当0t ≥时有定义,若广义积分 ()pt f t e dt +∞ -? 在P 的某一区域内 收敛,则此积分就确定了一个参量为P 的函数,记作()F P ,即 dt e t f P F pt ? ∞ +-= 0)()( (12.1) 称(12.1)式为函数()f t 的拉氏变换式,用记号[()]()L f t F P =表示。函数()F P 称为() f t 的拉氏变换(Laplace) (或称为()f t 的象函数)。函数()f t 称为()F P 的拉氏逆变换(或称为()F P 象原函数) ,记作 )()]([1t f P F L =-,即)]([)(1P F L t f -=。 关于拉氏变换的定义,在这里做两点说明: (1)在定义中,只要求()f t 在0t ≥时有定义。为了研究拉氏变换性质的方便,以后总假定在0t <时,()0f t =。 (2)在较为深入的讨论中,拉氏变换式中的参数P 是在复数范围内取值。为了方便起见,本章我们把P 作为实数来讨论,这并不影响对拉氏变换性质的研究和应用。 (3)拉氏变换是将给定的函数通过广义积分转换成一个新的函数,它是一种积分变换。一般来说,在科学技术中遇到的函数,它的拉氏变换总是存在的。 例12.1 求斜坡函数()f t at = (0t ≥,a 为常数)的拉氏变换。 解:00 00[]()[]pt pt pt pt a a a L at ate dt td e e e dt p p p +∞ +∞+∞---+∞-= =- =-+? ?? 2020 ][0p a e p a dt e p a pt pt =-=+ =∞ +-∞+-? ) 0(>p

拉普拉斯变换习题集

1. 求下列函数的拉式变换。 2. 求下列函数的拉式变换,注意阶跃函数的跳变时间。 3. 求下列函数的拉普拉斯逆变换。 4. 分别求下列函数的逆变换的初值和终值。 5. 如图1所示电路,0=t 以前,开关S 闭合,已进入稳定状态;0=t 时,开关打开,求()t v r 并讨 论R 对波形的影响。 6. 电路如图2所示,0=t 以前开关位于”“1,电路以进入稳定状态,0=t 时开关从” “1倒向”“2,求电流()t i 的表示式。 7. 电路如图3所示,0=t 以前电路原件无储能,0=t 时开关闭合,求电压()t v 2的表示式和波形。 8. 激励信号()t e 波形如图()a 4所示电路如图()b 4所示,起始时刻L 中无储能,求()t v 2得表示式和波形。 9. 电路如图5所示,注意图中()t Kv 2是受控源,试求 (1) 系统函数()() () s V s V s H 13=; (2) 若2=K ,求冲激响应。 10. 将连续信号()t f 以时间间隔T 进行冲激抽样得到()()()()()∑∞ =-= =0 ,n T T s nT t t t t f t f δδδ,求: (1) 抽样信号的拉氏变换()[]t f s L ; (2) 若()()t u e t f t α-=,求()[]t f s L 。 11. 在图6所示网络中,Ω===10,1.0,2R F C H L 。 (1) 写出电压转移函数()() () s E s V s H 2= ; (2) 画出s 平面零、极点分布; (3) 求冲激响应、阶跃响应。 12. 如图7所示电路, (1) 若初始无储能,信号源为()t i ,为求()t i 1(零状态响应),列出转移函数()s H ; (2) 若初始状态以()01i ,()02v 表示(都不等于0),但()0=t i (开路),求()t i 1(零输入 响应)。

拉普拉斯变换公式总结

拉普拉斯变换公式总结Newly compiled on November 23, 2020

拉普拉斯变换、连续时间系统的S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。 知识要点 1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()st f t F s f t dt e ζ∞ --==? 逆变换 1 [()]()()2j st j F s f t F s ds j e σσζπ+∞ -∞ ==? 双边拉普拉斯变换: 正变换 ()()st B s f t dt e F ∞--∞ =? 逆变换1 ()()2j st B j f t s ds j e F σσπ+∞ -∞ = ? (2) 定义域 若0σσ>时,lim ()0t t f t e σ-→∞ =则()t f t e σ-在0σσ>的全部范围内收敛,积分0()st f t dt e +∞ -- ? 存在,即()f t 的拉普拉斯变换存在。0σσ>就是()f t 的单边拉普拉斯变换的收敛域。0σ与函数()f t 的性质有关。 2. 拉普拉斯变换的性质

