一种改进的B超图像自适应加权中值滤波

一种改进的B超图像自适应加权中值滤波
一种改进的B超图像自适应加权中值滤波

收稿日期:1999 12 17.

作者简介:李 军(1973 ),男,硕士研究生;武汉,华中理工大学图像与人工智能研究所(430074).基金项目:教育部跨世纪优秀人才基金资助项目.

一种改进的B 超图像自适应加权中值滤波

李 军 丁明跃

华中理工大学图像识别与人工智能研究所图像信息处理与智能控制教育部重点实验室

摘要:将Speckle 噪声的统计特性及超声图像的对数压缩变换应用于加权中值滤波,对权系数的选择进行了改进.使得能够保留更多的细节内容,而对Speckle 噪声的去除能力并没有降低.实验证明所提出的方法具有良好的效果.

关 键 词:超声图像;中值滤波;K 分布;噪声滤除;Speckle 噪声

中图分类号:T P75 文献标识码:A 文章编号:1000 8616(2000)06 0071 03

超声诊断在现代医学诊断中占有重要地位.超声图像中存在着Speckle 噪声严重影响了图像质量,给医学诊断与自动识别带来了困难.1989年Loupas 提出了一种自适应的加权中值滤波方法(AWMF)[1]

.取得了一定效果.但他所利用的Speckle 噪声模型不够精确,影响了去噪效果.本文将Speckle 噪声模型的二阶矩统计量运用于自适应中值滤波中修改权系数,提出了一种新的自适应中值滤波方法,在有效抑制Speckle 噪声的同时,完整保留了图像细节信息.

1 B 超图像中Speckle 噪声模型

B 超图像中存在Speckle 噪声.研究结果表明:当每个可分辨的单元(由声束的宽度和接受器决定)中散射元较多(>10)时,噪声信号服从

Rayleigh 分布,即

P(x )=(x 2

/ 2

)exp [-x 2

/(2 2

)] (x 0),式中,x 是散射强度; 2是每个散射元散射强度的方差.散射元较少时,噪声信号服从K 分布,即

P (x )=[2b /( ( )](bx /2) K -1(bx ),式中,b =2[ /(E (x 2

)]1/2

(x 0), >0是K 分布的描述散射密度的特征参数,K 是修正的Bessel 函数; 是Ganma 函数;E {x 2

}是x 的二阶矩.

在超声图像中,由于回声信号的动态变化范围很大,而可显示的动态范围很小,这就需要对回声信号做一个对数压缩,从而改变了回声信号的原有统计特性.下面简单地分析经过对数压缩后

的Speckle 噪声的统计模型.

对数压缩可以写成s =C ln s i +G ,式中,s i 是输入信号;s 是输出信号;C 是对数压缩范围;G 是线性增益.

对于Rayleigh 分布,经过对数压缩后,有:

E {s}=!-?#;Var {s}=?2C 2/24,式中,#=C/2;!=C ln (2 2

)/2;? 0.5772.对于K 分布,根据文献[2],其均值和方差分别为:E {s}=G +(C/2)[ln (2 2)-(?+1/(2 ));

Var {s}=(C 2/4)[(?2

/6)(1+1/ )-1/(4 2)+?2/ -?/ + !(3)/(2 )- !(2)/ ]=(?2C 2/24)(1+0.608/ -0.152/ 2

).

(1)

2 一种修改的自适应中值滤波算法

文献[1]定义了如下的加权中值滤波权系数表达式(局部窗口大小为2N +1):

W (i,j )=[W (N +1,N +1)-adD/m ],(2)

式中,a 是常量;d 是点(i,j )到局部窗口中心的距离;D 和m 是局部窗口的方差与均值.在式(2)中,因为a,d ,D 和m 均大于或等于0,显然中心点的权值最大.一般说来,在那些比较均匀的区域,若出现突变则主要是噪声引起的.在这些区域内,局部方差很小,adD/m 接近于零,区域内各像素点的权值大致相等,等同于一般的中值滤波,从而可将突变点去除.在那些包含细节信息或边界的区域,局部方差很大,因此区域内像素点权

第28卷第6期 华 中 理 工 大 学 学 报 Vol.28 No.6

2000年 6月 J.Huazhong Univ.of Sci.&T ech. Jun. 2000

值随着与中心点距离增大迅速减小,使窗口中心附近的灰度值得以保留,达到保留细节的目的.实验结果证明,AWM F比一般的中值滤波保留了更多的细节.

进一步分析发现,对于D和m值都较小的区域,D/m仍可能很大,这样区域内各像素点的权值迅速减小,使得去噪的效果不如m值较大的区域.另外文献[1]中的D/m可以应用于任何类型的图像中,为了得到较好的滤波效果,只能人工调节参数a.式(2)在权值的选择上没有考虑B超图像的特点,D/m不能充分反映B超图像的特征,影响了滤波效果.针对这些不足,考虑到B超的Speckle噪声的统计特性,本文针对B超图像提出了一种新的权值计算公式(窗口大小为2N+1):

W(i,j)=[W(N+1,N+1)-df(i,j)()],

(3)式中,

f(i,j)()=1+0.608/-0.152/2,(4) f(i,j)()是的函数,是点(i,j)的散射密度.在式(3)中,用f(i,j)()来反映B超图像的局部信息.从B超成像过程知道,当每个可分辨的像元中所包含的散射元越多,散射所造成的Speckle噪声就越大.相反,散射元越少,Speckle 噪声将越小.在噪声小的区域,应该减小平滑作用.反映到加权中值滤波中就应使局部窗口中心点的权值相对较大,才能保留住图像细节.在噪声大的区域,就应该使局部窗口中心点的权值相对减小,窗口周围像素点的权值相对增大,增大平滑作用滤除噪声.为了满足上述要求,f(i,j)()必须是的减函数.事实上,式(4)不仅满足减函数的要求,而且代表了经过对数压缩后B超信号的方差.由式(1)可以得到

f()=Var{s}/[(?2/24)C2],(5) Var{s}可以由局部窗口的方差来估计.因而式(3)可以修改为

W(i,j)={W(N+1,N+1)-

dD(i,j)/[(?2/24)C2]},(6)式中,D(i,j)是以(i,j)为中心点的局部窗口的方差;C是压缩范围.式(6)同样也是中心点的权值最大,因而保留了中心像素,提供图像的细节信息.对于中值滤波去掉的细节信息,则由周围的点权值加大来保留.在权值的确定上考虑了B超成像过程中Speckle噪声特性,所以去除噪声与

边缘保持特性将优于文献[1]中所采用的AWMF算法.它的另一个优点是不需要确定参数.

