六足机器人行走与运动仿真分析

六足机器人行走与运动仿真分析
六足机器人行走与运动仿真分析

龙源期刊网 https://www.360docs.net/doc/812680186.html,

六足机器人行走与运动仿真分析

作者:詹广强赵基伟谢磊超

来源:《无线互联科技》2014年第06期

摘要:虚拟仿真设计方法在现代机械设计中占有重要地位,针对目前虚拟仿真软件存在的不足之处,在设计时往往需要选用多个仿真软件组合使用才能达到所需的仿真目的。本文设计了一个六足双斗机器人,应用建模和仿真功能较齐全的Inventor对其进行虚拟分析,检查机器人在行走和爬坡过程中的行走步态,获得机器人在不同工作状态下重心的变化曲线,分析机器人设计的合理性,为更好的设计新型六足机器人提供设计依据。并制造了小型物理样机,检验仿真设计的可靠性,通过物理样机试验,验证Inventor仿真的可靠性和正确性。

关键词:虚拟仿真设计;六足机器人;Inventor;运动仿真Inventor是一种全面的可视化

设计工具,用于创建和验证完整的数字样机,可以检验机械产品的外型、结构和功能,也可以对其进行运动仿真和应力分析,设计师应用这种软件可对数字化样机进行优化,并预测机械产品在未来的实际工作情况[1]。

本文设计了六足双斗机器人,机器人采用足式移动方式优点在于控制简单,移动比较迅速,同时可以相对较容易地跨过比较大的障碍,但是当机器人在行走时,整个物体的重心会发生变化,各个关节受到的速度及加速度也不同,在不行走,进行挖掘工作,不同部位受到的力也不一样。本文应用Inventor对六足机器人在平地行走和爬坡过程中重心的位置、速度加速度变化进行仿真分析,Inventor集设计、建模和仿真于一体,且操作简单,这给设计工作带

来了许多方便,节约了研究时间和研制费用,实现了高质量、高速度、高效率、低成本的整体设计。

本文所应用的软件为虚拟设计方法又提供了一个方便可行的办法,同时,设计的六足机器人为足类机器人的设计也提供了一些思路。在Inventor的虚拟仿真下,得到所设计的六足机器人的一些有用信息,为更好的设计新型六足机器人提供了参考依据。小型物理样机试验,行走和利用双斗夹取物体。

1六足机器人整体结构

Inventor非常注重产品外观设计,同时其渲染功能也易于操作,效果良好,应用Inventor

对六足机器人进行整体结构造型和渲染,结果如图1所示,其中腿部结构放大图如图2所示。图2(a)图是腿部结构运动简图,输入旋转运动,在滑块和曲柄的作用下转化为腿部摇摆运动[2],腿部机构的摇摆幅度为[-24°~+24°],由于该机器人的腿部关节是铰接和滑动副,因而在步行时即使出现失稳现象也具有较强的姿态恢复能力[3],足部使用减震和缓冲作用的橡胶材

料。

六足步行机器人毕业设计开题报告

燕山大学 本科毕业设计(论文)开题报告 课题名称:六足步行机器人 学院(系):里仁学院 年级专业:机械电子 学生姓名: 指导教师: 完成日期:

一、综述本课题国内外研究动态,说明选题的依据和意义 步行机器人,简称步行机 ,是一种智能型机器人 , 它是涉及到生物科学 , 仿生学 , 机构学 , 传感技术及信息处理技术等的一门综合性高科技 . 在崎岖路面上 ,步行车辆优于轮式或履带式车辆 .腿式系统有很大的优越以及较好的机动性 , 崎岖路面上乘坐的舒适性 ,对地形的适应能力强 .所以 ,这类机器人在军事运输 , 海底探测 , 矿山开采 , 星球探测 , 残疾人的轮椅 , 教育及娱乐等众多行业 ,有非常广阔的应用前景 , 多足步行机器人技术一直是国内外机器人领域的研究热点之一。 目前《机械电子》等期刊发布国内研究成果如下: 闰尚彬,韩宝玲,罗庆生在文献[1]针对仿生六足步行机器人关节较多,其步态轨迹规划和关节控制量计算都较为复杂的现状,采用Solidworks软件与MSC.ADAMS软件相结合的方式对六足仿生步行机器人的样机模型进行了运动学仿真与分析.通过仿真,验证了所设计的三角步态的适用性和所选择的三次样条曲线作为机器人足端点轨迹曲线方案的可行性. 韩宝玲王秋丽罗庆生在文献[2]基于六足仿生步行机器人机构学特性的研究,采用数值分析法求解了机器人步行足的足端工作空间,利用虚拟样机技术计算了机器人的灵活度,从两方面综合衡量六足仿生步行机器人的工作能力,并以六足步行机器人各腿节比例关系的确定为例,介绍了六足步行机器人结构优化的具体方案. 苏军陈学东田文罡在文献[3]研究六足步行机器人全方位行走步态,分析其静态稳定性;规划了典型直线行走步态和定点转弯步态,确定了直线行走步态最大跨步和定点转弯步态最大转角;进行了步态控制算法模拟仿真及实地步行实验。 王绍治郭伟于海涛李满天在文献[4]根据CPG双层网络的特点,采用分层分布式系统架构研究制了一种机器人运动控制系统.其基于FPGA的星型总线,在保证通信速率的同时提高了系统抗干扰能力.在单足控制器中嵌入双NIOS完成CPG网络解算和电机运动控制. 郭少晶韩宝玲罗庆生在文献[5]针对采用电池供电的六足仿生步行机器人其工作时间受限的情况,提出了将动态电源管理、实时任务调度和运动策略规划等方法,综合运用于其控制系统,且更为全面地考虑了机器人系统的能耗等级.这种方法对于降低机器人的系统能耗起到了实质性的作用,其整体思路与技术途径可为降低其它类似的多足步行机器人的系统能耗, 陈甫臧希喆赵杰闫继宏在文献[6]从机械结构、运动模式和步态控制3个方面, 对六足步行机器人的仿生机制进行了分析. 提出一种灵活度评价函数, 基于该函数对六足机器人的结构参数进行了优化; 推导了步态模式与步行速度关系的数学表达; 构建了分布式局部规则网络, 可自适应地调整错乱的腿间相序,生成静态稳定的自由步态.仿真实验验证了上述仿生机制的有效性。

