β射线的吸收

β射线的吸收
β射线的吸收

中国石油大学 近代物理实验 实验报告 成 绩:

班级: 姓名: 同组者: 教师:

实验9-4 β射线的吸收

和γ射线相比,β射线与物质的相互作用要复杂得多。β射线在吸收物质中的强度衰减也只近似符合指数规律。通过研究β射线的吸收规律,测量吸收物质对β射线的阻止本领,可以指导β辐射防护的选材及确定厚度。另外,通过测量物质对β射线的吸收系数,或β射线在吸收物质中的射程,可以估算β射线的最大能量,这是鉴别放射性核素的有效办法。

【实验目的】

1、了解β射线与物质相互作用的机理。

2、学习测量β射线最大能量的方法。

3、测量吸收物质对β射线的阻止本领。

【实验原理】

一、β衰变与β能谱的连续性

放射性核素的原子核放射出β粒子而变为原子序数差1、质量数A 相同的核素称为β衰变。β衰变时,在释放出高速运动电子的同时,还释放出中微子,两者分配能量的结果,使

β射线具有连续的能量分布,如图9-4-1所示。以本实验所用的Y Sr 903990

38-β源为例,其衰变图如图9-4-2所示。Sr 9038的半衰期为28.6年,它发射的β粒子最大能量为0.546MeV ,Sr 9038衰变后成为Y 9039,Y 9039的半衰期为64.1小时,它发射的β粒子最大能量为2.27MeV ,衰变后成为Zr 9040,因而Y Sr 90399038-源在0至2.27MeV 的范围内形成连续的能谱。

图9-4-1 β射线能谱 图9-4-2 Y Sr 90

3990

38-源衰变图

二、β射线与物质的相互作用

β射线与物质相互作用时主要通过电离效应、辐射效应和多次散射等方式损失能量。β

射线与物质原子核外电子发生非弹性碰撞,使原子激发或电离,因而损失其能量,此即电离能量损失。电离损失是β射线在物质中损失能量的主要方式。当β射线与物质原子核的库仑场相互作用时,其运动速度会发生很大变化。根据电磁理论,当带电粒子有加速度时,会辐射电磁波即轫致辐射,这就是辐射能量损失。此外,β射线也可以与物质原子核发生弹性散射,不损失能量,只改变运动方向。因为β粒子的质量很小,所以散射的角度可以很大,而且会发生多次散射,最后偏离原来的方向,使入射方向上β射线强度减弱。当β射线穿过物质时,由于β射线与物质发生相互作用,使β射线强度减弱的现象称为β射线的吸收。

三、β射线最大能量的测量

β射线的能量是连续分布的,对于确定的放射源,有确定的最大能量E 0,因此,如果能够测量出β射线的最大能量E 0,则可以判别放射性核素的种类,其为放射性测量的一项重要内容。常用的测量方法有吸收法和最大射程法两类。

图9-4-3 β吸收曲线

实验表明,对于一束单能电子(如内转换电子)穿过吸收物质层时,其强度随吸收物质层厚度的增加而减弱,并符合指数衰减规律。但由于β射线的能量不是单一的,而是连续分布的,所以β射线的吸收只是近似符合指数衰减规律,如图9-4-3所示。图中横轴m x 为吸收物质的质量厚度,等于吸收物质层厚度x 与物质密度ρ的乘积,单位采用2

/cm g 。R 0为有效射程,代表使β射线强度降为10-4

的吸收物质层厚度,也采用2

/cm g 作为单位。由于β射线与物质相互作用时会放生轫致辐射,并且放射性核素β衰变时还伴随有γ射线,所以在测量β射线的吸收曲线时,即使吸收物质层厚度已经超过β射线的最大射程(用R 表示,代表β射线全部被吸收时的吸收物质层厚度),仍会测量到高于本底的计数,如图9-4-3中各曲线的尾部,从而导致测量最大射程的困难,为此,在实际工作中通常是测量有效射程,来代替最大射程。有效射程不仅与吸收物质的性质有关,而且也与β射线的最大能量E 0有关,对于铝吸收体,存在下述经验公式:

当MeV E MeV 15.08.00>>时,

38

.10

0407.0E R = (9-4-1)

当MeV E 8.00>时,

133.0542.000-=E R (9-4-2)

假设β衰变过程中只放出一种β射线,如图9-4-3中(a )所示,吸收曲线可近似用下式表示

m m x e I I μ-=0 (9-4-3)

对两边取对数,得

m m x I I μ-=0ln ln (9-4-4)

其中I 0和I 分别是穿过吸收物质前、后的β射线强度,m x 是吸收物质的质量厚度,m μ是吸收物质的质量吸收系数。由于在相同实验条件下,某一时刻的计数率n 总是与该时刻的β射线强度I 成正比,所以(9-4-3)式和(9-4-4)式也可以表示为

m m x e n n μ-=0 (9-4-5)

m m x n n μ-=0ln ln (9-4-6)

显然,n ln 与m x 具有线性关系。在用NaI (Tl )闪烁能谱仪测量β射线能谱时,考虑到β射线的能量分布的连续性,其全谱计数率即为(9-4-5)式和(9-4-6)式中的n 。

同有效射程一样,m μ也与吸收物质的性质及β射线的最大能量有关。对于铝吸收体,存在经验公式

14

.10

17

E m =

μ (9-4-7) 这样,只要在实验过程中,通过测量β射线在一定吸收物质中的吸收曲线,在曲线上求取R 0和m μ,就可用(9-4-1)式、(9-4-2)式和(9-4-7)式估算出β射线的最大能量。

四、吸收物质对β射线的阻止本领

β射线在吸收物质中单位路径长度上损失的平均能量定义为吸收物质对β射线的阻止本领(简称阻止本领),记作

dx

dE

,实际使用中,为了消除密度的影响,常用的是质量阻止本领,即

dx

dE

ρ1,其中ρ为吸收物质的密度。 根据β射线与物质的相互作用,我们知道,在一般能量范围内(如MeV E 100<),β射线在吸收物质中的能量损失主要来自于电离损失和辐射损失,因此总的阻止本领应为这两种能量损失所对应的碰撞阻止本领及辐射阻止本领之和。总的阻止本领的计算比较复杂,但可以通过实验,测量不同能量的单能电子在吸收物质中的能量损失,来求得这一物质在不同

能量时的总的阻止本领。

单能电子的获得可以通过横向半圆磁聚焦β谱仪分离β射线得到,实验中,只要改变NaI (Tl )闪烁探测器相对于横向半圆磁聚焦β谱仪的位置,就可以探测不同能量的单能电子。显然,当NaI (Tl )闪烁探测器位于某个位置时, 只要我们能够测量出β射线经过吸收物质前后对应的单能电子能量E0和E1,就可以计算出该吸收物质对能量为

()210E E E +=的单能电子的质量阻止本领,即

m

d E E dx dE 1

01-=

ρ (9-4-8) 其中m d 为吸收物质层的质量厚度。

【实验装置及器材】

实验所需仪器主要包括横向半圆磁聚焦β谱仪(真空型)、NaI (Tl )闪烁探测器、多道

脉冲幅度分析器、计算机等,另外还用到γ放射源60Co 和137Cs ,β放射源90Sr —90

Y 。实验装置如图9-4-4所示。

图9-4-4 β射线吸收实验装置

【实验内容】

1、阅读仪器使用说明,掌握仪器及多道分析软件的使用方法。

2、仪器开机并调整好工作电压(700~750V )和放大倍数后,预热30分钟左右。

3、在多道分析软件中调整预置时间为600s 。

4、用γ放射源60Co 和137Cs 标定闪烁谱仪,绘制能量刻度曲线,用最小二乘法确定相应的表达式。

5、抽真空,真空度由真空表监测。

6、测量铝在不同能量下对β射线总的质量阻止本领。 左右移动闪烁能谱仪的探头,在加吸收片和不加吸收片两种情况下,分别测量β射线(用

β放射源90Sr —90

Y )能谱中单能电子峰位对应的多道脉冲幅度分析器的道数。根据道数由能量刻度曲线计算单能电子的能量,进一步得到铝在不同能量下对β射线总的质量阻止本领,并绘制质量阻止本领与探头位置之间的关系曲线。

