植物生理学知识整理

植物生理学知识整理
植物生理学知识整理

第一章

名词

共质体:由穿过细胞壁的胞间连丝把细胞相连,构成一个相互联系的原生质的整体(不包括液泡)。共质体途径是指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,如此移动下去,移动速度较慢。

质外体:由细胞壁及细胞间隙等空间(包含导管与管胞)组成的体系。质外体途径是指水分通过细胞壁,细胞间隙等没有原生质的部分移动,这种方式速度快。

根压:植物根系的生理活动使皮层细胞中的离子不断通过内皮层进入中柱,于是中柱细胞内离子浓度升高,水势降低,便向皮层吸收水分。这种由于水势剃度引起水分进入中柱后产生的压力叫做根压。

渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象

水势:在植物生理学上,水势就是每偏摩尔体积水的化学势。就是说,水溶液的化学势与同温、同压、同一系统中的纯水的化学势之差,除以水的偏摩体积所得的商,称为水势。

内聚力学说:水分延导管或管胞上升的动力,叶片因蒸腾失水而导管或管胞吸水,使导管或管胞的水柱产生张力,由于水分了内聚力大于水柱张力,保证水柱的连续性而使水分不断上升。这种以水分具有较大的内聚力保证由叶至根水柱不断来解释水分上升原因的学说。

蒸腾速率:蒸腾速率是指植物在一定时间内单位叶面积蒸腾的水量。一般用每小时每平方米叶面积蒸腾水量的克数表示(g· m-2·h-1)。

解释现象:

1植物受水淹反而出现萎蔫:植物受水淹后,发生涝害,导致根系对水分的吸收速率下降,气孔关闭,蒸腾作用降低,叶片发生萎焉现象。

2 植物细胞放在高浓度溶液中发生质壁分离:在外界溶液浓度高的条件下,细胞内的水分会向细胞外渗透,因为失水导致原生质层收缩,细胞壁收缩,而细胞壁的伸缩性要小于原生质层,所以质壁分离产生了这种原生质层和细胞壁分离现象。

3 盛夏中午植物不宜浇水:因为在炎热的夏天,植物要通过蒸腾作用来散热,其实也就是蒸发自身内部水分的形式将热量带出植物体外,而如果这个时候,给植物浇水,植物就会因为吸收大量的水后,发生吐水现象,堵塞了叶片的气孔,而气孔就是植物蒸腾作用用来输送水分的唯一窗口,因为气孔被堵塞,植物因不能进行蒸腾作用,不能散热而致使内部紊乱,酶活性失调,最后死亡。

问答:

1 试述植物气孔开闭的机理:

2 植物体内的水分运输途径及动力:扩散,集流,渗透作用;根压,蒸腾拉力。

3 水分在植物生命活动中的作用: 细胞质的主要成分;代谢作用过程的反应物;植物对物质运输和吸收的溶剂;保持植物的固有姿态。

第二章

名词

离子拮抗作用:介质中某种离子的存在能抑制植物对另一种离子吸收或运转的作用

单盐毒害:单盐毒害,如果将植物培养在只含一种金属离子的溶液中,即使这种离子是植物生长发育所必需的,如钾离子,而且在培养液中的浓度很低,植物也不能正常生活,不久即受害而死。原因是当培养在仅含有1种金属盐类溶液中的植物,将很快的积累金属离子,并呈现出不正常状态,致使植物死亡的现象。不正常状态包括根停止生长,生长区域中的细胞壁粘液化,细胞破坏,并失去细胞液,变成无结构的团块。这种由于溶液中只含有一种金属离子而对植物起毒害作用的现象称为单盐毒害。

解释现象

作物幼苗施用氮肥过多,为什么会“烧苗”?

当一次过量施用氮肥时,很容易造成土壤溶液浓度过高,渗透阻力增大,导致作物根系吸水困难,甚至发

生细胞“脱水”现象,初时叶片发蔫,继而叶片枯黄死亡。

进行溶液培养时,为什么要向溶液中打气,还有调换新鲜溶液?

向溶液中打气可提高培养液中的含氧量,增加根系的有氧呼吸,为根系主动吸收矿质元素提供充足能量。植物培养一段时间后,由于根系对矿质元素的选择性吸收,导致培养液中各种元素的比例失调,通过定期调换新鲜溶液来维持培养液的平衡性。

下雨后为什么要中耕松土?

土壤水分太多会使植物根系缺氧、烂根及不利于植物必须的微量元素的吸收,结果会导致死亡,中耕松土,能及时排出积水,调节土壤水分含量,使植物正常生长。

问答

扼要叙述氮、钾、镁三元素的吸收形态和在植物体内存在的状态及其生理功能

吸收形态:N含氮化合物,硝酸盐,铵盐;K、Mg离子态。

体内存在的状态:N以NH4+和蛋白质、核酸等形式存在;K在细胞液中以K+存在;Mg2+形成有机化合物,一部分仍以离子状态存在。

生理功能:N是建造植物体的结构物质;N为植物体进行能量代谢所必需;N是叶绿素的组成部分,参与光合作用;N是细胞分裂素、生长素的组成部分。

K调节气孔开闭;促进糖分转化和运输;是某些反应中酶的活化剂。

Mg叶绿素的组成部分;在叶绿体基质和类囊体基质间起电荷平衡作用;酶的活化剂;缺乏症:老叶脉间失绿。

习题:

1、在维管植物的较幼嫩的部分,亏缺下列哪种元素时,缺素症首先表现出来。()

(1 )K (2 )Ca ( 3 )P (4 )N

2、植物缺乏下列元素都会引起缺绿症,若缺绿症首先出现在下部老叶上,是缺乏哪种元素。()

(1 )Fe嫩叶叶脉间黄叶病(2 )Mg 变黄( 3 )Cu ( 4 )Mn

3、反映植株需肥情况的形态指标中,最敏感的是()

A、相貌

B、叶色

C、株高

4、质膜上的离子通道运输属于哪种运输方式。()

A、主动运输

B、被动运输

C、被动运输和主动运输

5、栽培叶菜类时,可多施一些()

A、氮肥

B、磷肥

C、钾肥

6、植物吸收离子最活跃的区域是()

A、根毛区

B、分生区

C、伸长区

7、用砂培法培养棉花,当其第4叶(幼叶)展开时,其第1叶表现出缺绿症。在下列三种元素中最有可能缺哪一种?()

A、钾

B、钙

C、铁

1、根部吸收的无机离于是通过_木质部_____向上运输的,但也能横向运输到__韧皮部____,喷在叶面的有机与无机物质是通过______运到植株各部分的。

2、促进植物授粉、受精作用的矿物质因素是____硼__ 。

3、大量元素中的C 、H 、O 三种元素主要来自___水___和_二氧化碳_____.

4、植物细胞对矿质元素的吸收有5种方式,分别为___、___、____和__、____ 。

第三章

名词

光合磷酸化:利用储藏在跨类囊体膜的质子梯度把无机磷和ADP合成ATP的过程称为光合磷酸化。类型:非循环光合磷酸化,循环光合磷酸化。

荧光现象:是叶绿素溶液在透射光下呈绿色,在反射光下呈红色的现象称为荧光现象。

光补偿点:随着光强度增加,光合速率相应提高,当达到某一光强度时,叶片的光合速率与呼吸速率相等,净光合速率为零,这时的光强度称为光补偿点。

C4途径:CO2固定后的初级产物是草酰乙酸(OAA),是一个含有四个碳的化合物,故此条固定CO2的途径称C4途径;C4途径的CO2受体是叶肉细胞质中的磷酸烯醇式丙酮酸(PEP),在磷酸烯醇式丙酮酸羧化酶(PEPC)催化下,固定CO2,生成草酰乙酸PEPC对CO2的亲和力极大。

Calvin循环:是一种新陈代谢过程,可使其动物质以分子的形态进入和离开此循环后发生再生。碳以二氧化碳的形态进入并以糖的形态离开卡尔文循环。整个循环是利用ATP作为能量来源,并以降低能阶的方式来消耗NADPH,如此可增加高能电子来制造糖。

CAM途径:景天酸代谢途径,这是干旱地区生长的景天科、仙人掌科等植物具有的一个特殊的CO2同化方式。CAM植物气孔运动的特点:夜间气孔开放,CO2与PEP形成OAA,表现为苹果酸增加,细胞液变酸;白天气孔关闭,苹果酸释放的CO2进入C3途径,合成淀粉,细胞液酸性减弱。

光呼吸:高等植物的绿色细胞在光下吸收O2放出CO2的过程。在光照下Rubisco把RUBP 氧化成乙醇酸磷酸,后者在磷酸酶作用下,脱去磷酸而产生乙醇酸,这些过程是在叶绿体内进行的。乙醇酸在过氧化物酶体最终形成甘油酸。甘油酸进入叶绿体内产生甘油酸-3-磷酸,参加卡尔文循环。

解释现象

1、秋天叶子变红;

在植物的叶子里,含有许多天然色素,如叶绿素、叶黄素、花青素和胡萝卜素。叶的颜色是由于这些色素的含量和比例的不同而造成的。

春夏时节,叶绿素的含量较大,而叶黄素、胡萝卜素的含量远远低于叶绿素,因而它们的颜色不能显现,叶片显现叶绿素的绿色。由于叶绿素的合成需要较强的光照和较高的温度,到了秋天,随着气温的下降,光照的变弱,叶绿素合成受阻,而叶绿素又不稳定,见光易分解,

分解的叶绿素又得不到补充。所以叶中的叶绿素比例降低,而叶黄素和胡萝卜素则相对比较稳定,不易受外界的影响。因而,叶片就显现出这些色素的黄色。

在植物的叶子中储藏有光合作用产生的淀粉,淀粉只有转化成葡萄糖,才能输送到植物的各部分去。但是到了深秋季节,天气变冷,叶子在白天制造的淀粉由于输送作用的减弱,到了晚上也不能完全变为葡萄糖运出叶子,同时叶子内的水分也逐渐减少,于是葡萄糖就留在叶子里,浓度越来越高。而葡萄糖的增多和秋天低温有利于花青素的形成。所以,花青素含量逐渐增多而叶绿素含量逐渐降低。花青素是一种不稳定的有机物,本身没有颜色,当它遇到酸性物质时变成红色,遇到碱性物质时会变成蓝色。这样,花青素在酸性的叶肉细胞中就变成了红色,所以树叶就变成了鲜红色。

2、C4植物比C3植物的CO2补偿点低

C4途径的CO2受体是叶肉细胞质中的磷酸烯醇式丙酮酸(PEP ),在磷酸烯醇式丙酮酸羧化酶(PEPC )催化下,固定CO2,生成草酰乙酸,PEPC 对CO2的亲和力极大。所以,C4植物能够利用低浓度的二氧化碳,而C3植物不能。

问答题

1.光合作用中光反应和暗反应的关系?