六足机器人的发展史

一、前言 談到足式機器人,當然目前主流大多是聯想到和人相似、有親切感的雙足機器“人”,從某一層面來看,以雙足步行為演化上的一個極為小眾的特例,本身對達到穩定運作控制的困難度很高,從瞭解「生物出生到可以開始自行運動所需的時間」便可以窺知一二。從另一個角度來看,人類所能自在運動的地表也侷限在某一些型態之中,若要探討如何在各式自然地形上運動的法則,勢必得回過頭來探討多足動物的運動機制。而從物理直覺來評析,單就在崎嶇路面上運動的穩定性來探討,採用多足機器人會比較簡單且實際。基於這一些原因,仿生多足機器人的研發便有了背後的動機,模仿經過長時間演化後動物的構造,藉由觀察牠們的運動,了解為什麼有如此的動作,再利用機構或是控制去完成。在自然界中,我們看到體型較大、有優秀運動能力的動物像馬、獵豹、羚羊等等都是四隻腳的哺乳類動物,但考慮到穩定性卻是六足比較佔優勢,只要用簡單的三腳步態(tripod gait)即可讓重心輕易落在支撐的三角形中。四足動物的腳可能需要比較大的力量才能表現出他的特性,但人類尚無法仿造出重要的肌肉和控制系統,以現有機構和馬達組成的系統,重量太重而無法有效運動。這時,自由度的選擇以及機構設計便成了一個很重要的課題。 這二、三十年學業界創造出了許多各式各樣的多足機器人,在後續的文章中便為各位讀者進行介紹[2, 3]。 二、學術界開發仿生多足機器人 (1)Quadruped 圖一 Quadruped[4] 由Prof. Marc Reibert所領導的MIT Leg Lab於1984~1987年製作,重38公斤,整體長度1.05公尺,高度0.95公尺,採用長柱狀的腳,每一隻腳連接身體的關節是由兩個液壓致動器(hydraulic actuators)組成,分別控制腳的前後及左右的旋轉,腳上有一個線性致動器來提供推進力。在控制上將腳簡易的分成兩組,不同的分組方法便產生了小跑(trot)、跑

双足步行机器人设计及运动控制

目录 第1章序言 (2) 1.1 双足机器人现状 (2) 1.2 技能综合训练意义 (2) 1.3 技能训练的内容 (2) 第2章元件选择、结构设计 (3) 2.1元件选择 (3) 2.2结构设计三维设计图 (4) 2.2.1零件三位模型以及装配 (4) 2.2.2装配三维模型 (7) 第3章控制系统设计 (10) 第4章系统软件编程与仿真 (12) 第5章结论...................................................................... 错误!未定义书签。参考文献 (17)

第1章序言 1.1双足机器人现状 随着世界第一台工业机器人1962年在美国诞生,机器人已经有了三十多年的发展史。三十多年来,机器人由工业机器人到智能机器人,成为21世纪具有代表性的高新技术之一,其研究涉及的学科涵盖机械、电子、生物、传感器、驱动与控制等多个领域。 世界著名机器人学专家,日本早稻田大学的加藤一郎教授说过:“机器人应当具有的最大特征之一是步行功能。”双足机器人属于类人机器人,典型特点是机器人的下肢以刚性构件通过转动副联接,模仿人类的腿及髋关节、膝关节和踝关节,并以执行装置代替肌肉,实现对身体的支撑及连续地协调运动,各关节之间可以有一定角度的相对转动。 双足机器人不仅具有广阔的工作空间,而且对步行环境要求很低,能适应各种地面且具有较高的逾越障碍的能力,其步行性能是其它步行结构无法比拟的。研究双足行走机器人具有重要的意义 1.2技能综合训练意义 技能训练是在学生修完除毕业设计外全部理论和时间课程以后的一次综合性时间教学环节,其目的和意义在于: 通过技能训练,了解机器人机构及控制系统设计的基础知识; 掌握机器人系统中元部件的正确选择方法和特性参数的确定; 培养学生对所学知识的综合应用,理论联系实际的能力; 培养学生的动手能力和实际操作能力; 1.3技能训练的内容 1、主要内容: 1)、机器人结构设计; 2)、控制系统软硬件设计与仿真; 3)、八自由度机器人运动控制。 2、训练形式 学生以小组为单位,集体讨论确定整体方案;指导教师给出实训方向,技术指标等,协助学生完成训练任务。

创客教育搭建六足步行机器人教学设计

教学案例设计《创客教育》第一部分第六课《搭建仿生六足步行机器人》

教学 对象 中职一年级班级人数50 课时 1 授课类型讲授课教材 《创客教育》校本教材 主编:李晓絮 教学目标 认知情感、态度、观念能力可以使用“齿 轮机构”、“连杆机 构”等简单机械结 构搭建出“六足步 行机器人”,理解 机器人“三角步 态”行走方式。 在动手搭建“六足步行机器 人”的过程中,形成乐于探究的 意识和敢于创新的精神,体验探 索科学的乐趣,养成主动与他人 分享交流合作的精神。 主动思 考,发散思 维,使用已掌 握的知识,进 行创意、创 新、创造。 教学 重点 “仿生六足步行机器人”的搭建教学 难点 机器人“三角步态”行走方式的实现 教学方法引导法、演示法、分享讨 论法 学习 方法 体验探究法 教学环境 及资源 多媒体机房、课件、微课、机器人搭建套盒 学情分析 全国各地创客教育如火如荼的开展,不是所有学校都能顺利接轨,尤其是中职学校。中职学校大部分学生学习基础差、学习兴趣低,团队合作精神差,创新意识不强,创新能力不足。创客教育课程更需要切合实际,循序渐进、因材施教。 教学设计说明 结合教学目标和学生学情,本课题分“知识回顾”,“新课导入”,“学习新知”,“分享讨论”,“总结延伸”五大环节来设计教学过程,分别采用了“兴趣引导”,“视频演示”、“微课演示” “分组分享讨论”等教学方法。 课前准备1、划分学习小组 2、发放“搭建套装” 教学环节具体教学 目标 教师活动学生活动 第一环节知识回顾3分钟前课复 习,回顾 “后轮驱 动车”的 搭建过程 回顾搭建过程,观看、交流各小组搭建 的“后轮驱动车”在校园操场奔跑测试情况, 同时指出同学们在搭建过程中存在的问题。 观看、 聆听、 思考、 讨论

