石墨性能

石墨性能
石墨性能

石墨性能

石墨有两种不同烧结石墨:碳石墨和电化石墨。前者质硬而脆,后者质软、强度低、自润滑性好。

石墨具有良好的自润滑性和良好的导热性,具有良好的耐腐蚀性但不耐强氧化介质,具有抗热冲击性和低摩擦因数。然而石墨存在着气孔率大、机械强度低的缺点。因此石墨用作软面材料时,需要用浸渍等办法来填塞孔隙,提高机械强度。

选择合适的浸渍剂是非常重要的。浸渍剂的性质决定了浸渍石墨的化学稳定性、热稳定性、机械强度、使用温度等。常用的浸渍树脂有酚醛树脂、环氧树脂、呋喃树脂等。酚醛树脂耐酸性较好,环氧树脂耐碱性好,而呋喃树脂耐酸性和耐碱性均较好。常用的浸渍金属有巴氏合金、铜合金、铝合金、锑合金等。浸渍金属石墨主要用90MPa,使用温度可达500℃;浸铜或铜合金的碳石墨使用温度为300℃;浸巴氏合金的碳石墨使用温度为120~180℃。

①导热率为4.187W/(m.K);

②导热率为5.44~6.28W/(m.K)

硅化石墨是碳石墨材料经硅化处理而得的碳化硅-碳复合材料。硅化处理的方法有化学气相反应法(CVR)和液硅浸渗法。化学气相沉积法为美国和日本采用,而俄罗斯和德国则用液硅浸渗法。前者Si或SiO气体在1800~2200℃的高温下作硅化反应将表面转化为SiC;而后者利用液体硅代替Si蒸汽或SiC 气体与CVR同样作硅化处理。表7-20及表7-21列出了国内外硅化石墨的物理性能。

①浸渍树脂。

石墨烯性能简介

第一章石墨烯性能及相关概念 1 石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。石墨烯具有优异的导热性能(3×103W/(m?K))和力学性能(1.06×103 GPa)。此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。 石墨烯结构图

2 石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。石墨烯中碳 -碳键长约为 0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽

石墨性能

石墨 康飞宇刘秀瀛 (清华大学材料科学与工程系) 地球上没有任何元素能象碳那样。由单一元素组成,形成外观多变,性能各异,应用广泛的制品。它之所以能够如此,与其原子键合方式、分子结构类型及其集合形态的多样性密切相关。碳元素基态电子层结构为1S22S22P2。根据原子结构理论,碳原子的外层电子可通过sp3·sp2·sp三种杂化方式形成δ键和π键。当碳原子外层电子以sp3杂化时,就构成了具有立体结构的金刚石;当以sp2杂化时,就构成了平面结构的石墨,当以sp杂比时,就生成线状结构的炭——卡宾。1985年科学家们又发现了一种笼形结构的碳,即由60个碳原子组成的高质量数碳族分子——固体CB60,即足球烯。 石墨晶体具有六角平面网状结构,可分为天然石墨和人造石墨两种。前者多呈鳞状,由石墨矿中提选出来。六角平面内三个sp2杂化轨道互成120°角排列。与相邻碳原子生成共价键。剩余的一个2P电子在垂直于六角平面的方向上排列,网面上下方的π电子相互重合,形成范德华键。石墨晶体的层间叠合方式通常为ABAB型或ABCABC型。如图1所示。天然石墨多为第一种方式;人造石墨多为第二种方式。单晶石墨的理想晶体结构有六方晶系和三方(菱面体)晶系两种。对于六方晶系的晶胞,其晶格常数a0=2.461埃、C0=6.708埃。晶胞内有4个碳原子,由此可计算出理想石墨的密度为2.266。人们从结晶程度非常高的天然鳞片石墨中可筛选出单晶石墨,但尺寸很小。 石墨的性能石墨的独特构造使其具有特殊的性能,应用十分广泛,在工业上主要应用以下几种性能: (1)润滑性。由于石墨材料层间结合力很小,当其与金属摩擦时,在金属表面极易形成石墨薄膜,可以起到减摩作用。对于表面抛光的钢,高强石墨在常温、大气中的动摩擦系数约为0.35。因此,石墨常被作为润滑剂、制造石墨轴承、模锻石墨乳等。 (2)热膨胀性小。一般在20℃~200℃之间,挤压成型的石墨制品,沿挤压方向的热膨胀系数为(1~2)×10-6/℃,垂直于挤压方向为(2~3)×10-6/℃。膨胀石墨板的热膨胀系数较大,如沿面方向为5×10-6/℃,沿厚度方向为100×10-6/℃。石墨制品具有较高的抗热震性,如电炉炼钢用的石墨电极要承受急冷、急热作用,等等。 (3)良好的导热、导电性。一般沿晶体层面方向的传导性比垂直于层面方向的大得多。但石墨的导热率和电阻均受温度影响,如电阻系数在700 K~900K以下为负值,900K以上为正值,导热率在某一温度达到最大

石墨烯基础知识简介

1.石墨烯(Graphene)的结构 石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。 如图1.2所示,石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过sp2杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。 图 1.1(a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。 图1.2石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有

