讲座讲义 初一数学竞赛讲座 第6讲_计算_工具与算法的变迁(共7页)〖无忧资源〗

讲座讲义 初一数学竞赛讲座 第6讲_计算_工具与算法的变迁(共7页)〖无忧资源〗
讲座讲义 初一数学竞赛讲座 第6讲_计算_工具与算法的变迁(共7页)〖无忧资源〗

第六讲 计算——工具与算法的变迁

研究数学、学习数学总离不开计算,随着时代的变迁,计算工具在不断地改变,从中国古老的算盘、纸笔运算发展到利用计算器、计算机运算.

初中代数中运算贯穿于始终,运算能力是运算技能与逻辑能力的结合,它体现在对算理算律的理解与使用,综合运算的能力及选择简捷合理的运算路径上,这要求我们要善于观察问题的结构特点,灵活选用算法和技巧,有理数的计算常用的方法与技巧有: 1.巧用运算律; 2.用字母代数; 3.分解相约; 4.裂项相消; 5.利用公式等.

【例1】 现有四个有理数3,4,一6,l0,将这4个数(每个数用且只用一次)进行加、减、乘、除四则运算,使其结果等于24,其三种本质不同的运算式有:

(1) ;(2) ;(3) . (浙江省杭州市中考题)

思路点拨 从24最简单的不同表达式人手,逆推,拼凑.

注: 今天,计算机泛应用于社会生活各个方面,计算机技术在数学上的应用,不但使许多繁难计算变得简单程序化,而且还日益改变着我们的观念与思维. 著名的计算机专家沃斯说过:“程序=算法十数据结构”. 有理数的计算与算术的计算有很大的不同,主要体现在: (1)有理数的计算每一步要确定符号; (2)有理数计算常常是符号演算;

(3)运算的观念得以改变,如两个有理数相加,其和不一定大于任一加数;两个有理数相减,其差不一定小于被减数.

【例2】 如果4个不同的正整数q p n m 、、、满足

4)7)(7)(7)(7(=----q p n m ,那么,q p n m +++等于( ).

A .10

B .2l

C .24

D .26

E .28 (新加坡数学竞赛题)

思路点拨 解题的关键是把4表示成4个不同整数的形式. 【例3】 计算: (1)100

321132112111+++++++++++

; (“祖冲之杯”邀请赛试题) (2)19492

—19502

+19512

—19522

+…+19972

—19982

+19992

(北京市竞赛题) (3)5+52+53+ (52002)

思路点拨 对于(1),首先计算每个分母值,则易掩盖问题的实质,不妨先从考察一般情形人手;(2)式使人易联想到平方差公式,对于(3),由于相邻的后一项与前一项的比

都是5,可从用字母表示和式着手. 【例4】(1)若按奇偶分类,则2

2004

+3

2004

+7

2004

+9

2004

是 数;

(2)设553=a ,444=b ,335=c ,则c b a 、、的大小关系是 (用“>”号连接);

(3)求证:3

2002

+4

2002

是5的倍数.

思路点拨 乘方运算是一种特殊的乘法运算,解与乘方运算相关问题常用到以下知识:①乘方意义;②乘方法则;③02≥n a ;④n a 与a 的奇偶性相同;⑤在r k n +4中(k ,

r 为非负整数,0≠n ,0≤r<4),当r=0时,r k n +4的个位数字与n 4的个位数字相同;

当0≠r 时,? r k n +4的个位数字与r n 的个位数字相同.

注:在求和中错位相减、倒序相加是计算中常用的技巧.

【例5】有人编了一个程序:从1开始,交替地做加法或乘法(第一次可以是加法,也可以是乘法),每次加法,将上次运算结果加2或加

3;每次乘法,将上次运算结果乘2或乘3,例如,

30可以这样得到:

(1)证明:可以得到22; (2)证明;可以得到22297100

-+.

学力训练

1.(1)计算:211×(-455)+365×455-211×545+545×365+ ; (2)若2003

2004

-

=a ,20022003-

=b ,2001

2002

-=c ,则c b a 、、的大小关系是 (用“<”号连接=. 2.计算:

(1)=-?+?+-?+?)15(41

957.0)15(432941

7.0 ; (2)19197676

767676191919-= ;

(3)1999

199********?++?+? = ; (4)=÷?-?+?09.17)875.12.1367

25.1272.136125672.13( . 3.在下式的每个方框内各填入一个四则运算符号(不再添加括号),使得等式成立:

6

4.1999加上它的21得到一个数,再加上所得的数的3

1

又得到一个数,再加上这次得数的41 又得到一个数,……,依次类推,一直加到上一次得数的1999

1,那么最后得到的数是 .

5.根据图所示的程序计算,若输入的x 值为2

3

,则输出的结果为( ). A .

27 B .49 C .21 D .2

9 (北京市海淀区中考题) 6.已知1998

199819981999

19991999+?-?-

=a ,199919991999200020002000+?-?-=b ,

2000

200020002001

20012001+?-?-

=c ,则abc=( ).

A . 一1

B .3

C . 一3

D .1

( “希望杯”邀请赛试题)

7.如果有理数c b a 、、满足关系a

3

2c ab ac

bc -的值( ).

A .必为正数

B .必为负数

C .可正可负

D .可能为0 8.将322、414、910、810,由大到小的排序是( ).

A .322、910、810、414

B .322、910、414、810

C . 910、810、414、322

D . 322、414、910、810 (美国犹他州竞赛题) 9.阅读下列一段话,并解决后面的问题:

观察下面一列数:l ,2,4,8,…,我们发现,这一列数从第2项起,每一项与它前一项的比都等于2.