(1) 线性性 若11[()]()f t F S ζ=,22[()]()f t F S ζ=,1κ,2κ为常数时,则 11221122[()()]()()f t f t F s F s ζκκκκ+=+ (2) 原函数微分 若[()]()f t F s ζ=则() []()(0)df t sF s f dt ζ-=- 式中() (0)r f -是r 阶导数() r r d f t dt 在0-时刻的取值。 (3) 原函数积分 若[()]()f t F s ζ=,则(1)(0) ()[()]t f F s f t dt s s ζ---∞ =+?式中0(1)(0)()f f t dt ---∞=? (4) 延时性 若[()]()f t F s ζ=,则000[()()]()st f t t u t t e F s ζ---= (5) s 域平移 若[()]()f t F s ζ=,则[()]()at f t e F s a ζ-=+ (6) 尺度变换 若[()]()f t F s ζ=,则1[()]()s f at F a a ζ= (a >0) (7) 初值定理lim ()(0)lim ()t o s f t f sF s + +→→∞ == (8) 终值定理lim ()lim ()t s f t sF s →+∞ →∞ = (9) 卷积定理 若11[()]()f t F s ζ=,22[()]()f t F s ζ=,则有1212[()()]()()f t f t F s F s ζ*= 12121[()()][()()]2f t f t F s F s j ζπ= *= 121 ()()2j j F p F s p dp j σσπ+∞ -∞ -? 3. 拉普拉斯逆变换 (1) 部分分式展开法

拉普拉斯变换题库

六.拉普拉斯变换 ㈠选择 ㈡填空 1.)(2)(t t f δ=的拉普拉斯变换是_______________ 2.)1()(-=t u t f 的拉普拉斯变换是_________________. 3.)2()(-=t u t f 的拉普拉斯变换是_________________. 4.t e t t f 22)(+=的拉普拉斯变换是_______________. 5.)(5)(2t e t f t δ+=的拉普拉斯变换是_______________ 6.)2()(2-=t u e t f t 的拉普拉斯变换是________________. 7.k e t t f kt n ()(=为实数)的拉普拉斯变换是__________________. 8.t e t f t 3sin )(2-=的拉普拉斯变换是__________________. 9.t e t f 2)(-=的拉普拉斯变换是_________________. 10.t e t f 2)(=的拉普拉斯变换是__________________。 11.t t f =)(的拉普拉斯变换是________________ 12.t te t f -=)(的拉普拉斯变换是____________________. 13.t t f 2cos )(=的拉普拉斯变换是_____________. 14.at t f sin )(=的拉普拉斯变换是_________________. 15.t t t f cos sin )(=的拉普拉斯变换是___________________. 16. ()()sin f t u t t =的拉普拉斯变换是________________. 17. ()sin(2)f t t =-的拉普拉斯变换是________________. 18.t t f 2cos )(=的拉普拉斯变换是________________. 19.t t f 2sin )(=的拉普拉斯变换是_______________. 20.t e t f t sin )(-=的拉普拉斯变换是_________________.

拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表

用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1 1 n 1 n n n 1 1 m 1 m m m a s a s a s a b s b s b s b )s (A )s (B )s (F ++++++++= =----ΛΛ (m n >) 式中系数n 1 n 1 a ,a ,...,a ,a -,m 1 m 1 b ,b ,b ,b -Λ都是实常数;n m ,是正整数。按 代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑ =-=-++-++-+-=n 1 i i i n n i i 2 2 1 1 s s c s s c s s c s s c s s c )s (F ΛΛ 式中,Sn 2S 1S ,,,Λ是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )s (F )s s (lim c i s s i i -=→ 或 i s s i ) s (A ) s (B c ='= 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []t s n 1 i i n 1i i i 11i e c s s c L )s (F L )t (f -==--∑∑=??????-== 0)(=s A 有重根