相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。 单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯(Few-layer or multi-layer graphene):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC 堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 石墨烯(Graphenes):是一种二维碳材料,是单层石墨烯、双层石墨烯和少层石墨烯的统称。 由于二维晶体在热力学上的不稳定性,所以不管是以自由状态存在或是沉积在基底上的石墨烯都不是完全平整,而是在表面存在本征的微观尺度的褶皱,蒙特卡洛模拟和透射电子显微镜都证明了这一点。这种微观褶皱在横向上的尺度在8~10nm 范围内,纵向尺度大概为 0.7~1.0nm。这种三维的变化可引起静电的产生,所以使石墨单层容易聚集。同时,褶皱大小不同,石墨烯所表现出来的电学及光学性质也不同。 图1.3 单层石墨烯的典型构象 除了表面褶皱之外,在实际中石墨烯也不是完美存在的,而是会有各种形式的缺陷,包括形貌上的缺陷(如五元环,七元环等)、空洞、边缘、裂纹、杂原子等。这些缺陷会影响石墨烯的本征性能,如电学性能、力学性能等。但是通过一些人为的方法,如高能射线照射,化学处理等引入缺陷,却能有意的改变石墨烯的本征性能,从而制备出不同性能要求的石墨烯器件。 2.石墨烯的性质 2.1 力学特性

石墨变成金刚石是物理变化还是化学变化

石墨变成金刚石是物理变化还是化学变化? 金刚石和石墨在一定条件下可以发生转化,这个转化是物理变化还是化学变化呢?我们可从以下几个方面的分析来回答这个问题。 1.化学变化的特征 我们知道,化学变化通常叫做化学反应。化学变化是变化时都生成了其他物质的变化。物质通过化学反应转变为性质上完全不同的新物质,这就是化学变化的特征。当石墨这种由碳组成的单质在一定的条件下变成金刚石时,虽然金刚石也是由碳组成的单质,但金刚石的性质和石墨大不相同(化学性质石墨比金刚石活泼些);它是碳的另一种单质。这就可见变化过程中金刚石是由石墨变成的新物质。有新物质生成的变化,就不是物理变化。 2.晶体结构 石墨转变为金刚石时,石墨晶体结构被破坏;石墨中层与层之间不牢固的结合力拉断或变动,或同时也将六角平面上各碳原子间的化学键和结合方式来个“大变动大改组”,使它们之间的结合按照金刚石的形式和要求,有规则地结合成为立方面心结构。即由石墨的层状结构转变为金刚石的正四面体结构。根据同一种物质只有一种结构的事实,石墨和金刚石是晶体结构不同的两种物质。既然变化过程中由一种物质转变为另一种物质,就不是物理变化。由此可见,物质由一种结构转变为另一种结构是个化学变化过程。 3.热效应 一个化学反应在进行时,常伴有能量的变化,这个能量变化可以表现为光能、电能、机械能或热能等形式,而常表现为热能形式,有时要释放热量,有时则吸收热量。金刚石在隔绝空气的条件下加热到1000℃,可转变为石墨: 这个转变是个放热反应。说明了在这个转变过程中发生化学反应时的能量转化为热的形式。当石墨变成金刚石时就是一个吸收热能的化学反应。因此,石墨在一定条件下转变为金刚石不是物理变化。 4.催化剂 石墨转变为金刚石须在高温高压下进行,甚至在温度2000℃~4000℃和压强6万~12万个大气压下,这个转变速率仍然不大,还需用铬、铁和铂等作催化剂。根据催化剂只能改变化学反应速率的原理,催化剂就不能改变物理变化的速率了。石墨转变为金刚石时,使用催化剂是为了加快反应速率。如果这一转变是物理变化的话,使用催化剂不就失去了意义吗?可见这个转变不是物理变化。

石墨的物理和化学性能

石墨::是碳的一种同素异形体,是原子晶体、金属晶体和分子晶体之间的一种过渡型晶体。在晶体中同层碳原子间以sp2杂化形成共价键,每个碳原子与另外三个碳原子相联,六个碳原子在同一平面上形成正六边形的环,伸展形成片层结构。在同一平面的碳原子还各剩下一个p轨道,它们互相重叠,形成离域的π键电子在晶格中能自由移动,可以被激发,所以石墨有金属光泽,能导电、传热。由于层与层间距离大,结合力小,质软并有滑腻感。灰黑,不透明固体,密度2.25g/cm3,熔点3652℃,沸点4827℃,硬度1。化学性质稳定,耐腐蚀,同酸、碱等药剂不易发生反应。687℃在氧气中燃烧生成二氧化碳。可被强氧化剂如浓硝酸、高锰酸钾等氧化。可用作抗磨剂、润滑剂,高纯度石墨用作原子反应堆中的中子减速剂,还可用于制造坩埚、电极、电刷、干电池、石墨纤维、换热器、冷却器、电弧炉、弧光灯、铅笔的笔芯等。 物理性质: 不溶于水和有机溶剂;是碳质元素结晶矿物,它的结晶格架为六边形层状结构。每一网层间的距离为3.40Å,同一网层中碳原子的间距为1.42Å。属六方晶系,具完整的层状解理。解理面以分子键为主,对分子吸引力较弱,故其天然可浮性很好。 化学性质: 常温下单质碳的化学性质比较稳定,不溶于稀酸、稀碱;不同高温下与氧反应燃烧,生成二氧化碳或一氧化碳;在卤素中只有氟能与单质碳直接反应;在加热下,单质碳较易被酸氧化;在高温下,碳还能与许多金属反应,生成金属碳化物。碳具有还原性,在高温下可以冶炼金属。 石墨有分层。同一层有很多个六面体组成,不同层由另一种非共价键组成所以石墨也稳定,因为同一横面很稳定。但石墨很滑,因为它的纵面很不稳。 石墨是一种“层状结构”的“过渡型晶体”:层内碳原子以共价键结合形成正六边形网状结构,层与层之间距离较大,相当于分子间力的作用.石墨附着力很强,并且有导电性。