一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数叫做等比数列的公比. (1)等比数列5,一15,45,…的第4项是 ;

(2)如果一列数 ,,,,4321a a a a 是等比数列,且公比为q ,那么根据上述的规定,有

q a a =12,q a a =23,q a a

=34,…,所以q a a 12=,21123)(q a q q a q a a ===,3134q a q a a ==,…,n a = (用1a 与q 的代数式表示).

(3)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项. (广西省中考题)

10.(1)已知c b a 、、都不等于零,且

abc

abc

c c b b a a +

++的最大值是m ,最小值为n ,求m n

n m 的值. (2)求证:5353一3333是10的倍数. 11.计算

(1)=?+?-?-?-?+?-3005

20052005200320033005200320042003400820022003400420032

2 ; (2)10987654322222222222+--------= ;

(3)

3521725155159353121

14715105963321??+??+??+????+??+??+??= ;

(4)89999998998989

50

各++++= 12.(1)200320022001

1373

??所得积的末位数字是 ;

(江苏省竞赛题)

(2)若l 3+23+33+…+153=14400,则23+43+63+…+303= .

13.若d c b a 、、、是互不相等的整数(d c b a <<<),且abcd =121,则

d c b a += .

14.你能比较20012002与20022001的大小吗?

为了解决这个问题,我们先写出它的一般形式,即比较n n+1与(n+1)n 的大小(n 是自然数),然后,我们从分析n =l ,n=2,n =3……中发现规律,经归纳,猜想得出结论。 (1)通过计算,比较下列各组中两数的大小(在空格中填写“>”、“=”、“<”号). ①12 23; ②23 32;③34 43;④45 54; ⑤56 65;……

(2)从第(1)题的结果经过归纳,可以猜想出n n+1和(n+1)n

的大小关系是 . (3)根据上面归纳猜想得到的一般结论,试比较下列两个数的大小20012002 20022001. (江苏省常州市中考题) 15.如果

133

2211=++t t t t t t ,则3

21321t t t t t t 的值为( ). A .一1 B .1 C .土1 D .不确定 (2003年河北省竞赛题) 16.如果ac<0,那么下面的不等式

0

a

,02

必定成立的有( ).

A .1个

B .2个

C .3个

D .4个

17.设999727525323124932?++?+?+?= S ,99272523148

2+

+++= T ,则T S -=( ).

A .99

249 B .992149- C .199249- D . 199249

+

( “五羊杯”竞赛题)

18.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为( ).

A .21

B .1811

C .67

D .9

5

(江苏省竞赛题)

19.图中显示的填数“魔方”只填了一部分,将下列9个数:

41,2

1

,1,2,4,8,16,32,64填入方格中,使得所有行、列及对角线上各数相乘的积相等,求x 的值. (上海市竞赛题)

20.设三个互不相等的有理数,既可分别表示为1,a+b ,a 的形式,又可分别表示为0,

b

a

,b 的形式,求a 2002+b 2001的值. 21.(1)三个2,不用运算符号,写出尽可能大的数;

(2)三个4,不用运算符号,写出尽可能大的数;

(3)用相同的3个数字(1~9),不用运算符号,写出最大的数.

22.如图,是一个计算装置示意图,21,J J 是数据输入口,C 是计算输出口,计算过程是由21,J J 分别输入自然数m 和n ,经计算后得自然数K 由C 输出,此种计算装置完成的计算满足以下三个性质:

(1)若21,J J 分别输入l ,则输出结果为1;

(2)若1J 输入任何固定的自然数不变,2J 输入自然数增大1,则输出结果比原来增大2; (3)若2J 输入l ,1J 输人自然数增大1,则输出结果为原来的2倍. 试问:(1)若1J 输入l ,2J 输入自然数n ,输出结果为多少?

(2)若2J 输入l ,1J 输入自然数m ,输出结果为多少?

(3)若1J 输入自然数m ,2J 输入自然数n ,输出的结果为多少?

(2002年扬州中学招生试题)

参考答案

七年级数学竞赛讲座:时间、时刻、时钟

时刻、时间与钟表 同学们,你一定知道钟表是用来记时的,爸爸妈妈当你很小时就会教你如何看钟表、报时间,可钟表里有许多有趣的数学问题。 什么叫“时间”它有两层意思: 1.表示某一种特定时候。 如:北京时间八点整。每天早上六点起床等等,为了区别别一种含义,我们把表示某一种特定的时候,叫时刻。(也叫点) 2.表示两个不同时刻的间隔。 如:从早上8时到10时,花了2个小时的时间写作业,从杭州到上海火车运行的时间是2小时30分。这叫做时间。 我们可以从单位名称上来区分时刻与时间的差异。 时刻,一般用“时”如:飞机上午8时起航,指飞机离开机场时刻。时间一般用“小时”共飞行了8小时,指飞机从上午8时起飞到下午4时降落,在空中飞行了8个小时。 同学们不仅要会读钟面上显示的时刻,还要学会观察钟面所表示的不同的时刻之间的时间关系。找出规律。 如:长短针位置的判断时刻,确定长,短针互换位置后的时刻,反射到镜面上的钟面的时刻等等。有利于培养自己观察能力。 例1根据前3个钟面的规律,画出第4个钟面的长、短针。 3 分析:前面三个钟表所表示的时刻分别是1时,3时30分,6时,相邻两个钟的时间差都是2小时30分。因此第4个钟也应是在第3个钟6点的基础上增加2小时30分,应显示出的时刻是8点30分