自做六自由度双足步行机器人

自制六自由度双足机器人 一、制作六自由度双足机器人步骤: 1、确定舵机:舵机的好坏直接影响机器人的效果; 2、自制舵机后盖:它是连接舵机和U型架的重要组成部件;(买一 个标准的舵机后盖是最好不过,但你的动手能力 和思考问题解决问题的能力就没有提高,因此我 选择自制一个舵机后盖) ①选择铁皮为制作材料; ②测量舵机尺寸,截取合适铁皮条(尺寸为20mm*116mm); ③折弯,注意左右对称; ④确定固定用定位孔的位置,并使用1mm钻头打孔; ⑤打固定用螺丝孔(使用3mm钻头); ⑥确定舵机输出同轴定位孔的位置,并使用1mm钻头打孔; ⑦打舵机输出同轴螺丝孔(使用3mm钻头); ⑧打舵机后盖过线孔(6mm*8mm); 注:脚上的舵机后盖比较特殊,要考虑它要和脚底板相连,我的解决方法是在上述舵机后盖的基础上,增加宽度,并折弯,打孔,同脚底板相连。 3、自制U型架:在双足机器人中,舵机相当于人的关节,那U型架 就是人的骨骼。U型架的制作:(以下是我的设计, 可根据具体需求,自行设计尺寸) ①选择铝合金板(厚度一般为1.5mm);

②将铝合金板切成细条(尺寸为20mm*116mm); ③折弯,注意左右高度相等; ④打定位孔(使用1mm钻头),注意孔的位置以U型架的“U” 字底为基准; ⑤打螺丝孔(使用3mm钻头); ⑥磨削加工。 4、自制脚底板:脚底板的设计可以多种多样,但要保证一点,即机 器人抬脚走路时,要保证重心用你设计的脚底板可 以承受得住。 5、自制机器人腰部:其实就是连接两条腿的部件,长宽是根据设计 的脚底板的大小确定的。 二、需要注意的问题: 1、机器人左右质量要保证尽量一致,否则走路会有偏差。 2、制作部件时,要注意基准。 三、软件编程: 软件编程,主要是靠控制舵机旋转不同的角度。

l六足昆虫机器人机械原理

l六足昆虫机器人机械原理 一、基本原理 本项目的机器人,传动系统还是继续利用“摆动曲柄滑块机构”原理,把减速电机的旋转运动转换为驱动腿迈步的往复摆动运动,再结合简单的连杆结构,协调六条腿按照昆虫的步态规律实现爬行运动。 1、运动方式 本项目机器人是模仿拥有六条腿的昆虫的爬行运动。昆虫爬行想必大家都是见过的,但是由于昆虫的六条腿还是多了些,而且一般昆虫的动作都比较迅速,观察起来有点眼花缭乱,所以可能很多人并不是很了解昆虫爬行时这六条腿是如何协调动作的。而要做好六足爬行机器人,就要清晰的了解这六条腿的每个阶段的步伐状态,也就是我们常说的“步态”。 实际上,一般六条腿的昆虫,是以三条腿为一组、共两组交叉进行协调运动的。同一时间内,有一组也就是三条腿着地,另外一组的三条腿是离开地面的,然后两组交替切换往前爬行。我们都知道,三点可以确定一个平面,即三条腿可以保证整个身体的平衡,这也许就是很多昆虫都是长了六条腿的主要原因吧。 以下是六足昆虫爬行步态的分解,以前进方向为例进行说明: 1、静止时六条腿都是同时着地; 2、前进时,先迈出第1组三条腿(左前、右中、左后),第2组三条腿着地(右前、左中、右后); 3、第1组三条腿(左前、右中、左后)往前迈出着地后保持不动,然后换第2 组三条腿(右前、左中、右后)往前迈出; 4、第2组三条腿(右前、左中、右后)往前迈出着地后保持不动,再换第1组……

如此循环往复,同一时间都保证有一组三条腿着地以保持身体的平衡,并不断往前进。 2、驱动机理 本项目机器人是采用六足爬行的方式运动,对于六足的驱动力量也是有一定要求的,所 以与前几个仿生类机器人项目一样都是借助减速电机所具有的“低转速、高扭矩”的特性来实现的。 与PVC-Robot 11号、PVC-Robot 12号机器人驱动双臂以及与PVC-Robot 13号驱动双足类似,本项目机器人六足中的中间两足是主动足,是由减速电机直接驱动的,而采用的减速电机同样也必须要满足两个条件: 1、拥有足够的动力,能够支撑双足行走; 2、减速电机左右两侧同轴输出。 为此,需要利用“蜗杆传动机构”对现有减速电机进行改造,相关方案在前面的项目中也已经进行了详细的阐述,这里不再重复,具体可以点击这里:PVC-Robot 11号——减速机构 本项目机器人实现六足爬行机械结构,其实是和PVC-Robot 12号、PVC- Robot13号类似的“连杆机构”——“摆动曲柄滑块机构”,只不过说这个在PVC-Robot 15号中这个连杆机构驱动六足的中间两足,然后再通过连杆带动其他四足 联动的。相关资料请参考:PVC-Robot 12号——驱动机理、PVC-Robot 13号——驱动机理。