设0)(=s A 有r 重根1s ,F(s)可写为 ()) s s ()s s ()s s () s (B s F n 1 r r 1 ---= +Λ = n n i i 1 r 1 r 1 1 1 r 1 1 r r 1 r s s c s s c s s c )s s (c )s s (c )s s (c -+ +-++-+-++-+-++--ΛΛΛ 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算: )s (F )s s (lim c r 1 s s r 1 -=→ )]s (F )s s ([ds d lim c r 1 s s 1 r 1 -=→- M )s (F )s s (ds d lim !j 1c r 1 ) j () j (s s j r 1 -=→- )s (F )s s (ds d lim )!1r (1c r 1 ) 1r () 1r (s s 1 1 --=--→ 原函数)(t f 为 [])()(1s F L t f -= ?? ? ???-+ +-++-+-++-+-=++---n n i i 1 r 1 r 1 1 1 r 1 1 r r 1 r 1 s s c s s c s s c )s s (c ) s s (c )s s (c L ΛΛΛ t s n 1 r i i t s 1 2 2 r 1 r 1 r r 1e c e c t c t )!2r (c t )!1r (c ∑+=---+?? ? ???+++-+-=Λ (F-6)

拉普拉斯逆变换

拉普拉斯逆变换 对于单边拉普拉斯变换,由式(8.1-9)知,象函数F(s)的拉普拉斯逆变换为 ????? ><=?∞ +∞-j 0 )(2 10,0)(σσj st t ds e s F j t t f ,π (8.3-1) 上述积分应在收敛域内进行,若选常数0σσ>[0σ为)(s F 的收敛坐标],则积分路线是横坐标为σ,平行于与纵坐标轴的直线。实用中,常设法将积分路线变为适当的闭合路径,应用复变函数中的留数定理求得原函数。若F(s)是s 的有理分式,可将F(s)展开为部分分式,然后求得其原函数。若直接利用拉普拉斯逆变换表(见附录五),将更为简便。 如果象函数F(s)是s 的有理分式,它可写为 11 10 111F(s)a s a s a s b s b s b s b n n n m m m m ++++++++=---- (8.3-2) 式中各系数),,1,0(),,,1,0(a i m j b n i j ==均为实数,为简便且不失一般性,设1=n a 。若n m ≥,可用多项式除法将象函数F(s)分解为有理多项式)(s P 与有理真分式之和,即 ) () ()()(s A s B s P s F += (8.3-3) 式中)(s B 的幂次小于)(s A 的幂次。例如 6 1163 32261161531258)(23223234+++++++=+++++++=s s s s s s s s s s s s s s F

由于)(]1[1t δ=-£,)(]['1t s δ=-£,…,故上面多项式)(s P 的拉普拉斯逆变换由冲激函数及其各阶导数组成,容易求得。下面主要讨论象函数为有理真分式的情形。 一、查表法 附录五是适用于求拉普拉斯逆变换的表,下面举例说明它的用法。 例8.3-1 求2 35 2)(2+++= s s s s F 得原函数)(t f 。 解 )(s F 分母多项式0)(=s A 的根为2,121-=-=s s ,故)(s F 可写为 ) 2)(1(5 22352)(2+++=+++= s s s s s s s F 由附录五查得,编号为2-12的象函数与本例)(s F 相同,其中 2,1,5,201====βαb b 。将以上数据代入到相应的原函数表示式,得 0,3)(2≥-=--t e e t f t t 或写为 )()3()(2t e e t f t t ε---= 例8.3-2 求10 23 3)(2 +++= s s s s F 的原函数)(t f 。 解 )(s F 分母多项式0)(=s A 的根为312,1j s ±-=,故)(s A 可写为 2223)1(102)(++=++=s s s s A 于是)(s F 可写为 2 223 )1() 1(310233)(+++=+++= s s s s s s F 查表可得,编号2-6的象函数形式与本例相同,只是本例的系数为3,故得

拉普拉斯变换公式总结..

拉普拉斯变换公式总结..