例2按次序观察图中各钟面所表示的时刻,找出各种钟面所表示的时间规律,请在第5只钟面上标出符合规律的时刻 分析:把各钟面表示的时刻依次排列起来 11点30分→12点5分→12点40分→1点15分→()→2点25分 发现它们相邻两钟的间隔时间都是35分钟,因此第5个钟面的时刻应是1点50分。 例3见图:是反射在镜面上的两只钟面的长针和短针的位置,请说出各钟面的时刻? 分析:同学们我们只要用镜子实践一下,就会发现任何物体经过镜面反射,它的位置发生了

初一数学竞赛系列讲座9

初一数学竞赛系列讲座(9) 应用题(一) 一、一、知识要点 1、 1、 应用题是中学数学的重要内容之一,它着重培养学生理解问题、分析问题和解决问 题的能力,解应用题最主要的方法是列方程或方程组。 2、 2、 列方程(组)解应用题的一般步骤是: (1) (1) 弄清题意和题目中的数量关系,用字母表示题目中的一个未知数; (2) (2) 找出能够表示应用题全部含义的一个相等关系; (3) (3) 根据这个相等关系列出方程; (4) (4) 解这个方程,求出未知数的值; (5) (5) 写出答案(包括单位名称)。 3、行程类问题 行程类问题讨论速度、时间和路程之间的相互关系。它们满足如下基本关系式: 速度?时间=路程 4、数字类问题 数字类问题常用十进制来表示数,然后通过相等关系列出方程。 解数字类问题应注意数字间固有的关系,如:连续整数,一般设中间数为x ,则相邻两 数分别为x-1、x+1;连续奇(偶)数,一般设中间数为x ,则相邻两数分别为x-2、x+2。 二、二、例题精讲 例1 从甲地到乙地的公路,只有上坡路和下坡路,没有平路。一辆汽车上坡时每小时行驶 20千米,下坡时每小时行驶35千米,。车从甲地开往乙地需9小时,乙地开往甲地需21 7小时,问:甲、乙两地间的公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?(第五届华杯赛复赛题) 分析 本题用方程来解简单自然。 解 设从甲地到乙地的上坡路为x 千米,下坡路为y 千米,根据题意得方程组 ?????=+=+(2) 2172035(1) 93520y x y x 解这个方程组有很多种方法。例如代入消元法、加减消元法等。由于方程组系数比较特殊(第 一个方程中x 的系数201恰好是第二个方程中y 的系数,而y 的系数351 也恰好是第二个方程中x 的系数),也可以采用如下的解法: (1)+(2)得 (x+y)( 201+351)=9+217

初一数学竞赛系列讲座解一次方程(组)与一次不等式(组)教师版

初一数学竞赛系列讲座 解一次方程(组)与一次不等式(组) 一、知识要点 1.一次方程组 解一次方程组的基本思想是“消元”,常用方法有“代入消元法”和“加减消元法” 2.不定方程 不定方程(组)是指未知数的个数多于方程个数的方程(组)。它的解往往有无穷多个,不能唯一确定,对于不定方程(组),我们常常限定只求整数解或正整数解。 定理:若整系数不定方程ax+by=c (a 、b 互质)有一组整数解为x 0,y 0,则此方程的全部整数 解可表示为:???-=+=)k ( 00为任意整数这里ka y y kb x x 3.一元一次不等式 只含有一个未知数,并且未知数的次数是1,系数不等于0的不等式,叫做一元一次不等式。 它的标准形式:ax+b <0或ax+b >0(a ≠0) 解不等式的根据是不等式的同解原理。 4.不等式的基本性质和同解原理 不等式的基本性质 (1)反身性 如果a >b ,那么b <a (2)传递性 如果a >b ,b >c ,那么a >c (3)平移性 如果a >b ,那么a+c >b+c (4)伸缩性 如果a >b ,c >0,那么ac >bc 如果a >b ,c <0,那么ac <bc 不等式的同解原理1:不等式的两边都加上(或减去)同一个数或同一个整式,所得的不等式与原不等式是同解不等式。 不等式的同解原理2:不等式的两边都乘以(或除以)同一个正数,所得的不等式与原不等式是同解不等式。 不等式的同解原理3:不等式的两边都乘以(或除以)同一个负数,并把不等号改变方向后,所得的不等式与原不等式是同解不等式。 5.解一元一次不等式的步骤 (1)去分母(根据不等式性质2或3); (2)去括号(根据整式运算法则); (3)移项(根据不等式基本性质1); (4)合并同类项(根据整式的运算法则); (5)将x 项系数化为1(根据不等式性质2或3); 6.不等式组及其解集 几个一元一次不等式合在一起,就成了一元一次不等式组;几个一元一次不等式解集的公共部分,叫做由它们组成的一元一次不等式组的解集。 7.解一元一次不等式组的方法和步骤:

初一数学竞赛讲座.

初一数学竞赛讲座(三) 数字、数位及数谜问题 一、 知识要点 1、整数的十进位数码表示 一般地,任何一个n 位的自然数都可以表示成: 122321*********a a a a a n n n n +?+?++?+?---Λ 其中,a i (i=1,2,…,n)表示数码,且0≤a i ≤9,a n ≠0. 对于确定的自然数N ,它的表示是唯一的,常将这个数记为N=121a a a a n n Λ- 2、正整数指数幂的末两位数字 (1) (1) 设m 、n 都是正整数,a 是m 的末位数字,则m n 的末 位数字就是a n 的末位数字。 (2) (2) 设p 、q 都是正整数,m 是任意正整数,则m 4p+q 的末 位数字与m q 的末位数字相同。 3、在与整数有关的数学问题中,有不少问题涉及到求符合一定条 件的整数是多少的问题,这类问题称为数迷问题。这类问题不需 要过多的计算,只需要认真细致地分析,有时可以用“凑”、“猜” 的方法求解,是一种有趣的数学游戏。 二、 例题精讲 例1、有一个四位数,已知其十位数字减去2等于个位数字,其 个位数字加上2等于其百位数字,把这个四位数的四个数字反着 次序排列所成的数与原数之和等于9988,求这个四位数。