六足爬行机器人总体设计方案

本文的设计为六足爬虫机器人,机器人以交流-直流开关电源作为动力源,单片机为控制元件,伺服电机为执行部件,机器人采用三足着地进行运动,通过单片机对伺服电机的控制,机器人能够实现前进、后退等运动方式,三足着地运动方式保证了机器人能够平稳运行。伺服电机具有力量大,扭矩大,体积小,重量轻等特点。单片机产生20ms 的PWM 波形,通过软件改写脉冲的占空比,从而达到改变伺服电机角度的目的。 1 机器人运动分析 1.1 六足爬虫式机器人运动方案比较 方案一:六足爬虫式机器人的每条腿都能单独完成抬腿、前进、后退运动。 此方案的特点: 每条腿都能自由活动,每条腿都能单独进行二自由度的运动。每条腿的灵活性好,更容易进行仿生运动,六足爬虫机器人可以完成除要求外的很多动作,运动的视觉效果更好。由于每条腿能单独完成二自由度的运动,所以每条腿上要安装两个舵机,舵机使用数量大,舵机的安装难度加大,机械结构部分的制作相对复杂,又由于每个舵机都要有单独的信号控制,电路控制部分变得复杂了,控制程序也相应的变得复杂。 方案二:六足爬虫式机器人采取三腿为一组的运动模式,且同一侧的前腿、后腿的前后转动由同一侧的中腿进行驱动。采用三腿为一组(一侧的前足、后足与另一侧的中足为一组)的运动方式,各条腿能够协调的进行运动,机器人的运动相对平稳。 此方案特点:相比上述方案,个腿能够协调运动,在满足运动要求的情况下,舵机使用数量少,节约成本。机器人运动平稳,控制、驱动部分都得到相应的简化,控制简单。选择此方案,机器人还可进行横向运动。 两方案相比,选择方案二更合适。 1.2 六足爬虫式机器人运动状态分析 1.2.1 机器人运动步态分析 六足爬虫式机器人的行走是以三条腿为一组进行的,即一侧的前、后足与另一侧的中足为一组。这样就形成了一个三角形支架结构,当这三条腿放在地面并

六足步行机器人的毕业设计说明书

本科毕业设计(论文) 六足步行机器人设计与仿真 燕山大学 2012年6月

本科毕业设计(论文) 六足步行机器人设计与仿真 学院(系):里仁学院 专业:机械电子工程 学生姓名:牛智 学号: 0811******** 指导教师:田行斌 答辩日期: 20012.6.17

燕山大学毕业设计(论文)任务书

摘要 摘要 基于仿生学原理,在分析六足昆虫运动机理的基础上,采用了仿哺乳类的腿部结构,并针对这种腿部结构设计了六足的行走方式,通过对18个直流伺服电机的控制,采用三角步态,实现了六足机器人的直行功能。仿真证明,这种结构能较好地维持六足机器人自身的平衡,并且对今后更深入地研究六足机器人抬腿行走姿态及可行性,具有较高的参考价值。 针对仿生六足步行机器人关节较多,其步态轨迹规划和关节控制量计算都较为复杂的现状,采用Solidworks软件与UG软件相结合的方式对六足仿生步行机器人的样机模型进行了运动学仿真与分析。通过仿真,验证了所设计的三角步态的适用性。 关键词六足机器人;步行;三角步态;运动学仿真

燕山大学本科生毕业设计(论文) Abstract A bionic leg structure which is similar to the legs of mammals was used,and a hexapod walking mode was designed according to this structure.By controlling 18 step motors straight walking function of the hexapod robot has been implemented with tripod gait movement.Simulation and experiment show that this structure can keep the hexapod robot balance better,providing high reference value to research the advantage and feasibility of leg raising walking gesture. As there are many joints in the bionic hexapod walking robot and the calculation of its walking track and joints control unit are comparatively comp- licated,the kinematical simulation and analysis of the model of bionic hexapod walking robot have been done by using solidworks and UG.Through simulation,the applicability of designed tripod gait are validated. Keywords Hexapod robot;Walking;Tripod gait;Kinematics simulation

双足机器人设计

小型双足步行机器人的结构及其控制电路设计 两足步行是步行方式中自动化程度最高、最为复杂的动态系统。两足步行系统具有非常丰富的动力学特性,对步行的环境要求很低,既能在平地上行走,也能在非结构性的复杂地面上行走,对环境有很好的适应性。与其它足式机器人相比,双足机器人具有支撑面积小,支撑面的形状随时间变化较大,质心的相对位置高的特点。是其中最复杂,控制难度最大的动态系统。但由于双足机器人比其它足式机器人具有更高的灵活性,因此具有自身独特的优势,更适合在人类的生活或工作环境中与人类协同工作,而不需要专门为其对这些环境进行大规模改造。例如代替危险作业环境中(如核电站内)的工作人员,在不平整地面上搬运货物等等。此外将来社会环境的变化使得双足机器人在护理老人、康复医学以及一般家务处理等方面也有很大的潜力。 双足步行机器人自由度的确定 两足步行机器人的机构是所有部件的载体,也是设计两足步行机器人最基本的和首要的工作[1]。它必须能够实现机器人的前后左右以及爬斜坡和上楼梯等的基本功能,因此自由度的配置必须合理:首先分析一下步行机器人的运动过程(前向)和行走步骤:重心右移(先右腿支撑)、左腿抬起、左腿放下、重心移到双腿中间、重心左移、右腿抬起、右腿放下、重心移到双腿间,共分8个阶段。从机器人步行过程可以看出:机器人向前迈步时,髓关节与踝关节必须各自配置有一个俯仰自由度以配合实现支撑腿和上躯体的移动;要实现重心转移,髋关节和踝关节的偏转自由度是必不可少的;机器人要达到目标位置,有时必须进行转弯,所以需要有髋关节上的转体自由度。另外膝关节处配置一个俯仰自由度能够调整摆动腿的着地高度,使上下台阶成为可能,还能实现不同的步态。这样最终决定髋关节配置3个自由度,包括转体(roll)、俯仰(pitch)和偏转(yaw)自由度,膝关节配置一个俯仰自由度,踝关节配置有俯仰和偏转两个自由度。这样,每条腿配置6个自由度,两条腿共12个自由度。髋关节、膝关节和踝关节的俯仰自由度共同协调动作可完成机器人的在纵向平面(前进方向)内的直线行走功能;髋关节的转体自由度可实现机器人的转弯功能;髋关节和踝关节的偏转自由度协调动作可实现在横向平面内的重心转移功能。 机器人的转体(roll)、俯仰(pitch)和偏转(yaw)定义如图1所示[2]。

