高中物理选修3-4第五章学案2习题 课后作业,有详细解答

高中物理选修3-4第五章学案2习题 课后作业,有详细解答
高中物理选修3-4第五章学案2习题 课后作业,有详细解答

学案2 学生实验:用双缝干涉测量光的波长

[学习目标定位] 1.了解用双缝干涉测量光的波长的实验原理.2.知道影响干涉条纹间距的因素.3.观察白光及单色光的干涉图样.4.能够利用双缝干涉实验测量单色光的波长.

1.单色光干涉图样的特点:中央为亮条纹,两边是明暗相间的条纹.

2.用游标为20分度的卡尺测量某物体的长度时,示数如图1甲所示,读数为0.775cm ,用螺旋测微器测另一物体的长度时,示数如图乙所示,读数为8.473mm.

图1

1.单色光发生双缝干涉时,相邻两条亮条纹(或暗条纹)的中心距离是Δx =l d

λ. 2.实验器材

双缝干涉实验仪(包括:光具座、光源、透镜、滤光片、单缝、双缝、遮光管、光屏及测量头,其中测量头又包括:游标尺、分划板、滑块座、滑块、目镜、手轮等)、学生电源、导线、米尺.

3.条纹间距Δx 的测定

如图2甲所示,测量头由分划板、目镜、手轮等构成,测量时先转动测量头使分化板的中心刻线对齐某条亮条纹的中央,如图乙所示,记下手轮上的读数x 1;转动手轮,使分化板中心刻线移至另一亮条纹的中央,记下此时手轮上的读数x 2,得出n 个亮条纹间的距离为x =|x 2

-x 1|,则相邻两亮条纹间距Δx =|x 2-x 1|n -1

.

图2

一、实验原理

1.观察干涉图样:光源发出的光经滤光片成为单色光,单色光通过单缝后相当于线光源,经双缝产生稳定的干涉图样,通过屏可以观察到明暗相间的干涉条纹.如果用白光通过双缝可以观察到彩色条纹.

2.测量光的波长:若双缝到屏的距离用l 表示,双缝间的距离用d 表示,相邻亮条纹间的距

离用Δx 表示,则入射光的波长为λ=d Δx l

.实验中d 是已知的,测出l 、Δx 即可测出光的波长λ.

二、实验步骤(如图3所示为安装仪器示意图)

图3

1.把遮光管架在支架环上,其轴线与光具座的导轨基本平行.

2.在遮光管的一端装上双缝,并转动双缝座,使双缝与水平面垂直.再装好单缝管.

3.让灯泡灯丝及透镜中心与单缝中心等高.灯丝与单缝之间的距离约为25cm.点亮灯泡,上下或左右调节灯泡,使灯丝的放大像及缩小像均成在单缝中心.

4.在遮光管的另一端装上测量头.在单缝管上装上拨杆,边观察,边左右移动拨杆,以调节单缝与双缝平行,直至看到白光的干涉条纹最清晰.

5.测量单色光波长时,在单缝前面加上红色或绿色滤光片即可看到红黑相间或绿黑相间的干涉条纹,再调节目镜,就能同时清晰地看到分划线和干涉条纹,然后绕光轴转动测量头,使分划线与干涉条纹平行,固定好测量头后即可进行测量.

6.先移动测量头上的手轮,把分划线对准最左边的一条干涉亮条纹或者暗条纹,并记下它在游标尺上的读数x 1,然后转动手轮,把分划线移向右边,并对准第n 条(一般n 可取7左右)干涉亮条纹或暗条纹,这时游标尺的读数为x n ,则相邻两条亮条纹或暗条纹之间的距离为Δx =x n -x 1n -1

. 待测的光波波长为:

λ=d ·Δx l =d l ·x n -x 1n -1

. 式中d 为双缝中心距离,其数值刻在双缝座上,一块为0.250mm ,另一块为0.200mm.l 为双缝至光屏(即分划板)之间的距离,当遮光管未接长管时,l =600mm ;当遮光管接上长管后,l =700mm.

7.改变双缝间的距离d ,重复上面步骤再测量一次.

三、注意事项

1.单缝、双缝应相互平行,其中心大致位于遮光筒的中心轴线上,双缝到单缝的距离应相等.

2.测双缝到屏的距离l时用毫米刻度尺多次测量取平均值.

3.测条纹间距Δx时,用测量头测出n条亮条纹间的距离a,求出相邻两条亮条纹间的距离

Δx=a

n-1

.

四、误差分析

实验中的双缝间距d是器材本身给出的,因此本实验要注意Δx的测量.光波的波长很小,Δx 的测量对波长的影响很大.

Δx利用测量头测量.可利用“累积法”测n条亮条纹间的距离a,再求Δx=

a

n-1

,并且采用

多次测量求Δx的平均值的方法进一步减小误差.

例1如图4所示的双缝干涉实验,用绿光照射单缝S时,在光屏P上观察到干涉条纹.要得到相邻条纹间距更大的干涉图样,可以(λ红>λ绿>λ紫)()

图4

A.增大S1与S2的间距

B.减小双缝屏到光屏的距离

C.将绿光换为红光

D.将绿光换为紫光

解析在双缝干涉实验中,相邻两个亮条纹(或暗条纹)间的中心间距Δx=l

d

λ,要想增大条纹间距,可以减小两缝间距d,或者增大双缝屏到光屏的距离l,或者换用波长更长的光做实验.由此可知,选项C正确,选项A、B、D错误.

答案 C

例2在“用双缝干涉测量光的波长”的实验中,装置如图5所示.双缝间的距离d=3mm.

图5

(1)若测定红光的波长,应选用________色的滤光片.实验时需要测定的物理量有________和________.

(2)若测得双缝与屏之间的距离为0.70m,通过测量头(与螺旋测微器原理相似,手轮转动一周,分划板前进或后退0.500mm)观察第1条亮条纹的位置如图6甲所示,观察第5条亮条纹的位置如图乙所示.则可求出红光的波长λ=________m.

图6

解析 (1)由于测量红光的波长,因此用红色滤光片.由Δx =l d

λ可知要想测λ必须测定双缝到屏的距离l 和条纹间距Δx .