需要注意的是,由于闪烁体前有一厚度约200 μm 的铝质密封窗,周围包有约20μm 的铝质反射层,所以单能电子穿过铝质密封窗、铝质反射层后,其损失的部分能量必须进行修正。当材料的性质及其厚度固定后,这种能量损失的大小仅与入射粒子的能量有关,因此应根据实验室提供的仪器具体参数进行校正,而由测量到的粒子的能量,给出入射粒子进入窗口前的能量大小。

表9-4-1列出了单能电子经过220μm 铝质薄膜前后的能量对应关系,其中E 1为入射前的能量,E 2为出射后的能量。根据测得的能量,在表格中利用插值法可计算出入射前的能量。

表9-4-1 单能电子经过220μm 铝质薄膜前后的能量对应关系 E 1/MeV E 2/MeV E 1/MeV E 2/MeV E 1/MeV E 2/MeV 0.317 0.200 0.887 0.800 1.489 1.400 0.360 0.250 0.937 0.850 1.536 1.450 0.404 0.300 0.988 0.900 1.583 1.500 0.451 0.350 1.039 0.950 1.638 1.550 0.497 0.400 1.090 1.000 1.685 1.600 0.545 0.450 1.137 1.050 1.740 1.650 0.595 0.500 1.184 1.100 1.787 1.700 0.640 0.550 1.239 1.150 1.834 1.750 0.690 0.600 1.286 1.200 1.889 1.800 0.740 0.650 1.333 1.250 1.936 1.850 0.790 0.700 1.388 1.300 1.991 1.900 0.840 0.750

1.435

1.350

2.038

1.950

7、用一组铝吸收片测量对90

Sr —90

Y 放射源的β射线的吸收曲线(n ln ~m x 曲线),用最

小二乘法求出质量吸收系数,进而求取β射线的最大能量,并与2.27MeV 比较,求相对不确定度。

【注意事项】

1、当工作指示灯亮时,切勿关闭仪器。

2、领用和归还放射源必须作好登记。 【数据记录及处理】

1、 绘制能量刻度曲线

表160Co 和137Cs 的光电峰道数与能量关系表

60Co 光电峰位置道数 200.04 227.42 137Cs 114.57 能量/MeV 1.17 1.33 0.662

100

120

140

160

180

200

220240

00.20.40.60.811.21.4f(x) = 0.0059251518x - 0.01653668

能量刻度曲线

CH

E /M e V

由上图可以求得表达式为f (x )=0.00593x —0.0165

3、测量铝在不同能量下对β射线总的阻止本领 表2质量阻止本领数据表

光电峰位道数 低 10cm 中 15cm 高20cm

加吸收片 63.63 139.54 216.3 不加吸收片 67.79 143.15 219.14

将光电峰位道数根据能量刻度转化为能量大小后

能量MeV 低 10cm 中 15cm 高20cm

加吸收片 0.3608 0.8110 1.2662 不加吸收片 0.3855 0.8324 1.2830

修正铝薄膜影响后的能量

50微米的吸收片其质量厚度为x m =2.7×50×10-4g/cm 2=0.0135 g/cm 2 质量阻止本领

dx

dE

1(10cm )=(E 0-E 1) ÷d m =(0.4837-0.46090)÷0.0135=1.689MeV ==1.689MeV cm 2/g

同样可以计算在15cm 、20cm 处的质量阻止本领分别为1.585 MeV cm 2/g 、1.370 MeV

cm 2/g

能量MeV 低 10cm 中 15cm 高20cm 加吸收片 0.4609 0.8980 1.3508

不加吸收片 0.4837 0.9194 1.3693

8

10

12

14

16182022

00.20.40.60.811.21.41.6

1.8质量阻止本领与探头位置之间的关系曲线

探头位置cm

质量阻止本领M e V c m 2/g

由上图可以看出铝对β射线的质量阻止本领随着探头位置变长即随着单能电子能量

的增加而减少。可以知道β射线能量越强铝片对其阻止效果越弱。 2、 测量β射线的质量吸收系数进而求得其最大能量 表3β射线吸收曲线测量表

吸收片质量厚度g/cm2 0.0810 0.0945 0.1080 0.1215 0.1350 全谱计数率 102886 101999 98253 89408 87134 ln n 11.541 11.533 11.495 11.401 11.375

0.0700

0.0800

0.0900

0.1000

0.1100

0.1200

0.1300

0.1400

11.25

11.311.3511.411.45

11.511.5511.6f(x) = -3.437037037x + 11.8402

β射线吸收曲线

吸收片质量厚度g/cm2

l n n

质量吸收系数为3.437cm 2

/g 求得最大能量为E0=4.064MeV 相对不确定度为r 100%100%79.03%E |E -E ||4.064-2.27|

=?=?=E 2.27

理理

【思考题】

1、简要说明β射线吸收与γ射线吸收的异同点。

答:β射线的的吸收是主要是单能电子的能量减少,而γ射线的吸收主要是粒子数量的减少。但他们在多普仪上显示的方式都是通道数目的减少。

2、如何用本实验的方法测量一定材料的厚度?

答:同样如果已知这种材料对β射线的吸收系数可以分别测量吸收前后的全谱计数率然后在带入公式就可求得材料的厚度。

3、在测量吸收曲线时,闪烁体前的200 μm铝质密封窗对测量结果有何影响?

答:由于实验上材料的厚度也是微米数量级的所以影响很大它使得测量的计数率偏小所以先要对测量得到的数据进行修正。

4、在测量阻止本领的实验中,为什么不对真空室外的有机塑料薄膜进行能量修正?

答:因为并不影响实验结果,加吸收片前和不加吸收片时候塑料薄膜对射线的阻挡效果相同都是先经过塑料薄膜后在测量所以塑料薄膜并不影响实验的结果。

5、本底计数率对测量有无影响?如果有,应该如何处理?

答:有,因为本实验用的是全谱计数率来代表射线的能量所以实验的时候可以先测量一下本底计数率然后在把全谱计数率修正后再测量。

【实验总结】

本实验通过对β射线的质量阻止本领的测量和β射线的吸收曲线的绘制进一步了解β射线的的特点,我们也进一步了解了β射线和物质相互作用的关系。实验结果误差相对较大,这可能是由于真空度不够高而引起的,而且β射线的的吸收曲线并不是简单的一次线性关系。