拉普拉斯变换、连续时间系统的S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。 知识要点 1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()st f t F s f t dt e ζ∞-- ==? 逆变换 1 [()]()()2j st j F s f t F s ds j e σσζπ+∞ -∞ == ? 双边拉普拉斯变换: 正变换 ()()st B s f t dt e F ∞ --∞ =? 逆变换1 ()()2j st B j f t s ds j e F σσπ+∞ -∞ =? (2) 定义域

若0 σσ>时,lim ()0 t t f t e σ-→∞ =则()t f t e σ-在0 σσ>的全部范围内 收敛,积分0()st f t dt e +∞ -- ? 存在,即()f t 的拉普拉斯变换 存在。0 σσ>就是()f t 的单边拉普拉斯变换的收敛域。0 σ与函数()f t 的性质有关。 2. 拉普拉斯变换的性质 (1) 线性性 若 11[()]() f t F S ζ=, 22[()]() f t F S ζ=, 1 κ, 2 κ为常数时,则 11221122[()()]()() f t f t F s F s ζκκκκ+=+ (2) 原函数微分 若[()]()f t F s ζ=则() []()(0)df t sF s f dt ζ- =- 1 1()0 ()[]()(0)n n n n r r n r d f t s F s s f dt ζ----==-∑ 式中() (0) r f -是r 阶导数() r r d f t dt 在0- 时刻的取值。 (3) 原函数积分 若 [()]() f t F s ζ=,则 (1)(0) ()[()]t f F s f t dt s s ζ---∞ =+ ? 式中 (1)(0)()f f t dt ---∞ =? (4) 延时性 若[()]()f t F s ζ=,则0 [()()]() st f t t u t t e F s ζ---= (5) s 域平移 若[()]()f t F s ζ=,则[()]() at f t e F s a ζ-=+ (6) 尺度变换

(完整word版)典型信号的拉普拉斯变换和拉普拉斯逆变换

成绩评定表

课程设计任务书

目录 1.Matlab介绍.............. 错误!未定义书签。 2.利用Matlab实现信号的复频域分析—拉普拉斯变化和拉普拉斯逆变换的设计 (5) 2.1.拉普拉斯变换曲面图的绘制 (5) 2.2.拉普拉斯变化编程设计及实现 (7) 2.3.拉普拉斯逆变化编程设计及实现 (8) 3.总结 (14) 4.参考文献 (15)

1.Matlab介绍 MATLAB语言是当今国际上在科学界和教育界中最具影响力、也最具活力的软件;它起源于矩阵运算,现已发展成一种高度集成的计算机语言;它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、丰富的交互式仿真集成环境,以及与其他程序和语言便捷接口的功能。 经过多年的开发运用和改进,MATLAB已成为国内外高校在科学计算、自动控制及其他领域的高级研究工具。典型的用途包括以下几个方面: 1)数学计算; 2)新算法研究开发; 3)建模、仿真及样机开发; 4)数据分析、探索及可视化; 5)科技与工程的图形功能; 6)友好图形界面的应用程序开发。 1.1Matlab入门 Matlab7.0介绍 Matlab7.0比Matlab的老版本提供了更多更强的新功能和更全面、更方便的联机帮助信息。当然也比以前的版本对于软件、硬件提出了更高的要求。 在国内外Matlab已经经受了多年的考验。Matlab7.0功能强大,适用范围很广。其可以用来线性代数里的向量、数组、矩阵运算,复数运算,高次方程求根,插值与数值微商运算,数值积分运算,常微分方程的数值积分运算、数值逼近、最优化方法等,即差不多所有科学研究与工程技术应用需要的各方面的计算,均可用Matlab来解决。 MATLAB7.0提供了丰富的库函数(称为M文件),既有常用的基本库函数,又有种类齐全、功能丰富多样的的专用工具箱Toolbox函数。函数即是预先编制好的子程序。在编制程序时,这些库函数都可以被直接调用。无疑,这会大大提高编程效率。MATLAB7.0的基本数据编程单元是不需要指定维数的复数矩阵,所以在MATLAB环境下,数组的操作都如数的操作一样简单方便。而且,MATLAB7.0界面友好,用户使用方便。首先,MATLAB具有友好的用户