(2)由测量头的数据可知a 1=0,a 2=0.640mm ,

所以Δx =a 2-a 1n -1

=0.6404mm =1.60×10-4m , λ=d Δx l =3×10-3×1.60×10-40.70

m ≈6.86×10-7m. 答案 见解析

例3 (2014·全国大纲·17)在双缝干涉实验中,一钠灯发出的波长为589nm 的光,在距双缝 1.00m 的屏上形成干涉图样.图样上相邻两明纹中心间距为0.350cm ,则双缝的间距为( )

A .2.06×10-7m

B .2.06×10-

4m C .1.68×10-4mD .1.68×10-

3m 解析 在双缝干涉实验中,相邻明条纹间距Δx 、双缝间距d 与双缝到屏的距离l 间的关系为

Δx =l d λ,则双缝间距d =lλΔx =1.00×589×10-90.350×10

-2m ≈1.68×10-4m. 答案 C

1.某同学在做双缝干涉实验时,按装置图安装好实验装置,在光屏上却观察不到干涉图样,这可能是由于( )

A .光束的中央轴线与遮光筒的轴线不一致,相差较大

B .没有安装滤光片

C .单缝与双缝不平行

D .光源发出的光束太强

答案 AC

解析 安装实验器材时要注意:光束的中央轴线与遮光筒的轴线要重合,光源与光屏正面相对,滤光片、单缝和双缝要在同一高度,中心位置在遮光筒轴线上,单缝与双缝要相互平行,才能使实验成功.当然还要使光源发出的光束不致太暗.综上所述,可知选项A 、C 正确.

2.双缝干涉实验中,要使屏上单色光的干涉条纹之间的距离变宽,可采取以下办法:

(1)____________;(2)____________;(3)________________.为测量红光的波长,现测得屏上6条亮条纹间的距离为7.5mm ,已知双缝间的距离为0.5mm ,双缝到光屏的距离为1m ,则此红光的波长为________.

答案 见解析

解析 在双缝干涉实验中,根据公式Δx =l d

λ可知,要使屏上单色光的干涉条纹之间的距离变宽,可以采取的办法是:

(1)使用波长λ较长的单色光;

(2)增加双缝到光屏间距离或选用较长的遮光管;

(3)减小双缝之间的距离.

根据测量值,计算相邻条纹间的距离:

Δx =a n -1=7.55

mm =1.5mm 再代入公式λ=Δxd l

,求得红光的波长为λ=7.5×10-7m. 3.在“双缝干涉测光的波长”实验中,调节分划板的位置,使分划板的中心刻线对齐中央明条纹的中心,此时螺旋测微器的读数如图7甲所示,转动手轮,使分划板向一侧移动,使分划板的中心刻线对齐第3条明条纹的中心,此时螺旋测微器的读数如图乙所示.已知双缝间距d =1.5mm ,双缝到屏的距离l =1.00m ,则被测光的波长为多少?

图7

答案 4.73×10-

7m 解析 图甲读数为1.130mm ,图乙读数为1.760mm.

相邻两条明条纹的间距Δx =1.760-1.1302

mm =0.315mm. 由Δx =l d λ得λ=d Δx l =1.5×10-3×0.315×10-31.00

m =4.73×10-7m.

1.某同学按双缝干涉实验装置安装好仪器后,观察光的干涉现象,获得成功.若他在此基础上对仪器的安装做如下改动,仍能使实验成功的是( )

A .将遮光筒内的光屏向靠近双缝的方向移动少许,其他不动

B .将滤光片移至单缝和双缝之间,其他不动

C .将单缝向双缝移动少许,其他不动

D .将单缝与双缝的位置互换,其他不动

答案ABC

解析由Δx=l

d

λ知,改变双缝到光屏的距离l仍能得到清晰条纹,只不过条纹间距变化,故A正确.单缝与双缝间的距离对干涉无影响,故C正确.滤光片的作用是得到相干单色光,装在单缝前还是在单、双缝之间不影响干涉,故B正确.

2.做双缝干涉实验时,要增大光屏上相邻亮条纹之间的距离,可以采取的措施是() A.减小双缝到光屏的距离B.增大光的频率

C.增大双缝之间的距离D.增大光的波长

答案 D

解析由双缝干涉中条纹间距的表达式Δx=l

d

λ可知,要增大条纹间距Δx,可以增大双缝到光屏的距离l,减小双缝之间的距离d,或者增大光的波长λ,故A、C错,D对;增大光的频率,则减小了光的波长,条纹间距减小,故B错.

3.在双缝干涉实验中,以下说法正确的是()

A.双缝屏的作用是使入射光到达双缝屏时,双缝就成了两个振动情况完全相同的光源B.若入射光是白光,则像屏上的条纹是黑白相间的干涉条纹

C.像屏上某点到双缝的路程差为入射光波长的1.5倍时,该点处一定是亮条纹

D.双缝干涉中相邻亮条纹之间的距离与相邻暗条纹之间的距离不相等

答案 A

解析分光法获得相干光,所以A正确;白光的干涉条纹是彩色的,不是黑白相间的,B错;像屏上某点到双缝的路程差为波长的1.5倍时,该处应是暗条纹,C错;相邻亮条纹间距等于相邻暗条纹间距,D错.

4.在利用测量头测量条纹宽度时,最好应使分划板中心刻线()

A.与亮条纹的边缘线对齐

B.与暗条纹的边缘线对齐

C.与亮条纹的中心位置对齐

D.与暗条纹的中心位置对齐

答案 C

解析相邻两亮条纹的间距是指相邻两亮条纹中心的间距.

5.用单色光做双缝干涉实验,在光屏上某点P,从中央O点开始计数,P点恰为第三条亮条纹,现改用频率较高的单色光照射,其他的条件不变,那么()

A.P处仍为第三条亮条纹

B.P处可能是第四条亮条纹

C.P处可能是第二条亮条纹

D.若将光屏向双缝移近一些,在P处可能看到第二条亮条纹

答案 B

解析 频率高,则波长短,双缝到P 点光程差不变,故A 、C 错,B 对;若将光屏向双缝移近一些,条纹间距变小,故D 错.

6.现有毛玻璃屏A 、双缝B 、白光光源C 、单缝D 和透红光的滤光片E 等光学元件,要把它们放在如图1所示的光具座上组装成双缝干涉装置,用以测量红光的波长.

图1

(1)将白光光源C 放在光具座最左端,依次放置其他光学元件,由左至右,表示各光学元件的字母排列顺序应为C 、________、________、________、A .