光反应为暗反应提供ATP 和还原剂,暗反应为光反应补充ADP 和Pi.

2.绘出植物的光合速率—光强曲线图,并对曲线各部分的特点加以说明。

3.

比较C4植物C3植物的异同。

特征 C 3植物 C 4植物 CAM 植物 植物类型 温带植物 热带或亚热带植物 干旱地区植物 主要CO 2 固定酶 RuBP 羧化酶 PEP 羧化酶, RuBP 羧化酶 PEP 羧化酶, RuBP 羧化酶 CO2固定途径 只有卡尔文循环 在不同空间分别进行C 4途径和卡尔文循环 在不同时间分别进行CAM 途径和卡尔文循环 最初CO 2 接受体 RuBP PEP 光下:RuBP 暗中:PEP CO2固定最初产物 PGA 草酰乙酸 光下:PGA 暗中:草酰乙酸 光合速率 (mgCO 2/dm

2

h) 15-35 40-80 1-4 光合最适温度 15-20 30-47 35 蒸腾系数 (g 水分/g 干重) 450-950 250-350 18-125 气孔张开 白天 白天 晚上

第四章

名词

抗氰呼吸:是指当植物体内存在与细胞色素氧化酶的铁结合的阴离子(如氰化物、叠氮化物)时,仍能继续进行的呼吸,即不受氰化物抑制的呼吸。

末端氧化酶:是把底物的电子传递系统最后传递给分子氧形成水或过氧化氢的酶类。

呼吸链:呼吸代谢中间产物的电子和质子,沿着一系列有顺序的电子传递体组成的电子传递途径,传递到分子氧的总过程。又称电子传递链。

氧化磷酸化:线粒体NADH+H的两个电子沿着呼吸链传递给氧的过程中,消耗氧及无机磷酸,同时收集大量的能量在ATP的高能键上。

解释现象

1 、植物长期进行无氧呼吸造成伤害的原因;

无氧呼吸产物(酒精或乳酸)积累过多会对植物细胞产生毒害,同时无氧呼吸释放能量少,无法维持植物的正常生命活动。

2机械损失会显著加快植物呼吸速率的原因;

植物组织受伤后,原来结构上隔开来的酶与底物的接触;其次是组织受伤恢复细胞分裂能力,形成愈伤组织,呼吸加强。

3 梨、苹果削皮后不久果实会出现锈色;

植物细胞中的酚类物质便在酚酶的作用下,与空气中的氧化合,产生大量的醌类物质。新生的醌类物质能使植物细胞迅速的出现锈色。

4 天南星科植物开花时,花的温度升高

天南星科植物在早春开花时,环境温度较低,通过抗氰呼吸放热,使花器官的温度大大高于环境温度,从而保证了花序的发育和授粉作用的进行。此外种子萌发初期的抗氰呼吸有促进萌发的作用。

问答题

1抗氰呼吸的电子传递途径?生理意义?

2为什么粮食的存储要特别控制水分?

水分含量过高,粮食的呼吸代谢活动就会增强而发热,而霉菌、有害昆虫也容易

生长繁殖,造成粮食霉变和腐败变质.

3 呼吸作用和光合作用的关系与区别?

第五章

名词

初生代谢物:维持细胞生命活动所必需基本代谢物。如糖类、脂质、蛋白质及核酸等。

次生代谢物:植物体中还有许多由糖类等有机物次生代谢衍生出来的物质,如萜类、酚类和生物碱等,称为次生代谢产物。

思考题

酚类在植物体内的主要作用?莽草酸途径的生理意义?

广泛分布于维管植物。其中许多在植物防御食草昆虫和真菌侵袭中起重要功能。

抗病、合成芳香族氨基酸、合成生长素。

名词

有机物的源和库:“源”即“代谢源”,是制造有机物的场所,如绿色植物的叶片;“库”即“代谢库”,是储存有机物的场所,如植物的花、果、种子及块根、块茎等。

压力流动学说:同化物在SE—CC复合体中溶液流运输是由源库两端之间渗透产生的压力梯度推动的。三个条件:(1)源库两端存在溶质的浓度差;(2)源库两端存在着压力差;(3)源库之间有畅通的运输通道。

二个特点:(1)在一个筛管中运输是单向进行的;(2)运输不直接消耗代谢能量。

环割:环绕植株的枝干,剥去一定宽度树皮的作法。

配置:植物将光合固定的碳调配到不同代谢途径称为配置。

解释现象

1、施氮肥多,水稻籽粒瘪粒多;

氮肥过多容易造成水稻徙长、贪青、晚熟、抗病力下降、青瘪粒增多,特别是容易导致稻瘟病、纹枯病、白叶枯病、细条病等多种病害的加重发生,严重影响产量。

2、对棉花主茎环割,可以减少棉铃脱落;

3、树怕剥皮

韧皮部是在树皮里,韧皮部里有运输有机物的筛管,没有了筛管,植物的根得不到充足的营养,就会死亡。

问答

1、试述从幼嫩叶到衰老叶,其同化物运输的变化;

2、植物体内有机物运输分配规律

3、作物产量形成的源库关系

第七章

名词

信号:把环境条件的变化或来自环境的刺激统称为信号。

受体:位于细胞的质膜或细胞内,能感受到胞外信号的蛋白质分子。

G蛋白:异源三体GTP 、

酶C;作用机制:依赖G 蛋白自身的活化与非活化状态实现

钙调素:是一种耐热的球蛋白,等电点4.0,相对分子量16.7×103,它具有148个氨基酸的单链多肽。与Ca2+有很高的亲和力,一个CaM分子可与4个Ca2+结合。

1 、什么是细胞信号转导?

是指细胞耦联各种刺激信号(包括各种内外源刺激信号)与其引起的特定生理效应之间的一系列分子反应机制。

2、CaM有何特点?钙信号系统如何起作用?

CaM的作用机制第一,直接与靶酶结合,诱导靶酶的活性构象,从而调节靶酶的活性。第二,与Ca2+结合,形成活化态的Ca2+·CaM复合体,然后再与靶酶结合,将靶酶激活。

2、植物细胞内有哪些主要的信号分子?其主要功能是什么?

第八章

名词

植物激素:在植物体内合成的,从产生之初运送到别处,对生长发育产生显著作用的微量有机物。

植物生长物质:具有调节植物生长发育的一些物质,包括植物激素和植物生长调节剂。

三重反应:一是抑制茎的伸长生长(矮化);二是促进上胚轴的横向加粗(加粗);三是上胚轴失去负向地性而产生横向生长(偏上生长)。这是乙烯特有的反应,可用于乙烯的生物鉴定。

思考题

1、叙述各种激素的主要生理效应

生长素的作用表现为两重性,即:低浓度促进生长,高浓度抑制生长。

赤霉素促进细胞的伸长;解除种子、块茎的休眠并促进萌发的作用。

细胞分裂素促进细胞分裂;诱导芽的分化;防止植物衰老。

脱落酸抑制植物细胞的分裂和种子的萌发;促进植物进入休眠;促进叶和果实的衰老、脱落。乙烯促进果实成熟;促进器官的脱落;促进多开雌花。

2、叙述细胞分裂素和生长素在愈伤组织分化中的作用

生长素/细胞分裂素:比值高,有利于根分化,抑制芽的形成,比值低,有利于芽分化,抑制根形成,比例适中,有利于愈伤组织生长。

3、简述乙烯生物合成的调节

4、试述植物产生向光性的原因

生长激素是主要原因,生长激素有促进植物组织生长的作用.因为植物体内生长激素主要在幼嫩部位如芽尖产生和聚集.生长激素有背光性,所以植物被向阳光的一面有较多生长激素,造成背光一面生长比阳光一面生长快,从而表现为植物会朝向阳光生长.

第九章

名词解释

光形态建成:这种调节通过信号转导,改变生理代谢或诱发基因表达,控制细胞分裂分化,

引起细胞结构和功能的改变,最终汇集成组织和器官建成,这就是光形态建成、

光敏色素:红光促进种子萌发,而远红光可以逆转红光的作用。光在此起信号作用。信号的性质与光的波长有关。分离出了这种光受体,称之为光敏素。

需光种子:需要光照射才能发芽的种子.

光稳定平衡:光稳定平衡(photostationary equilibrium,Φ),即是在一定波长下,具生理活性的Pfr [1]浓度与光敏色素的总浓度的比值,即Φ= [Pfr] / ( [Pr]+[Pfr] )。

棚田效应:红光可诱导离体黄化绿豆根尖的膜产生少量正电荷,因此可使之粘附在带负电荷的玻璃表面。远红光照射可逆转该现象。与乙酰胆碱有关:红光可提高组织中乙酰胆碱水平,组织中乙酰胆碱水平升高可以刺激质子从根细胞流出到溶液中,从而形成表面正电势,以致根尖被吸附到带负电的玻璃杯内壁上;远红光促使光敏素从远红光吸收型(Pfr)转变为红光吸收型(Pr),致使根尖从玻璃杯内壁释放到溶液中。

光受体:光受体为从环境中吸收光能转变成其他能量形式,在生物体内完成一定功能的物质之总称...问答题

1、试述光如何影响植物的生长发育?