【参考资料】

1、褚圣鳞,原子物理学,高等教育出版社,1979

2、复旦大学等,原子核物理实验方法(下册),原子能出版社,1982

3、吴泳华等,近代物理实验,安徽教育出版社,1987

4、北京大学等,核物理实验,原子能出版社,1984

伽马射线的吸收实验报告

(3 ) 实验3:伽马射线的吸收 实验目的 1 ? 了解 射线在物质中的吸收规律。 2。测量 射线在不同物质中的吸收系数。 3?学习正确安排实验条件的方法。 内容 1. 选择良好的实验条件,测量 60 Co (或 137 CS)的 射线在一组吸收片(铅、 铜、或铝) 中的吸收曲线,并由半吸收厚度定出线性吸收系数。 2. 用最小二乘直线拟合的方法求线性吸收系数。 原理 1.窄束射线在物质中的衰减规律 射线与物质发生相互作用时,主要有三种效应:光电效应、康普顿效应 和电子对效应(当 射线能量大于1.02MeV 时,才有可能产生电子对效应)。 准直成平行束的 射线,通常称为窄束 射线。单能的窄束 射线在穿过物质时, 其强度就会减弱,这种现象称为 射线的吸收。 射线强度的衰减服从指数规律,即 =1 性吸收系数(P= σr N ,单位为Cm )。显然μ的大小反映了物质吸收 Y 射线能力的 大小。 由于在相同的实验条件下, 某一时刻的计数率 n 总是与该时刻的 射线强度I 成正 比,因此I 与X 的关系也可以用 n 与X 的关系来代替。由式我们可以得到 —X n = n °e (2 ) 可见,如果在半对数坐标纸上绘制吸收曲线,那末这条吸收曲线就是一条直线,该直 线的斜率的绝对值就是线性吸收系数 J . r NX I o e ∣°e'x 其中∣o ,∣分别是穿过物质前、后的 射线强度,X 是射线穿过的物质的厚度(单位 为cm ), σr 是三种效应截面之和, N 是吸收物质单位体积中的原子数, J 是物质的线 In n=l n n °- J X

10 计 ?104 専 ,LO3 IO1 厚反。K 图1 γ???S??X 由于射线与物质相互作用的三种效应的截面都是随入射射线的能量E和吸收物质的原子序数Z而变化,因此单能射线的线性吸收系数是物质的原子序数 Z和能量E L f的函数. 式中^Ph、%、”p分别为光电、康普顿、电子对效应的线性吸收系数。其中 物质对射线的吸收系数也可以用质量吸收系数^m来表示。

γ射线的吸收

1.3 γ射线的吸收 一、【实验目的】 1. 了解γ射线在物质中的吸收规律。 2. 掌握测量γ吸收系数的基本方法。 二、【实验原理】 1. 窄束 γ射线在物质中的吸收规律。 γ射线在穿过物质时,会与物质发生多种作用,主要有光电效应,康普顿效应和电子对效应,作用的结果使 γ射线的强度减弱。 准直成平行束的 γ射线称为窄束 γ射线,单能窄束 γ射线在穿过物质时,其强度的 减弱服从指数衰减规律,即: x x e I I μ-=0 (1) 其中 0I 为入射 γ射线强度, x I 为透射 γ射线强度,x 为 γ射线穿透的样品厚度, μ为 线性吸收系数。用实验的方法测得透射率 0/I I T x =与厚度 x 的关系曲线,便可根据(1)式 求得线性吸收系数 μ值。 为了减小测量误差,提高测量结果精度。实验上常先测得多组 x I 与 x 的值,再用曲线拟合来求解。则: x I I x μ-=0ln ln (2) 由于 γ射线与物质主要发生三种相互作用,三种相互作用对线性吸收系数 μ都有贡献, 可得: p c ph μμμμ++= (3) 式中 ph μ为光电效应的贡献, c μ为康普顿效应的贡献, p μ为电子对效应的贡献。它们 的值不但与 γ光子的能量E r 有关,而且还与材料的原子序数、原子密度或分子密度有关。对于能量相同的 γ射线不同的材料、 μ也有不同的值。医疗上正是根据这一原理,来实现对人体 内部组织病变的诊断和治疗,如 x 光透视, x 光CT 技术,对肿瘤的放射性治疗等。图1表示 铅、锡、铜、铝材料对 γ射线的线性吸收系数μ随能量E γ变化关系。

图中横座标以 γ光子的能量 υh 与电子静止能量mc 2的比值为单位,由图可见,对于铅低能 γ射线只有光电效应和康普顿效应,对高能 γ射线,以电子对效应为主。 为了使用上的方便,定义μm =μ/ρ为质量吸收系数,ρ为材料的质量密度。则(1)式可改写成如下的形式: m m x x e I I μ-=0 (4) 式中x m =x·ρ,称为质量厚度,单位是g/cm 2。 半吸收厚度x 1/2: 物质对 γ射线的吸收能力也常用半吸收厚度来表示,其定义为使入射 γ射线强度减弱到一半所需要吸收物质的厚度。由(1)式可得: μ2 ln 2 1= x (5) 显然也与材料的性质和 γ射线的能量有关。图2表示铝、铅的半吸收厚度与E γ的关系。若用实验方法测得半吸收厚度,则可根据(4)求得材料的线性吸收系数μ值。 三、【实验内容与要求】 1.按图3检查测量装置,调整探测器位置,使放射源、准直孔、探测器具有同一条中心线。 2.打开微机多道系统的电源,使微机进入多道分析器工作状态(UMS )。 3.选择合适的高压值及放大倍数,使在显示器上得到一个正确的60Co γ能谱。 4.测量不同吸收片厚度x 的60Co 的能谱,并从能谱上计算出所要的积分计数 x I 。 5.测量完毕,取出放射源,在相同条件下,测量本底计数 b I 。

γ射线的能谱测量和吸收测定_实验报告

γ射线能谱的测量 【摘要】某些物质的原子核能够发生衰变,放出我们肉眼看不见也感觉不到的射线,γ射线产生的原因正是由于原子核的能级跃迁。我们通过测量γ射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。因此本实验通过使用γ闪烁谱仪测定不同的放射源的γ射线能谱。同时学习和掌握γ射线与物质相互作用的特性,并且测定窄束γ射线在不同物质中的吸收系数μ。 【关键词】γ射线能谱γ闪烁谱仪 【引言】从1896年的法国科学家贝可勒尔发现放射性现象开始,经过居里夫人等一系列科学家对一些新放射性元素的发现及其性质进行研究的杰出工作后,人类便进入了对原子核能研究、利用的时代。 而原子核衰变能放出α、β、γ三种射线,这些射线可以通过仪器精确测量。本次实验主要研究γ射线,通过对γ射线谱的研究可了解核的能级结构。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。 因此本次实验研究了不同材料对于γ射线的吸收情况这是非常具有实际意义的,比如在居民区制造防空洞的时候可以使用一定厚度的抗辐射材料确保安全,而且在核电站、军事防护地以及放射源存放处等地方我们都有必要使用防辐射材料。 γ射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如下图所示。 本实验主要研究的是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,仅由未经相互作用或称为未经碰撞的光子所组成。窄束γ射线再穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度随物质厚度的衰减服从指数规律。 本次实验仪器如下:

X射线在物质中的衰减

第四节X射线在物质中的衰减

扩散衰减 引起X 射线在物质内传播过程中的强度减弱,包括传播过程中扩散衰减和吸收衰减两方面 对于均匀介质中的X 射线源在空间各个方向辐射时,若不考虑介质的吸收,与普通点光源一样,在半径不同的球面上,X 射线的减弱遵守反平方规律即: 212221r r I I 式中I 1,I 2分别为r 1和r 2的球面上X 射线的强度。 吸收衰减X 射线通过物质时,与物质发生相互作用过程中由于吸收和散射导致入射方向X 射线强度减少。 适用于真空

一、单能X 射线在物质中的衰减规律 单能窄束X 射线在物质中的衰减规律可表示为 0x I I e μ-=X 射线强度衰减到其初始值一半时所需某种物质的衰减厚度定义为半价层(half-value layer, HVL). 1. 衰减规律 2. 半价层μ 693 .0=HVL 3. 宽束X 射线宽束X 射线就是指含有散射线成分的X 射线束。