石墨烯的特殊性能

石墨烯的特殊性能 摘要:石墨烯是2004年才发现的一种有奇异性能的新型材料,它是由碳原子组成的二维六角点阵结构,具有单一原子层或几个原子层厚。石墨烯因其具有独特的电子能带结构和具相对论电子学特性,是迄今为止人类发现的最理想的二维电子系统,且具有丰富而新奇的物理特性。本文详细介绍了石墨烯的结构,特殊性能以及对石墨烯原胞进行了5×5×1的扩展,通过密度泛函理论 ( DFT) 和广义梯度近似( GGA)对50个碳原子的本征石墨烯超晶胞进行电子结构计算。 关键字:石墨烯,结构,特殊性能,超晶胞,电子结构计算 一、引言 石墨烯是2004年以来发现的新型电子材料石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。石墨烯被认为是平面多环芳香烃原子晶体。石墨烯在电子和光电器件领域有着重要和广阔的应用前景正因为如此,石墨烯的两位发现者获得了2010年的诺贝尔物理学奖。

石墨烯是一种没有能隙的半导体,具有比硅高100倍的载流子迁移率,在室温下具有微米级自由程和大的相干长度,因此石墨烯是纳米电路的理想材料,石墨烯具有良好的导热性[3000W/(m〃K)]、高强度(110GPa)和超大的比表面积 (2630mZ/g)。这些优异的性能使得石墨烯在纳米电子器件、气体传感器、能量存储及 复合材料等领域有光明的应用前景 二、石墨烯的特殊性能 石墨烯是一种半金属或者零带隙二维材料,在靠近布里渊区6个角处的低能区,其E-k色散关系是线性的 ,因而电子或空穴的有效质量为零,这里的电子或空穴是相对论粒子,可以用自旋为1/2粒子的狄拉克方程来描述。 石墨烯的电子迁移率实验测量值超过15000cm/(V〃s)(载流子浓度n≈10 cm ),在10~100K范围内,迁移率几乎与温度无关,说明石墨烯中的主要散射机制是缺陷散射,因此,可以通过提高石墨烯的完整性来增加其迁移率,长波的声学声子散射使得石墨烯的室温迁移率大约为200000cm /(V〃s),其相应的电阻率为lO -6 〃cm,

石墨烯结构的分析

石墨烯 石墨烯之所以被广泛应用,是由其自身的内部结构决定的。 石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。 石墨烯内部碳原子的排列方式与石墨单原子层一样以sp2杂化轨道成键,并有如下的特点:碳原子有4个价电子,其中3个电子生成sp2键,即每个碳原子都贡献一个位于pz轨道上的未成键电子,近邻原子的pz轨道与平面成垂直方向可形成π键,新形成的π键呈半填满状态。研究证实,石墨烯中碳原子的配位数为3,每两个相邻碳原子间的键长为 1.42×10-10米,键与键之间的夹角为120°。除了σ键与其他碳原子链接成六角环的蜂窝式层状结构外,每个碳原子的垂直于层平面的pz轨道可以形成贯穿全层的多原子的大π键(与苯环类似),因而具有优良的导电和光学性能。 在石墨烯中,电子能够极为高效地迁移,而传统的半导体和导体,例如硅和铜远没有石墨烯表现得好。由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,目前一般的电脑芯片以这种方式浪费了70%-80%的电能,石墨烯则不同,它的电子能量不会被损耗,这使它具有了优良导热特性。 超级电池采用单原子厚度的碳层构成,这项技术能够在最短时间内对手机和汽车快速充电,能够很容易制造并整合成为器件,未来有望制造更小的手机。 石墨烯储能和放电过程中不发生电池反应,只是将电子储存和释放,是物理变化。由此,应当称其为电容,而不是电池。目前,石墨烯应用于电池上的研究基本上有3个方向: 一是以石墨烯形成全新体系电池。就是说以石墨烯制造一个全新体系的电池,在性能上是颠覆性的,称作“超级电池”。使用这种材料制作的电池,能量密度超过600wh/kg,是目前动力锂电池的5倍,一次充电时间只需8分钟,可行驶1000公里;电池重量只有锂离子电池的一半,体积也会大幅缩小,减轻使用该电池汽车的自身重量;电池的使用寿命更长,是传统氢化电池的4倍,锂电池的2倍;其成本将比目前锂电池降低77%。这些物理参数都符合超级电池的要求。 二是以石墨烯强化现有电池性能。将石墨烯运用到现有电池上,改进提升锂电池、太阳能电池等电池性能,力图达到超级电池的性能。对于那些已投巨资建