为了避免求中值时算法执行效率下降,本研究采用文献[1]所提出的求中值算法,提出的滤波算法分为4步:

a.求出局部窗口的局部统计量,即局部方差.

b.按式(6)计算每个像素的权值系数.

c.按局部窗口内从上到下,从左至右扫描顺序产生两个一维序列{w(l),grey(l)},l是扫描的序号,w(l)和grey(l)分别是第l个元素的权值和灰度值.将一维序列grey(l)从小到大排序,得到grey?(l).w(l)也进行相应调整,以使得权值序列中第l个元素是grey?(l)对应的权值,调整后得到的权值序列记为w?(l).

d.求中值.具体算法是#M l=0w?(l) #w(m,n)+1/2,#w(m,n)是局部窗口内所有像素的权值之和.M是中值所对应的序号,即grey?(M)就是中值.

可以看出,算法在求中值时也是对局部窗口内的像素排序,因此花在排序上的计算量与普通中值滤波是相同的.

3 实验结果与分析

为了检验本文所提出的方法的有效性,对不同B超仪上的超声图像进行大量实验与比较.部分实验结果见图1,窗口大小为5?5,a=7,权值

图1 B超图像中值滤波实验结果之一

W(i,j)=150,对数压缩C=10.在图1和图2中,(a)是原图,(b),(c),(d)和(e)分别是普通中值滤波,Loupas提出的AWMF,Dutt提出的线性滤波和本文提出的方法的结果.从实验结果可以看到,线性滤波的滤波效果最差.普通中值滤波滤除了噪声,也使图像的细节部分模糊了. AWMF去掉了噪声,仅保留了部分图像细节.由

72

华 中 理 工 大 学 学 报 2000年

于考虑了图像的局部信息,效果比普通中值滤波好.这三种方法在实际使用时由于对图像细节保

留不够理想,

从而给下一步的图像处理或医生诊

图2 B 超图像中值滤波实验结果之二

断都会造成困难.例如在图1中箭头所指部分是胎儿肢体影像,经中值滤波与AWFM 处理后,已基本上看不到原状了,而运用本文的方法处理后基本保持了原状.这是因为在中值滤波及AWMF

中没有考虑B 超的成像模型,因此图像中的小斑块认为是噪声而滤除了.在噪声较强的近场A 区和远场B 区,本文所提出的方法也取得了与中值滤波和AWMF 相同的滤波效果.对从另一台B 超仪采得的图像进行实验,结果见图2.在图2中窗口大小为5?5,a =5,W (i,j )=137,C =9.从实验结果看,经过本文方法滤波后的图像质量大大提高,并且保留了大部分图像细节.例如在箭头所指区域,径中值滤波、AWM F 以及线形滤波方法处理后的结果中难以找到分隔胎儿的窄缝,而运用本文方法却完整地保留了这一特性,并有效地抑制了噪声.

[1]Loupas T.An A daptive Weighted M edian F ilter for

Speckle Suppression in M edical ultrasonic Image.IEEE T rans on.Cir cuits Syst,1989,CA S 36(1):129~135[2]Dutt V inayak.Adaptive Speckle Reduction F ilter for

Log Compressed B Scan I mag es.IEEE T r ans.M ed.Imag,1996,15(6):802~813

An Improved Adaptive Weighted Median Filter for B Scan Image

L i J un Ding M ingyue

Abstract:In this paper,an improved method for smoothing speckle noise in ultrasonic im ages is proposed by applying the w eighted median filter based on the statistic characteristics of speckle noise and log com

pression in ultrasonic imaging.It can preserve more image details w hile the ability of noise reduction is kept.The results demonstrate that the feasibility of the approach is very promising.Key words:ultrasonic image;median filter;K distribution;noise filter;speckle noise

Li Jun Doctoral Candidate;Institute of Pattern Recognition &AI,HU ST ,Wuhan 430074,China.

华中科技大学简介(%)

&&&国家级重点学科(6个)

机械制造及其自动化

材料加工工程热能工程电机与电器普外?器官移植环境卫生学

73第6期 李 军等:一种改进的B 超图像自适应加权中值滤波

改变图像质量的几种滤波方法比较

1 改变图像质量的几种滤波方法比较 一、概述 滤波是图像处理重要技术之一,是提高图像质量的主要手段。对输入的图像实现直方图均衡化;设计完成同态滤波器,并用之改善图象质量;对某图像加入不同类型﹑不同强度的噪声(周期﹑椒盐噪声),并分别用空间域和频率域的方法抑制噪声。 二、图像处理过程 1.直方图均衡化 输入一幅图片,统计原图直方图数组,用一个数组hf 记录hf(i);i 从0到255,令pa(i)=pa(i-1)+hf(i),其中hf(i)为灰度值为i 的像素点占总像素点的概率;一个数组F 记录新的索引值,即令F(i,j)= (pa(f(i,j)+1))*255;依次循环每一个像素,取原图的像素值作为数组F 的下标值,取该下标对应的数组值为均衡化之后的像素值。结果显示原图图像、原图直方图,均衡化后的图像和直方图,并用于对比。 其中图像中灰度级出现的概率近似为: ()n n r p k k r =,k=0,1,2,…,L -1。而变换函数为:00()(),0,1,2,,1 k k j k k r j j j n s T r p r k L n ======-∑∑ 2.巴特沃斯同态滤波器: 图像f(x,y)是由光源照度场(入射分量)fi(x,y)和场景中物体反射光(反射分量)的反射场fr(x,y)两部分乘积产生,关系式为: f(x,y)=fi(x,y)*fr(x,y); fi(x,y)的性质取决于照射源,fr(x,y)取决于成像物体的特性。一般情况下,照度场f i ( x , y) 的变化缓慢,在频谱上其能量集中于低频;而反射场f r ( x , y) 包含了所需要的图像细节信息,它在空间的变化较快,其能量集中于高频. 这样就可以根据照度—反射模型将图像理解为高频分量与低频分量乘积的结果。由于两个函数乘积的傅立叶变换是不可分的,故不能直接对照度和反射的频率部分分别进行操作。

自适应滤波LMS算法及RLS算法及其仿真.