最新六足爬虫机器人

本文的设计为六足爬虫机器人,机器人以锂电池为动力源,单片机为控制元件,伺服电机为执行部件,机器人采用三足着地进行运动,通过单片机对伺服电机的控制,机器人能够实现前进、后退等运动方式,三足着地运动方式保证了机器人能够平稳运行。伺服电机具有力量大,扭矩大,体积小,重量轻等特点。单片机产生20ms 的PWM 波形,通过软件改写脉冲的占空比,从而达到改变伺服电机角度的目的。 1 机器人运动分析 1.1 六足爬虫式机器人运动方案比较 方案一:六足爬虫式机器人的每条腿都能单独完成抬腿、前进、后退运动。 此方案的特点: 每条腿都能自由活动,每条腿都能单独进行二自由度的运动。每条腿的灵活性好,更容易进行仿生运动,六足爬虫机器人可以完成除要求外的很多动作,运动的视觉效果更好。由于每条腿能单独完成二自由度的运动,所以每条腿上要安装两个舵机,舵机使用数量大,舵机的安装难度加大,机械结构部分的制作相对复杂,又由于每个舵机都要有单独的信号控制,电路控制部分变得复杂了,控制程序也相应的变得复杂。 方案二:六足爬虫式机器人采取三腿为一组的运动模式,且同一侧的前腿、后腿的前后转动由同一侧的中腿进行驱动。采用三腿为一组(一侧的前足、后足与另一侧的中足为一组)的运动方式,各条腿能够协调的进行运动,机器人的运动相对平稳。 此方案特点:相比上述方案,个腿能够协调运动,在满足运动要求的情况下,舵机使用数量少,节约成本。机器人运动平稳,控制、驱动部分都得到相应的简化,控制简单。选择此方案,机器人还可进行横向运动。 两方案相比,选择方案二更合适。 1.2 六足爬虫式机器人运动状态分析 1.2.1 机器人运动步态分析

六足机器人行走与运动仿真分析

龙源期刊网 https://www.360docs.net/doc/812680186.html, 六足机器人行走与运动仿真分析 作者:詹广强赵基伟谢磊超 来源:《无线互联科技》2014年第06期 摘要:虚拟仿真设计方法在现代机械设计中占有重要地位,针对目前虚拟仿真软件存在的不足之处,在设计时往往需要选用多个仿真软件组合使用才能达到所需的仿真目的。本文设计了一个六足双斗机器人,应用建模和仿真功能较齐全的Inventor对其进行虚拟分析,检查机器人在行走和爬坡过程中的行走步态,获得机器人在不同工作状态下重心的变化曲线,分析机器人设计的合理性,为更好的设计新型六足机器人提供设计依据。并制造了小型物理样机,检验仿真设计的可靠性,通过物理样机试验,验证Inventor仿真的可靠性和正确性。 关键词:虚拟仿真设计;六足机器人;Inventor;运动仿真Inventor是一种全面的可视化 设计工具,用于创建和验证完整的数字样机,可以检验机械产品的外型、结构和功能,也可以对其进行运动仿真和应力分析,设计师应用这种软件可对数字化样机进行优化,并预测机械产品在未来的实际工作情况[1]。 本文设计了六足双斗机器人,机器人采用足式移动方式优点在于控制简单,移动比较迅速,同时可以相对较容易地跨过比较大的障碍,但是当机器人在行走时,整个物体的重心会发生变化,各个关节受到的速度及加速度也不同,在不行走,进行挖掘工作,不同部位受到的力也不一样。本文应用Inventor对六足机器人在平地行走和爬坡过程中重心的位置、速度加速度变化进行仿真分析,Inventor集设计、建模和仿真于一体,且操作简单,这给设计工作带 来了许多方便,节约了研究时间和研制费用,实现了高质量、高速度、高效率、低成本的整体设计。 本文所应用的软件为虚拟设计方法又提供了一个方便可行的办法,同时,设计的六足机器人为足类机器人的设计也提供了一些思路。在Inventor的虚拟仿真下,得到所设计的六足机器人的一些有用信息,为更好的设计新型六足机器人提供了参考依据。小型物理样机试验,行走和利用双斗夹取物体。 1六足机器人整体结构 Inventor非常注重产品外观设计,同时其渲染功能也易于操作,效果良好,应用Inventor 对六足机器人进行整体结构造型和渲染,结果如图1所示,其中腿部结构放大图如图2所示。图2(a)图是腿部结构运动简图,输入旋转运动,在滑块和曲柄的作用下转化为腿部摇摆运动[2],腿部机构的摇摆幅度为[-24°~+24°],由于该机器人的腿部关节是铰接和滑动副,因而在步行时即使出现失稳现象也具有较强的姿态恢复能力[3],足部使用减震和缓冲作用的橡胶材 料。