(2)本实验的步骤有:

①取下遮光筒左侧的元件,调节光源高度,使光束能直接沿遮光筒轴线把屏照亮; ②按合理顺序在光具座上放置各光学元件,并使各元件的中心位于遮光筒的轴线上; ③用刻度尺测量双缝到屏的距离;

④用测量头(其读数方法同螺旋测微器)测量数条亮条纹间的距离.

在操作步骤②时还应注意:____________________________和________________________.

(3)将测量头的分划板中心刻线与某亮条纹中心对齐,将该亮条纹定为第1条亮条纹,此时手轮上的示数如图2甲所示.然后同方向转动测量头,使分划板中心刻线与第6条亮条纹中心对齐,记下此时图乙中手轮上的示数为______mm ,求得相邻亮条纹的间距Δx 为_______mm.

图2

(4)已知双缝间距d 为2.0×10-

4m ,测得双缝到屏的距离l 为0.700m ,由计算式λ=________,求得所测红光的波长为__________nm.

答案 (1)E D B (2)放置单缝、双缝时,必须使缝平行 单缝、双缝间距离大约为5~10cm

(3)13.870 2.310 (4)d Δx l

660 解析 (1)滤光片E 是从白光中选出单色红光,单缝屏是获得线光源,双缝屏是获得相干光源,最后成像在毛玻璃屏上.所以排列顺序为:C 、E 、D 、B 、A .

(2)在操作步骤②时应注意的事项有:放置单缝、双缝时,必须使缝平行;单缝、双缝间距离大约为5~10cm ;要保证光源、滤光片、单缝、双缝和光屏的中心在同一轴线上.

(3)螺旋测微器的读数应该:先读整数刻度,然后看半刻度是否露出,最后看可动刻度,图乙

读数为13.870mm ,图甲读数为 2.320mm ,所以相邻亮条纹间距Δx =13.870-2.3205

mm =

2.310mm.

(4)由条纹间距公式Δx =l d

λ得: λ=d Δx l

代入数值得:

λ=6.6×10-

7m =660nm. 7.在“用双缝干涉测量光的波长”实验中,将双缝干涉实验仪按要求安装在光具座上(如图3甲),并选用缝间距d =0.2mm 的双缝屏.从仪器注明的规格可知,像屏与双缝屏间的距离l =700mm.然后,接通电源使光源正常工作.

图3

(1)已知测量头主尺的最小刻度是毫米,副尺上有50分度.某同学调整手轮后,从测量头的目镜看去,第1次映入眼帘的干涉条纹如图乙(a)所示,图乙(a)中的数字是该同学给各暗纹的编号,此时图乙(b)中游标尺上的读数x 1=1.16mm ;接着再转动手轮,映入眼帘的干涉条纹如图丙(a)所示,此时图丙(b)中游标尺上的读数x 2=______mm ;

(2)利用上述测量结果,经计算可得两个相邻亮条纹(或暗条纹)间的距离Δx 和这种色光的波长λ.

答案 (1)15.02 (2)2.31mm 660nm

解析 (1)主尺读数为15mm ,游标尺读数为1×0.02mm =0.02mm ,二者相加即可.(2)由于题图中数字标记的是暗条纹,首先应根据暗条纹所标数字给亮条纹也标明条数,若题图乙的(a)图中的中央刻线所对亮条纹记为第1条,则题图丙的(a)图中,中央刻线所对亮条纹为n =7,

则Δx =x 2-x 1n -1=2.31mm ,光的波长λ=Δx ·d l =660nm.

(完整版)高中物理经典选择题(包括解析答案)

物理 1.一中子与一质量数为A(A>1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( ) A. B. C. D. [解析] 1.设中子质量为m,则原子核的质量为Am。设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,m=m+Am,解得v1=v0,故=,A正确。 2.很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。让条形磁铁从静止开始下落。条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变[解析] 2.对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选C。 3.(2014大纲全国,19,6分)一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时, 上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为( )

A.tan θ和 B.tan θ和 C.tan θ和 D.tan θ和 [解析] 3.由动能定理有 -mgH-μmg cos θ=0-mv2 -mgh-μmg cos θ=0-m()2 解得μ=(-1)tan θ,h=,故D正确。 4.两列振动方向相同、振幅分别为A1和A2的相干简谐横波相遇。下列说法正确的是( ) A.波峰与波谷相遇处质点的振幅为|A1-A2| B.波峰与波峰相遇处质点离开平衡位置的位移始终为A1+A2 C.波峰与波谷相遇处质点的位移总是小于波峰与波峰相遇处质点的位移 D.波峰与波峰相遇处质点的振幅一定大于波峰与波谷相遇处质点的振幅 [解析] 4.两列振动方向相同的相干波相遇叠加,在相遇区域内各质点仍做简谐运动,其振动位移在0到最大值之间,B、C项错误。在波峰与波谷相遇处质点振幅为两波振幅之差,在波峰与波峰相遇处质点振幅为两波振幅之和,故A、D项正确。

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

教科版高中物理选修3-1全册学案

第一章静电场 第1节电荷及其守恒定律 三种起电方式的区别和联系 摩擦起电感应起电接触起电 产生及条件两不同绝缘体摩擦时导体靠近带电体时带电导体和导体接触时现象 两物体带上等量异种电 荷 导体两端出现等量异种 电荷,且电性与原带电体 “近异远同” 导体上带上与带电体相 同电性的电荷原因 不同物质的原子核对核 外电子的束缚力不同而 发生电子转移 导体中的自由电子受到 带正(负)电物体吸引(排 斥)而靠近(远离) 电荷之间的相互排斥实质 电荷在物体之间和物体 内部的转移 接触起电的电荷分配原则 两个完全相同的金属球接触后电荷会重新进行分配,如图1-1-2所示. 电荷分配的原则是:两个完全相同的金属球带同种电荷接触后平分原来所带电荷量的总和;带异种电荷接触后先中和再平分. 图1-1-2 1.“中性”与“中和”之间有联系吗? “中性”和“中和”是两个完全不同的概念,“中性”是指原子或者物体所带的正电荷和负电荷在数量上相等,对外不显电性,表现为不带电的状态.可见,任何不带电的物体,实际上其中都带有等量的异种电荷;“中和”是指两个带等量异种电荷的物体,相互接触时,由于正负电荷间的吸引作用,电荷发生转移,最后都达到中性状态的一个过程. 2.电荷守恒定律的两种表述方式的区别是什么? (1)两种表述:①电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移的过程中,电荷的总量保持不变.②一个与外界没有电荷交换的系统,电荷的代数和总是保持不变的. (2)区别:第一种表述是对物体带电现象规律的总结,一个原来不带电的物体通过某种方法可以带电,原来带电的物体也可以使它失去电性(电的中和),但其实质是电荷的转移,电荷的数量并没有减少.第二种表述则更具有广泛性,涵盖了包括近代物理实验发现的微观粒子在变化中