石墨烯的结构、制备、性能及应用研究进展

. . .. . . 报告题目:石墨烯的结构、制备、性能及应用研究进展 一、书目信息: 二、评分标准 1.格式规、容简明扼要。报告中引用的数据、观点等要注明出处20分 2. 报告结构合理,表述清晰20分 3. 石墨烯的结构、性能、制备方法概述正确、新(查阅5篇以上的文献)20分 4. 石墨烯的应用研究进展概述(文献)全、新(查阅5篇以上的文献)20分 5. 心得及进一步的研究展望真实,无抄袭与剽窃现象20分 三、教师评语 请根据写作容给定成绩,填入“成绩”部分。 注1:本页由报告题目、书目信息有学生填写,其余由教师填写。提交试卷时含本页。学生从第二页开始写作,要求见蓝色字体部分。 注2:“阅卷教师评语”部分请教师用红色或黑色碳素笔填写,不可用电子版。无“评语”视为不合规。注3:不符合规试卷需修改规后提交。 摘要 碳是自然界中万事万物的重要组成物质,也是构成生命有机体的主要元素。石墨和金刚石是两种典型的单质碳,也是最早为人们所熟知的两种碳的三维晶体结构,属于天然矿

密封线 石。除石墨和金刚石外,碳材料还包括活性炭、碳黑、煤炭和碳纤维等非晶形式。煤是重 要的燃料。碳纤维在复合材料领域有重要的应用。20 世纪80 年代,纳米材料与技术获得 了极大的发展。纳米碳材料也是从这一时期开始进入历史的舞台。1985 年,由60 个碳原 子构成的“足球”分子:C60被三位英美科学家发现。随后,C70、C86等大分子相继出现, 为碳家族添加了一大类新成员:富勒烯。富勒烯是碳的零维晶体结构,它们的出现开启了 富勒烯化学新篇章。三位发现者于1996 年获诺贝尔化学奖。1991 年,由石墨层片卷曲 而成的一维管状纳米结构:碳纳米管被发现。如今,碳纳米管已经成为一维纳米材料的典 型代表。发现者饭岛澄男于2008 年获卡弗里纳米科学奖。2004 年,一位新成员:石墨 烯,出现在碳材料的“家谱”中。石墨烯的发现者,两位英国科学家安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)于2010 年获诺贝尔物理学 奖。 关键词:碳材料复合材料晶体结构 1 石墨烯的结构 石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。石墨烯被认为是平面多环芳香烃原子晶体。 2 石墨烯的制备 2.1 物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得, 操作相对简单,合成的石墨烯的纯度高、缺陷较少。 2.1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt 等[1]于2004年用一种极为简单的微机械剥离法成功地从高定向热解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在 1 mm厚的高定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20 μm—2 mm、深 5 μm的微槽后,用光刻胶将其粘到玻璃衬底上,再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用德华力或毛细管力将单层石墨烯“捞出”。 2.1.2取向附生法—晶膜生长

碳的单质物理性质及用途

一、教学时间:年月日星期 二、教学课题:课题1 金刚石、石墨和C60 三、教材分析: (一)学习目标: 1.知识与技能 (1)了解金刚石和石墨的物理性质和用途。 (2)知道不同元素可以组成不同的物质,同一种元素也可以组成不同的物质。 2.过程与方法 (1)会对展示或演示的资料分析、归纳。 (2)能认真观察实验现象,并会对现象分析归纳,总结出重要的知识点。 3.情感态度与价值观 (1)以发展的观点看待碳的单质。 (2)树立物质的性质决定用途的观点。 (二)教学重点 金刚石和石墨的物理性质和用途。 (三)教学难点 金刚石和石墨的物理性质和用途 四、学习指导: 观察——分析——总结---- 实验探究——分析——归纳。 五、教学设计:

(一)教具使用:多媒体教学系统及课件; (二)教学程序及时间分配: [板书]课题1 金刚石、石墨和C60 [引言]我们知道不同元素可以组成不同物质,那么,同种元素可以组成不同物质吗? [展示]金刚石,石墨、C60分子模型 [介绍]金刚石、石墨、C60都是由碳元素组成的单质。 [教师]你能得到什么结论? [学生总结]同种元素可以组成不同的物质。 [引导]观察金刚石样品,试描述有关物理性质。 [学生观察、讨论、总结]无色透明、正八面体形状。 [展示]玻璃刀 [介绍]刀头上镶有金刚石,用它来裁玻璃。 [设问]你想到了什么? [学生发言]金刚石很硬,所以可用来裁玻璃。 [板书]一、碳的单质 1.金属石很硬,可用来切割玻璃。 [介绍]金刚石经仔细琢磨后,可以成为璀璨夺目的装饰品——钻石,它的价格比金刚石还高,现在带钻戒的人越来越多,说明人们的生活水平越来越高。 [引导]观察石墨样品,试描述有关物理性质。 [学生观察描述]深灰色、有金属光泽、不透明、细鳞片状固体。 [引导]用手触摸一下石墨,有何感觉? [学生]石墨很软、有滑腻感。 [介绍]由于石墨很软,所以常用石墨作铅笔芯,但由于太软,光用石墨作笔芯,既易断又易磨损,因此生产上常在石墨粉末中掺进一些粘土粉以增加硬度。最软的铅笔是6B,最硬的铅笔是6H,HB铅笔则软硬适中。 [演示实验]把一根6B的铅笔芯和导线连接在一起,接上电池和灯泡,接通电源后,观察灯泡是否发亮。 [学生观察]灯泡发亮。