分析:将这个四位数用十进位数码表示,以便利用它和它的反序 数的关系列式来解决问题。 解:设所求的四位数为a ?103+b ?102+c ?10+d ,依题意得: (a ?103+b ?102+c ?10+d)+( d ?103+c ?102+b ?10+a)=9988 ∴ (a+d) ?103+(b+c) ?102+(b+c) ?10+ (a+d)=9988 比较等式两边首、末两位数字,得 a+d=8,于是b+c18 又∵c-2=d ,d+2=b ,∴b-c=0 从而解得:a=1,b=9,c=9,d=7 故所求的四位数为1997 评注:将整数用十进位数码表示,有助于将已知条件转化为等式, 从而解决问题。 例2 一个正整数N 的各位数字不全相等,如果将N 的各位数字重新 排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正 好等于原来的数N ,则称N 为“新生数”,试求所有的三位“新生数”。 分析:将所有的三位“新生数”写出来,然后设出最大、最小数,求差 后分析求出所有三位“新生数”的可能值,再进行筛选确定。 解:设N 是所求的三位“新生数”,它的各位数字分别为a 、b 、c(a 、b 、c 不全相等),将其各位数字重新排列后,连同原数共得6个三位数:cba cab bca bac acb abc ,,,,,,不妨设其中的最大数为abc ,则最小数为 cba 。由“新生数”的定义,得 N=()()()c a a b c c b a cba abc -=++-++=-991010010100

数学竞赛专题讲座七年级第讲计算工具与算法的变迁含答案

第五讲 计算——工具与算法的变迁 研究数学、学习数学总离不开计算,随着时代的变迁,计算工具在不断地改变,从中国古老的算盘、 纸笔运算发展到利用计算器、计算机运算. 初中代数中运算贯穿于始终,运算能力是运算技能与逻辑能力的结合,它体现在对算理算律的理解与使用,综合运算的能力及选择简捷合理的运算路径上,这要求我们要善于观察问题的结构特点,灵活选用算法和技巧,有理数的计算常用的方法与技巧有: 1.巧用运算律; 2.用字母代数; 3.分解相约; 4.裂项相消; 5.利用公式; 6.加强估算等. “当今科学活动可以分成理论、实验和计算三大类,科学计算已经与理论研究、科学实验一起,成为第三种科学方法.——威尔逊 注:威尔逊,著名计算物理学家,20世纪80年代诺贝尔奖获得者. 【例1】 现有四个有理数3,4,6-,l0,将这4个数(每个数用且只用一次)进行加、减、乘、除四则运算,使其结果等于24,其三种本质不同的运算式有: (1) ;(2) ;(3) . (浙江省杭州市中考题) 思路点拨 从24最简单的不同表达式人手,逆推,拼凑. 链接: 今天,计算机泛应用于社会生活各个方面,计算机技术在数学上的应用,不但使许多繁难计算 变得简单程序化,而且还日益改变着我们的观念与思维. 著名的计算机专家沃斯说过:“程序=算法十数据结构”. 有理数的计算与算术的计算有很大的不同,主要体现在: (1)有理数的计算每一步要确定符号; (2)有理数计算常常是符号演算; (3)运算的观念得以改变,如两个有理数相加,其和不一定大于任一加数;两个有理数相减,其差不一定小于被减数. 程序框图是一种用规定、指向线及文字说明来准确、直观地表示算法的图形,能清晰地展现算法的逻辑结构,常见的逻辑结构有:顺序结构、条件结构和循环结构. 【例2】 如果4个不同的正整数q p n m 、、、满足4)7)(7)(7)(7(=----q p n m ,那么,q p n m +++等于( ). A .10 B .2l C .24 D .26 E .28 (新加坡数学竞赛题) 思路点拨 解题的关键是把4表示成4个不同整数的形式. 【例3】 计算: (1)100 321132112111+++++++++++ ; (“祖冲之杯”邀请赛试题) (2)19492 —19502 +19512 —19522 +…+19972 —19982 +19992 (北京市竞赛题) (3)5+52+53+…十52002 . 思路点拨 对于(1),首先计算每个分母值,则易掩盖问题的实质,不妨先从考察一般情形人手;(2)式使人易联想到平方差公式,对于(3),由于相邻的后一项与前一项的比都是5,可从用字母表示和式着手.

七年级数学竞赛讲义附练习及答案全套下载(共12份)

七年级数学竞赛讲义附练习及答案(12套) 初一数学竞赛讲座 第1讲数论的方法技巧(上) 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力. 数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”. 因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了. 任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作. ”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重. 数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆. 主要的结论有: 1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的. 特别地,如果r=0,那么a=bq. 这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数. 2.若a|c,b|c,且a,b互质,则ab|c. 3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即 其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的. (1)式称为n的质因数分解或标准分解. 4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为: d(n)=(a1+1)(a2+1)…(a k+1).