自适应滤波 第1章绪论 (1) 1.1自适应滤波理论发展过程 (1) 1.2自适应滤波发展前景 (2) 1.2.1小波变换与自适应滤波 (2) 1.2.2模糊神经网络与自适应滤波 (3) 第2章线性自适应滤波理论 (4) 2.1最小均方自适应滤波器 (4) 2.1.1最速下降算法 (4) 2.1.2最小均方算法 (6) 2.2递归最小二乘自适应滤波器 (7) 第3章仿真 (12) 3.1基于LMS算法的MATLAB仿真 (12) 3.2基于RLS算法的MATLAB仿真 (15) 组别:第二小组 组员:黄亚明李存龙杨振

第1章绪论 从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过 程称为滤波。相应的装置称为滤波器。实际上,一个滤波器可以看成是 一个系统,这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、 或者希望得到的有用信号,即期望信号。滤波器可分为线性滤波器和非 线性滤波器两种。当滤波器的输出为输入的线性函数时,该滤波器称为线 性滤波器,当滤波器的输出为输入的非线性函数时,该滤波器就称为非线 性滤波器。 自适应滤波器是在不知道输入过程的统计特性时,或是输入过程的统计特性发生变化时,能够自动调整自己的参数,以满足某种最佳准则要求的滤波器。 1.1自适应滤波理论发展过程 自适应技术与最优化理论有着密切的系。自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。 1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。并利用Wiener.Hopf方程给出了对连续信号情况的最佳解。基于这~准则的最佳滤波器称为维纳滤波器。20世纪60年代初,卡尔曼(Kalman)突破和发展了经典滤波理论,在时间域上提出 了状态空间方法,提出了一套便于在计算机上实现的递推滤波算法,并且适用于非平稳过程的滤波和多变量系统的滤波,克服了维纳(Wiener)滤波理论的局限性,并获得了广泛的应用。这种基于MMSE准则的对于动态系统的离散形式递推算法即卡尔曼滤波算法。这两种算法都为自适应算法奠定了基础。 从频域上的谱分析方法到时域上的状态空间分析方法的变革,也标志 着现代控制理论的诞生。最优滤波理论是现代控制论的重要组成部分。在控制论的文献中,最优滤波理论也叫做Kalman滤波理论或者状态估计理论。 从应用观点来看,Kalman滤波的缺点和局限性是应用Kalman滤波时要求知道系统的数学模型和噪声统计这两种先验知识。然而在绝大多数实际应用问题中,它们是不知道的,或者是近似知道的,也或者是部分知道的。应用不精确或者错误的模型和噪声统计设计Kalman滤波器将使滤波器性能变坏,导致大的状态估计误差,甚至使滤波发散。为了解决这个矛盾,产生了自适应滤波。 最早的自适应滤波算法是最小JY(LMS)算法。它成为横向滤波器的一种简单而有效的算法。实际上,LMS算法是一种随机梯度算法,它在相对于抽头权值的误差信号平方幅度的梯度方向上迭代调整每个抽头权 值。1996年Hassibi等人证明了LMS算法在H。准则下为最佳,从而在理论上证明了LMS算法具有孥实性。自Widrow等人1976年提出LMs自适应滤波算法以来,经过30多年的迅速发展,已经使这一理论成果成功的应用到通信、系统辨识、信号处理和自适应控制等领域,为自适应滤波开辟了新的发展方向。在各种自适应滤波算法中,LMS算法因为其简单、计算量小、稳定性好和易于实现而得到了广泛应用。这种算法中,固定步长因子μ对算法的性能有决定性的影响。若μ较小时,算法收敛速度慢,并且为得到满意的结果需要很多的采样数据,但稳态失调误差

自适应滤波器的dsp实现

学号: 课程设计 学院 专业 年级 姓名 论文题目 指导教师职称 成绩 2013年 1 月 10 日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1 自适应滤波器原理 (2) 2 自适应滤波器算法 (3) 3 自适应滤波算法的理论仿真与DSP实现 (5) 3.1 MATLAB仿真 (5) 3.2 DSP的理论基础 (7) 3.3 自适应滤波算法的DSP实现 (9) 4 结论 ............................................... 错误!未定义书签。致谢 ................................................. 错误!未定义书签。参考文献 ............................................. 错误!未定义书签。

自适应滤波器算法的DSP实现 学生姓名:学号: 学院:专业: 指导教师:职称: 摘要:本文从自适应滤波器的基本原理、算法及设计方法入手。本设计最终采用改进的LMS算法设计FIR结构自适应滤波器,并采用MATLAB进行仿真,最后用DSP 实现了自适应滤波器。 关键词:DSP(数字信号处理器);自适应滤波器;LMS算法;FIR结构滤波器 DSP implementation of the adaptive filter algorithm Abstract:In this article, starting from the basic principles of adaptive filter and algorithms and design methods. Eventually the design use improved the LMS algorithm for FIR adaptive filter,and use MATLAB simulation, adaptive filter using DSP. Key words:DSP;adaptive filter algorithm;LMS algorithm;FIR structure adaptive filter 引言 滤波是电子信息处理领域的一种最基本而又极其重要的技术。在有用信号的传输过程中,通常会受到噪声或干扰的污染。利用滤波技术可以从复杂的信号中提取所需要的信号,同时抑制噪声或干扰信号,以便更有效地利用原始信号。滤波器实际上是一种选频系统,它对某些频率的信号予以很小的衰减,让该部分信号顺利通过;而对其他不需要的频率信号则予以很大的衰减,尽可能阻止这些信号通过。在电子系统中滤波器是一种基本的单元电路,使用很多,技术也较为复杂,有时滤波器的优劣直接决定产品的性能,所以很多国家非常重视滤波器的理论研究和产品开发[1]。近年来,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波。 自适应滤波器是统计信号处理的一个重要组成部分。在实际应用中,由于没有充足的信息来设计固定系数的数字滤波器,或者设计规则会在滤波器正常运行时改变,因此我们需要研究自适应滤波器。凡是需要处理未知统计环境下运算结果所产生的信