石墨烯结构

石墨烯结构 石墨烯不仅是已知材料中最薄的一种,还非常牢固坚硬; 作为单质,它在室温下传递电子的速度比已知导体都快。 石墨烯(Graphene)是一种由碳原子构成的单层片 状结构的新材料。是一种由碳原子以sp2杂化轨道组成 六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的 二维材料[1]。石墨烯一直被认为是假设性的结构,无法单独稳定存在[1],直至2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖[2]。 石墨烯目前是世上最薄却也是最坚硬的纳米材料[3] ,它几乎是完全透明的,只吸收%的光"[4];导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率*超过15000 cm2/V·s,又比纳米碳管或硅晶体*高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料[1]。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯的命名来自英文的graphite(石墨) + -ene(烯类结尾)。石墨烯被认为是平面多环芳香烃原子晶体。 石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为Å。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排

壳聚糖_氧化石墨烯复合材料结构和性能研究_陈建光

第20卷第1期重庆电子工程职业学院学报Vol.20No.12011年1月Journal of Chongqing College of Electronic Engineering Jan.2011 石墨烯不仅价格低廉,而且具有片层结构和良好的热稳定性和导电性。用石墨烯来改善聚合物的性能具有较大的潜力[1-3]。Ruoff 等用化学方法先后合成出石墨烯/聚合物导电纳米复合材料[4]和无支撑的氧化石墨烯纸[5],掀起了氧化石墨烯应用研究的热潮。与石墨烯相比,氧化石墨烯(GO )不仅含有羟基、环氧基、羰基、羧基等多种官能团,同时还能被小分子或者聚合物插层,或剥离[6,7],能有效改善复合物材料的性能。Wu 等[8]将氧化石墨烯片层加入聚合物提高了导电性能,Kai [9]等通过填充氧化石墨烯改善聚合物的热稳定性和力学性能。 本研究通过氧化天然石墨粉制备GO [10],以流延法成功制得壳聚糖(CS )基复合材料(CS/GO-n )。通过X-衍射、力学性能测试和吸湿性能测试,探讨GO 的含量对CS 基复合材料的结构和性能的影响。 1实验部分1.1 原料与仪器 石墨粉购于上海华谊集团华原化工有限公司。过硫 酸钾(K2S2O8)、五氧化二磷(P2O5)和双氧水(H2O2)由成都科龙化学试剂厂提供;硫酸,盐酸购于重庆川东化学试剂厂;壳聚糖(平均分子量大于30万,脱乙酰度大于 90%),购自中国南通新程生物工业有限公司;36%乙酸 (分析纯),购自重庆茂业化工公司;蒸馏水。 集热式恒温加热磁力搅拌器(DF-101S ,郑州);高功率数控超声波清洗器(KQ-400KDV ,昆山);旋片真空泵(2XZ-4,浙江);多管架自动平衡离心机(TDZ5-WS ,长沙);电热鼓风干燥箱(CS101-2A ,重庆);真空干燥箱(DZF-6020,上海)。XD-3X 射线粉末衍射仪(北京普析通用仪器责任有限公司);Sansi6500型微电子万能力学实验机(深圳), 1.2氧化石墨烯(GO )的制备 采用Hummers 法从天然的石墨粉氧化制备GO[10]。 1.3CS/GO-n 复合材料的制备 流延法制备CS/GO-n 复合材料:壳聚糖溶于2%(体积比)的醋酸溶液制得2wt%的溶液,将一定量的GO 粉末(0.2,0.4,0.6,0.8,1.0,1.5wt%,相对于壳聚糖基体)溶解在70mL 的水中,超声分散1.5h 之后,逐滴滴加到壳聚糖醋酸溶液中,60℃下恒温搅拌5h ,减压脱泡后在玻璃板上流延成膜,50℃下干燥12小时,并将其编号为 CS/GO-n (n 代表GO 相对于CS 的质量百分含量),常温 下置于相对湿度为43%的干燥器中。样品编号及其含量列于表1中。 表1 CS/GO-n 复合材料编号 2结果与讨论 2.1X-衍射分析 图1为GO 及CS/GO-n 复合材料的X 衍射衍射图谱 (XRD )图。在GO 的谱图中,2θ=11.1○处出现了一强的衍射峰,层间距为0.8nm ,与文献报道值相一致[11]。纯壳聚糖膜(CS/GO-0)在2θ=11.4°、18.3°出现两个强衍射峰,在 2θ=8.3°、16.1°、22.9°出现三个较弱的衍射峰,同文献报道 一致[12]。CS/GO-n 复合材料的XRD 图谱与纯壳聚糖的衍射图谱相似,且在复合材料中没有出现GO 的特征衍射峰。可能是由于低的添加量,同时也充分说明GO 均匀分散在基体中,与壳聚糖基体之间形成较强的相互作用有效地限制了石墨烯的聚集。再者,GO 的添加量对复合材料XRD 图谱没有多大影响。 收稿日期:2010-12-11 作者简介:陈建光(1981—),男,山西保德人,广东省汕头市公安消防支队龙湖大队工作,主要从事防火灭火材料研究。 壳聚糖/氧化石墨烯复合材料结构和性能研究 陈建光 (广东省汕头市公安消防支队龙湖大队,广东汕头515041) 摘 要:流延法制备了壳聚糖/氧化石墨烯复合材料。X-衍射表明壳聚糖和氧化石墨烯之间形成强烈的相互作 用;力学性能测试结果表明,当氧化石墨烯含量仅为0.6wt%时,壳聚糖基复合材料的拉伸强度提高到64.4MPa ,断裂伸长率提高到38.8%,与壳聚糖基体相比,分别提高了101%和61.7%。 关键词:壳聚糖;氧化石墨烯;性能中图分类号:O433.1 文献标识码:A 文章编号:1674-5787(2011)01-0153-02 Code CS/GO-0CS/GO-1CS/GO-2CS/GO-3CS/GO-4CS/GO-5CS/GO-6CS/GO (wt%) 0.2 0.4 0.6 0.8 1.0 1.5