5.整数集的离散性:n 与n+1之间不再有其他整数. 因此,不等式x <y 与x ≤y-1是等价的. 下面,我们将按解数论题的方法技巧来分类讲解. 一、利用整数的各种表示法 对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决. 这些常用的形式有: 1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0; 2.带余形式:a=bq+r ; 4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数. 例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差. 结果小明发现,无论白色卡片上是什么数字,计算结果都是1998. 问:红、黄、蓝3张卡片上各是什么数字? 解:设红、黄、白、蓝色卡片上的数字分别是a 3,a 2,a 1,a 0,则这个四位 数可以写成:1000a 3+100a 2+10a 1+a 0,它的各位数字之和的10倍是10(a 3+a 2+a 1+a 0)=10a 3+10a 2+10a 1+10a 0,这个四位数与它的各位数字之和的10倍的差是: 990a 3+90a 2-9a 0=1998,110a 3+10a 2-a 0=222. 比较上式等号两边个位、十位和百位,可得a 0=8,a 2=1,a 3=2. 所以红色卡片上是2,黄色卡片上是1,蓝色卡片上是8. 例2 在一种室内游戏中,魔术师请一个人随意想一个三位数abc (a,b,c 依次是这个数的百位、十位、个位数字),并请这个人算出5个数cab bca bac acb ,,,与cba 的和N ,把N 告诉魔术师,于是魔术师就可以说出这个人所想的数abc . 现在设N=3194,请你当魔术师,求出数abc 来. 解:依题意,得

初一数学竞赛讲座特殊的正整数

初一数学竞赛讲座特殊 的正整数 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

初一数学竞赛讲座(二) 特殊的正整数 一、 知识要点 1、完全平方数及其性质 定义1 如果一个数是一个整数的平方,则称这个数是完全平方数。如:1、4、9、…等都是完全平方数,完全平方数有下列性质: 性质1 任何完全平方数的个位数只能是0,1,4,5,6,9中的一个。 性质2 奇完全平方数的十位数一定是偶数。 性质3 偶完全平方数是4的倍数。 性质4 完全平方数有奇数个不同的正约数。 性质5 完全平方数与完全平方数的积仍是完全平方数,完全平方数与非完全平方数的积是非完全平方数。 2、质数与合数 定义2 一个大于1的整数a,如果只有1和a 这两个约数,那么a 叫做质数。 定义3 一个大于1的整数a,如果只有1和a 这两个约数外,还有其他正约数,那么a 叫做合 数。 1既不是质数也不是合数。 3、质数与合数的有关性质 (1) 质数有无数多个 (2) 2是唯一的既是质数,又是偶数的整数,即是唯一的偶质数。大于2的质数必为奇数。 (3) 若质数p ?a ?b ,则必有p ?a 或p ?b 。 (4) 若正整数a 、b 的积是质数p ,则必有a=p 或b=p. (5) 唯一分解定理:任何整数n(n>1)可以唯一地分解为:k a k a a p p p n 2121=,

其中p 1

七年级数学竞赛讲座:第四讲 一元一次方程

第四讲一元一次方程 方程是中学数学中最重要的内容.最简单的方程是一元一次方程,它是进一步学习代数方程的基础,很多方程都可以通过变形化为一元一次方程来解决.本讲主要介绍一些解一元一次方程的基本方法和技巧. 用等号连结两个代数式的式子叫等式.如果给等式中的文字代以任何数值,等式都成立,这种等式叫恒等式.一个等式是否是恒等式是要通过证明来确定的. 如果给等式中的文字(未知数)代以某些值,等式成立,而代以其他的值,则等式不成立,这种等式叫作条件等式.条件等式也称为方程.使方程成立的未知数的值叫作方程的解.方程的解的集合,叫作方程的解集.解方程就是求出方程的解集. 只含有一个未知数(又称为一元),且其次数是1的方程叫作一元一次方程.任何一个一元一次方程总可以化为ax=b(a≠0)的形式,这是一元一次方程的标准形式(最简形式).解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数的系数,得出方程的解. 一元一次方程ax=b的解由a,b的取值来确定: (2)若a=0,且b=0,方程变为0·x=0,则方程有无数多个解; (3)若a=0,且b≠0,方程变为0·x=b,则方程无解. 例1解方程 解法1从里到外逐级去括号.去小括号得 去中括号得

去大括号得 解法2按照分配律由外及里去括号.去大括号得 化简为 去中括号得 去小括号得 例2已知下面两个方程 3(x+2)=5x,① 4x-3(a-x)=6x-7(a-x) ② 有相同的解,试求a的值. 分析本题解题思路是从方程①中求出x的值,代入方程②,求出a的值. 解由方程①可求得3x-5x=-6,所以x=3.由已知,x=3也是方程②的解,根据方程解的定义,把x=3代入方程②时,应有