高中物理电磁学经典例题

高中物理典型例题集锦 (电磁学部分) 25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板 的中央各有小孔M、N。今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好 为零,然后按原路径返回。若保持两板间的电压不变,则: A.若把A板向上平移一小段距离,质点自P点下落仍能返回。 B.若把B板向下平移一小段距离,质点自P点下落仍能返回。 C.若把A板向上平移一小段距离,质点自P点下落后将穿过 N孔继续下落。 图22-1 D.若把B板向下平移一小段距离,质点自P点下落后将穿过N 孔继续下落。 分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N 运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB 若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回, 应选A。 若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功 增加,所以它将一直下落,应选D。 由上述分析可知:选项A和D是正确的。 想一想:在上题中若断开开关S后,再移动金属板,则问题又如何(选A、B)。 26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。现有一离子束,其中每个 离子的质量为m,电量为q,从与两板 等距处沿着与板平行的方向连续地射 入两板间的电场中。设离子通过平行 板所需的时间恰为T(与电压变化周图23-1 图23-1(b)

高中物理选修3-3必做大题

选修3-3 大题部分 11.如图所示,粗细均匀的弯曲玻璃管A 、B 两端开口,管内有一段水银柱,右管内气体柱长为39cm ,中管内水银面与管口A 之间气体柱长为40cm ,先将口B 封闭,再将左管竖直插入水银槽中,设整个过程温度不变,稳定后右管内水银面比中管内水银面高2cm ,求: ①稳定后右管内的气体压强p ; ②左管A 端插入水银槽的深度h(大气压强p 0=76cmHg) 12.(9分)如图所示,竖直放置的气缸,活塞横截面积为S=0.01m 2,可在气缸内无摩擦滑 动。气缸侧壁有一个小孔与装有水银的U 形玻璃管相通,气缸内封闭了一段高为80cm 的气柱(U 形管内的气体体积不计)。此时缸内气体温度为7℃,U 形管内水银面高度差h 1=5cm 。已知大气压强p 0=1.0×105Pa ,水银的密度3 106.13?=ρkg/m 3,重力加速度g 取10m/s 2。 ①求活塞的质量m ; ②若对气缸缓慢加热的同时,在活塞上缓慢添加沙粒,可保持活塞的高度不变。当缸内气体温度升高到37℃时,求U 形管内水银面的高度差为多少? 13.(9分)一个密闭的气缸内的理想气体被活塞分成体积相等的左右两室,气缸壁与活塞都是不导热的,活塞与气缸壁之间没有摩擦。开始时,左右两室中气体的温度相等,如图所示。现利用左室中的电热丝对左室中的气体加热一段时间。达到平衡后,左室气体的体积变为原来体积的1.5倍,且右室气体的温度变为300 K 。求加热后左室气体的温度。(忽略气缸、活塞的热胀冷缩)

14.(6分)如图所示,气缸内装有一定质量的气体,气缸的截面积为S,其活塞为梯形,它的一个面与气缸成 角,活塞与器壁间的摩擦忽略不计,现用一水平力F推活塞,汽缸 P,求气缸内气体的压强P. 不动,此时大气压强为 15.某同学用一端封闭的U形管,研究一定质量封闭气体的压强,如图乙所示,U形管竖直放置,当封闭气柱长为L0时,两侧水银面的高度差为h ,大气压强为P0 。求 ①封闭气体的压强(用cmHg作单位); ②若L0=20cm,h=8.7cm,该同学用与U形管口径相同的量筒往U形管内继续缓慢注入水银,当再注入13.3cm长水银柱时,右侧水银面恰好与管口相平齐。设环境温度不变,求大气压强是多少cmHg?

全套下载(共15份145页)人教版高中物理选修3-3教学案全集(含全套练习)

(共15套145页)人教版高中物理选修3-3教学案全集(含全册练习)

第1节 气体的等温变化 1.一定质量的气体,在温度不变的条件下,其压强与体积变化时的关系,叫做气体的等温变化. 2.玻意耳定律:一定质量的某种气体,在温度不变的情况下,压强p 与体积V 成反比,即pV =C . 3.等温线:在p -V 图像中,用来表示温度不变时,压强和体积关系的图像,它们是一些双曲线. 在p -1V 图像中,等温线是倾斜直线.

一、探究气体等温变化的规律 1.状态参量 研究气体性质时,常用气体的温度、体积、压强来描述气体的状态. 2.实验探究

二、玻意耳定律 1.内容 一定质量的某种气体,在温度不变的情况下,压强与体积成反比. 2.公式 pV=C或p1V1=p2V2. 3.条件 气体的质量一定,温度不变. 4.气体等温变化的p -V图像 气体的压强p随体积V的变化关系如图8-1-1所示,图线的形状为双曲线,它描述的是温度不变时的p -V关系,称为等温线. 一定质量的气体,不同温度下的等温线是不同的. 图8-1-1 1.自主思考——判一判

(1)一定质量的气体压强跟体积成反比. (×) (2)一定质量的气体压强跟体积成正比. (×) (3)一定质量的气体在温度不变时,压强跟体积成反比. (√) (4)在探究气体压强、体积、温度三个状态参量之间关系时采用控制变量法. (√) (5)玻意耳定律适用于质量不变、温度变化的气体. (×) (6)在公式pV =C 中,C 是一个与气体无关的参量. (×) 2.合作探究——议一议 (1)用注射器对封闭气体进行等温变化的实验时,在改变封闭气体的体积时为什么要缓慢进行? 提示:该实验的条件是气体的质量一定,温度不变,体积变化时封闭气体自身的温度会发生变化,为保证温度不变,应给封闭气体以足够的时间进行热交换,以保证气体的温度不变. (2)玻意耳定律成立的条件是气体的温度不太低、压强不太大,那么为什么在压强很大、温度很低的情况下玻意耳定律就不成立了呢? 提示:①在气体的温度不太低、压强不太大时,气体分子之间的距离很大,气体分子之间除碰撞外可以认为无作用力,并且气体分子本身的大小也可以忽略不计,这样由玻意耳定律计算得到的结果与实际的实验结果基本吻合,玻意耳定律成立. ②当压强很大、温度很低时,气体分子之间的距离很小,此时气体分子之间的分子力引起的效果就比较明显,同时气体分子本身占据的体积也不能忽略,并且压强越大,温度越低,由玻意耳定律计算得到的结果与实际的实验结果之间差别越大,因此在温度很低、压强很大的情况下玻意耳定律也就不成立了. (3)如图8-1-2所示,p -1 V 图像是一条过原点的直线,更能直观描述压强与体积的关系, 为什么直线在原点附近要画成虚线?