一种双足步行机器人的步态规划方法

?16? 一种双足步行机器人的步态规划方法 □胡洪志马宏绪 国防科技大学机电工程与自动化学院 [摘要]本文介绍了一种双足步行机器人的步态规划方法,以前向运动为例,详细介绍了先分阶段规划然后合成的方法,并 讨论了行走过程中的冲击振动问题及减振措施,实验及仿真结果验证了这一规划方法的有效性。[关键字]双足步行机器人步态规划减振 [Abstract]In this p a p er ,w e p ut forw ard a m ethod for hum anoid robot g ait p lannin g .W e take forw ard m otion for exam p le ,illustrate the p hase p lannin g and com p ound m ethod in detail.T his p a p er also discusses the im p act v ibration p roblem and how to g et rid of it.T he ex 2p erim ent and simulation result verified the validation of the m ethod. [K e y w ords]bi p ed robot ;g ait p lannin g ;v ibration decrease [作者简介]胡洪志:男,1978年3月生,国防科技大学机电工程与自动化学院研究生,研究方向:智能机器人系统。 马宏绪:男,1966年8月生,国防科技大学机电工程与自动化学院教授,硕士生导师,研究方向:智能机器人系统。 1引言 双足步行机器人的研究是由仿生学、机械工程学和控制理论等多种学科相互融合而形成的一门综合学科,是机器人研究的一个重要分支。双足步行机器人的研究可以促进多个学科的研究,并为相关学科的研究提供一个平台,具有很大的理论价值。在实际应用中,双足步行机器人可用于有放射性、危险及其它对人体有害的环境中取代人类劳动,把人从高强度、长时间及单调乏味的工作中解脱出来,具有广阔的市场前景。步行机器人最大的特征是步行,步态是在步行运动过程中,步行体的身体各部位在时序和空间上的一种协调关系,步态规划是双足步行机器人研究中的一个关键技术。要实现和提高机器人的行走性能,必须研究实用 而有效的步态规划方法,实现机器人的稳定步行。 2双足步行机器人模型 本文的研究对象是一台具有12关节自由度的双足步行机构,每条腿各有6个自由度,即:踝关节有前向和侧向两个自由度;膝关节一个前向自由度,髋关节具有三个 自由度,包括前向、侧向及转弯自由度。由仿真分析及实验研究可知,在步行运动中,双足步行机器人前向各关节的运动与侧向各关节运动之间的耦合很小,可以忽略这一耦合的影响,对机器人前向和侧向的运动分开建模。本文主要讨论前向运动的步态规划问题。 前向运动模型如下图一: 定义:双腿关节,先左腿,后右腿,左腿由下至上,右腿由上至下,依次标注为1,2,3,...,10,11,12,各关节对应的转角依次为θ1,θ2,θ3,…,θ10,θ11,θ12,其中θ1,θ5,θ8,θ12,分别为双腿侧向关节对应的转角;θ2,θ3,θ4,θ11,θ10,θ9为双腿前向关节对应的转角;θ6, θ7转弯关节在前向运动中始终保持为零。 图一

毕业设计文献综述 六足步行机器人

燕山大学 本科毕业设计(论文)文献综述 课题名称: 学院(系): 年级专业: 学生姓名: 指导教师: 完成日期:

一、课题国内外现状 步行机器人,简称步行机 ,是一种智能型机器人 , 它是涉及到生物科学 , 仿生学 , 机构学 , 传感技术及信息处理技术等的一门综合性高科技 . 在崎岖路面上 ,步行车辆优于轮式或履带式车辆 .腿式系统有很大的优越以及较好的机动性 , 崎岖路面上乘坐的舒适性 ,对地形的适应能力强 .所以 ,这类机器人在军事运输 , 海底探测 , 矿山开采 , 星球探测 , 残疾人的轮椅 , 教育及娱乐等众多行业 ,有非常广阔的应用前景 , 多足步行机器人技术一直是国内外机器人领域的研究热点之一。 步行机器人历经百年的发展, 取得了长足的进步, 归纳起来主要经历以下几个阶段[5]: 第一阶段, 以机械和液压控制实现运动的机器人。 第二阶段, 以电子计算机技术控制的机器人。 第三阶段, 多功能性和自主性的要求使得机器人技术进入新的发展阶段。 闰尚彬,韩宝玲,罗庆生针对仿生六足步行机器人关节较多,其步态轨迹规划和关节控制量计算都较为复杂的现状,采用Solidworks软件与MSC.ADAMS 软件相结合的方式对六足仿生步行机器人的样机模型进行了运动学仿真与分析.通过仿真,验证了所设计的三角步态的适用性和所选择的三次样条曲线作为机器人足端点轨迹曲线方案的可行性. 韩宝玲王秋丽罗庆生基于六足仿生步行机器人机构学特性的研究,采用数值分析法求解了机器人步行足的足端工作空间,利用虚拟样机技术计算了机器人的灵活度,从两方面综合衡量六足仿生步行机器人的工作能力,并以六足步行机器人各腿节比例关系的确定为例,介绍了六足步行机器人结构优化的具体方案. 苏军陈学东田文罡研究六足步行机器人全方位行走步态,分析其静态稳定性;规划了典型直线行走步态和定点转弯步态,确定了直线行走步态最大跨步和定点转弯步态最大转角;进行了步态控制算法模拟仿真及实地步行实验。 王绍治郭伟于海涛李满天根据CPG双层网络的特点,采用分层分布式系统架构研究制了一种机器人运动控制系统.其基于FPGA的星型总线,在保证通信速率的同时提高了系统抗干扰能力.在单足控制器中嵌入双NIOS 完成CPG网络解算和电机运动控制. 郭少晶韩宝玲罗庆生针对采用电池供电的六足仿生步行机器人其工作时间受限的情况,提出了将动态电源管理、实时任务调度和运动策略规划等方法,综合运用于其控制系统,且更为全面地考虑了机器人系统的能耗等级.这种方法对于降低机器人的系统能耗起到了实质性的作用,其整体思路与技术途径可为降低其它类似的多足步行机器人的系统能耗, 陈甫臧希喆赵杰闫继宏从机械结构、运动模式和步态控制3个方面, 对六足步行机器人的仿生机制进行了分析. 提出一种灵活度评价函数, 基