七年级数学竞赛讲座14 逻辑原理

七年级数学竞赛系列讲座(14) 逻辑原理 一、一、知识要点 逻辑原理问题,并不需要多少特别专门的知识,关键在于审题,要认真仔细地分析题意,弄清楚各个量之间的关系,深刻理解每句话的含义。 二、二、例题精讲 例1 小明、小强、小华三人参加迎春杯赛,他们是来自金城、沙市、水乡的选手,并分别获得一、二、三等奖。现在知道: 1.(1) 小明不是金城的选手; 2.(2) 小强不是沙市的选手; 3.(3) 金城的选手不是一等奖; 4.(4) 沙市的选手得二等奖; 5.(5) 小强不是三等奖。 根据上述情况,小华是的选手,他得的是等奖。(第三届迎春杯决赛试题) 分析:显然选手所在城市与选手获奖情况有联系,我们就从这里找突破口,搞清了各个城市的选手分别获得哪等奖,问题就解决了。 解:由(4)知:金城的选手获一等奖或三等奖,又由(3)得金城的选手获三等奖,从而水乡的选手获一等奖。 由(2)知:小强是金城或水乡的选手,又由(5)得小强是水乡的选手, 由(1)得小明是沙市的选手,从而小华是金城的选手,他获三等奖。 例2 教室里的椅子坏了,第二天上学时,老师发现椅子修好了。经了解,椅子是A、B、C 三人中的一个人修好的,老师找来这三人。 A说:“是B做的。” B说:“不是我做的。” C说:“不是我做的。” 经调查,三人中只有一个说了实话,椅子是谁修的呢? 分析:因为三人中只有一个说了实话,所以可以假设椅子是某人修好的,看结论是否符合“三人中只有一个说了实话”这一条件。 解:(1) 假设椅子是A修好的,那么A说的是假话,B、C说的都是实话。这样有两人说了实话与“三人中只有一个说了实话”这一条件相矛盾,所以椅子不是A修好的。 (2) 假设椅子是B修好的,那么B说的是假话,A、C说的都是实话。这样有两人说了实话与“三人中只有一个说了实话”这一条件相矛盾,所以椅子不是A修好的。 (3) 假设椅子是C修好的,那么A、C说的是假话,B说的是实话,符合“三人中只有一个说了实话”这一条件,所以椅子是C修好的。 评注:本题运用先假设,再根据假设推出一个结论;如果结论与已知条件相矛盾,说明假设不成立;如果结论符合已知条件,说明假设正确。这种假设的方法是逻辑推理中经常使用。 例3 赵、钱、孙、李四人,一个是教师,一个是售货员,一个是工人,一个是个体户,根据以下条件,判断这四人的职业。

-初中数学竞赛辅导讲座19讲(全套)

初中数学竞赛辅导讲座19讲(全套) 第一讲 有 理 数 一、有理数的概念及分类。 二、有理数的计算: 1、善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个? 例2、 将99 98,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。 2、符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非 负数是多少? 提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算 -1-2-3-…-2000-2001-2002 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算 1+2-3-4+5+6-7-8+9+…-2000+2001+2002

数学竞赛专题讲座七年级第1讲_跨越—从算术到代数(含答案)

第一讲跨越——从算术到代数 “加里宁曾经说过:数学是锻炼思维的体操,体操能使你身体健康,动作敏捷;数学能使你的思想正确敏捷,有了正确的思想,你们才有可能爬上科学的大山.” _______华罗庚。 华罗庚,我国现代有世界声誉的数学家,初中毕业后,靠自学成才,在数论、矩阵几何等许多领域中做出过卓越贡献. 纵观历史,数学的发展创造了数学符号,新的数学符号的使用又反过来促进了数学的发展.历史是这样一步一步走过来的,并将这样一步一步地继续走下去,数学的每一个进步都必须伴随着新的数学符号的产生.在文明和科学的发展过程中,人类创造用符号代替语言、文字的方法,这是因为符号比语言、文字更简练、更直观、更具一般性.“算术”可以理解为“计算的方法”,而“代数”可以理解为“以符号替代数字”,即“数学符号化”.著名数学教育家玻利亚曾说:“代数是一种不用词句而只用符号所构成的语言.” 用字母表示数是数学发展史上的一件大事,是由算术跨越到代数的桥梁,是人类发展史上的一个飞跃,也是代数与算术的最显著的区别. 字母表示数使得数学具有简洁的语言,能更普遍地说明数量关系,在列代数式、求代数式的值、形成公式等方面有广泛的应用. 例题讲解 【例1】观察下列等式9—l=8,16—4=12,25—9=16,36—16=20,…… 这些等式反映出自然数间的某种规律,设n表示自然数,用关于n的等式表示出来: .(河南省中考题) 思路点拨在观察给定的等式基础上,寻找数字特点,等式的共同特征,发现一般规律.链接:从个别事物中发现一般性规律.这种研究问题的方法叫“归纳法”,是由特殊到一般的思维过程,是发明创造的基础. 【例2】某商品2002年比2001年涨价5%,2003年又比2002年涨价10%,2004年比2003年降价12%,则2004年比2001年( ). A.涨价3%B.涨价1.64%C涨价1.2%D.降价1.2% 思路点拨设此商品2001年的价格为a元,把相应年份的价格用a的代数式表示,由计算作出判断.

初一数学竞赛系列讲座(7)有关恒等式的证明

初一数学竞赛系列讲座(7) 有关恒等式的证明 一、知识要点 恒等式的证明分为一般恒等式的证明和条件恒等式证明,对于一般恒等式的证明,常常通过恒等变形从一边证到另一边,或证两边都等于同一个数或式.在恒等变形过程中,除了要掌握一些基本方法外,还应注意应用一些变形技巧,如:整体处理、“1”的代换等;对于条件恒等式的证明,如何处理好条件等式是关键,要认真分析条件等式的结构特征,以及它和要证明的恒等式之间的关系. 二、例题精讲 例1 求证:a 1+(1-a 1)a 2+(1-a 1)(1-a 2)a 3+…+(1-a 1)(1-a 2)…(1-a n -1)a n =1-(1-a 1)(1-a 2)…(1-a n -1)(1-a n ) 分析:要证等式成立,只要证明1- a 1- (1-a 1)a 2- (1-a 1)(1-a 2)a 3 -…- (1-a 1)(1-a 2)…(1-a n -1)a n =(1-a 1)(1-a 2)…(1-a n -1)(1-a n ) 证明:1- a 1- (1-a 1)a 2- (1-a 1)(1-a 2)a 3 -…- (1-a 1)(1-a 2)…(1-a n -1)a n =(1-a 1)[ 1- a 2- (1-a 2)a 3- (1-a 2)(1-a 3)a 4 -…- (1-a 2)(1-a 3)…(1-a n -1)a n ] =(1-a 1) (1-a 2)[ 1- a 3- (1-a 3)a 4- (1-a 3)(1-a 4)a 5 -…- (1-a 3)(1-a 4)…(1-a n -1)a n ] =(1-a 1) (1-a 2) (1-a 3)[ 1- a 4- (1-a 4)a 5- (1-a 4)(1-a 5)a 6 -…- (1-a 4)(1-a 5)…(1-a n -1)a n ] =…… =(1-a 1)(1-a 2)…(1-a n -1)(1-a n ) ∴ 原等式成立 例2 证明恒等式 ()()()()()() 11322321121132322121a a a a a a a a a a a a a a a a a a a a a a a a n n n n ++++++=++++++ (第二十届全俄数学奥林匹克九年级试题) 证明 ()()()()()() 11322321121322211113232121132322121111111111111a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a n n n n n n n ++++++=???? ??+-++???? ??+-+???? ??+-=???? ??+-++???? ??+-+???? ??+-=++++++