实验三常用图像滤波方法

实验三常用图像滤波方法 一、实验目的 1、熟悉并掌握MATLAB图像处理工具箱的使用; 2、理解并掌握常用的图像的滤波技术。 二、实验环境 MATLAB 6.5以上版本、WIN XP或WIN7计算机 三、相关知识 1 imnoise imnoise函数用于对图像生成模拟噪声,如: i=imread('e:\w01.tif'); j=imnoise(i,'gaussian',0,0.02);模拟均值为0方差为0.02的高斯噪声,j=imnoise(i,'salt&pepper', 0.04) 模拟叠加密度为0.04的椒盐噪声 2 fspecial fspecial函数用于产生预定义滤波器,如: h=fspecial('sobel');%sobel水平边缘增强滤波器 h=fspecial('gaussian');%高斯低通滤波器 h=fspecial('laplacian');%拉普拉斯滤波器 h=fspecial('log');%高斯拉普拉斯(LoG)滤波器 h=fspecial('average');%均值滤波器 3 基于卷积的图像滤波函数 imfilter函数,filter2函数,二维卷积conv2滤波,都可用于图像滤波,用法类似,如: i=imread('e:\w01.tif'); h=[1,2,1;0,0,0;-1,-2,-1];%产生Sobel算子的水平方向模板

j=filter2(h,i); 或者: h = fspecial(‘prewitt’) I = imread('cameraman.tif'); imshow(I); H = fspecial('prewitt‘); %预定义滤波器 M = imfilter(I,H); imshow(M) 或者: i=imread('e:\w01.tif'); h=[1,1,1;1,1,1;1,1,1]; h=h/9; j=conv2(i,h); 4 其他常用滤波举例 (1)中值滤波 medfilt2函数用于图像的中值滤波,如: i=imread('e:\w01.tif'); j=medfilt2(i,[M N]);对矩阵i进行二维中值滤波,领域为M*N,缺省值为3*3 (2)利用拉氏算子锐化图像, 如: i=imread('e:\w01.tif'); j=double(i); h=[0,1,0;1,-4,0;0,1,0];%拉氏算子 k=conv2(j,h,'same');

MATLAB课程设计(自适应中值滤波)

信息工程系课程设计报告 课程MATLAB课程设计 专业通信工程 班级 2级本科二班 学生姓名1 景学号114 学生姓名2 学号1414 学生姓名3 王学号6 学生姓名4 学号31 学生姓名4 学号02 二〇一四年十二月

目录 目录 (1) 摘要: (2) 关键词: (2) 1.算法描述 (2) 1.1 噪声点 (3) 1.2 窗口尺寸选择 (3) 1.3求滤波窗口内中值,并替换像素点。 (3) 2程序实现 (4) 2.1准备和描述 (4) 2.2扩大窗口、确定窗口 (5) 2.3 确定最大、最小值和中值 (6) 2.4中值替换像素点、输出图像 (7) 实验结果 (9) 参考文献 (9)

摘要:通过本次课程设计,主要训练和培养学生综合应用所学MATLAB课程的自适应中值的相关知识,独立学习自适应中值滤波的原理及处理方式。学会扩大窗口并找到其区域内的中值、最小值、以及最大值,然后用中值代替像素点。通过自主学习和查阅资料来了解程序的编写及改进,并用MATLAB进行仿真。 关键词:自适应中值滤波灰度值椒盐噪声像素点.

1.算法描述 1.1 噪声点 脉冲噪声是图像处理中常见的一类,中值滤波器对消除脉冲噪声非常有效。噪声脉冲可以是正的(盐点),也可以是负的(胡椒点),所以也称这种噪声为“椒盐噪声”。椒盐噪声一般总表现为图像局部区域的最大值或最小值,并且受污染像素的位置是随机分布的,正负噪声点出现的概率通常相等。图像噪声点往往对应于局部区域的极值。 1.2窗口尺寸选择 滤波窗口尺寸的选择影响滤波效果,大尺寸窗口滤波能力强,但细节保持能力较弱;小尺寸窗口能保持图像大量细节但其滤波性能较低。根据噪声密度的大小自适应地选择滤波窗口可以缓和滤波性能与细节保持之间的矛盾,同时也增加了算法的时间复杂度。从形状看来窗口方向要沿着边缘和细节的方向,不能穿过它们也不能把它们和周围相差很大的像素包含在同一窗口中否则边缘和细节会被周围像素模糊。 1.3求滤波窗口内中值,并替换像素点。 设f ij为点(i,j)的灰度,A i,j为当前工作窗口,f min、f max 和f med分别为A i,j中的灰度最小值、灰度最大值和灰度中值, A

自适应滤波器设计与Matlab实现

自适应滤波器:根据环境的改变,使用自适应算法来改变滤波器的参数和结构。这样的滤波器就称之为自适应滤波器。 数学原理编辑 以输入和输出信号的统计特性的估计为依据,采取特定算法自动地调整滤波器系数,使其达到最佳滤波特性的一种算法或装置。自适应滤波器可以是连续域的或是离散域的。离散域自适应滤波器由一组抽头延迟线、可变加权系数和自动调整系数的组成。附图表示一个离散域自适应滤波器用于模拟未知离散系统的信号流图。自适应滤波器对输入信号序列x(n)的每一个样值,按特定的算法,更新、调整加权系数,使输出信号序列y(n)与期望输出信号序列d(n)相比较的均方误差为最小,即输出信号序列y(n)逼近期望信号序列d(n)。 20世纪40年代初期,N.维纳首先应用最小均方准则设计最佳线性滤波器,用来消除噪声、预测或平滑平稳随机信号。60年代初期,R.E.卡尔曼等发展并导出处理非平稳随机信号的最佳时变线性滤波设计理论。维纳、卡尔曼-波色滤波器都是以预知信号和噪声的统计特征为基础,具有固定的滤波器系数。因此,仅当实际输入信号的统计特征与设计滤波器所依据的先验信息一致时,这类滤波器才是最佳的。否则,这类滤波器不能提供最佳性能。70年代中期,B.维德罗等人提出自适应滤波器及其算法,发展了最佳滤波设计理论。 以最小均方误差为准则设计的自适应滤波器的系数可以由维纳-霍甫夫方程解得 式中W(n)为离散域自适应滤波器的系数列矩阵(n)为输入信号序列x(n)的自相关矩阵的逆矩阵,Φdx(n)为期望输出信号序列与输入信号序列x(n)的互相关列矩阵。 B.维德罗提出的一种方法,能实时求解自适应滤波器系数,其结果接近维纳-霍甫夫方程近似解。这种算法称为最小均方算法或简称 LMS法。这一算法利用最陡下降法,由均方误差的梯度估计从现时刻滤波器系数向量迭代计算下一个时刻的系数向量 式中憕【ε2(n)】为均方误差梯度估计, k s为一负数,它的取值决定算法的收敛性。要求,其中λ为输入信号序列x(n)的自相关矩阵最大特征值。 自适应 LMS算法的均方误差超过维纳最佳滤波的最小均方误差,超过量称超均方误差。通常用超均方误差与最小均方误差的比值(即失调)评价自适应滤波性能。