2、阐述光敏色素所参与的植物生理活动。

第十章

名词

需光种子:需光种子在有光条件下良好萌发,在黑暗中则不能萌发或发芽不好。

生长大周期:茎的生长速率都表现出“慢—快—慢”的基本规律,即开始时生长缓慢,以后逐渐加快,达到最高点,然后生长速率又减慢以至停止,这三个阶段总合起来叫做生长大周期。

顶端优势:植物的顶芽生长对侧芽萌发和侧枝生长的抑制作用,。

偏上生长:把显示有叶片偏上性的植物,放到植物回转器上消除这种向性时,叶片就发生很大的弯曲。在乙烯气中能诱发叶柄偏上生长,除掉乙烯后仍能恢复原状。

问答题

1、试述光对植物生长发育的影响。

2、种子萌发过程中发生哪些生理生化变化?

种子萌发过程中有以下六个生理生化变化:

(一)种子吸水种子的吸水分为三个阶段:“快—慢—快”(急剧吸水阶段—吸胀性吸

水;吸水停顿阶段;胚根出现,大量吸水阶段—渗透性吸水)。

(二)呼吸作用的变化在吸水的第一和第二阶段,CO2的产生大大超过O2的消耗—无氧呼吸;吸水的第三阶段,O2的消耗大于CO2的释放—有氧呼吸。

(三)酶的变化

1、酶原的活化:种子吸胀后立即出现,如:β-淀粉酶。

2、重新合成:如α-淀粉酶

两种途径:

(1)活化长寿的mRNA →新蛋白质→新酶

(2)新合成的mRNA →新蛋白质→新酶

(四)贮藏物质的动员

淀粉经水解或磷酸解为葡萄糖。

(五)含磷化合物的变化

种子中最多的贮磷物质是肌醇六磷酸(又称植酸或非丁)。种子萌发时,植酸盐水解为肌醇和磷酸。

(六)植物激素的变化

ABA(脱落酸)等抑制剂下降,IAA(生长素)、GA(赤霉素)、CTK(细胞分裂素)含量上升。

3、叙述植物生长的相关性?

第十一章

思考题

1、实验证明植物感受光周期和春化作用的部位

1光周期:感受部位是“成熟的叶片。”光周期证明——将叶片遮住株,与对比株(叶片不遮住)同时在夜晚进行灯光照射数小时处理。

2 春化感受部位是芽。证明是将种子萌芽时,放在温度不同的条件(冰箱)下处理,观察后效,低温能使其开花,没有经过低温者不能开花。

2、叙述春化和光周期理论在农业生产中的应用

春化作用是短暂低温促进种子发芽,植株生殖生长的技术。

光周期诱导是人工提供植物开花的最短或最长夜长,诱导其生殖生长。

春化要求是植物成花对低温的响应,是影响植物物候期和地理分布的重要因素。引种时需注意所引植物种或品种的春化要求。对种子作春化处理,可以在春天播种冬小麦品种,在小麦越冬困难的北方寒冷地区有应用价值。对于开花对品质不利的洋葱,在春季种植前高温处理越冬贮藏的鳞茎,以降低其感受低温的能力,可以防止在生长期中因通过春化而开花,从而得到较大的鳞茎。光周期诱导典型应用是南麻北种,麻作为长日植物在北方开花晚或者不开花,延长营养生长增加纤维产量。以此类推,引种时考虑光周期,可获得早结实或高产营养器官的效益,利用大棚人工控制光周期可种植反季果实。

3、证明暗期长度比光期长度对植物开花的作用更为重要

短日植物要求达到一定时长的暗期长能成花,暗期短于这个时长成花就会受影响,短日植物日照短点成花不受影响,当然日照太短了也是不行还要进行光合作用合成能量的,日照一般是指白天,暗期一般是黑夜,黑夜+白天=24小时,日照加长,暗期就要求缩短达不到要求了,成花就受影响,所以暗期长度对短日植物成花比日照长度更为重要。

第十二章

名词

呼吸跃变:部分果实成熟到一定程度时,呼吸速率降低,到成熟末期又急剧升高,最后又降低,这个现象叫做果实的呼吸骤变。呼吸跃变的出现标志着果实成熟,达到可食的程度。休眠:是植物的整体或某一部分生长暂时停顿的现象,是植物抵制和适应不良自然环境的一种保护性的生物学特性。

后熟作用:有些种子采收后尚需经过一段继续发育的过程,进行一系列的生理生化变化,最后才能达到真正的成熟的过程。

衰老:植物的一个器官或整个植株的生命功能衰退,最终导致自然死亡的一系列过程。衰老可以在细胞、组织、器官以及整体水平上发生。

单稔植物:一生开一次花,开花结实后整株衰老死亡。

多稔植物:一生中多次开花,如多年生木本和草本植物,营养生长和生殖生长交替,虽然叶片甚至茎秆会死亡,但地下部分或根系仍活着。

解释现象

果实成熟后由硬变软;

果实未成熟时较硬是因为细胞之间有果胶,细胞排列紧密;成熟后,果胶在果胶酶的作用下分解,细胞游离,因此由硬变软。

问答题

1、简述种子休眠的原因以及打破休眠的方法

胚的影响种子外部形态已近成熟,但胚尚未分化完全,仍需从胚乳中吸收养料,继续分化发育,直至完全成熟才能发芽。另如胚的外部形态虽已具备成熟特征,但在生理上必须通过后熟过程,在种子内部完成一系列生理生化变化以后才能萌发。

种皮的影响主要是由种皮构造所引起的透性不良和机械阻力的影响。

抑制物质的影响有些种子不能萌发是由于种子或果实内含有萌发抑制剂。

①低温处理。②干燥处理。③曝光处理。④冲洗处理。⑤机械处理。⑥药剂处理。

2、果实成熟期间在生理生化上有哪些变化?

1.果皮颜色的变化果实在成熟过程中,果皮颜色渐渐从绿色依次向黄绿色、浅黄

色、黄色、橙黄色转化,最终表现为某品种固有的果皮颜色。

2.可溶性固形物和糖含量变化随着果实的成熟,果实中的纤维素、半纤维素、多

糖、果胶质等物质的水解产物不断增加,提高了糖、可溶性固形物含量。当果实达

到生理成熟阶段,可溶性固形物和糖含量达到最高值。

3.含酸量的变化果实中的有机酸主要在果实生长发育阶段积累,随着果实的成

熟,含酸量也逐渐减少,成熟期早的品种含酸量减少快而早,成熟晚的品种含酸量

减少慢而迟。

4.果实质地、果汁率变化果实成熟过程中,部分不溶性或难溶性物质转化为水溶

性物质。不溶性原果胶转化为可溶性的果胶或果胶酸,破坏了细胞间的粘性组织结

构,使细胞膜透性增大,从而使果皮和果肉组织变软。同时由于果肉中可溶性固形

物含量的增加,提高了细胞的渗透压,细胞吸水能力增强,从而使果汁量增加。

5.芳香物质的生成果实发育到成熟阶段,各种挥发性芳香物质醇、酯、醛、酮、

酚类等合成加快,因而到了成熟期,果实即具有固有的香味。

第十三章

名词

逆境:对植物生长和生存不利的各种环境因素的总和。包括生物因素与理化因素。

抗性:植物在长期系统发育过程中逐渐形成的对逆境的适应性和抵抗力。抗性是逐步形成的,这种适应性形成的过程叫做抗性锻炼。

交叉适应:植物处于一种逆境条件下,能提高植物对另外一些逆境的抵抗能力,植物这种与不良环境反应之间的相互适应作用,叫做植物中的交叉适应。交叉适应的作用物质是脱落酸。

问答

脱落酸在植物抗逆过程的作用

所有逆境下,植物体的内源ABA含量迅速积累,为原来的十几倍至几十倍。ABA能稳定生物膜,减少逆境导致的伤害;ABA能减少自由基对膜的破坏;能改变体内代谢,促进渗透调节物质的积累。外施脱落酸要经过24h以上的代谢变化,才能提高作物的抗逆性。