石墨的性质

石墨的性质 2006年4月24日07:42 磨料磨具在线 石墨碳质元素结晶矿物,它结晶格架为六边形层状结构,见图1—1。每一网层间距离为3.40人,同一网层中碳原子间距为1.42A。属六方晶系,具完整层状解理。解理面以分子键为主,对分子吸引力较弱,故其天然可浮性很好。 石墨质软,黑灰色;有油腻感,可污染纸张。硬度为1~2,沿垂直方向随杂质增加其硬度可增至3~5。比重为1.9~2.3。在隔绝氧气条件下,其熔点在3000℃以上,最耐温矿物之一。 自然界中纯净石墨没有,其中往往含有Si02、A1203、Fe0、CaO、P2O5、Cu0等杂质。这些杂质常以石英、黄铁矿、碳酸盐等矿物形式出现。此外,还有水、沥青、CO2、H2、CH4、N2等气体部分。因此对石墨分析,除测定固定碳含量外,还必须同时测定挥发分和灰分含量。 石墨工艺特性主要决定于它结晶形态。结晶形态不同石墨矿物,具有不同工业价值和用途。工业上,根据结晶形态不同,将天然石墨分为三类。 1.致密结晶状石墨 致密结晶状石墨又叫块状石墨。此类石墨结晶明显晶体肉眼可见。颗粒直径大于0.1毫米。晶体排列杂乱无章,呈致密块状构造。这种:石墨特点品位很高,一般含碳量为60~65%,有时达80~98%,但其可塑性和滑腻性不如鳞片石墨好。 2.鳞片石墨 石墨晶体呈鳞片状;这在高强度压力下变质而成,有大鳞片和细鳞片之分。此类石墨矿石特点品位不高,一般在2~3%,或100~25%之间。自然界中可浮性最好矿石之一,经过多磨多选可得高品位石墨精矿。这类石墨可浮性、润滑性、可塑性均比其他类型石墨优越;因此它工业价值最大。 3.隐晶质石墨 隐品质石墨又称非晶质石墨或土状石墨,这种石墨晶体直径一般小于1微米,微晶石墨集合体,只有在电子显微镜下才能见到晶形。此类石墨特点表面呈土状,缺乏光泽,润滑性也差。品位较高。一般60~80%。少数高达90%以上。矿石可选性较差。 石墨由于其特殊结构,而具有如下特殊性质: 1)耐高温型:石墨熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。 2)导电、导热性:石墨导电性比一般非金属矿高一百倍。导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高温度下,石墨成绝热体。 3)润滑性:石墨润滑性能取决于石墨鳞片大小,鳞片越大,摩擦系数越小,润滑性能越好。 4)化学稳定性:石墨在常温下有良好化学稳定性,能耐酸、耐碱和耐有机溶剂腐蚀。 5)可塑性:石墨韧性好,可年成很薄薄片。 6)抗热震性:石墨在常温下使用时能经受住温度剧烈变化而不致破坏,温度突变时,石墨体积变化不大,不会产生裂纹。 天然石墨以块状石墨和鳞片石墨最好,用途最广。我国还没有发现大规模块状石墨矿床,鳞片石墨和隐晶质石墨均有较大矿床,并形成了大规模开采基地。 天然石墨具有许多优良性质,因而广泛应用于国民经济各部门,尤其在冶金、机械、电

石墨烯基础及性能应用

Graphene Fundamentals and Performance Applications 石墨烯基础及性能应用 学校西安建筑科技大学 论文名称石墨烯基础及性能应用 班级材料科学1302 学号130502112 姓名王号强 指导教师李延军 2016年4月28日

目录 1.碳族材料概述 1.1碳的同素异形体—石墨和金刚石1.2碳的同素异形体—富勒烯 1.3碳的同素异形体—碳纳米管 1.4碳的同素异形体—石墨烯 2.石墨烯及类似物的原子结构 2.1石墨烯及石墨烯材料的定义 2.2石墨烯的原子结构 2.3石墨烯与碳纳米管之间的关系2.4其它层状二维晶体 2.4.1氮化硼纳米片层 2.4.2二氧化钛纳米片 2.5纳米结构的石墨烯 3.石墨烯的性质及制备方法 3.1石墨烯的性质 3.2石墨烯的制备方法 4.石墨烯的表征 5.石墨烯的应用