拉普拉斯变换 习题集

1. 求下列函数的拉式变换。 (1) t t cos 2sin + (2) ()t e t 2sin - (3) ()[]t e t βα--cos 1 (4) ()t e t 732--δ (5) ()t Ω2cos (6) ()()t e t ωαcos +- (7) ()t t αsin 2. 求下列函数的拉式变换,注意阶跃函数的跳变时间。 (1) ()()()t u e t f t 2--= (2) ()()()12sin -?=t u t t f (3) ()()()()[]211----=t u u u t t f 3. 求下列函数的拉普拉斯逆变换。 (1) () 512+s s (2) ()() 243+++s s s (3) 11 12++s (4) ()RCs s RCs +-11 (5) ()()() 2133+++s s s (6) 22K s A + (7) ()( )[]22βα+++s a s s (8) () 142+-s s e s

(9) ?? ? ??+9ln s s 4. 分别求下列函数的逆变换的初值和终值。 (1) ()()() 526+++s s s (2) ()()()2132+++s s s 5. 如图1所示电路,0=t 以前,开关S 闭合,已进入稳定状态;0=t 时,开关打开,求 ()t v r 并讨论R 对波形的影响。 6. 电路如图2所示,0=t 以前开关位于”“1,电路以进入稳定状态,0=t 时开关从” “1倒向” “2,求电流()t i 的表示式。 7. 电路如图3所示,0=t 以前电路原件无储能,0=t 时开关闭合,求电压()t v 2的表示 式和波形。 8. 激励信号()t e 波形如图()a 4所示电路如图()b 4所示,起始时刻L 中无储能,求()t v 2得 表示式和波形。 9. 电路如图5所示,注意图中()t Kv 2是受控源,试求 (1) 系统函数()()() s V s V s H 13=; (2) 若2=K ,求冲激响应。 10. 将连续信号()t f 以时间间隔T 进行冲激抽样得到 ()()()()()∑∞ =-==0 ,n T T s nT t t t t f t f δδδ,求: (1) 抽样信号的拉氏变换()[]t f s L ; (2) 若()()t u e t f t α-=,求()[]t f s L 。 11. 在图6所示网络中,Ω===10,1.0,2R F C H L 。 (1) 写出电压转移函数()()() s E s V s H 2=; (2) 画出s 平面零、极点分布; (3) 求冲激响应、阶跃响应。

拉普拉斯变换公式

拉普拉斯变换公式-CAL-FENGHAI.-(YICAI)-Company One1

附录A 拉普拉斯变换及反变换 419

3.用查表法进行拉氏反变换 420

421 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑ =-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1)()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

最全拉氏变换计算公式

1 最全拉氏变换计算公式 1. 拉氏变换的基本性质 1 线性定理 齐次性 )()]([s aF t af L = 叠加性 )()()]()([2121s F s F t f t f L ±=± 2 微分定理 一般形式 = -=][ '- -=-=----=-∑1 1 )1() 1(1 22 2) ()() 0()()(0)0()(])([)0()(]) ([ k k k k n k k n n n n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L )( 初始条件为0时 )(])([s F s dt t f d L n n n = 3 积分定理 一般形式 ∑???????????==+-===+=+ +=+= n k t n n k n n n n t t t dt t f s s s F dt t f L s dt t f s dt t f s s F dt t f L s dt t f s s F dt t f L 10 102 2022 ]))(([1)(])()([]))(([])([)(]))(([])([)(])([个 共个 共 初始条件为0时 n n n s s F dt t f L ) (]))(([=??个 共 4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts -=-- 5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=- 6 终值定理 )(lim )(lim 0 s sF t f s t →∞ →= 7 初值定理 )(lim )(lim 0 s sF t f s t ∞ →→= 8 卷积定理 )()(])()([])()([210 210 21s F s F d t f t f L d f t f L t t =-=-??τττττ

拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表 1. 表A-1 拉氏变换的基本性质 1 L [ af ( t )] aF ( s ) 齐次性 线性定理L [ f 1 ( t ) f 2 ( t )] F 1 ( s ) F 2 ( s ) 叠加性 L [ df ( t ) ]sF ( s ) f ( 0 ) L [ d dt 2 f ( t ) dt 2 ] s 2 F ( s ) sf ( 0 ) f (0 ) L d n f ( t ) n dt n s n F ( s ) s n k f ( k 1 ) ( 0 ) k 1 f ( k 1 ) ( t ) d k 1 f dt ( t ) k 1 2 微分定理一般形式 初始条件为0 时L [ d n f ( t ) dt n ] s n F ( s ) L[ f (t )dt ] F ( s) s [ f (t )dt ]t 0 s [ 2 L[ f ( t)( dt ) ] 2 F ( s) s 2 f (t) d t ]t 0 s [ 2 f (t )(dt ) ]t 0 s 共n个共n个 L[ f (t)(dt )n ] F ( s) s n n k 1 s 1 n k 1 [ f (t)(dt ) n ] t 0 一般形式 共n个 3 积分定理 初始条件为0 时L[ f ( t)( dt) n ] F ( s) s n Ts 4 延迟定理(或称t 域平移定理) L[ f (t T)1(t T )] e F ( s) 精品资料