数字图像处理-图像去噪方法

图像去噪方法 一、引言 图像信号在产生、传输和记录的过程中,经常会受到各种噪声的干扰,噪声可以理解为妨碍人的视觉器官或系统传感器对所接收图像源信 息进行理解或分析的各种元素。噪声对图像的输入、采集、处理的各个环节以及最终输出结果都会产生一定影响。图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等。我们平常使用的滤波方法一般有均值滤波、中值滤波和小波滤波,他们分别对某种噪声的滤除有较好的效果。对图像进行去噪已成为图像处理中极其重要的内容。 二、常见的噪声 1、高斯噪声:主要有阻性元器件内部产生。 2、椒盐噪声:主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生泊松噪声。 3、量化噪声:此类噪声与输入图像信号无关,是量化过程存在量化误差,再反映到接收端而产生,其大小显示出数字图像和原始图像差异。 一般数字图像系统中的常见噪声主要有高斯噪声和椒盐噪声等,减少噪声的方法可以在图像空间域或在图像频率域完成。在空间域对图像处理主要有均值滤波算法和中值滤波算法.图像频率域去噪方法

是对图像进行某种变换,将图像从空间域转换到频率域,对频率域中的变换系数进行处理,再进行反变换将图像从频率域转换到空间域来达到去除图像噪声的目的。将图像从空间转换到变换域的变换方法很多,常用的有傅立叶变换、小波变换等。 三、去噪常用的方法 1、均值滤波 均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。其基本原理是用均值替代原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在 f?sf(x,y),其中,s为模板,M为该点上的灰度g(x,y),即g x,y=1 M 该模板中包含当前像素在内的像素总个数。这种算法简单,处理速度快,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别是在边缘和细节处。而且邻域越大,在去噪能力增强的同时模糊程度越严重。

自适应滤波算法的研究分析

自适应滤波算法的研究 第1章绪论 1.1课题背景 伴随着移动通信事业的飞速发展,自适应滤波技术应用的范围也日益扩大。早在20世纪40年代,就对平稳随机信号建立了维纳滤波理论。根据有用信号和干扰噪声的统计特性(自相关函数或功率谱),用线性最小均方误差估计准则设计的最佳滤波器,称为维纳滤波器。这种滤波器能最大程度地滤除干扰噪声,提取有用信号。但是,当输入信号的统计特性偏离设计条件,则它就不是最佳的了,这在实际应用中受到了限制。到60年代初,由于空间技术的发展,出现了卡尔曼滤波理论,即利用状态变量模型对非平稳、多输入多输出随机序列作最优估计。现在,卡尔曼滤波器己成功地应用到许多领域,它既可对平稳的和非平稳的随机信号作线性最佳滤波,也可作非线性滤波。实质上,维纳滤波器是卡尔曼滤波器的一个特例。 在设计卡尔曼滤波器时,必须知道产生输入过程的系统的状态方程和测量方程,即要求对信号和噪声的统计特性有先验知识,但在实际中,往往难以预知这些统计特性,因此实现不了真正的最佳滤波。 Widrow B等于1967年提出的自适应滤波理论,可使自适应滤波系统的参数自动地调整而达到最佳状况,而且在设计时,只需要很少的或根本不需要任何关于信号与噪声的先验统计知识。这种滤波器的实现差不多象维纳滤波器那样简单,而滤波性能几乎如卡尔曼滤波器一样好。因此,近十几年来,自适应滤波理论和方法得到了迅速发展。[1] 自适应滤波是一种最佳滤波方法。它是在维纳滤波,Kalman滤波等线性滤波基础上发展起来的一种最佳滤波方法。由于它具有更强的适应性和更优的滤波性能。从而在工程实际中,尤其在信息处理技术中得到广泛的应用。 自适应滤波的研究对象是具有不确定的系统或信息过程。“不确定”是指所研究的处理信息过程及其环境的数学模型不是完全确定的。其中包含一些未知因数和随机因数。

自适应滤波器毕业设计论文

大学 数字信号处理课程要求论文 基于LMS的自适应滤波器设计及应用 学院名称: 专业班级: 学生姓名: 学号: 2013年6月

摘要自适应滤波在统计信号处理领域占有重要地位,自适应滤波算法直接决定着滤波器性能的优劣。目前针对它的研究是自适应信号处理领域中最为活跃的研究课题之一。收敛速度快、计算复杂性低、稳健的自适应滤波算法是研究人员不断努力追求的目标。 自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。研究自适应滤波器可以去除输出信号中噪声和无用信息,得到失真较小或者完全不失真的输出信号。本文介绍了自适应滤波器的理论基础,重点讲述了自适应滤波器的实现结构,然后重点介绍了一种自适应滤波算法最小均方误差(LMS)算法,并对LMS算法性能进行了详细的分析。最后本文对基于LMS算法自适应滤波器进行MATLAB仿真应用,实验表明:在自适应信号处理中,自适应滤波信号占有很重要的地位,自适应滤波器应用领域广泛;另外LMS算法有优也有缺点,LMS算法因其鲁棒性强特点而应用于自回归预测器。 关键词:自适应滤波器,LMS算法,Matlab,仿真