1.碳族元素概述 1.1碳的同素异形体—石墨和金刚石 20世纪80年代以前,人们普遍认为碳有两种同素异形结构:石墨和金刚石。金刚石是闪闪发光且非常坚硬的晶体结构,有四个碳原子分别以sp3杂化(键角109度28分)形式相结合,形成三维的正四面体结构。石墨的结构完全不同于金刚石,碳原子采取sp2杂化(键角120度)形成相应的六方晶体结构。这两种材料的性质差异十分显著,例如,石墨中高度离域的π键网络结构表明,石墨比金刚石具有更高的导电率,而金刚石sp3碳原子有很强的共价键连锁网状结构,具有很高的硬度。加之,由于金刚石很宽的带隙(5.5ev),因而金刚石是一种绝缘体,而石墨是一种导体(带隙约为0.25ev)。 1.2碳的同素异形体—富勒烯 1985年,Kroto等人发现了富勒烯,在其1812种结构中,最稳定的是有12个五边形和20个六边形组成的32面体的笼状结构。一个C60分子的平均外径为1nm。由于富勒烯具有高度对称性,显示出可以在各种表面上滚动的特性,通过轮状富勒烯的转动,设计和合成的纳米车分子可直接在可控的表面上跑动。 1.3碳的同素异形体—碳纳米管 1991年,日本的电镜专家S.lijima在用石墨电弧发制备C60的过程中意外发现碳纳米管,该材料为中空结构管状物,由2—50层石墨层片卷曲而成,各层之间距离0.343nm,两端由半球形的端帽封闭。碳纳米管最有前景的应用是在场发射设备中作为电子发射器。 1.4碳的同素异形体—石墨烯 2004年,英国曼彻斯特大学的Andre Geim和konstantin Novoselov发现了石墨烯(graphene)。他们强行将石墨分离成较小的碎片,从碎片中剥离除较薄的石墨薄片,然后用一种特殊的胶带粘住薄片的两侧,撕开胶带,薄片也随之一分为二,不断重复,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成的新型的二维原子晶体—石墨烯。石墨烯的垩发现,充实了碳材料家族,形成了从零维的富勒烯、一维的纳米管、二维的石墨烯到三维的金刚石和石墨的完整体系。 2.石墨烯及类似物的原子结构 2.1石墨烯及石墨烯材料的定义 石墨烯仅是指排列在六方晶格中的准二维孤立碳原子层。单层石墨烯(single-layer graphene,SLG)和双层石墨烯(bilayer graphene,BLG)才是零带隙的半导体,它们各自只有一种电子和空穴。对于所谓的少层石墨烯(few-layer graphene,FLG,3-10层)而言,其导带和价带发生重叠,出现电荷载流子(charge carriers)。而更厚的石墨烯结构则被认为是石墨薄膜。 当石墨的层数少于10层时,就会表现出较普通三维石墨不同的电子结构,因此,将10层以下的石墨材料成为石墨烯材料。 2.2石墨烯的原子结构 单层石墨烯是单原子层紧密堆积的二位晶体结构,其中碳原子以六元环形状周期性排列于石墨烯平面内。每个碳原子通过*键与邻近三个原子相连,S、Px和Py三个杂化轨道形成强的共价键结合,组成SP2(120度键角)杂化结构,由于饱和烃的键角为109度28分,故120度的键角张力较小,所以赋予了石墨烯极高的力学性能。剩余的Pz轨道在与平面垂直的垩方向形成π轨道,此π电子可在石墨烯晶体平面内自由移动,而使石墨烯有良好的导电

碳单质的物理性质及用途

课题1 金刚石、石墨和C60 第1课时碳单质的物理性质及用途 【学习目标】 1.通过阅读教材,了解金刚石、石墨、C60都是由碳元素组成的单质; 2.通过对金刚石、石墨、C60中碳原子排列方式的分析,懂得物质结构、性质和用途之间的 关系,知道不同元素可以组成不同物质,同种元素也可以组成不同物质; 3.通过实验,认识木炭、活性炭的吸附性。 【自主学习】 阅读教材P106-109,填空 1.纯净的金刚石是一种_____透明的_____________形状的固体,________是其最重要的物理性质,利用这个性质,可做___________________________。 2.石墨是一种______色的有__________而不透明的__________状固体。石墨质软,能_____,具有润滑性。对应的用途是____________ 、 _______________ 、______________ 。 3.金刚石和石墨的物理性质有很大差异的原因是_________________________。 4.木炭和活性炭具有________,利用该性质,木炭可以除去食品和工业产品里的_____,活性炭可做_________的滤毒剂。 【共同建构】 活动一:完成教材实验6-1,填空 1.由于木炭和活性炭都具有___________的结构,因此他们都具有较强的吸附能力,可以吸附毒气、色素、以及有异味的物质。 2.小组讨论:金刚石、石墨、木炭和活性炭的性质和用途,讨论物质的性质与用途之间有什么关系。 (1)金刚石、石墨、木炭和活性炭的物理性质有很大差异的原因是___________________。(2)一般物质的________决定物质的_________。 【典型例题】 关于同种元素组成物质的说法不正确的是() ①可能是化合物 ②可能是单质 ③可能是混合物 ④可能是纯净物,也可能是混合物 【当堂演练】 1.下列物质中,硬度最大的是() A.金刚石 B.石墨 C.焦炭 D.活性炭 2.下列物质均含有碳元素,其中属于单质的是() A.C60 B.CO C.C2H2 D.CH3OH 3.金刚石、石墨、C60都是由碳元素组成的单质,下列关于碳单质的正确叙述是()A.都是黑色固体 B.在氧气中充分燃烧都生成二氧化碳 C.碳原子的排列方式相同 D.一定条件下,石墨转化成金刚石是物理变化 4.在日常生活和生产中,下列物质用途是由化学性质决定的是()