植物生理学简答题

简答题 1、简述氧化酶的生物学特性与适应性。 植物体内含有多种呼吸氧化酶,这些酶各有其生物学特性(如对温度的要求和对氧气的反应,所以就能使植物体在一定范围内适应各种外界条件。 以对温度的要求来说,黄酶对温度变化反应不敏感,温度降低时黄酶活性降低不多,故在低温下生长的植物及其器官以这种酶为主,而细胞色素氧化酶对温度变化的反应最敏感。在果实成熟过程中酶系统的更替正好反映了酶系统对温度的适应。例如,柑橘的果实有细胞色素氧化酶、多酚氧化酶和黄酶,在果实末成熟时,气温尚高,呼吸氧化是以细胞色素氧化酶为主;到果实成熟时,气温渐低,则以黄酶为主.这就保证了成熟后期呼吸活动的水平,同时也反映了植物对低温的适应。 以对氧浓度的要求来说,细胞色素氧化酶对氧的亲和力最强,所以在低氧浓度的情况下,仍能发挥良好的作用;而酚氧化酶和黄酶对氧的亲和力弱,只有在较高氧浓度下才能顺利地发挥作用。苹果果肉中酶的分布也正好反映了酶对氧供应的适应,内层以细胞色素氧化酶为主,表层以黄酶和酚氧化酶为主。水稻幼苗之所以能够适应淹水低氧条件,是因为在低氧时细胞色素氧化酶活性加强而黄酶活性降低之故。 2、长期进行无氧呼吸会导致植株死亡的原因是什么? 长时间的无氧呼吸会使植物受伤死亡的原因:第一,无氧呼吸产生酒精,酒精使细胞质的蛋白质变性;第二,因为无氧呼吸利用每摩尔葡萄糖产生的能量很少,相当于有氧呼吸的百分之几(约8%),植物要维持正常的生理需要,就要消耗更多的有机物,这样,植物体内养料耗损过多;第三,没有丙酮酸氧化过程,许多由这个过程的中间产物形成的物质就无法继续合成。作物受涝死亡,主要原因就在于无氧呼吸时间过久。 3.举出三种测定光合速率的方法,并简述其原理及优缺点。 (1)改良半叶法,选择生长健壮、对称性较好的叶片,在其一半打取小圆片若干,烘干称重,并用三氯醋酸对叶柄进行化学环割,以阻止光合产物外运,到下午用同样方法对另一半叶片的相对称部位取相同数目的小圆片,烘干称重,两者之差,即为这段时间内这些小圆片累积的有机物质量。此法简便易行,不需贵重设备,但精确性较差。 (2)红外线CO2分析法原理是:气体CO2对红外线有吸收作用,不同浓度的CO2对红外线的吸收强度不同,所以当红外线透过一定厚度的含CO2的气层之后,其能量会发生损耗,能量损耗的多少与CO2的浓度紧密相关。红外线透过气体CO2后的能量变化,通过电容器吸收

最新考研农学联考植物生理学真题参考答案

2011年考研农学联考植物生理学真题参考答案 一、单项选择题:l~15小题,每小题1分,共15分。下列每题给出的四个选项中,只有一个选项是符合题目要求的。 1. G-蛋白是一类具有重要生理调节功能的蛋白质,它在细胞信号转导中的作用是 A. 作为细胞质膜上的受体感受胞外信号 B. 经胞受体激活后完成信号的跨膜转换 C. 作为第二信号 D. 作为蛋白激酶磷酸化靶蛋白 【参考答案】B 【考查知识点】植物细胞信号转导—GTP结合调节蛋白作用 2. 植物细胞进行无氧呼吸时 A. 总是有能量释放,但不一定有CO2释放 B. 总是有能量和CO2释放 C. 总是有能量释放,但不形成ATP D. 产生酒精或乳酸,但无能量释放 【参考答案】A 【考查知识点】植物呼吸代谢及能量转换—无氧呼吸特点

3. 以下关于植物细胞离子通道的描述,错误的是 A. 离子通道是由跨膜蛋白质构成的 B. 离子通道是由外在蛋白质构成的 C. 离子通道的运输具有一定的选择性 D. 离子通道的运输只能顺电化学势梯度进行 【参考答案】B 【考查知识点】植物细胞跨膜离子运输—离子通道的特点 4. C3植物中,RuBp羧化酶催化的CO2固定反应发生的部位是 A. 叶肉细胞基质 B. 叶肉细胞叶绿体 C. 维管束鞘细胞机制 D. 维管束鞘细胞叶绿体 【参考答案】B 【考查知识点】光合作用—RuBP羧化酶催化部位 5. 细胞壁果胶质水解的产物主要是 A. 半乳糖醛酸 B. 葡萄糖 C. 核糖 D. 果糖

【参考答案】A 【考查知识点】细胞壁—细胞壁的果胶质水解产物 6. 叶片衰老过程中最先解体的细胞器是 A. 高尔基体 B. 内质网 C. 叶绿体 D. 线粒体 【参考答案】C 【考查知识点】植物器官的衰老—衰老最先解体的细胞器 7. 某种长日植物生长在8h光期和16h暗期下,以下处理能促进其开花的是 A. 暗期中间用红光间断 B. 光期中间用黑暗间断 C. 暗期中间用逆红光间断 D. 按其中间用红光-远红光间断 【参考答案】A 【考查知识点】光周期现象—促进长日照植物开花的机制 8. 在其它环境条件适宜时,随环境温度升高,植物光和作用的光补偿点 A. 下降 B. 升高 C. 不变 D. 变化无规律 【参考答案】B

植物生理学简答题问答题

绪论 1.植物生理学的发展大致经历了哪几个阶段? 2.21世纪植物生理学的发展趋势如何? 3.近年来,由于生物化学和分子生物学的迅速发展,有人担心植物生理学将被其取代,谈谈你的观点。 参考答案 1.答:植物生理学的发展大致经历了以下三个阶段: 第一阶段:植物生理学的奠基阶段。该阶段是指从植物生理学学尚未形成独立的科学体系之前,到矿质营养学说的建立。 第二阶段:植物生理学诞生与成长阶段。该阶段是从1840年Liebig建立营养学说时起,到19世纪末植物生理学逐渐形成独立体系。 第三阶段:植物生理学的发展阶段。从20世纪初到现在,植物生理学逐渐在植物学科中占中心地位,所有各个植物学的分支都离不开植物生理学。 2.答:.①与其他学科交叉渗透,从研究生物大分子到阐明个体生命活动功能、生产应用,并与环境生态相结合等方面。微观方面,植物生命活动本质方面的研究向分子水平深入并不断综合。在宏观方面,植物生理学与环境科学、生态学等密切结合,由植物个体扩大到群体,即人类地球-生物圈的大范围,大大扩展了植物生理学的研究范畴。 ②对植物信号传递和转导的深入研究,将为揭示植物生命活动本质、调控植物生长发育开辟新的途径。在21世纪,对光信号、植物激素信号、重力信号、电波信号及化学信号等所诱导的信号传递和转导机制的深入研究,将会揭开植物生理学崭新的一页。 ③植物生命活动过程中物质代谢和能量转换的分子机制及其基因表达调控仍将是研究的重点。在新世纪里,对植物生命活动过程中物质代谢和能量代谢转换的深入研究占有特别重要的位置。目前,将光和能量转换机制与生理生态联系起来进行研究正在走向高潮,从而将光和能量转换机制研究与解决人类面临的粮食、能源问题紧密联系起来,以便在生产中发挥更大的指导作用。 第一章植物的水分代谢 问答题 1、土壤里的水从植物的哪部分进入植物,双从哪部分离开植物,其间的通道如何?动力如何? 2、植物受涝后,叶片为何会萎蔫或变黄? 3、低温抑制根系吸水的主要原因是什么? 4、简述植物叶片水势的日变化 5、植物代谢旺盛的部位为什么自由水较多? 6、简述气孔开闭的主要机理。 7、什么叫质壁分离现象?研究质壁分离有什么意义? 8、简述蒸腾作用的生理意义。 9、解释“烧苗”现象的原因。 10、在农业生产上对农作物进行合理灌溉的依据有哪些? 参考答案 1、土壤里的水从植物的哪部分进入植物,双从哪部分离开植物,其间的通道如何?动力如何? 水分进入植物主要是从根毛——皮层——中柱——根的导管或管胞——茎的导管或管胞——叶的导管或管胞——叶肉细胞——叶细胞间隙——气孔下腔——气孔,然后到大气中去。 在导管、管胞中水分运输的动力是蒸腾拉力和根压,其中蒸腾拉力占主导地位。在活细胞间的水分运输主要靠渗透。 2、植物受涝后,叶片为何会萎蔫或变黄? 植物受涝后,叶子反而表现出缺水现象,如萎蔫或变黄,是由于土壤中充满着水,短时期内可使细胞呼吸减弱,根压的产生受到影响,因而阻碍吸水;长时间受涝,就会导致根部形成无氧呼吸,产生和累积较多的乙醇,致使根系中毒受害,吸水更少,叶片萎蔫变质,甚至引起植株死亡。 3、低温抑制根系吸水的主要原因是什么?

植物生理学总结

植物生理学总结. 第一章植物的水分生理 1、植物体内的水分存在形式 自由水:参与各种代谢作用,它的含量制约着植物的代谢强度。自由水占总含水量的百分比越大,则植物代谢越旺盛。 束缚水:不参与代谢作用,但植物要求低微的代谢强度去度过不良的外界条件,因此束缚水含量与植物抗性大小有密切关系 2、水势的概念(必考) 水溶液的化学势与纯水的化学势之差除以水的偏摩尔体积所得的商 3、渗透作用 水分子通过半透膜,由水势高的系统向水势低的系统移动的现象,称为渗透(osmosis)。 4、根系吸水的部分,途径,动力 部位:根尖,吸水能力依次为根毛区,根冠,分生区,伸长区。 途径:质外体途径:水分通过细胞壁,细胞间隙等没有细胞质部分的移动,阻力小,所以这种移动方式速度快 跨膜途径:水分从一个细胞移动到另一个细胞,要通过两次质膜,还要通过液泡膜,故称跨膜途径 共质体途径:水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢 共质体途径和跨膜途径统称为细胞途径,这三条途径共同作用是根部吸收水分 动力:根压、蒸腾拉力。(根内外水势差产生原因) 根压:根系生理活动引起液体从根部上升的压力。 蒸腾拉力:蒸腾作用产生的吸水力。叶片蒸腾时,气孔下腔附近的叶肉细胞因蒸腾失水而水势下降,所以从旁边细胞取得水分。 蒸腾拉力为主要原因。 5、蒸腾作用的概念、指标(蒸腾系数、蒸腾速率) 概念:植物体内的水分以气体状态向外界扩散的生理过程。 指标:蒸腾系数:形成1g干物质所消耗的水分克数。 蒸腾速率:单位时间单位叶面积散失的水量。 蒸腾效率(比率):形成干物质g / 消耗1Kg水。 6、脱落酸对气孔运动 脱落酸促使气孔关闭,其原因是:脱落酸会增加胞质Ca2+浓度和胞质溶胶pH,一方面抑制保卫细胞质膜上的内向K+通道蛋白活性,抑制外向K+通道蛋白活性。促使细胞内K+浓度减少,与此同时,脱落酸活化外向Cl—通道蛋白,Cl—外流,保卫细胞内Cl—浓度减少,保卫细胞膨压就下降,气孔关闭 7、气孔运动的三个学说 (1)淀粉-糖互变学说 保卫细胞的水势变化是由淀粉糖的变化影响的。 (2)无机离子吸收学说 保卫细胞的水势变化是由无机离子调节的。 (3)苹果酸生成学说 K+是保卫细胞渗透势发生变化的重要因素。