线性衰减系数,不是一个常数,而是与吸收体的厚度,面积,形状,探测器和吸收体间的距离以及光子的能量有关。 是积累因子,描述了散射光子 对辐射衰减的影响 x e BI I μ-=01-34

n s s n n N N N N N N N B n +=+==1n N 为物质中所考虑那一点的未经相互作用原射线光子计数率;1-35 物理意义:其大小反映了在考虑那一点散射光子对光子数的贡献。对宽束而言B>1,理想窄束条件下B=1. B 近似计算: s N 为物质中所考虑那一点的散射线光子计数率; 1B x μ=+

二、连续X 射线在物质中的衰减规律 一般情况下,X 射线束是由能量连续分布的光子组成。当穿过一定厚度的物质时,各能量成分衰减的情况并不一样,它不遵守单一的指数衰减规律,因此连续X 射线的衰减规律比单能X 射线复杂的多。理论上连续能谱窄束X 射线的衰减可由下式描述 12n I I I I =+++ 1201020n x x x n I e I e I e μμμ---=+++ 式中,I 1、I 2、……I n 表示各种能量X 射线束的透过强度;I 01、I 02、……I 0n 表示各种能量X 射线束的入射强度; x 为吸收物质层的厚度。 1μ2μn μ、、……表示各种能量X 射线1. 连续X 射线的衰减规律

γ能谱及γ射线的吸收.

3系08级 姓名:方一 日期:6月12日 PB08206045 实验题目: γ 能谱及γ射线的吸收 实验目的: 学习闪烁γ谱仪的工作原理和实验方法,研究吸收片对γ射线的吸收规律。 实验原理: γ射线与物质的相互作用 γ射线与物质原子之间的相互作用主要有三种方式:光电效应、康普顿散射、电子对效应。 1)光电效应 当能量γE 的入射γ光子与物质中原子的束缚电子相互作用时,光子可以把全部能量转移给某个束缚电子,使电子脱离原子束缚而发射出去,光子本身消失,发射出去的电子称为光电子,这种过程称为光电效应.发射出光电子的动能 i e B E E -=γ (1) i B 为束缚电子所在壳层的结合能。原子内层电子脱离原子后留下空位形成激发 原子,其外部壳层的电子会填补空位并放出特征X 射线。例如L 层电子跃迁到K 层,放出该原子的K 系特征X 射线。 2)康普顿效应 γ光子与自由静止的电子发生碰撞,而将一部分能量转移给电子,使电子成为反冲电子,γ光子被散射改变了原来的能量和方向。计算给出反冲电子的动 能为 ) cos 1(1) cos 1()cos 1(2 02 02θθθγγ γγ-+ =-+-=E c m E E c m E E e (2)

式中20c m 为电子静止质量,角度θ是γ光子的散射角,见图2.2.1-2所示。由图看出反冲电子以角度φ出射,φ与θ间有以下关系: 2tan 1cot 20θ ?γ???? ??+=c m E (3) 由式(2)给出,当 180=θ时,反冲电子的动能e E 有最大值: γ γE c m E E 212 0max += (4) 这说明康普顿效应产生的反冲电子的能量有一上限最大值,称为康普顿边界E C 。 3)电子对效应 当γ光子能量大于202c m 时,γ光子从原子核旁边经过并受到核的库仑场作用,可能转化为一个正电子和一个负电子,称为电子对效应。此时光子能量可表示为两个电子的动能与静止能量之和,如 202c m E E E e e ++=- + γ (5) 其中MeV c m 02.1220=。 综上所述,γ光子与物质相遇时,通过与物质原子发生光电效应、康普顿效应或电子对效应而损失能量,其结果是产生次级带电粒子,如光电子、反冲电子或正负电子对。次级带电粒子的能量与入射γ光子的能量直接相关,因此,可通过测量次级带电粒子的能量求得γ光子的能量。 闪烁γ能谱仪 2.1、闪烁谱仪的结构框图及各部分的功能 闪烁谱仪的结构框图示于图2.2.1-3中,它可分为闪烁探头、 供电与信号放

γ射线的吸收实验报告

丫射线的吸收 一、实验目的: 1. 了解丫射线在物质中的吸收规律。 2. 掌握测量丫吸收系数的基本方法。 、实验原理: 1. 窄束丫射线在物质中的吸收规律。 Y 射线在穿过物质时, 会与物质发生多种作用, 主要有光电效应,康普顿效应和电子对 效应,作用 的结果使 Y 射线的强度减弱。 准直成平行束的 丫射线称为窄束 Y 射线,单能窄束 Y 射线在穿过物质时,其强度的 减弱服从指数衰减规律,即: ⑴ 其中|0为入射Y 射线强度,|x 为透射Y 射线强度,X 为Y 射线 穿透的样品厚度, 卩为 T ^I x /1 。与厚度X 的关系曲线,便可根据(1)式 内部组织病变的诊断和治疗,如 x 光透视,x 光CT 技术,对肿瘤的放射性治疗等。图 1表示 铅、锡、铜、铝材料对 丫射线的线性吸收系数 □随能量E 线性吸收系数。用实验的方法测得透射率 求得线性吸收系数 4值。 为了减小测量误差,提高测量结果精度。 合来求解。 实验上常先测得多组 | x 与X 的值,再用曲线拟 则: In I x =I n 10 — A x 由于 可得: Y 射线与物质主要发生三种相互作用,三种相互作用对线性吸收系数 (2) 4都有贡献, ? ph 为光电效应的贡献, 巴为康普顿效应的贡献, 丫光子的能量E r 有关,而且还与材料的原子序数、 能量相同的 Y 射线不同的材料、 4也有不同的值。医疗上正是根据这一原理,来实现对人体 式中 的值不但与 LI P 为电子对效应的贡献。它们 原子密度或分子密度有关。对于 Y 变化关系。

hU出、谢.册、粗时*斯维的吗临的氏痰

图中横座标以 Y 光子的能量 h u 与电子静止能量 mc 2 的比值为单位,由图可见,对于铅低 能Y 射线只有光电效应和康普顿效应,对高能 Y 射线,以电子对效应为主。 为了使用上的方便,定义 卩m =卩/p 为质量吸收系数,P 为材料的质量密度。则(1)式可 改写成如下的形式: I X = 10e"m 式中X m =X P ,称为质量厚度,单位是 半吸收厚度X i/2: 物质对Y 射线的吸收能力也常用半吸收厚度来表示, 其定义为使入射 Y 射线强度减弱到一 半所需要吸收物质的厚度。由(1 )式可得: In 2 三、实验内容与要求 g/cm 2 。 显然也与材料的性质和 Y 射线的能量有关。 图 2表示铝、铅的半吸收厚度与 E 下的关系。 若用实验方法测得半吸收厚度, 则可根据( 4) 求得材料的线性吸收系数 卩值。 1. 按图3检查测量装置, 调整探测器位置, 使放射源、准直孔、 探测器具有同一条中心线。 2. 打开微机多道系统的电源,使微机进入多道分析器工作状态( 3. 4. 5. 选择合适的高压值及放大倍数,使在显示器上得到一个正确的 测量不同吸收片厚度 x 的60 Co 的能谱,并从能谱上计算出所要的积分计数 I b 。 测量完毕,取出放射源,在相同条件下,测量本底计数 V,, UMS )。 60 Co Y 能谱。 1 x 。 6?把高压降至最低值,关断电源。 7?用最小二乘法求出 丫吸收系数 卩及半吸收厚度d ? 阳3半吸收1^.15和丫貼线能 就的爻衆 2. 百 ■岂蟄里密券 主 Mt ilLf S 零 jfi 打卬机