高中物理必修一经典例题附解析

华辉教育物理学科备课讲义 A.大小为2N,方向平行于斜面向上 B.大小为1N,方向平行于斜面向上 C.大小为2N,方向垂直于斜面向上 D.大小为2N,方向竖直向上 答案:D 解析:绳只能产生拉伸形变, 绳不同,它既可以产生拉伸形变,也可以产生压缩形变、弯曲形变和扭转形变,因此杆的弹力方向不一定沿杆. 2.某物体受到大小分别为 闭三角形.下列四个图中不能使该物体所受合力为零的是 ( 答案:ABD 解析:A图中F1、F3的合力为 为零;D图中合力为2F3. 3.列车长为L,铁路桥长也是 桥尾的速度是v2,则车尾通过桥尾时的速度为 A.v2

答案:A 解析:推而未动,故摩擦力f=F,所以A正确. .某人利用手表估测火车的加速度,先观测30s,发现火车前进540m;隔30s 现火车前进360m.若火车在这70s内做匀加速直线运动,则火车加速度为 ( A.0.3m/s2B.0.36m/s2 C.0.5m/s2D.0.56m/s2 答案:B 解析:前30s内火车的平均速度v=540 30 m/s=18m/s,它等于火车在这30s 10s内火车的平均速度v1=360 10 m/s=36m/s.它等于火车在这10s内的中间时刻的速度,此时刻Δv v1-v36-18

两根绳上的张力沿水平方向的分力大小相等. 与竖直方向夹角为α,BC与竖直方向夹角为 .利用打点计时器等仪器测定匀变速运动的加速度是打出的一条纸带如图所示.为我们在纸带上所选的计数点,相邻计数点间的时间间隔为0.1s. ,x AD=84.6mm,x AE=121.3mm __________m/s,v D=__________m/s 结果保留三位有效数字)

人教版高中物理选修3-1知识点归纳总结

物理选修3-1 知识总结 第一章 第1节 电荷及其守恒定律 一、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个 物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 二、电荷量 1、电荷量:电荷的多少。 2、元电荷:电子所带电荷的绝对值1.6×10-19 C 3、比荷:粒子的电荷量与粒子质量的比值。 第一章 第2节 库仑定律 一、电荷间的相互作用 1、点电荷:带电体的大小比带电体之间的距离小得多。 2、影响电荷间相互作用的因素 二、库仑定律:在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比,跟它们距离的平方 成反比,作用力的方向在它们的连线上。 2 2 1r Q Q k F 注意(1)适用条件为真空中静止点电荷 (2)计算时各量带入绝对值,力的方向利用电性来判断 第一章 第3节 电场 电场强度 一、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、电场强度 1、检验电荷与场源电荷 2、电场强度 检验电荷在电场中某点所受的电场力F 与检验电荷的电荷q 的比值。 q F E = 国际单位:N /C 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、点电荷的场强公式 2r Q k q F E == 四、电场的叠加 五、电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线,曲线的疏密程度表示场强的大小,

曲线上某点的切线方向表示场强的方向。 2、几种典型电场的电场线 3、电场线的特点 (1)假想的 (2)起----正电荷;无穷远处 止----负电荷;无穷远处 (3)不闭合 (4)不相交 (5)疏密----强弱 切线方向---场强方向 第一章 第4节 电势能 电势 一、电势能 1、电势能:电荷处于电场中时所具有的,由其在电场中的位置决定的能量称为电势能. 注意:系统性、相对性 2、电势能的变化与电场力做功的关系 3、电势能大小的确定 电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场力所做的功 二、电势 1.电势:置于电场中某点的检验电荷具有的电势能与其电量的比叫做该点的电势 q E 电= ? 单位:伏特(V ) 标量 2.电势的相对性 3.顺着电场线的方向,电势越来越低。 三、等势面 1、等势面:电场中电势相等的各点构成的面。 2、等势面的特点 a:在同一等势面的两点间移动电荷,电场力不做功。 b:电场线总是由电势高的等势面指向电势低的等势面。 c:电场线总是与等势面垂直。 第一章 第5节 电势差 电场力的功 一、电势差:电势差等于电场中两点电势的差值 B A AB U ??-= 电电电电电电)=--=-(-=E E E E E W A B B A AB ?)(电势能为零的点点电=A A W E

高中物理选修3-4全册导学案

选修3-4全册教学学案 选修3-4_11.1简谐振动 【学习目标】 1.认识弹簧振子并能判断出振动的平衡位置。 2.理解简谐运动的位移-时间图像是一条正(余)弦曲线,知道简谐运动图 像的意义。 3.能够根据简谐运动图像弄清楚各时刻质点的位移、速度和加速度的方向 和大小规律。 【自主学习】 1.弹簧振子 (1).组成:由______和________组成的系统叫弹簧振子,它是一个理想化 的模型(为什么?)。 (2).平衡位置:振子__________时的位置。 (3).机械振动:振子在______位置附近的________运动,简称________。 2.简谐运动及其图像 (1).简谐运动:质点的位移与时间的关系遵从___________规律,即它的振 动图像(x-t 图像)是一条________曲线。简谐运动是最简单、最基本的振动, 弹簧振子的运动就是__________。 (2).简谐运动的图像 ①坐标系的建立:在简谐运动的图像中,以横坐标表示______,以纵坐标表 示振子离开平衡位置的_________。 ②物理意义:表示振动物体的_______随_______的变化规律。 重点知识或易混知识 问题1.根据对平衡位置的理解,判断正误并举例说明 ① 在弹簧振子中弹簧处于原长时的状态为平衡状态。 ② 在弹簧振子中物块速度为零时的状态为平衡状态。 ③在弹簧振子中合外力为零时的状态为平衡状态。 问题2.振动图像的理解,结合判断正误 ① 如右图所示正弦曲线为质点的运动轨迹。 ② 如右图,3s 内的位移为x 1大小为cm cm 10910322=+。 ③ 如右图,3s 内的位移为x 2 大小为10cm 。 ④ 如右图,1.5s 时的速度方向为曲线上该点的切线方向。 ⑤ 0.5s 和1.5s 时的位移相同,速度也相同。 ⑥ 0.5s 和3.5s 时的位移相反,速度相反。 X X 1