植物生理学重点共15页

1、FMN: 黄素单核苷酸 2、PAA:聚丙烯 酸 3、ET、ETH :乙烯 4、BR:油菜素甾类物质 5、RQ、呼吸商 6 IPP:异戊烯焦磷酸: 7、SOD:超氧化物歧化酶 8、PSI:聚苯乙烯 9、RUBP:1,5-二磷酸核酮糖 10、Cytf: 细胞色素f TIBA:三碘苯甲酸 ACC:1-氨基环丙烷-1-羧酸JA:茉莉酸 PP333:多效唑或氯丁唑CAM:景天科酸代谢 LDP:长日植物 MH:马来酰肼或青鲜素 1,GA:赤霉素 2,ABA:脱落酸 3,GPP:牻牛儿焦磷酸 4,PGA:三磷酸甘油酸 5,PEP:磷酸烯醇式丙酮酸 6,CAMP:环磷酸腺苷 1.IAA:生长素即吲哚乙酸 CTK:细胞分裂素 2.PA:聚酰胺即尼龙 SDP:短日照植物 3.APS:过硫酸铵 PPP:戊糖磷酸途径 名词解释: 植物激素:指一些在植物体内合成,并从产生之处运送到别处,对生长发育产生显著作用的微量有机物。 春化作用:低温诱导植物开花的过程。 水分临界期:植物对水分不足特别敏感的时期,灌溉的最适时期。 光能利用率:是指植物光合作用所累积的有机物所含的能量,占照射在单位地

面上的日光能量的比率。 巴斯德效应:在厌氧条件下,向高速发酵的培养基中通入氧气,则葡萄糖消耗减少,抑制发酵产物积累的现象称为巴斯德效应。即呼吸抑制发酵的作用。 冷害:在零上低温时,虽无结冰现象,但能引喜温植物的生理障碍,使植物受伤甚至死亡,这种现象称为冷害 自由水:距离胶粒较远而可以自由流动的水分 光饱和点:在一定的光强范围内,植物的光合强度随光照度的上升而增加,当光照度上升到某一数值之后,光合强度不再继续提高时的光照度值。 呼吸商:植物组织在一定时间内,放出二氧化碳的物质的量与吸收氧气的物质的量的比率 冻害:当温度下降到0度以下,植物体内发生冰冻,因而受伤甚至死亡的现象。束缚水:靠近胶粒而被胶粒吸附束缚不易自由流动的水分。 与光呼吸和呼吸作光补偿点:同一叶子在同一时间内,光和过程中吸收的CO 2 用过程中放出的CO 等量时的光照强度。 2 呼吸速率:单位时间单位重量的植物组织呼吸作用所吸收氧气的量或释放二氧化碳的量。 单盐毒害:由于溶液中只含有一种金属离子而对植物起毒害作用的现象。细胞受体:指能够特异地识别并结合信号、在细胞内放大和传递信号的物质。光形态建成:依赖光控制细胞的分化、结构和功能的改变,最终汇集成组织和器官的建成,就称为光形态建成,亦即光控制发育的过程。 生长延缓剂:是一种生长抑制物质,通过抑制茎尖细胞GA合成而抑制茎尖细胞的伸长生长而抑制植物生长,外施GA可消除其抑制效应。

2018植物生理学考试知识点复习考点归纳总结电子版知识点复习考点归纳总结

蒸腾系数:植物制造1克干物质所需的水分量,又称需水量,它是蒸腾比率的倒数。蒸腾效率:植物在一定生长期内积累的干物质与同时间内蒸腾消失的水量的比例值。蒸腾拉力:由于蒸腾作用产生的一系列水势梯度使导管中水分上升的力量。蒸腾作用:水分以气体状态通过植物体表面从体内散失到体外的现象。杜南平衡:细胞内可扩散的负离子和正离子浓度的乘积等于细胞外可扩散正负离子浓度乘积时的平衡。它不消耗代谢能,属于离子的被动吸收方式。爱默生效应:如果在长波红光(大于685nm)照射时,再加上波长较短的红光(650nm),则量子产额大增,比分别单独用两种波长的光照射时的总和还要高。红降现象:当光波大于685nm时,虽然仍被叶绿素大量吸收,但量子效率急剧下降,这种现象被称为红降现象。双受精现象:在精核与卵细胞互相融合形成合子的同时,另一个精核与胚囊中的极核细胞融合形成具有3N的胚乳核的现象。温周期现象:植物对昼夜温度周期性变化的反应。光周期现象:在一天中,白天和夜晚的相对长度叫光周期。植物对光周期的反应叫光周期现象。光周期诱导:植物只需要一定时间适宜的光周期处理,以后即使处于不适宜的光周期下,仍然可以长期保持刺激的效果的现象。希尔反应:离体叶绿体在光下所进行的分解水并放出氧气的反应。原初反应:包括光能的吸收、传递以及光能向电能的转变,即由光所引起的氧化还原过程。三重反应:乙烯造成的促进茎的加粗生长、抑制伸长生长及横向生长的效应。离子拮抗作用:在发生单盐毒害的溶液中,加入其它离子可以减轻或消除单盐毒害,这种离子之间互相消除单盐毒害的作用。后熟作用:种子在休眠期内发生的生理生化过程。春化作用:低温促进植物开花的作用。去春化作用:春化作用完成之前,将植物置于高温之下,原来的低温处理效果消失。渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。吸涨作用:亲水胶体吸水膨胀的过程。胞饮作用:物质吸附在质膜上,然后通过膜的内折而转移到细胞内的摄取物质及液体的过程。CO2补偿点:当光合作用吸收的CO2量与呼吸释放的CO2量相等时,外界CO2浓度。CO2饱和点:光合速率达到最大时,外界CO2的浓度。光补偿点:植物的光合作用与呼吸作用达到动态平衡,净光和速率为零时的光照强度。光饱和点:增加光照强度,光合速率不再增加时的光照强度。光能利用率:单位面积上的植物光合作用所累积的有机物所含的能量,占照射在相同面积地面上的日光能量的百分比。光形态建成:依靠控制细胞分化、结构功能的改变,最终汇集成组织和器官的建成。光合作用单位:结合在类囊体膜上,能进行光合作用的最小结构单位。光合磷酸化:叶绿体在光下把无机磷和ADP转化为ATP,并形成高能磷酸键的过程。光呼吸:植物的绿色细胞在光照下吸收氧气,放出CO2的过程。光呼吸的主要代谢途径就是乙醇酸的氧化,乙醇酸来源于RuBP的氧化。光呼吸之所以需要光就是因为RuBP的再生需要光。光敏色素:能吸收红光和远红光并发生可逆装换的光受体。光合色素:指植物体内含有的具有吸收光能并将其用于光合作用的色素,包括叶绿素、类胡萝卜素、藻胆素。作用中心色素:指具有光化学活性的少数特殊状态的叶绿素a分子。聚光色素:没有化学活性,只能吸收光能并将其传递给作用中心色素的色素分子。聚光色素又叫天线色素。诱导酶:又称适应酶,指植物体内本来不含有,但在特定外来物质的诱导下可以生成的酶。末端氧化酶:是指处于生物氧化作用一系列反应的最末端,将底物脱下的氢或电子传递给氧,并形成H2O或H2O2的氧化酶类。活性氧:植物体内代谢产生的性质活泼、氧化活性很强的含氧物的总称。氧化磷酸化:是指呼吸链上的氧化过程,伴随着ADP 被磷酸化为ATP的作用。有氧呼吸:指生活细胞在氧气的参与下,把某些有机物质彻底氧化分解,放出CO2并形成水同时释放能量的过程。无氧呼吸:指在无氧条件下,细胞把某些有机物分解成为不彻底的氧化产物,并释放能量的过程,亦称发酵作用。无氧呼吸消失点:又称无氧呼吸熄灭点,使无氧呼吸完全停止时环境中的氧浓度。抗氰呼吸:某些植物组织对氰化物不敏感的那部分呼吸,即在有氰化物存在的情况下仍有一定的呼吸作用。呼吸链:呼吸代谢中间产物随电子和质子,沿着一系列有顺序的电子传递体组成的电子传递途径,传递到分子氧的总轨道。呼吸峰:果实在成熟过程中,呼吸首先降低,然后突然增高,最后又降低的现象。呼吸商:植物呼吸作用释放CO2量与吸收O2量之比。呼吸速率:单位时间内单位植物组织呼吸作用释放的二氧化碳量或消耗氧量。呼吸跃变:某些果实在成熟到一定阶段时,,呼吸速率最初下降然后突然上升,最后又急剧下降的现象。呼吸作用氧饱和点:当氧气浓度增加到一定程度时对呼吸作用没有促进作用时氧的浓度。程序化细胞死亡:由细胞内已存在的基因编码所控制的细胞自然死亡的过程。细胞信号转导:偶联各种细胞外刺激信号与其相应的生理反应之间的一系列反应机制。细胞全能型:植物体的每个细胞携带一个完整的基因组,并具有发育成完整植株的潜在能力。靶细胞:与激素结合并呈现激素效应部位的细胞。转移细胞:一种特化的转移细胞,其功能是进行短距离的溶质转移。这类细胞的细胞壁凹陷以增加其细胞质膜的表面积,有利于物质的转移。胞间连丝:贯穿胞壁的管状结构物内有连丝微管,其两端与内质网相连。植物生长调节剂:指一些具有植物激素活性的人工合成的物质。植物激素:指一些在植物体内合成,并从产生之处运送到别处,对生长发育起显著作用的微量有机物。激素受体:是能与激素特异结合,并引起特殊生理效应的物质。植保素:是寄主被病原菌侵入后产生的一类对病菌有毒的物质。长(短)日植物:只有在日照长度长于(小于)某一临界值的光周期诱导下才能开花的植物。中日性植物:在任何日照长度下都能开花的植物。生理钟:又称生物钟,指植物内生节奏调节的近似24小时的周期性变化节律。生理酸性盐:如(NH4)2SO4等肥料,由于植物的选择吸收,吸收较多的NH4+,而吸收较少的SO42-,结果导致土壤酸化,故称为生理酸性盐。生理碱性盐:像(NH4)2SO4溶液,由于根系的选择性吸收,吸收较多的NH4+,吸收SO42-较少从而导致土壤酸化的盐。生理平衡溶液:在含有适当比例的多种盐溶液中,各种离子的毒害作用被消除,植物可以正常生长发育,这种溶液称为平衡溶液。生长:细胞、器官或有机体的数目、大小与重量的不可逆增加,即发育过程中量的变化称为生长。生长抑制剂:这类物质主要作用于顶端分生组织区,干扰顶端细胞分裂,引起茎伸长的停顿和顶端优势破坏,其作用不能被赤霉素所恢复。生长延缓剂:抑制节间伸长而不破坏顶芽的化合物。生长大周期:植物在不同生育时期的生长速率表现出慢-快-慢的变化规律,呈现“S”型生长曲线的过程。偏上生长:在乙烯作用下,植物叶柄上端生长较快,下端较慢,叶片逐渐下垂的现象。生物固氮:某些微生物把空气中游离氮固定转化为含氮化合物的过程。生物自由基:生物体内代谢产生的具有不配对电子的分子、离子及原子团。临界日长:诱导短日植物开花所需的最长日照时数,或诱导长日植物能够开花所需最短日照时数。临界暗期:昼夜中短日植物能够开花所必须的最短暗期长度,或长日植物能够开花所必须的最长暗期长度。水分临界期:植物对水分不足最敏感、最易受伤害的时期称为作物的水分临界期。代谢性吸水:利用细胞呼吸释放出的能量,使水分经过质膜进入细胞的过程。自由水:距离胶粒较远而可以自由流动的水分。束缚水:靠近胶粒而被胶粒所束缚不易自由流动的水分。水势:系统中每偏摩尔体积的水与纯水的化学势差。渗透势:由于溶液中溶质颗粒的存在而引起的水势降低值,用负值表示,亦称溶质势。衬质势:细胞胶体物质亲水性和毛细管对自由水束缚引起的水势降低值,以负值表示。压力势:由于细胞壁压力的存在而增加的水势值,一般为正值。初始质壁分离时为0,剧烈蒸腾时会呈负值。根压:由于根系生理活动而形成的促进水分沿着导管上升的压力。共质体:是通过胞间连丝把无数原生质体联系起来形成一个连续的整体。质外体:是一个开放性的连续自由空间,包括细胞壁、细胞隙及导管等。外植体:进行组织培养时,从母体分离下来被用来培养的组织、器官或细胞。分化:来自同一分子或遗传上同质的细胞转变为形态上、机能上、化学构成上异质的细胞称为分化。脱分化:外植体在人工培养基上经过多次细胞分裂而失去原来的分化状态,形成无结构的愈伤组织或细胞团的过程。再分化:离体培养基中形成的处于脱分化状态的细胞团再度分化形成另一种或几种类型的细胞、组织、器官甚至最终再形成完整植株的过程。发育:植物生命周期过程中,植物发生大小、形态、结构、功能上的变化,称为发育。衰老:指一个器官或整株植物生命功能逐渐衰退的过程。脱落:植物细胞、组织或器官与植物体分离的过程。萎蔫:植物在水分亏缺严重时,细胞失去紧张,叶片和茎的幼嫩部分下垂的现象。逆境:指对植物生存和生长不