精品资料 5 衰减定理(或称 s 域平移定理) L[ f (t )e at ] F ( s a) 6 终值定理 lim f ( t ) lim t s sF ( s) lim f (t ) lim sF(s) 7 初值定理 t 0 s 8 卷积定理 t L[ f 1( t ) f 2 ( ) d ] t L[ f 1( t ) f 2 ( t ) d ] F 1 (s) F 2 ( s ) 2. 表 A-2 常用函数的拉氏变换和 z 变换表 序号 拉氏变换 F(s) 时间函数 f(t) Z 变 换 F(z) 1 1 δ(t) 1 1 2 1 e Ts T ( t) (t nT ) z n 0 z 1 1 1(t ) z s z 1 1 4 s 2 t Tz ( z 1)2 1 t 5 s 3 2 T 2 z(z 1) 2( z 1) 1 t n 6 n 1 lim ( 1) z n ( aT ) s n! a 0 n! a z e 1 7 s a e at z z e 1 at Tze 8 ( s a) 2 te a at ( z e (1 e aT ) 2 aT ) z 9 s(s a) 1 e (z 1)( z 2 3 n ) 3 n aT aT e aT

拉氏变换常用公式

附录A 拉普拉斯变换及反变换表A-1 拉氏变换的基本性质

表A-2 常用函数的拉氏变换和z变换表

用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设 )(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 1 1 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表 1 线性定理 齐次性 )()]([s aF t af L = 叠加性 )()()]()([2121s F s F t f t f L ±=± 2 微分定理 一般形式 = - =][ '- -=-=----=-∑1 1) 1() 1(1 22 2)()() 0()() (0)0()(])([) 0()(]) ([ k k k k n k k n n n n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L )( 初始条件为0时 )(]) ([ s F s dt t f d L n n n = 3 积分定理 一般形式 ∑???????????==+-===+=+ +=+= n k t n n k n n n n t t t dt t f s s s F dt t f L s dt t f s dt t f s s F dt t f L s dt t f s s F dt t f L 10 102 2022 ]))(([1)(])()([]))(([])([)(]))(([])([)(])([个 共个 共 初始条件为0时 n n n s s F dt t f L ) (]))(([=??个 共 4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts -=-- 5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=- 6 终值定理 )(lim )(lim 0 s sF t f s t →∞ →= 7 初值定理 )(lim )(lim 0 s sF t f s t ∞ →→= 8 卷积定理 )()(])()([])()([210 210 21s F s F d t f t f L d f t f L t t =-=-??τττττ

拉普拉斯变换及其逆变换表

拉普拉斯变换及其逆变换 表 Newly compiled on November 23, 2020

拉普拉斯变换及其反变换表 2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 n 1n n n 0 11m 1m m m a s a s a s a b s b s b s b )s (A )s (B )s (F ++++++++==---- (m n >) 式中系数n 1n 10a ,a ,...,a ,a -,m 1m 10b ,b ,b ,b - 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=n 1 i i i n n i i 2211s s c s s c s s c s s c s s c )s (F 式中,Sn 2S 1S ,,, 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: 或 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 =n n i i 1r 1r 111 r 11r r 1r s s c s s c s s c )s s (c )s s (c )s s (c -++-++-+-++-+-++-- 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算: 原函数)(t f 为 t s n 1r i i t s 122r 1r 1r r 1e c e c t c t )!2r (c t )!1r (c ∑+=---+??????+++-+-= (F-6)

拉普拉斯变换公式

附录A拉普拉斯变换及反变换 419

420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(l i m s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='=)() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

相关文档
最新文档