(完整word版)高中物理功和功率典型例题解析

功和功率典型例题精析 [例题1] 用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升,如果前后两过程的时间相同,不计空气阻力,则[ ] A.加速过程中拉力的功一定比匀速过程中拉力的功大 B.匀速过程中拉力的功比加速过程中拉力的功大 C.两过程中拉力的功一样大 D.上述三种情况都有可能 [思路点拨]因重物在竖直方向上仅受两个力作用:重力mg、拉力F.这两个力的相互关系决定了物体在竖直方向上的运动状态.设匀加速提升重物时拉力为F1,重物加速度为a,由牛顿第二定律F1-mg=ma, 匀速提升重物时,设拉力为F2,由平衡条件有F2=mg,匀速直线运动的位移S2=v·t=at2.拉力F2所做的功W2=F2·S2=mgat2. [解题过程] 比较上述两种情况下拉力F1、F2分别对物体做功的表达式,不难发现:一切取决于加速度a与重力加速度的关系. 因此选项A、B、C的结论均可能出现.故答案应选D. [小结]由恒力功的定义式W=F·S·cosα可知:恒力对物体做功的多少,只取决于力、位移、力和位移间夹角的大小,而跟物体的运动状态(加速、匀速、减速)无关.在一定的条件下,物体做匀加速运动时力对物体所做的功,可以大于、等于或小于物体做匀速直线运动时该力做的功. [例题2]质量为M、长为L的长木板,放置在光滑的水平面上,长木板最右端放置一质量为m 的小物块,如图8-1所示.现在长木板右端加一水平恒力F,使长木板从小物块底下抽出,小物块与长木板摩擦因数为μ,求把长木板抽出来所做的功.

[思路点拨] 此题为相关联的两物体存在相对运动,进而求功的问题.小物块与长木板是靠一对滑动摩擦力联系在一起的.分别隔离选取研究对象,均选地面为参照系,应用牛顿第二定律及运动学知识,求出木板对地的位移,再根据恒力功的定义式求恒力F的功. [解题过程] 由F=ma得m与M的各自对地的加速度分别为 设抽出木板所用的时间为t,则m与M在时间t内的位移分别为 所以把长木板从小物块底下抽出来所做的功为 [小结]解决此类问题的关键在于深入分析的基础上,头脑中建立一幅清晰的动态的物理图景,为此要认真画好草图(如图8-2).在木板与木块发生相对运动的过程中,作用于木块上的滑动摩擦力f 为动力,作用于木板上的滑动摩擦力f′为阻力,由于相对运动造成木板的位移恰等于物块在木板左端离开木板时的位移Sm与木板长度L之和,而它们各自的匀加速运动均在相同时间t内完成,再根据恒力功的定义式求出最后结果.

高中物理选修3-3知识总结

高中物理3-3知识点总结 一、分子动理论 1、物体是由大量分子组成的 微观量:分子体积V0、分子直径d 、分子质量m 0 宏观量:物质体积V 、摩尔体积V A、物体质量m、摩尔质量M、物质密度ρ。 联系桥梁:阿伏加德罗常数(N A =6.02×1023 mol -1 ) A V M V m ==ρ (1)分子质量:A A 0N V N M N m m A ρ=== (2)分子体积:A A 0N M N V N V V A ρ=== (对气体,V 0应为气体分子占据的空间大小) (3)分子大小:(数量级10-1 0m) 球体模型.30)2 (34d N M N V V A A A πρ=== 直径3 06πV d =(固、液体一般用此模型) 油膜法估测分子大小:S V d = S —单分子油膜的面积,V —滴到水中的纯油酸的体积 错误!立方体模型.3 0=V d (气体一般用此模型;对气体,d应理解为相邻分子间的平均距离) 注意:固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列); 气体分子间距很大,大小可忽略,不可估算大小,只能估算气体分子所占空间、分子质量。 (4)分子的数量:A A N M V N M m nN N A ρ== = 或者 A A N M V N V V nN N A A ρ=== 2、分子永不停息地做无规则运动 (1)扩散现象:不同物质彼此进入对方的现象。温度越高,扩散越快。直接说明了组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈。 (2)布朗运动:悬浮在液体中的固体微粒的无规则运动。

发生原因是固体微粒受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而间接 ..说明了液体分子在永不停息地做无规则运动. 错误!布朗运动是固体微粒的运动而不是固体微粒中分子的无规则运动. ②布朗运动反映液体分子的无规则运动但不是液体分子的运动. ③课本中所示的布朗运动路线,不是固体微粒运动的轨迹. ④微粒越小,布朗运动越明显;温度越高,布朗运动越明显. 3、分子间存在相互作用的引力和斥力 ①分子间引力和斥力一定同时存在,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但斥力变化快,实际表现出的分子力是分子引力和分子斥力的合力 ②分子力的表现及变化,对于曲线注意两个距离,即平衡距离r0(约10-10m)与10r0。 (ⅰ)当分子间距离为r0时,引力等于斥力,分子力为零。 (ⅱ)当分子间距r>r0时,引力大于斥力,分子力表现为引力。当分子间距离由r0增大时,分子力先增大后减小 (ⅲ)当分子间距r<r0时,斥力大于引力,分子力表现为斥力。当分子间距离由r0减小时,分子力不断增大 二、温度和内能 1、统计规律:单个分子的运动都是不规则的、带有偶然性的;大量分子的集体行为受到统计规律的支配。多数分子速率都在某个值附近,满足“中间多,两头少”的分布规律。 2、分子平均动能:物体内所有分子动能的平均值。 ①温度是分子平均动能大小的标志。 ②温度相同时任何物体的分子平均动能相等,但平均速率一般不等(分子质量不同). 3、分子势能 (1)一般规定无穷远处分子势能为零, (2)分子力做正功分子势能减少,分子力做负功分子势能增加。 (3)分子势能与分子间距离r0关系(类比弹性势能) ①当r>r0时,r增大,分子力为引力,分子力做负功分子势能增大。 x 0 E P r0