(完整版)植物生理学笔记复习重点剖析

绪论 1、植物生理学:研究植物生命活动规律及其机理的科学。 2、植物生命活动:植物体物质转化、能量转换、形态建成及信息传递的综合反应。 3、植物生理学的基本内容:细胞生理、代谢生理、生长发育生理和逆境生理。 4、历程:近代植物生理学始于荷兰van Helmont(1627)的柳条试验,他首次证明了水直接参与植物有机体的形成; 德国von Liebig(1840)提出的植物矿质营养学说,奠定了施肥的理论基础; 植物生理学诞生标志是德国von Sachs和Pfeffer所著的两部植物生理学专著; 我国启业人是钱崇澍,奠基人是李继侗、罗宗洛、汤佩松。 第二章植物的水分关系 1、束缚水:存在于原生质胶体颗粒周围或存在于大分子结构空间中被牢固吸附的水分。 2、自由水:存在于细胞间隙、原生质胶粒间、液泡中、导管和管胞内以及植物体其他间隙的水分。 3、束缚水含量增高,有利于提高植物的抗逆性;自由水含量增加,植物的代谢加强而抗逆性降低。 4、水分在植物体内的生理作用:①水分是原生质的主要成分;②水是植物代谢过程中重要的反应物质;③水是植物体内各种物质代谢的介质;④水分能够保持植物的固有姿态;⑤水分能有效降低植物的体温;⑥水是植物原生质良好的稳定剂;⑦水与植物的生长和运动有关。 5、植物细胞的吸水方式:渗透性吸水和吸胀吸水。 6、渗透作用:溶剂分子通过半透膜扩散的现象。 7、水的偏摩尔体积:指加入1mol水使体系的体积发生的变化。 8、水势:溶液中每偏摩尔体积水的化学势差。 9、水通道蛋白调节水分以集流的方式快速进入细胞的细微孔道。 10、溶质势:由于溶质颗粒与水分子作用而引起细胞水势降低的数值。Ψs = -icRT。 11、衬质势:细胞中的亲水物质对水分子的束缚而引起水势下降的数值,为负值。Ψm 12、压力势:由于细胞吸水膨胀时原生质向外对细胞壁产生膨压,细胞壁产生的反作用力——壁压使细胞水势增加的数值。Ψp 13、Ψw = Ψs + Ψm + Ψp + Ψg + …。 14、吸胀吸水:植物细胞壁中的纤维素以及原生质中的蛋白质、淀粉等大分子亲水性物质与极性的水分子以氢键结合而引起细胞吸水膨胀的现象。蛋白质>淀粉>纤维素 15、植物根系由表皮、皮层、内皮层和中柱组成,吸水途径有共质体途径和质外体途径。 16、主动吸水:仅由植物根系本身的生理活动而引起的吸水。分为伤流和吐水。 17、根压:由于植物根系生理活动而促使液流从根部上升的压力。 18、被动吸水(主要方式):通过蒸腾拉力进行的吸水。枝叶的蒸腾作用使水分沿导管上升的力量称为蒸腾拉力。 19、植物蒸腾作用是产生蒸腾拉力并促进根系吸水的根本原因 20、影响根系吸水的因素:(1)内部:导管水势、根系大小、根系对水的透性、根系对水吸收速率;(2)外部:土壤水分、土壤温度、土壤通气状况、土壤溶液浓度。

植物生理学重点归纳

植物生理学重点归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第一章 1.代谢是维持各种生命活动(如生长、繁殖、运动等)过程中化学变化(包括物质合成、转化和分 解)的总称。 2.水分生理包括:水分的吸收、水分在植物体内的运输和水分的排出。 3.水分存在的两种状态:束缚水和自由水。束缚水含量与植物抗性大小有密切关系。 4.水分在生命活动中的作用:1,是细胞质的主要成分2,是代谢作用过程的反映物质3是植物对物 质吸收和运输的溶剂4,能保持植物的固有姿态 5.植物细胞吸水主要有三种方式:扩散,集流和渗透作用。 6.扩散是一种自发过程,指分子的随机热运动所造成的物质从浓度高的区域向浓度低的区域移动,扩 散是物质顺着浓度梯度进行的。适合于短距离迁徙。 7.集流是指液体中成群的原子或分子在压力梯度下共同移动。 8.水孔蛋白包括:质膜内在蛋白和液泡膜内在蛋白。是一类具有选择性、高效转运水分的跨膜通道蛋 白,只允许水通过,不允许离子和代谢物通过。其活性受磷酸化和水孔蛋白合成速度调节。 9.系统中物质的总能量分为;束缚能和自由能。 10.1mol物质的自由能就是该物质的化学势。水势就是每偏摩尔体积水的化学势。纯水的自由能最 大,水势也最高,纯水水势定为零。 11.质壁分离和质壁分离复原现象可证明植物细胞是一个渗透系统。 12.压力势是指原生质体吸水膨胀,对细胞壁产生一种作用力相互作用的结果,与引起富有弹性的细胞 壁产生一种限制原生质体膨胀的反作用力。 13.重力势是水分因重力下移与相反力量相等时的力量。 14.根吸水的途径有三条:质外体途径、跨膜途径和共质体途径。 15.根压;水势梯度引起水分进入中柱后产生的压力。 16.伤流:从受伤或折断的植物组织溢出液体的现象。流出的汁液是伤流液。 17.吐水:从未受伤叶片尖端或边缘向外溢出液滴的现象。由根压引起。 18.根系吸水的两种动力;根压和蒸腾拉力。 19.影响根系吸水的土壤条件:土壤中可用水分,通气状况,温度,溶液浓度。 20.蒸腾作用:水分以气体状态,通过植物体的表面(主要是叶子),从体内散失到体外的现象。 21.蒸腾作用的生理意义:1,是植物对水分吸收和运输的主要动力2,是植物吸收矿质盐类和在体内 运转的动力3,能降低叶片的温度 22.叶片蒸腾作用分为两种方式:角质蒸腾和气孔蒸腾。 23.气孔运动有三种方式:淀粉-糖互变,钾离子吸收和苹果酸生成。 24.影响气孔运动的因素;光照,温度,二氧化碳,脱落酸。 25.影响蒸腾作用的外在条件:光照,空气相对湿度,温度和风。内部因素:气孔和气孔下腔,叶片内 部面积大小。 26.蒸腾速率取决于水蒸气向外的扩散力和扩散途径的阻力。 27.水分在茎叶细胞内的运输有两条途径:经过活细胞和经过死细胞。 28.根压能使水分沿导管上升,高大乔木水分上升的主要动力为蒸腾拉力。 29.这种以水分具有较大的内聚力足以抵抗张力,保证由叶至根水柱不断来解释水分上升原因的学说, 称为内聚力学说亦称蒸腾-内聚力-张力学说。 第三章 1. 为什么说碳素是植物的生命基础? 第一,植物体的干物质中90%以上是有机物质,而有机化合物都含有碳素(约占有机化合物重量的45%),碳素成为植物体内含量较多的一种元素;第二,碳原子是组成所有有机物的主要骨架。碳原子与其他元素有各种不同形式的结合,由此决定了这些化合物的多样性。 2. 按照碳素营养方式的不同分为自养植物和异养植物 3. 自养植物吸收二氧化碳,将其转变成有机物质的过程称为植物的碳素同化作用。植物碳素同化作用包括细菌光合作用、绿色植物光合作用和化能合成作用。