双足步行机器人结构可视化设计_杨宇

双足步行机器人结构可视化设计* 杨宇,陶学恒 (大连工业大学机械工程与自动化学院,辽宁大连 116034) 摘要:采用Wa t t-21型平面六杆机构作为基本的行走机构,探讨了步行机器人行走机构应有的特性,完成了机构的运动分析。同时为了便于分析,利用P r o/E建立了双足步行机器人的三维模型,并在软件中进行了运动仿真。利用计算机的可视化设计技术来修正设计参数。 关键词:双足步行机器人;运动仿真;可视化设计 中图分类号:T P24;T H789 文献标识码:A 文章编号:1001-2354(2008)01-0020-03 机器人技术作为信息技术和先进制造技术的典型代表和主要技术手段,已成为世界各国竞相发展的技术。研制具有人类外观特征,可以模拟人类行走与基本操作功能的类人型机器人,一直是人类的梦想之一,而双足步行机器人属于模拟人类行走的机器人。步行机器人技术是一种涉及仿生学、机构学、传感技术及信息处理技术等综合高科技的技术,无论是医疗康复的应用研究,还是航天科技的探测器,甚至日常生活的玩具都能够见到步行机器人的身影,步行机器人对人们生活的影响正日益增大,对步行机器人的研究也更加深入。对于步行机器人的发展,如何解决步行机器人结构运动的问题是步行机器人发展中亟需研究的问题之一。 目前的划分标准是按照步行脚的足数来划分的,可以分为单足、双足、三足和多足,其中又以双足步行机器人为机器人领域的研究热点,主要由于自动化程度高,动态系统复杂及丰富的动力学特性,并且对于环境的适应能力强,能够跨越大的障碍物。从步行机器人的机构分析着手,对采用Wa t t-21型六杆机构作为类人型腿机构的步行机器人进行分析,并且通过P r o/E软件进行了几何建模,在计算机上实现步行机器人的可视化设计,同时在仿真环境下对步行机器人的设计参数进行验证,确定是否达到所设计的目的和修正腿机构的协调运动。显然,这一工作若在物理样机上进行实验验证,必然会加大设计和试验周期,而通过计算机技术,将大幅度地提高效率。 1 双足步行机器人组成结构及 原理分析 步行机器人的研究是一门综合性很强的学科,在一定程度上代表着一个国家的高科技发展水平。对于采用Wa t t-21型六杆机构的步行机器人,其主要结构分为两部分:腿机构和驱动机构,并且两者之间是采用串联的形式连接。通过步行机器人的结构示意图(图1),可以清晰地了解这两部分。腿机构的运动是步行机器人的关键机构,其性能决定了机器人速度、稳定性、刚度等性能,因此,对于腿机构的研究就显得格外重要。腿机构可以简单看成一个双摇杆机构,在连杆的一端引出伸出端,尾端的轨迹可以近似看成人类行走时的轨迹,而驱动机构则是采用一个曲柄摇杆机构,通过圆周运动的驱动装置就可以带动运转。在两者之间,将驱动机构的摆杆作为腿机构的动力源,实现了驱动机构与腿机构的串联形式。由于两部分都是平面四杆机构,要真正模拟人行走时的姿态是存在着困难的,但通过选取合理的参数,可以将伸出杆的轨迹控制在所要实现的范围之内 。 图1 步行机器人结构示意图 在图1中可以看到在A B C D四杆机构中,A B杆可绕A点进行圆周运动,是四杆机构的驱动元件,B C杆是连杆,C D杆是摇杆,此部分是步行机器人的驱动部分结构。在D H F E四杆机构中,D H杆是四杆机构的驱动元件,H F杆是连杆,F E杆是摇杆,单独地看,认为D H F E是双摇杆机构。将C D杆与D H杆以适当的角度连成一体,通过一个驱动设备就可将机构驱动,在H F连杆上引出引杆F G,G点的轨迹近似于人类行走时的轨迹。由于将C D杆与D H杆连在一起,可将两杆看成一个构件,因此整体上看此机构是六杆机构。 2 双足步行机器人结构可视化设计 计算机可视化技术的迅速发展,使得双足步行机器人的快速设计成为可能。一方面,通过计算机建立起几何模型,真实地反映实体结构;另一方面,通过运动仿真可以确定步行机器人的行走姿态,并且可方便地修改设计尺寸,达到最佳的行走 第25卷第1期2008年1月 机 械 设 计 J O U R N A LO FM A C H I N ED E S I G N V o l.25 N o.1 J a n. 2008 *收稿日期:2007-04-18;修订日期:2007-08-24 作者简介:杨宇(1982-),男,辽宁葫芦岛人,硕士研究生,主要从事机械C A D,C A M方面的研究工作。DOI:10.13841/https://www.360docs.net/doc/812680186.html, ki.jxsj.2008.01.022

(完整版)双足竞步机器人设计与制作技术报告

中国矿业大学徐海学院 双足竞步机器人设计与制作技术报告 队名:擎天柱班级:电气13-5班_________________________ 成员:郭满意游世豪侯敏锐唐丽丽 侯伟俊王胜刘利强杨光 题目双足竞步机器人__________________________________________ 任课教师:李富强_________________________________________ 2015年12月 双足竞步机器人设计与制作任务书

任务下达日期:2015年10月16日 设计日期:2015年11月1 日至2014年12月31日 设计题目:双足竞步(窄足)机器人的设计与制作 设计主要内容和完成功能: 1、双足竞步机器人机械图设计; 2、双足竞步机器人结构件加工; 3、双足竞步机器人组装; 4、双足竞步机器人电气图设计; 5、双足竞步机器人控制板安装; 6、整机调试 7、完成6米的马拉松比赛。 教师签字: 双足机器人的机构是所有部件的载体,也是设计双足机器人最基本的和首要的工作本文根据项目规划和控制任务要求,按照从总体到部分、由主到次的原则,设计了一种适 合仿人双足机器人控制的机构。文章首先从机器人整体系统出发,制定了总体设计方案,再根 据总体方案进行了关键器件的选型,最后完成了各部分机构的详细设计工作。经过硬件设计、

包括机械结构设计、电路设计与制作,机器人步态规划算法研究,利用Atmega8芯片实现了对六个舵机的分时控制,编写VC上位机软件,通过串口通信对双足 竞步机器人进行调试,通过人体仿生学调试出机器人的步态规划。实现了双足竞步机器人稳定向前行走、立正。 关键词:双足机器人、机械结构 目录 1系统概述 (1) 2硬件设计 (2) 2.1机械结构 (2) 2.2电路设计 (2) 3软件设计 (4) 3.1 AVR 单片机程序设计 (4) 3.2 PC上位机调试软件设计 (4) 4系统调试 (5)