七年级数学竞赛讲座10 应用题2

七年级数学竞赛系列讲座(10) 应用题(二) 一、一、知识要点 1、工程类问题 工程类问题讨论工作效率、工作时间和工作总量之间的相互关系。它们满足如下基本关系式:工作效率?工作时间=工作总量 解工程问题时常将工作总量当作整体“1” 2、溶液类问题 溶质:能溶解到溶剂中的物质。如盐、糖、酒精等。 溶剂:能溶解溶质的物质。如水等。 溶液:溶质和溶剂的混合体。如盐水、糖水、酒精溶液等。 溶液的浓度:指一定量溶液中所含溶质的量,经常用百分数表示。浓度的基本算式是: %100?=溶液量溶质量浓度 二、二、例题精讲 例1江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用两台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完,如果要在10分钟内抽完水,那么至少需要抽水机 台。(1999年全国初中数学联合竞赛试题) 解:设开始抽水前管涌已经涌出的水量为a 立方米,管涌每分钟涌出的水量为b 立方米,又设每台抽水机每分钟可抽水c 立方米,由条件可得: ????=+?=+c b a c b a 1641640240 解得?? ???==c b c a 323160 如果要在10分钟内抽完水,那么至少需要抽水机的台数为: 6103203 1601010=+=+c c c c b a 评注:本题设了三个未知数a 、b 、c ,但只列出两个方程。实质上c 是个辅助未知数,在解方程时把c 视为常数,解出a ,b(用c 表示出来),然后再代入求出所要求的结果。 例2 甲、乙、丙三队要完成A 、B 两项工程。B 工程的工作量比A 工程的工作量多25%,甲、乙、丙三队单独完成A 工程所需的时间分别是20天、24天、30天。为了共同完成这两项工程,先派甲队做A 工程,乙、丙二队做B 工程;经过几天后,又调丙队与甲队共同完成A 工程。问乙、丙二队合作了多少天?(第十四届迎春杯决赛试题) 解:设乙、丙二队合作了x 天,丙队与甲队合作了y 天。将工程A 视为1,则工程B 可视为1+25%=5/4,由题意得:

初一数学竞赛系列讲座容斥原理

初一数学竞赛系列讲座 容斥原理 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

初一数学竞赛系列讲座(15) 容斥原理 一、 知识要点 1、容斥原理 在计数时,常常遇到这样的情况,作合并运算时会把重复的部分多算,需要减去;作排除运算时会把重复部分多减,需要加上,这就是容斥原理。它的基本形式是: 记A 、B 是两个集合,属于集合A 的东西有A 个,属于集合B 的东西有B 个,既属于集合A 又属于集合B 的东西记为B A ,有B A 个;属于集合A 或属于集合B 的东西记为B A ,有B A 个,则有:B A =A +B -B A 容斥原理可以用一个直观的图形来解释。 如图, 左圆表示集合A ,右圆表示集合B ,两圆的公共部分表示B A ,两圆合起来的部分表示B A , 由图可知:B A =A +B -B A 容斥原理又被称作包含排除原理或逐步淘汰原则。 二、 例题精讲 例1 在1到200的整数中,既不能被2整除,又不能被3整除的整数有多少个 分析:根据容斥原理,应是200减去能被2整除的整数个数,减去能被3整除的整数个数,还要加上既能被2整除又能被3整除,即能被6整除的整数个数。 解:在1到200的整数中,能被2整除的整数个数为:2?1,2?2,…,2?100,共100个; 在1到200的整数中,能被3整除的整数个数为:3?1,3?2,…,3?66,共66个; 在1到200的整数中,既能被2整除又能被3整除,即能被6整除的整数个数为: 6?1, 6?2,…,6?33,共33个; 所以,在1到200的整数中,既不能被2整除,又不能被3整除的整数个数为:

初中数学竞赛讲座之数论初步(一)

初中数学竞赛讲座之数论初步(一) 整数的整除性 定义:设a ,b 为二整数,且b ≠0,如果有一整数c ,使a =bc ,则称b 是a 的约数,a 是b 的倍数,又称b 整除a ,记作b|a. 显然,1能整除任意整数,任意整数都能整除0. 性质:设a ,b ,c 均为非零整数,则 ①.若c|b ,b|a ,则c|a. ②.若b|a ,则bc|ac ③.若c|a ,c|b ,则对任意整数m 、n ,有c|ma +nb ④.若b|ac ,且(a ,b)=1,则b|c 证明:因为(a ,b)=1 则存在两个整数s ,t ,使得 as +bt =1 ∴ asc +btc =c ∵ b|ac ? b|asc ∴ b|(asc +btc) ? b|c ⑤.若(a ,b)=1,且a|c ,b|c ,则ab|c 证明:a|c ,则c =as(s ∈Z) 又b|c ,则c =bt(t ∈Z) 又(a ,b)=1 ∴ s =bt'(t'∈Z) 于是c =abt' 即ab|c ⑥.若b|ac ,而b 为质数,则b|a ,或b|c ⑦.(a -b)|(a n -b n )(n ∈N),(a +b)|(a n +b n )(n 为奇数) 整除的判别法:设整数N =121n 1a a a a - ①.2|a 1?2|N , 5|a 1? 5|N