植物生理学知识总结

植物生理学:研究植物生命活动规律的科学,内容大致分为生长发育与形态建成、物质与能量转化、信息传递与信号转导 水分在植物生命活动中的作用 1) 水分就是细胞质的主要成分2) 水分就是代谢作用过程的反应物质 3) 水分就是植物对物质吸收与运输的溶剂4) 水分能保持植物的固有姿态 水势:就是每偏摩尔体积水的化学势差(水分子从体系中逃逸的能力) 注:纯水的水势定为零,溶液的水势就成负值,溶液越浓,水势越低 渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象 渗透系统:一个具有液泡的植物细胞,与周围溶液一起,便构成了一个渗透系统 根压:靠根部水势梯度使水沿导管上升的动力(包括伤流与吐水) 伤流:由于根压作用,从植物伤口或折断的部位流出液体的现象 吐水:由于根压作用,从叶尖或叶边缘的水孔流出液滴的现象 蒸腾拉力:叶片蒸腾时,气孔下腔附近的叶肉细胞因蒸腾失水而水势下降,所以从旁边细胞取得水分。同理,旁边细胞又从另一个细胞取得水分,如此下去,便从导管要水,最后根部就从环境吸收水分,这种吸水的能力完全就是由蒸腾拉力所引起的 影响根系吸水的土壤条件 1) 土壤中可用水分2) 土壤通气状况3) 土壤温度4) 土壤溶液浓度 蒸腾作用:就是指水分以气体状态,通过植物体的表面(主要就是叶片),从体内散失到体外的现象(分为角质膜蒸腾与气孔蒸腾) 蒸腾作用的生理意义 1) 蒸腾作用就是植物对水分吸收与运输的主要动力2) 蒸腾作用对矿物质与有机物的吸收,以及这两类物质在植物体内的运输都就是有帮助的3) 蒸腾作用能够降低叶片的温度 气孔——蒸腾过程中水蒸气从体内排到体外的主要出口,也就是光合作用与呼吸作用与外界气体交换的大门。气孔运动主要受保卫细胞的液泡水势的调节,但调节保卫细胞水势的途径比较复杂。 影响蒸腾作用的因素: 1) 外界条件 a) 光照——光照促使气孔开放,蒸腾作用增强b) 空气相对湿度——空气相对湿度增大,蒸腾作用减弱c) 温度——大气温度增高,蒸腾作用增强d) 风——微风促进蒸腾;强风抑

植物生理学问答题

《植物生理学》问答题 1、试述植物光呼吸和暗呼吸的区别。 答: 比较项目暗呼吸光呼吸 底物葡萄糖乙醇酸 代谢途径糖酵解、三羧酸循环等途径乙醇酸代谢途径 发生部位胞质溶胶、线粒体叶绿体、过氧化物酶体、线粒体 发生条件光、暗处都可以进行光照下进行 对O2、CO2浓度的反应无反应高O2促进,高CO2抑制 2、光呼吸有什么生理意义 答:(1)光呼吸使叶片在强光、CO2不足的条件下,维持叶片内部一定的CO2水平,避免光合机构在无CO2时被光氧化破坏。 (2)光呼吸过程消耗大量O2,降低了叶绿体周围O2浓度和CO2浓度之间的比值,有利于提高RuBP氧化酶对CO2的亲和力,防止O2对光合碳同化的抑制作用。 综上,可以认为光呼吸是伴随光合作用进行的保护性反应。 3、试述植物细胞吸收溶质的方式和机制。 答:(1)扩散: ①简单扩散:简单扩散是指溶质从高浓度区域跨膜移向临近低浓度区域的过程。不 需要细胞提供能量。 ②易化扩散:又名协助扩散,是指在转运蛋白的协助下溶质顺浓度梯度或电化学梯 度的跨膜转运过程。不需要细胞提供能量。 (2)离子通道:离子通道是指在细胞膜上由通道蛋白构成的孔道,作用是控制离子通过细胞膜。 (3)载体:载体是跨膜转运的内在蛋白,在夸膜区域不形成明显的孔道结构。 ①单向运输载体:单向运输载体能催化分子或离子顺电化学梯度单向跨膜转运。 ②反向运输器:反向运输器与膜外的H+结合时,又与膜内的分子或离子结合,两 者朝相反的方向运输。 ③同向运输器:同向运输器与膜外的H+结合时,又与膜外的分子或离子结合,两 两者朝相同的方向运输。 (4)离子泵:离子泵是膜上的ATP酶,作用是通过活化ATP推动离子逆化学势梯度进行跨膜转运。 (5)胞饮作用:胞饮作用是指细胞通过膜的内陷从外界直接摄取物质进入细胞的过程。 4、试述压力流动学说的基本内容。 答:1930年明希提出了用于解释韧皮部光合同化物运输机制的“压力流动学说”,其基本观点是: (1)光合同化物在筛管内随液流流动,液流的流动是由输导系统两端的膨压差引起的。 (2)膨压差的形成机制: ①源端:光合同化物进入源端筛管分子→源端筛管内水势降低→源端筛管分 子从临近的木质部吸收水分→源端筛管内膨压增加。

植物生理学试题及答案完整

植物生理学试题及答案1 一、名词解释(每题2分,20分) 1. 渗透势:由于溶质作用使细胞水势降低的值。 2 呼吸商:植物在一定时间放出的CO2与吸收O2的比值。 3 荧光现象:叶绿素吸收的光能从第一单线态以红光的形式散失,回到基态的现象。 4 光补偿点:光饱和点以下,使光合作用吸收的CO2与呼吸作用放出的CO2相等的光强。 5 代库:是能够消耗或贮藏同化物的组织、器官或部位。 6 生长调节剂:人工合成的,与激素功能类似,可调节植物生长发育的活性物质。 7 生长:由于细胞分裂和扩大引起的植物体积和重量的不可逆增加。 8 光周期现象:植物通过感受昼夜长短的变化而控制开花的现象。 9 逆境:对植物生长发育有利的各种环境因素的总称。 10自由水:在植物体不被吸附,可以自由移动的水。 二、填空(每空0.5分,20分) 1、缺水时,根冠比(上升);N肥施用过多,根冠比(下降);温度降低,根冠比(上升)。 2、肉质果实成熟时,甜味增加是因为(淀粉)水解为(糖)。 3、种子萌发可分为(吸胀)、(萌动)和(发芽)三个阶段。 4、光敏色素由(生色团)和(蛋白团或脱辅基蛋白)两部分组成,其两种存在形式是( Pr )和( Pfr )。 5、根部吸收的矿质元素主要通过(导管)向上运输。 6、植物细胞吸水有两种方式,即(渗透吸水)和(吸胀吸水)。 7、光电子传递的最初电子供体是( H2O ),最终电子受体是( NADP+ )。 8、呼吸作用可分为(有氧呼吸)和(无氧呼吸)两大类。 9、种子成熟时,累积磷的化合物主要是(植酸或非丁)。 三.选择(每题1分,10分)

1、植物生病时,PPP途径在呼吸代途径中所占的比例( A )。 A、上升; B、下降; C、维持一定水平 2、对短日植物大豆来说,北种南引,要引 ( B )。 A、早熟品种; B、晚熟品种; C、中熟品种 3、一般植物光合作用最适温度是(C)。 A、10℃; B、35℃; C.25℃ 4、属于代源的器官是(C)。 A、幼叶; B.果实; C、成熟叶 5、产于的哈密瓜比种植于的甜,主要是由于(B)。 A、光周期差异; B、温周期差异; C、土质差异 6、交替氧化酶途径的P/O比值为( A)。 A、1; B、2; C、3 7、IAA在植物体运输方式是( C )。 A、只有极性运输; B、只有非极性运输; C、既有极性运输又有非极性运输 8、( B )实验表明,韧皮部部具有正压力,为压力流动学说提供了证据。 A、环割; B、蚜虫吻针; C、伤流 9、树木的冬季休眠是由( C )引起的。 A、低温; B、缺水; C、短日照 10、用红光间断暗期,对短日植物的影响是( B )。 A、促进开花; B、抑制开花; C、无影响 四、判断正误(每题1分,10分) 1. 对同一植株而言,叶片总是代源,花、果实总是代库。(×) 2. 乙烯生物合成的直接前体物质是ACC。(√) 3. 对大多数植物来说,短日照是休眠诱导因子,而休眠的解除需要经历冬季的低温。(√) 4. 长日植物的临界日长一定比短日植物的临界日长长。(×) 5. 对植物开花来说,临界暗期比临界日长更为重要。(√) 6. 当细胞质壁刚刚分离时,细胞的水势等于压力势。(× ) 7. 缺氮时,植物幼叶首先变黄;缺硫时,植物老叶叶脉失绿。(×)