1.引言 滤波技术在当今信息处理领域中有着极其重要的应用。滤波是从连续的或离散的输入数据中除去噪音和干扰以提取有用信息的过程,相应的装置就称为滤波器。滤波器实际上是一种选频系统,他对某些频率的信号予以很小的衰减,使该部分信号顺利通过;而对其他不需要的频率信号予以很大的衰减,尽可能阻止这些信号通过。滤波器研究的一个目的就是:如何设计和制造最佳的(或最优的)滤波器。Wiener于20世纪40年代提出了最佳滤波器的概念,即假定线性滤波器的输入为有用信号和噪音之和,两者均为广义平稳过程且己知他们的二阶统计过程,则根据最小均方误差准则(滤波器的输出信号与期望信号之差的均方值最小)求出最佳线性滤波器的参数,称之为Wiener滤波器。同时还发现,在一定条件下,这些最佳滤波器与Wiener滤波器是等价的。然而,由于输入过程取决于外界的信号、干扰环境,这种环境的统计特性常常是未知的、变化的,因而不能满足上述两个要求,设计不出最佳滤波器。这就促使人们开始研究自适应滤波器。自适应滤波器由可编程滤波器(滤波部分)和自适应算法两部分组成。可编程滤波器是参数可变的滤波器,自适应算法对其参数进行控制以实现最佳工作。自适应滤波器的参数随着输入信号的变化而变化,因而是非线性和时变的。 2. 自适应滤波器的基础理论 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。所谓“最优”是以一定的准则来衡量的,最常用的两种准则是最小均方误差准则和最小二乘准则。最小均方误差准则是使误差的均方值最小,它包含了输入数据的统计特性,准则将在下面章节中讨论;最小二乘准则是使误差的平方和最小。 自适应滤波器由数字结构、自适应处理器和自适应算法三部分组成。数字结构是指自适应滤波器中各组成部分之间的联系。自适应处理器是前面介绍的数字滤波器(FIR或IIR),所不同的是,这里的数字滤波器是参数可变的。自适应算法则用来控制数字滤波器参数的变化。 自适应滤波器可以从不同的角度进行分类,按其自适应算法可以分为LMS自适应滤波

自适应中值滤波器matlab实现

将下面代码直接贴入matlab中,并将读入图像修改成自己机子上的,就可以运行了。可以按照“%%”顺序分步来运行 %% function 自适应中值滤波器 %%%%%%%%%%%%%%% %实现两个功能: %1.对高密度的椒盐噪声有好的滤除效果; %2.滤波时减少对图像的模糊; %%%%%%%%%%%%%%% %%%%%%%%%%%%%%% %原理: %1.椒盐噪声概率越大,滤波器窗口需越大。故若滤波器窗口随噪声概率自适应变化,才能有好的滤除效果 %2.为减少对图像的模糊,需在得出原图像值并非椒盐噪声点时,保留原图像值不变; %3.椒盐噪声点的特点:该点的值为该点领域上的最大或最小;%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% %步骤(得到图像中某点(x,y)(即窗口中心点)的值的步骤): %1.设定一个起始窗口,以及窗口的最大尺寸; %2.(此步用于确定窗口大小)对窗口内像素排序,判断中值是否是噪声点,若不是,继续第3步,若是,转到第5步; %3.判断中心点是否是噪声点,若不是,则输出该点的值(即图像中该点的原值不变);若是,则输出中值; %4.窗口尺寸增大,若新窗口尺寸小于设定好的最大值,重复第2步,若大于,则滤波器输出前一个窗口的中值; %%%%%%%%%%%%%%% %%%%%%%%%%%%%%% %参数说明:

%被噪声污染的图像(即退化图像也即待处理图像):Inoise %滤波器输出图像:Imf %起始窗口尺寸:nmin*nmin(只取奇数),窗口尺寸最大值:nmax*nmax %图像大小:Im*In %窗口内图像的最大值Smax,中值Smed,最小值Smin %%%%%%%%%%%%%%%%%%%% %% clear clf %% 读入图像I I=imread('e:/photo/cat.jpg'); %转化为灰度图Ig Ig=rgb2gray(I); %被密度为0.2的椒盐噪声污染的图像Inoise Inoise=imnoise(Ig,'salt & pepper',0.2); %或者是被方差为0.2的高斯噪声污染的图像Inoise %Inoise=imnoise(Ig,'gaussian',0.2); %显示原图的灰度图Ig和噪声图像Inoise subplot(2,2,1),imshow(Ig);xlabel('a.原始灰度图像'); subplot(2,2,2),imshow(Inoise);xlabel('b.被噪声污染的图像'); %% 定义参数 %获取图像尺寸:Im,In [Im,In]=size(Inoise); %起始窗口尺寸:nmin*nmin(窗口尺寸始终取奇数) nmin=3; %最大窗口尺寸:nmax*nmax nmax=9; %定义复原后的图像Imf Imf=Inoise; %为了处理到图像的边界点,需将图像扩充

滤波图像降噪算法研究报告

研究生课程论 文 基于滤波的图像降噪算法的研究 课程名称专业文献阅读与综述 姓名张志化 学号1200214006 专业模式识别与智能系统 任课教师钟必能 开课时间2018.9——2018.11 教师评阅意见: 论文成绩评阅日期 课程论文提交时间:2018 年11月11日

基于滤波的图像降噪算法的研究 摘要:图像在获取和传输过程中,往往受到噪声的干扰,而降噪的目的是尽可能保持原始信号主要特征的同时除去信号中的噪声。目前的图像去噪方法可以将图像的高频成分滤除,虽然能够达到降低噪声的效果,但同时破坏了图像细节。边缘特性是图像最为有用的细节信息,本文对邻域平均法、中值滤波法及维纳滤波法的图像去噪算法进行了研究分析和讨论。 关键词:滤波;图像噪声;图像降噪算法;评价方法; 1 引言 数字图像处理,就是利用数字计算机或其他数字硬件,对图像信息转换而来的电信号进行某种数字运算,以提高图像的实用性,进而达到人们所要求的某种预期效果[1]。数字图像处理已经广泛应用于遥感、工业检测、医学、气象、侦查、通信、智能机器人等众多学科与工程领域中。 数字图像处理技术的优点主要有:<1)再现性好。数字图像处理不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,则数字图像处理过程始终能保持图像的真实再现。 <2)处理精度高。按目前的技术,几乎可以将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16 位甚至更高,意味着图像的数字化精度可以满足应用需求。 (3>适用面宽。图像可以来自多种信息源。从图像反映的客观实体尺度看,可以小到电了显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。这些来自不同信息源的图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,均可用计算机来处理。 (4>灵活性高。由于图像的光学处理从原理上讲只能进行线性运算,极大地限制了光学图像处理能实现的目标;而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数字公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 (5>信息压缩的潜力大。数字图像中各个像素是不独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。就电视画面而言,同一