新人教版高中物理选修3-2全册导学案

新人教版高中物理选修全册导学案

目录 第四章第1节划时代的发现导 第四章第2节探究电磁感应的产生条件 第四章第3节楞次定律 第四章第4节《法拉第电磁感应定律》 第四章第5节《电磁感应规律的应用》 第四章第5节《电磁感应规律的应用》 第四章第6节《互感与自感》 第四章第6节《互感与自感》 第四章第7节《涡流电磁阻尼和电磁驱动》 第四章第《涡流电磁阻尼和电磁驱动》 第五章第1节交变电流 第五章第2节描述交变电流物理量 第五章第3节《电感和电容对交变电流的影响》第五章第4节变压器 第五章第5节《电能的输送》 第六章第1节传感器及其工作原理 第六章第2节传感器的应用(一) 第六章第3节传感器的应用(二) 第六章第4节传感器的应用实验

选修3-2第四章电磁感应 第1节《划时代的发现》 课前预习学案 一、预习目标 预习奥斯特梦圆“电生磁”;法拉第心系“磁生电”,初步了解物理学中奥斯特和法拉第的贡献。 二、预习内容 奥斯特梦圆“电生磁”标题和法拉第心系“磁生电”标题。 问题1:奥斯特在什么思想的启发下,发现了电流的磁效应的? 问题2:奥斯特发现了电流的磁效应,能说明他是一个“幸运儿”吗?是偶然还是必然? 问题3:1803年奥斯特总结了一句话内容是什么? 问题4:法拉第在了奥斯特的电流磁效应的基础上,思考对称性原理,从而得出了什么样的结论? 问题5:其他很多科学家例如安培,科拉顿等物理学家也做过磁生电的试验,可他们都没有成功,他们问题出现在那里? 问题6:法拉第经过无数次试验,经历10年的时间,终于领悟到了什么? 问题7:什么是电磁感应?什么是感应电流? 问题8:通过学习你从奥斯特、法拉第等科学家身上学到了什么? 问题9:通过查阅资料,了解法拉第的生平,详细写出法拉第一生中的伟大成就和伟大发现。 三、提出疑惑

高中物理牛顿第二定律经典例题

牛顿第二运动定律 【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是: A、物体从A下降和到B的过程中,速率不断变小 B、物体从B上升到A的过程中,速率不断变大 C、物体从A下降B,以及从B上升到A的过程中,速 率都是先增大,后减小 D、物体在B点时,所受合力为零 的对应关系,弹簧这种特 【解析】本题主要研究a与F 合 殊模型的变化特点,以及由物体的受力情况判断物体的 运动性质。对物体运动过程及状态分析清楚,同时对物 =0,体正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F 合 由A→C的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。在C位置mg=kx c,a=0,物体速度达最大。由C→B的过程中,由于mgf m′,(新情况下的最大静摩擦力),可见f m>f m′即是最大静摩擦力减小了,由f m=μN知正压力N减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A、B正确。另一种原因是木箱向左加速运动,由于惯性原因,木块必然向中滑动,故D 正确。 综合上述,正确答案应为A、B、D。 【例3】如图3-11所示,一细线的一端固定于倾角为45°度的光滑楔形滑块A 的顶端p处,细线的另一端栓一质量为m的小球,当滑块以2g的加速度向左运动时,线中拉力T等于多少? 【解析】当小球贴着滑块一起向左运动时,小球受到三个力作用:重力mg、线 中拉力T,滑块A的支持力N,如 图3-12所示,小球在这三个力作用 下产生向左的加速度,当滑块向左

高中物理选修3-2知识点汇总

第一章 电磁感应 1. 磁通量 穿过某一面积的磁感线条数;标量,但有正负; Φ=BS ·sin θ;单位Wb ,1Wb=1T ·m 2 。 2. 电磁感应现象 利用磁场产生电流的现象;产生的电流叫感应电流,产生的电动势叫感应电动势;产生的条件是穿过闭合回路的磁通量发生变化。 3. 感生电场 变化的磁场在周围激发的电场。 4. 感应电动势 分为感生电动势和动生电动势;由感生电场产生的感应电动势称为感生电动势,由于导体运动而产生的感应电动势称为动生电动势;产生感应电动势的导体相当于电源。 5. 楞次定律 感应电流的磁场总要阻碍引起感应电流的磁通量的变化;判定感应电流和感应电动势方向的一般方法;适用于各种情况的电磁感应现象。 6. 右手定则 让磁感线垂直穿过手心,大拇指指向导体做切割磁感线运动的方向,四指的指向就是导体内部产生的感应电流或感应电动势的方向;仅适用导体切割磁感线的情况。 7. 法拉第电磁感应定律 电路中感应电动势的大小跟穿过这一电路的 磁通量的变化率成正比;E=n t ??Φ 。 8. 动生电动势的计算 法拉第电磁感应定律特殊情况;E=Blv ·sin θ。 9. 互感 两个相互靠近的线圈中,有一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感生电动势,这种现象叫做互感,这种电动势叫做互感电动势;变压器的原理。 10.自感 由于导体本身的电流发生变化而产生的电磁感应现象。 11.自感电动势 由于自感而产生的感应电动势;自感电动势阻碍导体自身电流的变化;大小正比于电流的变化率;E=L t I ??;日光灯的应用。 12.自感系数 上式中的比例系数L 叫做自感系数;简称自感或电感;正比于线圈的长度、横截面积、匝数;有铁芯比没有时要大得多。 13.涡流 线圈中的电流变化时,在附近导体中产生的感应电流,这种电流在导体内自成闭合回路,很像水的漩涡,因此称作涡电流,简称涡流。 第二章 直流电路 1. 电流 电荷的定向移动;单位是安,符号A ;规定正电荷定向移动的方向为正方向;宏观定义I= t q ; 微观解释I=neSv ,n 为单位体积的电荷数,e 是每个自由电荷的电量,S 为横截面积,v 是定向移动的速率。 2. 电阻 导体两端电压与电流的比值;R=I U 。 3. 电阻率 导体材料自身的性质。电阻率与温度有关,一般金属的电阻率随温度升高而增大,绝缘体和半导体随温度升高而减小,电阻率为零是称做超导。 4. 电阻定律 R=ρ S l ,S 为导体横截面积,l 为电阻丝长度, ρ 为电阻率。 5. 电阻的连接 串联和并联。 6. 电功 导体内静电力对自由电荷做的功;W=UIt ;单位是焦。 7. 电功率 单位时间内电流做的功;P=t W =UI ;单位是 瓦。 8. 电热 电流流过导体产生的热量;由焦耳定律计算,Q=I 2 Rt 。 9. 电功与电热的关系 在纯电阻电路中,W=Q ;在非纯电阻电路中,W>Q 。