物质对伽马射线的吸收实验报告

近代物理实验报告指导教师:得分: 实验时间: 2009 年 12 月 14 日,第十六周,周一,第 5-8 节 实验者:班级材料0705 学号 5 姓名童凌炜 同组者:班级材料0705 学号 7 姓名车宏龙 实验地点:综合楼 507 实验条件:室内温度℃,相对湿度 %,室内气压 实验题目:物质对伽马射线的吸收 实验仪器:(注明规格和型号) 射线放射源;闪烁探头;高压电源;放大器;多道脉冲幅度分析器;吸收片若干。 仪器组成如下图所示: 实验目的: 1.了解掌握射线与物质相互作用的性质和特点 2.学习掌握物质对射线的吸收规律 3.测量射线在不同物质中的吸收系数 4. 实验原理简述: 当原子核发生α和β衰变时,通常衰变到原子 核的激发态,由于处于激发态的原子核是不稳定的, 它要向低激发态跃迁,同时往往放出γ光子,这一现 象称为γ衰变。γ光子会与下列带电体发生相互作 用,原子中的束缚电子,自由电子,库伦场及核子。 这些类型的相互作用可以导致下列三种过程的一种发生:光子完全吸收、弹性散射、非弹性散射。如右所示为为γ射线与物质相互作用的示意图

图中的三种状况分别为: 1. 低能时以光电效应为主。 2. 光子可以被原子或单个电子散射到另一方向,其能量可损失也可不损失。 3. 若入射光子的能量超过,则电子对的生成成为可能 从上面的讨论可以清楚地看到,当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应能量损失,γ射线一旦与吸收物质原子发生这三种相互作用,原来能量为的光子就消失,或散射后能量改变、偏离原来的入射方向;总之,一旦发生相互作用,就从原来的入射束中移去。γ射线穿过物质是,强度逐渐减弱,按指数规律衰减,不与物质发生相互作用的光子穿过吸收层,其能量保持不变,因而没有射程概念可言,但可用“半吸收厚度”来表示γ射线对物质的穿透情况。 本实验研究的主要是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成分的射线束通过吸收后的光子,仅由未经相互作用或未经碰撞的光子组成。射线束有一定宽度,只要没有散射光子,就可称之为“窄束”。 射线强度随物质厚度的衰减服从指数规律,即x e I I μ-=0 I 和0I 分别是穿透物质前后的γ射线强度;x 是γ射线穿过物质的厚度是光电、康普顿、电子对三种 效应截面之和;N 是吸收物质单位体积中的原子数;μ是物质的吸收系数, 反映了物质吸γ收射线能力的大小, 并且可以分解成这样几项: p c ph μμμμ++= γ射线与物质相互作用的三种效应的截面都随入射γ射线的能量γE 和吸收物质的原子序数Z 而改变。 如右所示, 图中给出了铅对γ射线的吸收系数与γ射线能量的线性关系图。 实际中通常用质量厚度)(2 -??=cm g x R m ρ来表示 吸收体的厚度,以消除密度的影响, 则射线强度的表达式修改为:ρ μ/0)(m R m e I R I -= 计数率N 总是与该时刻的射线强度成正比,因此可得:0InN R InN m +- =ρ μ 将对数形式的吸收曲线表达为图像, 得到这样的一条直线, 如右图所示. 并且可以从这条直线的斜率求出

伽马射线的吸收实验报告

实验3:伽马射线的吸收 实验目的 1. 了解γ射线在物质中的吸收规律。 2. 测量γ射线在不同物质中的吸收系数。 3. 学习正确安排实验条件的方法。 内容 1. 选择良好的实验条件,测量60Co (或137Cs )的γ射线在一组吸收片(铅、 铜、或铝)中的吸收曲线,并由半吸收厚度定出线性吸收系数。 2. 用最小二乘直线拟合的方法求线性吸收系数。 原理 1. 窄束γ射线在物质中的衰减规律 γ射线与物质发生相互作用时,主要有三种效应:光电效应、康普顿效应 和电子对效应(当γ射线能量大于1.02MeV 时,才有可能产生电子对效应)。 准直成平行束的γ射线,通常称为窄束γ射线。单能的窄束γ射线在穿过物质时,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度的衰减服从指数规律,即 x Nx e I e I I r μσ--==00 ( 1 ) 其中I I ,0分别是穿过物质前、后的γ射线强度,x 是γ射线穿过的物质的厚度(单位为cm ),r σ是三种效应截面之和,N 是吸收物质单位体积中的原子数,μ是物质的线性吸收系数(N r σμ=,单位为1 =cm )。显然μ的大小反映了物质吸收γ射线能力的大小。 由于在相同的实验条件下,某一时刻的计数率n 总是与该时刻的γ射线强度I 成正比,因此I 与x 的关系也可以用n 与x 的关系来代替。由式我们可以得到 x e n n μ-=0 ( 2 ) ㏑n=㏑n 0-x μ ( 3 ) 可见,如果在半对数坐标纸上绘制吸收曲线,那末这条吸收曲线就是一条直线,该直

线的斜率的绝对值就是线性吸收系数μ。 由于γ射线与物质相互作用的三种效应的截面都是随入射γ射线的能量γE 和吸收 物质的原子序数Z 而变化,因此单能γ射线的线性吸收系数μ是物质的原子序数Z 和能量γE 的函数。 p c ph μμμμ++= ( 4 ) 式中ph μ、c μ、p μ分别为光电、康普顿、电子对效应的线性吸收系数。其中 5 Z ph ∝μ Z c ∝μ ( 5 ) 2 Z p ∝μ 图2给出了铅、锡、铜、铝对γ射线的线性吸收系数与γ射线能量的关系曲线。 物质对γ射线的吸收系数也可以用质量吸收系数m μ来表示。

γ射线的吸收实验报告

γ射线的吸收 一、实验目的: 1. 了解γ射线在物质中的吸收规律。 2. 掌握测量γ吸收系数的基本方法。 二、实验原理: 1. 窄束 γ射线在物质中的吸收规律。 γ射线在穿过物质时,会与物质发生多种作用,主要有光电效应,康普顿效应和电子对效应,作用的结果使 γ射线的强度减弱。 准直成平行束的 γ射线称为窄束 γ射线,单能窄束 γ射线在穿过物质时,其强度的减弱服从指数衰减规律,即: x x e I I μ-=0 (1) 其中 0I 为入射 γ射线强度, x I 为透射 γ射线强度,x 为 γ射线穿透的样品厚度, μ为线性吸收系数。用实验的方法测得透射率 0/I I T x =与厚度 x 的关系曲线,便可根据(1)式 求得线性吸收系数 μ值。 为了减小测量误差,提高测量结果精度。实验上常先测得多组 x I 与 x 的值,再用曲线拟 合来求解。则: x I I x μ-=0ln ln (2) 由于 γ射线与物质主要发生三种相互作用,三种相互作用对线性吸收系数 μ都有贡献, 可得: p c ph μμμμ++= (3) 式中 ph μ为光电效应的贡献, c μ为康普顿效应的贡献, p μ为电子对效应的贡献。它们的值不但与 γ光子的能量E r 有关,而且还与材料的原子序数、原子密度或分子密度有关。对于能量相同的 γ射线不同的材料、 μ也有不同的值。医疗上正是根据这一原理,来实现对人体内部组织病变的诊断和治疗,如 x 光透视, x 光CT 技术,对肿瘤的放射性治疗等。图1表示 铅、锡、铜、铝材料对 γ射线的线性吸收系数μ随能量E γ变化关系。