石墨烯的结构性能

石墨烯的结构性能 摘要:石墨烯是2004年才发现的一种有奇异性能的新型材料,它是由碳原子组 成的二维六角点阵结构,具有单一原子层或几个原子层厚。石墨烯因其具有独特的电子能带结构和具相对论电子学特性,是迄今为止人类发现的最理想的二维电子系统,且具有丰富而新奇的物理特性。本文详细介绍了石墨烯的结构,特殊性能以及对石墨烯原胞进行了5×5×1的扩展,通过密度泛函理论 ( DFT) 和广义梯度近似 ( GGA)对50个碳原子的本征石墨烯超晶胞进行电子结构计算。 关键字:石墨烯,结构,特殊性能,超晶胞,电子结构计算 一、引言 石墨烯是2004年以来发现的新型电子材料石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。石墨烯被认为是平面多环芳香烃原子晶体。石墨烯在电子和光电器件领域有着重要和广阔的应用前景正因为如此,石墨烯的两位发现者获得了2010年的诺贝尔物理学奖。 石墨烯是一种没有能隙的半导体,具有比硅高100倍的载流子迁移率,在室温下具有微米级自由程和大的相干长度,因此石墨烯是纳米电路的理想材料,石墨烯具有良好的导热性[3000W/(m·K)]、高强度(110GPa)和超大的比表面积 (2630mZ /g)。这些优异的性能使得石墨烯在纳米电子器件、气体传感器、能量存储及复合材料等领域有光明的应用前景 二、石墨烯的特殊性能 石墨烯是一种半金属或者零带隙二维材料,在靠近布里渊区6个角处的低能区,其E-k色散关系是线性的 ,因而电子或空穴的有效质量为零,这里的电子或空穴是相对论粒子,可以用自旋为1/2粒子的狄拉克方程来描述。 石墨烯的电子迁移率实验测量值超过15000cm/(V·s)(载流子浓度n≈10 cm ),在10~100K范围内,迁移率几乎与温度无关,说明石墨烯中的主要散射机制是缺陷散射,因此,可以通过提高石墨烯的完整性来增加其迁移率,长波的声学声子散射使得石墨烯的室温迁移率大约为200000cm /(V·s),其相应的电

中考物理:比较铜和石墨属性的实验

义务教育基础课程初中教学资料 课题2:比较铜和石墨属性的实验 一、内容解读 物理新课程标准中二级主体“物质的属性”要求学生能够描述物质的“弹性、硬度”“磁性”“导电性”等属性,当然也可以涉及物质的其它属性。该标准属于了解水平。该标准的第二点要求学生通过实验,探究物质“弹性、硬度”等属性。说明生活中是怎样应用物质的这些属性的,调查磁性材料在生活中的用途,通过观察、查阅资料,比较导体、半导体、绝缘体的不同。考察家中的哪些物品用到了物质的导热性质等等。该标准旨在培养学生理论联系实际的能力。 1.课题目标 (1)让学生认识不同物质的不同物理性质,能够在日常生 活中依据金属和非金属的不同特点区分两种物质。 (2)学会动用设计型的实验去区分两种不同的物质,同时 以解它们各自的属性。 (3)意识到不同的物质对生活和科技的重要意义和作用, 培养学生热爱科学,不断探索的精神。 2.背景描述 化学家是根据物质的“硬度”“光泽”“延展性”等物理性 质划分金属。抛光的银(Ag)具有良好的光泽,延展性是 指材料可以被敲成薄板,或被不断地拉伸,甚至可以拉成线。 正是因为铜有良好的延展性,所以铜可经锻压成铜板和拉成铜 线。大多数的金属都是热和电的良好导体,因为它们能非常容 易地传导热和电。有些金属有磁性,能被磁场吸引,同时本身 变成磁铁。如铁、钴、和镍等。大多数的金属都具有非常高的 熔点,所以,在室温下,金属一般都是固体。实际上,其些金 属在温度高于3400℃时才能熔化。只有汞是例外,室温时,它 是金属中唯一的液体。 一般而言,非金属的物理性质正好与金属的物理性质相反。 大多数的非金属没有光泽,如果用锤子敲击固体非金属,它们 中的大多很容易碎裂甚至变成粉末。非金属的密度通常要比金

相关文档
最新文档