六足爬行机器人设计--第2章 六足爬行机器人的方案设计

第2章六足爬行机器人的方案设计 2.1 总体设计要求 技术参数: 自由度数:每条腿有3个,共有16个; 本体体重:≤6kg; 行走速度:≥20mm/s; 设计要求: 能够完成前进、倒退、转弯、摆头、避障等任务,并且便于人工控制。 工作要求: 1)机器人的重量控制在6公斤左右,但是这是设计的爬行机器人,为适应不同地形, 它的最大负重加20%。为1.2公斤; 2)机器人机体运动时离地最低为100mm; 3)机器人机步长不低于50mm; 4)为保证电机良好工作和不至于使电机在重负重下工作,机器人小腿和地的夹角不小 于10度,不大于40度,小腿往内倾斜; 多足爬行机器人的一般设计准则: 1) 能够实现机器人多种姿态间的灵活调整; 2) 机器人机体结构简单、紧凑,重量轻; 3) 机器人整体结构强度高、刚度好、负载能力达到要求; 4) 在满足功能要求的情况下,尽量减少驱动及配套装置数量,简化控制的复杂性。

2.2六足爬行机器人的步态规划 步态设计是实现爬行的关键之一,也是系统控制难易的标志,为达到较为理想的爬行,考虑下列要求: 1)步行平稳、协调,进退自如,无明显的左右摇晃和前后冲击; 2)机体和关节间没有较大的冲击,特别是当摆动腿着地时,与地面接触为软着陆; 3)机体保持与地面平行,且始终以等高运动,没有太大的上下波动; 4)摆动腿胯步迅速,腿部运动轨迹圆滑,关节速度与加速度轨迹无奇点; 5)占空系数β的合理取值。 根据占空系数β的大小可分为3种情况: 1)β=0.5,在摆动腿着地的同时,支撑腿立即抬起,即任意时刻同时只有支撑相 或摆动相; 2)β>0.5,机器人移动较慢时,摆动相与支撑相有一短暂的重叠过程,即机器人 有所有腿同时着地的状态; 3)β<0.5,机器人移动较快时,所有腿有同时为摆动相的时刻,即所有腿同时在 空中,处于腾空状态,因此在交替过程中要求机器人机构具有弹性和较快的速 度,否则难以实现。 通过以上分析,我们设计出β>0.5(β=0.55)的六足机器人步态为满足其平稳性的要求,六足机器人采用占空系数为0.55(即在运动过程中有六条腿同时着地)的三角步态。如图2.1(a)所示,机器人开始运动时,六条腿先同时着地,然后2、4、6三条腿抬起进行向前摆动的姿态准备,另外三条腿1、3、5处于支撑状态,支撑起机器人本体以确保机器人的重心位置始终处于三条支腿所构成的三角形内,使机器人处于稳定状态而不至于摔倒,摆动腿2、4、6抬起向前跨步(如图2.1(b)所示),支撑腿1、3、5 一面支撑机器人本体,一面在动力的作用下驱动机器人机体向前运动半步长s(如图 2.1(c)所示)。在机器人机体移动结束后,摆动腿2、4、6立即放下,呈支撑态,使机器人的重心位置处于2、4、6三腿支撑所构成的三角形稳定区内,同时原来的支撑腿1、3、5经短暂停留后抬起并准备向前跨步(如图2.1(d)所示),当摆动腿1、3、5向前跨步时(如图2.1(e)所示),支撑腿2、4、6此时一面支撑机器人,一面驱动机器人本体,使机器人机体向前行进半步长s(如图2-1(f)所示),如此不断循环往复,以实现机器人的向前运动,由于设计速度并不是非常精确,所以其行进轨迹并不是一条笔直的直线。

六足仿生机器人

六足仿生机器人 人们对机器人的幻想与追求已有3000多年的历史,人类希望制造一种像人一样的机器,以便代替人们完成各种工作。1959年,第一台工业机器人在美国诞生,近几十年,各种用途的机器人相继问世,使人类的许多梦想变为现实。随着机器人工作环境和工作任务的复杂化,要求机器人具备有更高的运动灵活性和特殊位置环境的适应性,机器人简单的轮子和履带的移动机构已不能适应多变复杂的环境要求。在仿生技术、控制技术和制造技术不断发展的今天,各种各样的仿生机器人相继被研制出来,仿生机器人已经成为机器人家族重要的成员。 仿生爬行机器人是一种基于仿生学原理研制开发的新型足式机器人。与传统的轮式或者履带机器人相比,足式机器人自由度多,可变性大、结构发杂、控制繁琐,但其在运动特性方面具有独特的优点:首先是足式机器人具有较好的机动性,对不平地面的适应能力十分突出,由于其立足点是离散的,与地面的接触面积较小,因而可以在可能达到的地面上选择最优支撑点,从而能够相对容易的通过松软地面以及跨过比较大的障碍;其次是足式机器人的运动系统可以实现主动隔振,允许机身运动轨迹与足轨迹解耦。尽管地面高

低不平,机身的运动仍可达到相对平稳。 本课题主要研究的内容是一种六足仿生机器人的机械机构部分的设计和分析,围绕六足仿生机器人的前沿技术,主要仿生对象为蚂蚁,主要实现机器人前后左右移动,具有良好的仿生特性,研究具有抗冲击性以及地形适应能力的仿生机设计技术,六足仿生机器人系统模型;研究六足机器人适应不同地形环境的能力。研制系统设计与仿真等核心单元。研制高速、高负载力、对典型非结构化地形具有高适应能力的六足仿生机器人,并开展系统结构、地形适应能力以及对抗控制实验验证。本次设计的预期要达到的效果是可以实现灵活进退和转向,跨越障碍物,通过洼地和台阶并且保持平衡防止倾翻,能够实现实时避障,合理规划行走路线。 1、技术方案 一、机器人功能介绍: a)可实现前进后退转弯等基本动作,加装传感器后对小障碍物越过、大障碍物绕开,具有遥控模式,可通过无线装置无线控制。 b)机器人机械机构: 舵机在仿生机器人中的应用:舵机有体积紧凑,便于安装,输出力矩大,稳定性好等优点。一个放上机器人,机器人各个关节都有一定的自由度数,而每个舵机正是实现其中一个个关节在一个自由度上的运动。

相关文档
最新文档