②.3|a 1+a 2+…+a n ?3|N 9|a 1+a 2+…+a n ?9|N ③.4|a a ? 4|N 25|a a ? 25|N ④.8|a a a ?8|N 125|a a a ?125|N ⑤.7||41n n a a a --a a a |?7|N ⑥.11||41n n a a a --a a a |?11|N ⑦.11|[(a 2n +1+a 2n -1+…+a 1)-(a 2n +a 2n -2+…+a 2)] ?11|N ⑧.13||41n n a a a --a a a |?13|N 推论:三个连续的整数的积能被6整除. 例题: 1.设一个五位数d a c b a ,其中d -b =3,试问a ,c 为何值时,这个五位数被11整除. 解:11|d a c b a ∴ 11|a +c +d -b -a 即11|c +3 ∴ c =8 1≤a ≤9,且a ∈Z 2.设72|b 673a ,试求a ,b 的值. 解:72=8×9,且(8,9)=1 ∴ 8|b 673 a ,且9| b 673a ∴ 8|b 73 ? b =6 且 9|a +6+7+3+6 即9|22+a ∴ a =5 3.设n 为自然数,A =3237n -632n -855n +235n ,

七年级数学竞赛讲座数论的方法与技巧(含答案详解)

数学竞赛讲座 数论的方法技巧(上) 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。 小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。主要的结论有: 1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得abq+r(0≤r

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为: d(n)(a1+1)(a2+1)…(ak+1)。 5.整数集的离散性:n与n+1之间不再有其他整数。因此,不等式x

【重磅】初中数学竞赛辅导讲座19讲(全套)

第一讲有理数 一、有理数的概念及分类。 二、有理数的计算: 1、 善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少 个? 例2、 将99 98 ,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个 数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是的自然数) 注:P 的表示方法不是唯一的。 2、 符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“—”并依次运算,所得可能的最小非 负数是多少?

提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算-1-2-3-…-20KK -20KK -20KK 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算1+2-3-4+5+6-7-8+9+…-20KK+20KK+20KK 提示:仿例5,造零。结论:20KK 。 例8、 计算 9 9 9 9991999999个个个n n n +? 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。 例9、 计算 -+++?----)20021 3121()2001131211( )2001 13121()2002131211(+++?---- 提示:字母代数,整体化:令2001 1 3121,2001131211+ ++=----= B A ,则 例10、 计算 (1)100991 321211?++?+? ;(2)100981421311?+ +?+? 提示:裂项相消。 常用裂项关系式: (1)n m mn n m 1 1+=+; (2)111)1(1+-=+n n n n ; (3))11(1)(1m n n m m n n +-=+;(4) ]) 2)(1(1 )1(1[21)2)(1(1++-+=++n n n n n n n 。 例11计算n +++++ ++++++ 3211 32112111(n 为自然数) 例12、计算1+2+22+23+…+220KK 提示:1、裂项相消:2n =2n+1-2n ;2、错项相减:令S=1+2+22+23+…+220KK ,则S=2S -S=220KK -1。 例13、比较20002 2000 164834221+++++= S 与2的大小。 提示:错项相减:计算S 2 1 。 第二讲绝对值 一、知识要点

初1数学竞赛教程含例题练习及答案⑾

初一数学竞赛讲座 第11讲染色和赋值 染色方法和赋值方法是解答数学竞赛问题的两种常用的方法。就其本质而言, 染色方法是一种对题目所研究的对象进行分类的一种形象化的方法。而凡是能用染色方法来解的题, 一般地都可以用赋值方法来解, 只需将染成某一种颜色的对象换成赋于其某一数值就行了。赋值方法的适用范围要更广泛一些, 我们可将题目所研究的对象赋于适当的数值, 然后利用这些数值的大小、正负、奇偶以及相互之间运算结果等来进行推证。 一、染色法 将问题中的对象适当进行染色, 有利于我们观察、分析对象之间的关系。像国际象棋的棋盘那样, 我们可以把被研究的对象染上不同的颜色, 许多隐藏的关系会变得明朗, 再通过对染色图形的处理达到对原问题的解决, 这种解题方法称为染色法。常见的染色方式有:点染色、线段染色、小方格染色和对区域染色。 例1用15个“T”字形纸片和1个“田”字形纸片(如下图所示), 能否覆盖一个8×8的棋盘? 解:如下图, 将 8×8的棋盘染成黑白相间的形状。如果15个“T”字形纸片和1个“田”字形纸片能够覆盖一个8×8的棋盘, 那么它们覆盖住的白格数和黑格数都应该是32个, 但是每个“T”字形纸片只能覆盖1个或3个白格, 而1和3都是奇数, 因此15个“T”字形纸片覆盖的白格数是一个奇数;又每个“田”字形纸片一定覆盖2个白格, 从而15个“T”字形纸片与1个“田”字形纸片所覆盖的白格数是奇数, 这与32是偶数矛盾, 因此, 用它们不能覆盖整个棋盘。 例2如左下图, 把正方体分割成27个相等的小正方体, 在中心的那个小正方体中有一只甲虫, 甲虫能从每个小正方体走到与这个正方体相邻的6个小正方体中的任何一个中去。如果要求甲虫只能走到每个小正方体一次, 那么甲虫能走遍所有的正方体吗?

相关文档
最新文档