图中横座标以 γ光子的能量 υh 与电子静止能量mc 2的比值为单位,由图可见,对于铅低能 γ射线只有光电效应和康普顿效应,对高能 γ射线,以电子对效应为主。 为了使用上的方便,定义μm =μ/ρ为质量吸收系数,ρ为材料的质量密度。则(1)式可改写成如下的形式: m m x x e I I μ-=0 (4) 式中x m =x·ρ,称为质量厚度,单位是g/cm 2。 半吸收厚度x 1/2: 物质对 γ射线的吸收能力也常用半吸收厚度来表示,其定义为使入射 γ射线强度减弱到一半所需要吸收物质的厚度。由(1)式可得: μ2 ln 2 1= x (5) 显然也与材料的性质和 γ射线的能量有关。图2表示铝、铅的半吸收厚度与E γ的关系。若用实验方法测得半吸收厚度,则可根据(4)求得材料的线性吸收系数μ值。 三、实验内容与要求 1.按图3检查测量装置,调整探测器位置,使放射源、准直孔、探测器具有同一条中心线。 2.打开微机多道系统的电源,使微机进入多道分析器工作状态(UMS )。 3.选择合适的高压值及放大倍数,使在显示器上得到一个正确的60Co γ能谱。 4.测量不同吸收片厚度x 的60Co 的能谱,并从能谱上计算出所要的积分计数 x I 。 5.测量完毕,取出放射源,在相同条件下,测量本底计数 b I 。 6.把高压降至最低值,关断电源。 7.用最小二乘法求出 γ吸收系数μ及半吸收厚度d ?

物质对β射线的吸收

物质对β射线的吸收 PB05210153 蒋琪 实验原理 当一定能量的β射线(即高速电子束)通过物质时,与该物质原子或原子核相互作用,由于能量损失,强度会逐渐减弱,即在物质中被吸收。电子与物质相互作用的机制主要有三种: 第一,电子与物质原子的核外电子发生非弹性碰撞,使原子激发或电离,电子以此种方式损失能量称为电离损失。电离损失的能量损失可由下式给出: ?? ????--=??? ??-2329.12ln 422 4I mv NZ mv e dx dE ion π (1) 此式适用于非相对论情况,式中v 为电子速度,N 、Z 、I 分别为靶物质单位体积内的原子数、原子序数、平均激发能。由此看出,电离损失的能量与入射电子的速度、物质的原子序数、原子的平均激发能等因素有关。 第二,电子受物质原子核库仑场的作用而被加速,根据电磁理论作加速运动的带电粒子会发射电磁辐射,称为轫致辐射,使电子的部分能量以X 射线的形式放出,称为辐射损失。这主要在能量较高的电子与物质相互作用时发生。辐射损失 NE m Z dx dE rad 22∝??? ??- (2) 式中m 、E 分别为入射电子的质量、能量,Z 、N 分别为靶物质的原

子序数和单位体积中的原子数。由式(2)可以看出,β射线在物质中的辐射损失与物质的Z 2成正比,与入射电子的能量成正比。比较(1)、(2)两式,可粗略看出入射电子的能量较低时,电离损失占优势,当电子能量较高时辐射损失占优势。 除以上两种能量损失外,β射线在物质中与原子核的库仑场发生弹性散射,使β粒子改变运动方向,因电子质量小,可能发生比较大角度的散射,还可能发生多次散射,因而偏离原射束方向,使入射方向上的射线强度减弱,这种机制成为多次散射。如果散射角超过90ο ,这种散射称为反散射。 考虑一束初始强度为I 0的单能电子束,当穿过厚度为x 的物质时,强度减弱为I ,其示意图见图4.3.2-1。强度I 随厚度x 的增加而减小且服从指数规律,可表示为 x e I I μ-=0 (3) 式中μ是该物质的线性吸收系数。实验指出,不同物质的线性吸收系数有很大的差别,但随原子序数Z 的增加,质量吸收系数ρμμ/=m (ρ是该物质的密度)却只是缓慢地变化,因而常用质量厚度x d ?=ρ来代替线性厚度x ,于是式(3)变为

伽马射线吸收系数的测量

γ射线的吸收与物质吸收系数μ的测定 初阳学院综合理科081班马甲帅08800140 指导老师林根金 摘要: 本实验研究的主要是窄束γ射线在金属物质中的吸收规律。测量γ射线在不同厚度的铅、铝中的吸收系数。通过对γ射线的吸收特性,分析与物质的吸收系数与物质的面密度,厚度等因素有关。根据已知一定放射源对一定材料的吸收系数来测量该材料的厚度。 关键词:γ射线吸收系数μ60Co、137Cs放射源 引言:γ射线首先由法国科学家P.V.维拉德发现,是继α、β射线后发现的第三种原子核射线。原子核衰变和核反应均可产生γ射线。γ射线具有比X射线还要强的穿透能力。γ射线是处于激发态原子核损失能量的最显著方式,γ跃迁可定义为一个核由激发态到较低的激发态、而原子序数Z和质数A均保持不变的退激发过程。γ射线是光子,光子会与被束缚在原子中的电子、自由电子、库伦场、核子等带电体发生相互作用。不同能量的γ射线与物质的相互作用效果不同,为了有效地屏蔽γ辐射,需要根据物质对γ射线的吸收规律来选择合适的材料及厚度,反之,利用物质对γ射线的吸收规律可以进行探伤及测厚等。因此研究不同物质对γ射线的吸收规律的现实意义非常巨大,如在核技术的应用与辐射防护设计和材料科学等许多领域都有应用。 正文 1实验原理 1.1 γ射线与带电体的作用原理 γ射线与带电体的相互作用会导致三种效应中的一种。理论上讲,γ射线可能的吸收核散射有12种过程。这些效应所释放的能量在10KeV到10MeV之间的只有三种,也就是基本上每种相互作用都产生一种主要的和吸收散射过程。这三种主要过程是: 1.1.1光电效应: 低能γ光子所有的能量被一个束缚电子吸收,核电子将其能量的一部分用来克服原子对它的束缚,成为光电子;其余的能量则作为动能,发生光电效应。 1.1.2 康普顿效应: γ光子还可以被原子或单个电子散射,当γ光子的能量(约在1MeV)大大超过电子的结合能时,光子与核外电子发生非弹性碰撞,光子的一部分能量转移给电子,使它反冲出来,而散射光子的能量和运动方向都发生了变化,发生康普顿效应。 1.1.3 电子对效应: 若入射光子的能量超过1.02MeV,γ光子在带电粒子的库仑场作用下则可能产生正、负电子对,产生的电子对总动能等于γ光子能量减去这两个电子的静止质量能(2mc2=1.022MeV) 1.2 三种γ射线与带电体发生相互作用的基础上,物质对γ射线的吸收规律如下: 1.2.1作用特点:γ射线与物质原子间的相互作用只要发生一次碰撞就是一次大的能量