自适应滤波算法理解与应用

自适应滤波算法理解与应用 什么是自适应滤波器自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。 对于一些应用来说,由于事先并不知道所需要进行操作的参数,例如一些噪声信号的特性,所以要求使用自适应的系数进行处理。在这种情况下,通常使用自适应滤波器,自适应滤波器使用反馈来调整滤波器系数以及频率响应。 总的来说,自适应的过程涉及到将代价函数用于确定如何更改滤波器系数从而减小下一次迭代过程成本的算法。价值函数是滤波器最佳性能的判断准则,比如减小输入信号中的噪声成分的能力。 随着数字信号处理器性能的增强,自适应滤波器的应用越来越常见,时至今日它们已经广泛地用于手机以及其它通信设备、数码录像机和数码照相机以及医疗监测设备中。 下面图示的框图是最小均方滤波器(LMS)和递归最小平方(en:Recursive least squares filter,RLS,即我们平时说的最小二乘法)这些特殊自适应滤波器实现的基础。框图的理论基础是可变滤波器能够得到所要信号的估计。 自适应滤波器有4种基本应用类型:1)系统辨识:这时参考信号就是未知系统的输出,当误差最小时,此时自适应滤波器就与未知系统具有相近的特性,自适应滤波器用来提供一个在某种意义上能够最好拟合未知装置的线性模型 2)逆模型:在这类应用中,自适应滤波器的作用是提供一个逆模型,该模型可在某种意义上最好拟合未知噪声装置。理想地,在线性系统的情况下,该逆模型具有等于未知装置转移函数倒数的转移函数,使得二者的组合构成一个理想的传输媒介。该系统输入的延迟构成自适应滤波器的期望响应。在某些应用中,该系统输入不加延迟地用做期望响应。3)预测:在这类应用中,自适应滤波器的作用是对随机信号的当前值提供某种意义上的一个最好预测。于是,信号的当前值用作自适应滤波器的期望响应。信号的过去值加到滤

自适应中值滤波方法

自适应中值滤波方法 我们通过对中心权值进行分析,不难得出以下结论:假设权值为1时,CWM 则退化成为SM ,然而当权值不小于窗口大小时,CWM 滤波器的输出值始终为初始值,也就是会导致CWM 失去去噪效果。通过科学实验验证,当中心权值取3的时候,可以得到相比其他值更好的滤波效果。 从上面的结论可知,CWM 的中心权值为3时,可以增加序列里中心像素点占所有像素点的比重,以便得到更好的去噪效果。那对于SM ,通过改变序列中值左右两个值的大小,观察其去噪效果会发生什么变化呢? 对于SM 滤波器,除了序列中值外,序列中中值前面一个值与中值后面一个值对去噪的效果也会起到了明显作用。于是结合CWM 的这些优点,并整合了TSM 和NASWF 等滤波器设计的思想,设计了一个改进的自适应中值滤波器( Adaptive Median Filter, AM)[10]。 其主要滤波方法如下: ()()()()1222 122211 22 211212 2ij ij ws ws ij ij ij ij ws ws ij WS rank W WS SM R R if rank X AM WS rank W WS SM R R ifrank X WS ++++??+? -???+??? --?≤ ?????????=? ?+??-?? ?+??--?> ?-? ??? ????? (2.5) 式2.4中,WS 表式窗口大小,R i 表示序列中第i 个元素的值,rank(X)表示元素X 在序列中的位置,点(i,j)为窗口中心像素点。对于点(I,j),经过AM 滤波后的输出值即为AM ij 。 根据TSM 中设计的阈值策略,Chang 在其设计中也加入了类似的策略,通过阈值T 来判断是否需对当前像素点采用式2.4进行滤波,或者保留原值: ij ij ij ij ij ij ij AM X AM T Y X X AM T ?-≥?=? -

自适应滤波器的设计(终极版)

目录 摘要…………………..………………………………………………………..….............I 第1章绪论....................................................................................................................错误!未定义书签。 1.1引言……………………………………………...…..…………...……………...错误!未定义书签。 1.2课题研究意义和目的 (1) 1.3国内外研究发展状况 (2) 1.4本文研究思路与主要工作 (4) 第2章自适应滤波器理论基础 (5) 2.1自适应滤波器简介 (5) 2.2自适应滤波器的原理 (5) 2.3自适应滤波算法 (7) 2.4TMS320VC5402的简介 (8) 第3章总体方案设计 (10) 3.1无限冲激响应(IIR)滤波器 (10) 3.2有限冲激响应(FIR)滤波器 (11) 3.3电路设计 (11) 4基于软件设计及仿真 (17) 4.3 DSP的理论基础 (17) 4.4自适应滤波算法的DSP实现 (18) 5总结 (21) 参考文献 (22) 致谢 (23) 附录自适应滤波源代码 (24)