植物生理学重点

一.成花诱导 春化作用(vernalization):低温诱导促进植物开花的作用。 温度: 相对低温型:低温处理促进植物开花,如冬性一年生植物,种子吸涨后即可感受低温 绝对低温型:若不经低温处理,植物绝对不能开花,如二年生植物,营养体达到一定大小才能感受低温。 低温与条件: 各类植物通过春化时要求低温持续的时间不同,在一定时间内,春化的效应随低温处理时间的延长而增加。 (2)需要充足的氧气、适量的水分和作为呼吸底物的糖分 (3)光照 春化之前,充足的光照可促进二年生和多年生植物通过春化。 时期、部位和刺激传导 (1)时期 大多数一年生植物(冬小麦)在种子吸胀后即可接受低温诱导,在种子萌发和苗期均可进行。而需低温的二年生植物(胡萝卜、月见草等)只有绿苗达到一定大小才能通过春化。 (2)部位 感受低温的部位:茎尖端的生长点 春化过程中的生理生化变化 (1)呼吸速率—春化处理的较高 (2)核酸代谢 在春化过程中核酸(特别是RNA)含量增加,代谢加速,而且RNA性质有所变化。 (3)蛋白质代谢 可溶性Pr及游离AA含量(Pro)增加。 (4)GA含量增加 一些需春化的植物(如天仙子、白菜、胡萝卜等)未经低温处理,若施用GA也能开花。GA 以某种方式部分代替低温的作用。 春化作用的机理 前体物低温中间产物低温最终产物(完成春化) 高温 中间产物分解(解除春化) 春化作用在农业生产中的应用 A、人工春化,加速成花,提早成熟 (1)“闷麦法” —春天补种冬小麦 (2)春小麦低温处理—早熟,躲开干热风,利于后季作物的生长 (3)加速育种过程—冬性作物的育种 B、指导引种 引种时应注意原产地所处的纬度,了解品种对低温的要求。如北种南引,只进行营养生长而不开花结实。

植物生理学 第7版 潘瑞炽编 知识要点资料讲解

绪论 1.植物生理学:是研究植物生命活动规律的学科(内容分为生长发育与形态建成、物质与能量转化、信息传递和信号转导) 2.植物生理学的任务:研究和了解植物在各种环境条件下进行生命活动的规律和机制,并将这些研究成果应用于植物生产实践中 3.Sachs被称为植物生理学的奠基人(1882年编写了《植物生理学讲义》),Sachs和他的弟子Pfeffer被称为植物生理学的两大先驱 4.植物生理学的研究层次越来越宽广: 1)从生物大分子复杂生命活动 2)代谢调节 3)信号转导 4)植物与环境协同进化

第一章植物的水分生理 1.水分在植物细胞内通常分为束缚水和自由水两种状态 束缚水:靠近胶粒而被胶粒吸附束缚不易自由流动的水分 自由水:距离胶粒较远而可以自由流动的水分 2.水分在植物生命活动中的作用 1)水分是细胞质的主要成分 2)水分是代谢作用过程的反应物质 3)水分是植物对物质吸收和运输的溶剂 4)水分能保持植物的固有姿态 3.水通道由水孔蛋白组成(水孔蛋白是膜整合蛋白),水通过水通道选择性跨膜运输 4.水分移动需要能量做功,即动力 化学势(浓度差)——扩散 动力集流(压力) 渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象 5.水势:是每偏摩尔体积水的化学势差(水分子从体系中逃逸的能力) 注:纯水的水势定为零,溶液的水势就成负值,溶液越浓,水势越低 6.相邻两细胞的水分移动方向,取决于两细胞间的水势差异,水势高的细胞中的水分向水势低的细胞流动 7.土壤中的水分分为3种:重力水、毛细管水、束缚水 重力水:是指在重力作用下通过土壤颗粒间的孔隙下降的水分 毛细管水:是指存在于土壤颗粒间毛细管内的水分(植物吸收的水分主要是毛细管水) 束缚水:是土壤颗粒或土壤胶体的亲水表面所吸附的水合层,植物一般不能利用(分为吸湿水和薄膜水) 8.根系吸水的途径有3条:质外体途径、跨膜途径、共质体途径 质外体途径——水分通过细胞壁、细胞间隙等没有细胞质的部分移动,阻力小,速率快 跨膜途径——水分从一个细胞移动到另一个细胞,要两次通过质膜,还要通过液泡膜 共质体途径——水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,速率慢 9.根系吸水的动力 根压:靠根部水势梯度使水沿导管上升的动力(包括伤流和吐水) 蒸腾拉力:叶片蒸腾时,气孔下腔附近的叶肉细胞因蒸腾失水而水势下降,所以从旁边细胞取得水分。同理,旁边细胞又从另一个细胞取得水分,如此下去,便从导管要水,

植物生理学简答题

植物生理学简答题1.简述水分在植物生命活动中的作用。 (1)水是植物细胞的主要组成成分; (2)水分是植物体内代谢过程的反应物质,参与呼吸作用,光合作用等过程。 (3)细胞分裂和伸长都需要水分。 (4)水分是植物对物质吸收和运输及生化反应的溶剂。 (5)水分能使植物保持固有姿态。 (6)可以通过水的理化特性以调节植物周围的大气温度、湿度等。对维持植物体温稳定和降低体温也有重要作用。 2、简述影响根系吸水的土壤条件 (1)土壤中可用水量:当土壤中可用水分含量降低时,土壤溶液与根部细胞间的水势差减小,根系吸水缓慢 (2)土壤通气状况:土壤通气状况不好,土壤缺氧和二氧化碳浓度过高,使根系细胞呼吸速率下降,引起根系吸水困难。 (3)土壤温度:低温不利于根系吸水,因为低温下细胞原生质黏度增加,水分扩散阻力加大;同时根呼吸速率下降,影响根压产生,主动吸水减弱。高温也不利于根系吸水,土温过高加速根的老化进程,根细胞中的各种酶蛋白高温变形失活。

(4)土壤溶液浓度:土壤溶液浓度过高引起水势降低,当土壤溶液水势与根部细胞的水势时,还会造成根系失水。 3、导管中水分的运输何以能连续不断? 由于植物体叶片的蒸腾失水产生很大的负净水压,将导管中的水柱向上拉动,形成水分的向上运输;水分子间有相互吸引的内聚力,该力很大,可达20 MPa以上;同时,水柱本身有重量,受向下的重力影响,这样,上拉的力量与下拖的力量共同作用于导管水柱,水柱上就会产生张力,但水分子内聚力远大于水柱张力。此外,水分子与导管或管胞细胞壁纤维素分子间还具有很大的附着力,因而维持了导管中水柱的连续性,使得导管水柱连续不断,这就是内聚力-张力学说。 4.试述蒸腾作用的生理意义。 (1)是植物对水分吸收和运输的主要动力。 (2)促进植物对矿物质和有机物的吸收及其在植物体内的转运。 (3)能够降低叶片的温度,以免灼伤。 5、根系吸水有哪些途径并简述其概念。 答:有3条途径: 质外体途径:指水分通过细胞壁,细胞间隙等部分的移动方式。 跨膜途径:指水分从一个细胞移动到另一个细胞,要两次经过质膜的方式。

《植物生理学》期末总结-植物生理学实验总结

《植物生理学》期末总结:植物生理学实验总结 一、名词解释 1.水势(water potential): 体系中每偏摩尔体积水的自由能与每偏摩尔体积纯水的自由能之差值,用ψw表示。 2.信号转导(signal transduction): 指细胞耦联各种刺激信号(包括各种内外刺激信号)与其引起特定生理效应之间的一系列分子反应机制。 3.呼吸跃变(respiratory climacteric): 果实成熟过程中,呼吸速率随着果龄而降低,但在后期会突然增高,呈现“呼吸高峰”,以后再下降的现象。 4.呼吸跃变(respiration climacteric): 果实成熟过程中,呼吸速率随着果龄而降低,但在后期会突然增高,呈现“呼吸高峰”,以后再下降的现象。 5.渗透作用(osmosis):

是一种特殊的扩散,指溶液中的溶剂分子通过半透膜扩散的现象。对于水溶液而言,是指水分子从水势高处通过半透膜向水势低处扩散的现象。 6.集体效应(group effect): 在一定面积内,花粉数量越多,花粉萌发和花粉管的生长越好的现象。 7.光补偿点(light pensation point): 随着光强的增高,光合速率相应提高,当到达某一光强时,叶片的光合速率等于呼吸速率,即CO2吸收量等于O2释放量,表观光合速率为零,这时的光强称为光补偿点。 8.矿质营养(mineral nutrition): 植物对矿质的吸收、转运和同化以及矿质在生命活动中的作用。 9.乙烯的“三重反应”(triple response): 乙烯对植物生长具有的抑制茎的伸长生长、促进茎或根的增粗和使茎横向生长(即使茎失去负向地性生长)的三方面效应。 10.春化作用(vernalization): 低温诱导促使植物开花的作用叫春化作用。

相关文档
最新文档