射线的吸收

实验1.3 射线的吸收 实验时间:2010年10月21日 【摘要】 实验中我们分别探究了γ射线在铜,铝,铅中的吸收规律。通过这次实验我们希望了解γ射线在物质中的吸收规律,同时掌握测量γ吸收系数的基本方法。 【引言】 γ射线在穿透物质时,会被物质吸收,吸收作用的大小用吸收系数来表示。物质的吸收系数的值与γ射线的能量有关,也与物质本身的性质有关。正确测定物质的吸收系数,在核技术的应用与辐射防护设计中具有十分重要的意义。例如工业上广泛应用的料位计、密度计、厚度计,医学上的γ照相技术等都是根据这一原理研究设计的。 【关键词】 铜 铝 铅γ射线 吸收 【正文】 一、 实验原理 1.窄束 射线在物质中的吸收规律。 γ射线在穿过物质时,会与物质发生多种作用,主要有光电效应,康普顿效应和电子对效应,作用的结果使γ射线的强度减弱。准直成平行束的γ射线称为窄束γ射线,单能窄束γ射线在穿过物质时,其强度的减弱服从指数衰减规律,即: 其中I 0为入射γ射线强度,I x 为透射γ射线强度,x 为γ射线穿透的样品厚度,μ为线性吸收系数。用实验的方法测得透射率T=I x /I 0与厚度x 的关系曲线,便可根据(1)式求得线性吸收系数μ值。 为了减小测量误差,提高测量结果精度。实验上常先测得多组 I x 与x 的值,再用曲线拟合来求解。则: (2) 由于γ射线与物质主要发生三种相互作用,三种相互作用对线性吸收系数μ都有贡献,可得: (3)

式中 为光电效应的贡献, 为康普顿效应的贡献, 为电子对效应的贡献。它们的值不但与γ光子的能量E r 有关,而且还与材料的原子序数、原子密度或分子密度有关。对于能量相同的γ射线不同的材料、μ也有不同的值。医疗上正是根据这一原理,来实现对人体内部组织病变的诊断和治疗,如x 光透视,x 光CT 技术,对肿瘤的放射性治疗等。图1表示铅、锡、铜、铝材料对γ射线的线性吸收系数μ随能量E 变化关系。 图中横座标以γ光子的能量h ν与电子静止能量mc 2的比值为单位,由图可见,对于铅低能γ射线只有光电效应和康普顿效应,对γ射线,以电子对效应为主。 为了使用上的方便,定义μm =μ/ρ为质量吸收系数,ρ为材料的质量密度。则(1)式可改写成如下的形式: (4) 式中x m =x·ρ,称为质量厚度,单位是g/cm 2。 半吸收厚度x 1/2: 物质对γ射线的吸收能力也常用半吸收厚度来表示,其定义为使入射γ射线强度减弱到一半所需要吸收物质的厚度。由(1)式可得: (5) 显然也与材料的性质和 射线的能量有关。图2表示铝、铅的半吸收厚度与E 的关 系。若用实验方法测得半吸收厚度,则可根据(4)求得材料的线性吸收系数μ值。 二、实验仪器 微机多道γ能谱仪,BH1224,1台 60 Co 放射源,毫居里级,1个 吸收片,铅、铜、铝各若干片 γ γγ γ

γ射线的能谱测量和吸收测定 实验报告

g射线能谱的测量 【摘要】某些物质的原子核能够发生衰变,放出我们肉眼看不见也感觉不到的射线,g 射线产生的原因正是由于原子核的能级跃迁。我们通过测量g射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。因此本实验通过使用g闪烁谱仪测定不同的放射源的g射线能谱。同时学习和掌握g射线与物质相互作用的特性,并且测定窄束g射线在不同物质中的吸收系数m。 【关键词】g射线/能谱/g闪烁谱仪 【引言】从1896年的法国科学家贝可勒尔发现放射性现象开始,经过居里夫人等一系列科学家对一些新放射性元素的发现及其性质进行研究的杰出工作后,人类便进入了对原子核能研究、利用的时代。 而原子核衰变能放出α、β、γ三种射线,这些射线可以通过仪器精确测量。本次实验主要研究γ射线,通过对γ射线谱的研究可了解核的能级结构。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。 因此本次实验研究了不同材料对于γ射线的吸收情况这是非常具有实际意义的,比如在居民区制造防空洞的时候可以使用一定厚度的抗辐射材料确保安全,而且在核电站、军事防护地以及放射源存放处等地方我们都有必要使用防辐射材料。 g射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如下图所示。 本实验主要研究的是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,仅由未经相互作用或称为未经碰撞的光子所组成。窄束γ射线再穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度随物质厚度的衰减服从指数规律。 本次实验仪器如下:

晶体X射线衍射实验报告全解

晶体X射线衍射实验报告全解

中南大学 X射线衍射实验报告 材料科学与工程学院材料学专业1305班班级 姓名学号0603130500 同组者无 黄继武实验日期2015 年12 月05 日指导教 师 评分分评阅人评阅日 期 一、实验目的 1)掌握X射线衍射仪的工作原理、操作方法; 2)掌握X射线衍射实验的样品制备方法; 3)学会X射线衍射实验方法、实验参数设置,独立完成一个衍射实验测试; 4)学会MDI Jade 6的基本操作方法; 5)学会物相定性分析的原理和利用Jade进行物相鉴定的方法; 6)学会物相定量分析的原理和利用Jade进行物相定量的方法。 本实验由衍射仪操作、物相定性分析、物相定量分析三个独立的实验组成,实验报告包含以上三个实验内容。 二、实验原理

1 衍射仪的工作原理 特征X射线是一种波长很短(约为20~0.06nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光,即当一束X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W. H. Bragg, W. L Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格定律: 2dsinθ=nλ 式中λ为X射线的波长,n为任何正整数。当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到某一点阵晶格间距为d的晶面面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。 2 物相定性分析原理 1) 每一物相具有其特有的特征衍射谱,没有任何两种物相的衍射谱是完全相同 的 2) 记录已知物相的衍射谱,并保存为PDF文件 3) 从PDF文件中检索出与样品衍射谱完全相同的物相 4) 多相样品的衍射谱是其中各相的衍射谱的简单叠加,互不干扰,检索程序能 从PDF文件中检索出全部物相 3 物相定量分析原理 X射线定量相分析的理论基础是物质参与衍射的体积活重量与其所产生的衍射强度成正比。 当不存在消光及微吸收时,均匀、无织构、无限厚、晶粒足够小的单相时,多晶物质所产生的均匀衍射环上单位长度的积分强度为: 式中R为衍射仪圆半径,V o为单胞体积,F为结构因子,P为多重性因子,M为温度因子,μ为线吸收系数。 三、仪器与材料 1)仪器:18KW转靶X射线衍射仪 2)数据处理软件:数据采集与处理终端与数据分析软件MDI Jade 6 3)实验材料:CaCO3+CaSO4、Fe2O3+Fe3O4

射线的吸收与物质吸收系数的测定

实验九γ射线的吸收与物质吸收系数μ的测定实验目的 1.了解γ射线与物质相互作用的特性 2.了解窄束γ射线在物质中的吸收规律 3.测量其在不同物质中的吸收系数 实验原理 一、γ射线与物质的作用 γ射线是由于原子核由激发态到较低的激发态退激(而原子序数Z和质量数A均保持不变)的过程中产生的,包括:(1)α或β衰变的副产品(2)核反应(3)基态激发三部分,是处于激发态原子核损失能量的最显著方式;由于γ射线具不带电、静止质量为0等特点决定了它同物质的作用方式与带电粒子不同,带电粒子(α或β粒子等)在一连串的多次电离和激发事件中不断地损失其能量,而γ射线与物质的相互作用却在单次事件中完全吸收或散射。光子γ(γ射线)通过物体时会与其中的下述带电体发生相互作用: 1)被束缚在原子中的电子; 2)自由电子(单个电子); 3)库仑场(核或电子的); 4)核子(单个核子或整个核)。 这些类型的相互作用可以导致:光子的完全吸收、弹性散射、非弹性散射三种效应中的一种(在从约10KeV到约10MeV范围内,大部分相互作用产生下列过程中的一种)表现为: 光电效应: 低能γ光子所有的能量被一个束缚电 子吸收,核电子将其能量的一部分用来克 服原子对它的束缚,成为光电子;其余的 能量则作为动能,发生光电效应。(光电效应)