新课标高中物理选修3-2课后习题答案

新课标高中物理选修3-2课后习题答案新课标高中物理选修3-2课后习题答案 第4章 第1节划时代的发现 1.奥斯特实验,电磁感应等. 2.电路是闭合的.导体切割磁感线运动. 第2节探究电磁感应的产生条件 1.(1)不产生感应电流(2)不产生感应电流(3)产生感应电流 2.答:由于弹簧线圈收缩时,面积减小,磁通量减小,所以产生感应电流. 3.答:在线圈进入磁场的过程中,由于穿过线圈的磁通量增大,所以线圈中产生感应电流;在线圈离开磁场的过程中,由于穿过线圈的磁通量减小,所以线圈中产生感应电流;当个线圈都在磁场中时,由于穿过线圈的磁通量不变,所以线圈中不产生感应电流.4.答:当线圈远离导线移动时,由于线圈所在位置的磁感应强度不断减弱,所以穿过线圈的磁通量不断减小,线圈中产生感应电流.当导线中的电流逐渐增大或减小时,线圈所在位置的磁感应强度也逐渐增大或减小,穿过线圈的磁通量也随之逐渐增大或减小,所以线圈中产生感应电流. 5.答:如果使铜环沿匀强磁场的方向移动,由于穿过铜环的磁

通量不发生变化,所以,铜环中没有感应电流;如果使铜环在不均匀磁场中移动,由于穿过铜环的磁通量发生变化,所以,铜环中有感应电流. 6.答:乙、丙、丁三种情况下,可以在线圈B中观察到感应电流.因为甲所表示的电流是稳恒电流,那么,由这个电流产生的磁场就是不变的.穿过线圈B的磁通量不变,不产生感应电 7.流.乙、丙、丁三种情况所表示的电流是随时间变化的电流,那么,由这样的电流产生的磁场也是变化的,穿过线圈B的磁通量变化,产生感应电流. 第3节楞次定律 1.答:在条形磁铁移入线圈的过程中,有向左的磁感线穿过线圈,而且线圈的磁通量增大.根据楞次定律可知,线圈中感应电流磁场方向应该向右,再根据右手定则,判断出感应电流的方向,即从左侧看,感应电流沿顺时针方向. 2.答:当闭合开关时,导线AB中电流由左向右,它在上面的闭合线框中引起垂直于纸面向外的磁通量增加.根据楞次定律,闭合线框中产生感应电流的磁场,要阻碍它的增加,所以感应电流的磁场在闭合线框内的方向是垂直纸面向里,再根据右手定则可知感应电流的方向是由D向C.当断开开关时,垂直于纸面向外的磁通量减少.根据楞次定律,闭合线框中产生感应电流的磁场,要阻碍原磁场磁通量的减少,所以感应电流的磁场在闭合线框内的方向是垂直纸面内外,再根据右手定则可知感应电流的方向是由C向D.

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

高中物理选修3-4基础知识

高中物理选修3-4基础知识 第十一章机械振动 一、简谐运动 1.概念:如果质点的位移与时间的关系遵从________函数的规律,即它的振动图象(x-t图象)是一条________曲线,这样的振动叫简谐运动. 2.动力学表达式F=________. 运动学表达式x=Asin (ωt+φ). 3.描述简谐运动的物理量(1)位移x:由____________指向______________________的有向线段表示振动位移,是矢量.(2)振幅A:振动物体离开平衡位置的____________,是标量,表示振动的强弱.(3)周期T和频率f:做简谐运动的物体完成____________所需要的时间叫周期,而频率则等于单位时间内完成________________;它们是表示振动快慢的物理量.二者互为倒数关系. 4.简谐运动的图象(1)物理意义:表示振动物体的位移随时间变化的规律.(2)从平衡位置开始计时,函数表达式为x=Asinωt,图象如图2所示.从最大位移处开始计时,函数表达式为x=Acosωt,图象如图3所示. 5.简谐运动的能量:简谐运动过程中动能和势能相互转化,机械能守恒,振动能量与________有关,________越大,能量越大. 二、单摆如右下图所示,平衡位置在最低点. (1)定义:在细线的一端拴一个小球,另一端固定在悬点上,如果线的________和________都不计,球的直径比________短得多,这样的装置叫做单摆. (2)视为简谐运动的条件:________________. (3)回复力:小球所受重力沿________方向的分力,即:F=G2=Gsinθ=mg l x,F的方向与位移x的方向相反.(4)周期公式:T= (5)单摆的等时性:单摆的振动周期取决于摆长l和重力加速度g,与振幅和振子(小球)质量无关.注意单摆振动时,线的张力与重力沿摆线方向的分力的合力提供单摆做圆周运动的向心力.重力沿速度方向的分力提供回复力,最大回复力大小为mg l A,在平衡位置时回复力为零,但合外力等于向心力,不等于零.三、受迫振动和共振1.受迫振动:系统在________________作用下的振动.做受迫振动的物体,它的周期(或频率)等于________的周期(或频率),而与物体的固有周期(或频率)______关. 2.共振:做受迫振动的物体,它的固有频率与驱动力的频率越接近,其振幅就越大,当二者________时,振幅达到最大,这就是共振现象.共振曲线如右图所示. 第十二章机械波 一、机械波1.波的形成:机械振动在介质中传播,形成机械波.(1)产生条件:①________; ②________. (2)特点①机械波传播的只是振动的________和________,质点只在各自的平衡位置附近做简谐运动,并不随波________.②介质中各质点的振幅相同,振动周期和频率都与________振动周期和频率相同.③各质点开始振动(即起振)的方向均________.④一个周期内,质点完成一次全振动,通过的路程为______,位移为________. 2.机械波的分类(1)横波:质点的振动方向与波的传播方向相互_______的波,有_______(凸部)和_______(凹部).(2)纵波:质点的振动方向与波的传播方向在__________上的波,有________和________. 3.波长、波速、频率及其关系(1)波长:在波动中,振动相位总是________的两个相邻质点间的距离,用λ表示.(2)波速:波在介质中的传播速度.由________本身的性质决定.(3)频率:由________决定,等于________的振动频率.(4)波长、波速和频率的关系:v=fλ. 特别提醒

相关文档
最新文档