康普顿效应: γ光子还可以被原子或单个电子散射, 当γ光子的能量(约在1MeV)大大超过 电子的结合能时,光子与核外电子发生非 弹性碰撞,光子的一部分能量转移给电 子,使它反冲出来,而散射光子的能量和 运动方向都发生了变化,发生康普顿效应。(康普顿效应) 电子对效应: 若入射光子的能量超过1.02MeV, γ光子在带电粒子的库仑场作用下则 可能产生正、负电子对,产生的电子对 总动能等于γ光子能量减去这两个电子 的静止质量能(2mc2=1.022MeV) (电子对效应) 从上面的讨论可以清楚地看到,当γ光子穿过吸收物质时,通过与物质原 γ子发生光电效应、康普顿效应和电子对效应损失能量;γ射线一旦与吸收物质原子发生这三种相互作用,原来能量为hν的光子就消失,或散射后能量改变、并偏离原来的入射方向;总之,一旦发生相互作用,就从原来的入射γ束中移去。 二、物质对γ射线的吸收规律: 作用特点:γ射线与物质原子间的相互作用只要发生一次碰撞就是一次大的能量转移;它不同于带电粒子穿过物质时,经过许多次小能量转移的碰撞来损失它的能量。带电粒子在物质中是逐渐损失能量,最后停止下来,有射程概念;γ射线穿过物质时,强度逐渐减弱,按指数规律衰减,不与物质发生相互作用的光子穿过吸收层,其能量保持不变,因而没有射程概念可言,但可用“半吸收厚度”来表示γ射线对物质的穿透情况。 吸收规律:本实验研究的主要是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,通过吸收片后的γ光子,仅由未经相互作用或称为未经碰撞的光子所组成。“窄束”一词是实验上通过准直器得到细小的束而

实验2γ射线的吸收与物质吸收系数μ的测定实验报告

近代物理实验报告γ射线的吸收与物质吸收系数测定 学院数理与信息工程学院 班级光信081班 姓名陈亮 学号08620114 时间2011年04月27日

γ射线的吸收与物质吸收系数μ的测定 班级:光信081 姓名:陈亮学号:08620114 摘要: 学会NaI(Tl)单晶Υ闪烁体整套装置的操作、调整和使用;在此基础上测量137Cs和60Co 的Υ能谱,求出能量变化率、峰康比、线性等各项指标,并分析谱形;了解多道脉冲幅度分析器在NaI(Tl)单晶Υ谱测量中的数据采集及其基本功能,在数据处理中包括对谱形进行光滑、寻峰,曲线拟合等。通过测量137Cs和60Co的Υ射线的吸收曲线,研究Υ射线与物质(被束缚在原子中的电子、自有电子、库仑场、核子)相互作用的特性,了解窄束Υ射线在物质中的吸收规律及测量其在不同物质中的吸收系数。 关键字: Υ射线能谱物质吸收系数μ光电效应康普顿效应电子对效应 引言: 原子核由高能级向低能级跃迁时会辐射射线,它是一种波长极短的电磁波,其能量由原子核跃迁前后的能级差来表示即:射线与物质发生相互作用则产生次级电子或能量较低的射线,将射线的次级电子按不同能量分别进行强度测量,从而得到辐射强度按能量的分布,即为“能谱”。测量能谱的装置称为“能谱仪”。 闪烁探测器是利用带电粒子或非带电粒子与某些物质的相互作用下转化成为带电粒子对物质原子的激发,从而会产生发光效应的特性来测量射线的仪器。它的主要优点是即能测量各种类型的带电粒子,又能探测中性粒子;即能测量粒子强度,又能测量粒子能量;并且探测效率高。 γ射线,又称γ粒子流,是原子核能级跃迁蜕变时释放出的射线,是波长短于0.2埃的电磁波。首先由法国科学家P.V.维拉德发现,是继α、β射线后发现的第三种原子核射线。原子核衰变和核反应均可产生γ射线。 γ射线的波长比X射线要短,所以γ射线具有比X射线还要强的穿透能力。当γ射线通过物质并与原子相互作用时会产生光电效应、康普顿效应和正负电子对三种效应。原子核释放出的γ光子与核外电子相碰时,会把全部能量交给电子,使电子电离成为光电子,此即光电效应。由于核外电子壳层出现空位,将产生内层电子的跃迁并发射X射线标识谱。高能γ光子(>2兆电子伏特)的光电效应较弱。γ光子的能量较高时,除上述光电效应外,还可能与核外电子发生弹性碰撞,γ光子的能量和运动方向均有改变,从而产生康普顿效应。当γ光子的能量大于电子静质量的两倍时,由于受原子核的作用而转变成正负电子对,此效应随γ光子能量的增高而增强。γ光子不带电,故不能用磁偏转法测出其能量,通常利用γ光子造成的上述次级效应间接求出,例如通过测量光电子或正负电子对的能量推算出来。此外还可用γ谱仪(利用晶体对γ射线的衍射)直接测量γ光子的能量。由荧光晶体、光电倍增管和电子仪器组成的闪烁计数器是探测γ射线强度的常用仪器。

X射线实验报告

X射线的吸收和单晶布拉格衍射 及其能谱特性研究实验 实验报告 姓名:任宇星班级:F1407204(致远物理)学号: 5140729003 指导老师:叶庆好实验日期:2016.4.1 一、实验目的 1. 初步了解X射线的产生、基本性质; 2. 观察X射线影像; 3. 研究X射线的衰减与吸收体厚度的关系; 4. 研究X射线的衰减与吸收体材料的关系. 二、实验内容 1.实验研究X射线衰减与吸收体物质材料厚度和吸收体材料的关系,并分析实验结果。 2.测定NaCl 单晶的X射线布拉格衍射谱。 3.研究杜红—昆特关系,测定普朗克常数,并分析实验结果。 4.研究X射线的边缘吸收,分析解释实验现象。

三、实验仪器 X射线管,NaCl晶体,吸收体样品,Zr滤罩 四、实验原理 1、研究X射线的衰减与吸收体厚度的关系 理论上透射强度R= R0 X射线衰减与吸收体物质材料厚度的关系满足Lambert定律,即透射率T 随吸收体物质材料厚度的增大,呈指数衰减。 或 其中T为透射率,为透射前计数和透射后计数的比值,为衰减系数,x为材料厚度。 不同厚度的吸收样品置于同一圆弧状底片上,中心间距10°,(0°处厚度为0)则对准第一个中心位置,设置好仪器参数不变,逐次将底片旋转10°,记下透射强度(各角度均测100秒透射计数平均值),即可得到X射线的衰减与吸收体厚度的关系。 再加上Zr滤罩,每个位置取300s计数平均值,重复实验。 2、研究X射线的衰减与吸收体物质的关系 与上实验装置类似,不同材料的吸收片间隔排列,依次旋转底片即得X射线的衰减与吸收体材料的关系。

3、测定NaCl 单晶的X射线布拉格衍射谱 布拉格衍射公式: 其中d为晶面间距,n为衍射级数,为入射波波长。 将NaCl单晶置于X射线管中,等时间间隔旋转一定角度。测得各角度下的衍射强度即得其布拉格衍射谱。 已知的初级衍射角为7.2度,将样品台和探测头调整至0点,在2度至25度之间扫描,即可得到NaCl单晶的布拉格衍射谱。 4、研究杜红—昆特关系,测定普朗克常数 X光子能量关系: 则: 即最小波长和电压的倒数成正比。 故测得即可计算普朗克常量h. 用已有的程序进行计算波长的值: 其中d=282.01pm,由此可以得到R关于波长的曲线 5、研究X射线的边缘吸收

相关文档
最新文档