第1章绪论 1.1引言 随着微电子技术和计算机技术的迅速发展,具备了实现自适应滤波器技术的各种软硬件条件,有关自适应滤波器的新算法、新理论和新的实施方法不断涌现,对自适应滤波的稳定性、收敛速度和跟踪特性的研究也不断深入,这一切使该技术越来越成熟,并且在系统辨识、通信均衡、回波抵消、谱线增强、噪声抑制、系统模拟语音信号处理、生物医学电子等方面都获得了广泛应用口。自适应滤波器实现的复杂性通常用它所需的乘法次数和阶数来衡量,而DSP强大的数据吞吐量和数据处理能力使得自适应滤波器的实现更容易。目前绝大多数的自适应滤波器应用是基于最新发展的DSP 来设计的. 滤波技术是信号处理中的一种基本方法和技术,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波。自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果,自动地调节现时刻的滤波参数,从而达到最优化滤波。自适应滤波具有很强的自学习、自跟踪能力,适用于平稳和非平稳随机信号的检测和估计。自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。其中,自适应滤波算法一直是人们的研究热点,包括线性自适应算法和非线性自适应算法,非线性自适应算法具有更强的信号处理能力,但计算比较复杂,实际应用最多的仍然是线性自适应滤波算法。线性自适应滤波算法的种类很多,有LMS自适应滤波算法、R路自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等。 1.2课题研究意义和目的 自适应滤波理论与技术是现代信号处理技术的重要组成部分,对复杂信号的处理具有独特的功能,对自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。自适应滤波器与普通滤波器不同,它的冲激响应或滤波参数是随外部环境的变化而变化的,经过一段自动调节的收敛时间达到最佳滤波的要求。自适应滤波器本身有一个重要的自适应算法,这个算法可以根据输入、输出及原参量信号按照一定准则修改滤波参量,以使它本身能有效的跟踪外部环境的变化。因此,自适应数字系

2.1图像滤波方法的比较实验报告

课程大作业实验报告2.1 图像滤波方法的比较 课程名称:数字图像处理 组长:张佳林学号:200830460232 年级专业班级: 08 自动化 2 班 (ppt 制作,数据整 理) 成员一:卢洪炬学号:200830460222 年级专业班级:08 自动化 2 班(实验报告,编程) 成员二:余嘉俊学号: 200830460231 年级专业班级: 08 自动化 2 班(编程,程序整理) 指导教师邓继忠 报告提交日期2010 年 12 月 4 日项目答辩日期2010 年 12 月 5 日

目录 1项目要求 (3) 2项目开发环境 (3) 3系统分析·························································3 3.1 系统的主要功能分析 (3) 3.2 系统的基本原理 (4) 3.1 系统的关键问题及解决方法 (9) 4系统设计····························· ···························10 4.1 程序流程图及说明····························· (10) 4.2 程序主要模块功能介 绍 (11) 5实验结果与分析··················································11 5.1 实验结果····························· (11) 5.2 项目的创新之 处 (15) 5.3 存在问题及改进设 想 (15)

6心得体会························································15 6.1 系统开发的体会····························· (15) 6.2 对本门课程的改进意见或建议 (15)

均值滤波和中值滤波

均值滤波与自适应中值滤波的仿真与实现 摘要 图像是一种重要的信息源,通过图像处理可以帮助人们了解信息的内涵,然而在图像使用和传输过程中,不可避免会受到噪声的干扰,因此为了恢复原始图像,达到好的视觉效果,需要对图像进行滤波操作。根据噪声种类不同,可以采用不同的滤波方法,均值滤波是典型的线性滤波算法,能够有效滤波图像中的加性噪声,而中值滤波器是能够有效滤除脉冲噪声的非线性滤波器,但传统中值滤波去脉冲噪声的性能受滤波窗口尺寸的影响较大, 在抑制图像噪声和保护细节两方面存在矛盾。本文首先对不同均值滤波器在处理不同噪声方面的优缺点进行了分析,然后分别用中值滤波器和自适应中值滤波器对被椒盐噪声污染的图像进行了滤波操作,发现自适应中值滤波方法不仅可以有效滤波椒盐噪声,同时还可以有效地克服中值滤波器造成图像边缘模糊的缺点。 1.均值滤波 均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素点和其本身像素点。再用模板中的全体像素的平均值来代替原来像素值。均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其邻近的若干像素组成,求模板中所有像素

的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度值g(x,y),即g(x,y)=1/m ∑f(x,y), m为该模板中包含当前像素在内的像素总个数。均值滤波能够有效滤除图像中的加性噪声,但均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊。均值滤波主要有算术均值滤波,几何均值滤波,谐波均值滤波以及逆谐波均值滤波,本文只对算术均值滤波,几何均值滤波和逆谐波均值滤波进行研究。其中几何均值滤波器所达到的平滑度可以与算术均值滤波器相比,但在滤波过程中丢失更少的图象细节。逆谐波均值滤波器更适合于处理脉冲噪声,但它有个缺点,就是必须要知道噪声是暗噪声还是亮噪声,以便于选择合适的滤波器阶数符号,如果阶数的符号选择错了可能会引起灾难性的后果。下面分别对算术平均滤波,几何平均滤波和逆谐波均值滤波对不同噪声的滤波效果进行仿真分析。

自适应滤波算法原理及其应用

自适应滤波算法原理与应用 经典的滤波算法包括,维纳滤波,卡尔曼滤波,自适应滤波。维纳滤波与卡尔曼滤波能够满足一些工程问题的需求,得到较好的滤波效果。但是他们也存在局限性,对于维纳滤波来说,需要得到足够多的数据样本时,才能获得较为准确的自相关函数估计值,一旦系统设计完毕,滤波器的长度就不能再改变,这难以满足信号处理的实时性要求;对于卡尔曼滤波,需要提前对信号的噪声功率进行估计,参数估计的准确性直接影响到滤波的效果。在实际的信号处理中,如果系统参数能够随着输入信号的变化进行自动调整,不需要提前估计信号与噪声的参数,实现对信号的自适应滤波,这样的系统就是自适应滤波系统。 1.基本自适应滤波算法 自适应滤波算法的基本思想是根据输入信号的特性自适应调整滤波器的系数,实现最优滤波。 图1 自适应滤波结构框图 若自适应滤波的阶数为M ,滤波器系数为W ,输入信号序列为X ,则输出为: 1 0()()()M m y n w m x n m -==-∑ (1) ()()()e n d n y n =- (2) 其中()d n 为期望信号,()e n 为误差信号。 1 1 ()()()M M j i ij m i y n w m x n m y w x -===-→=∑∑ (3) 令 T T 01112[,,,],[,,,]M j j j Nj W w w w X x x x -==L L (4) 则滤波器的输出可以写成矩阵形式: T T j j j y X W W X == (5) T T j j j j j j j e d y d X W d W X =-=-=- (6) 定义代价函数:

自适应滤波器 word

1自适应滤波器简介 最早人们根据生物能以各种有效的方式适应生存环境从而使生命力变强的特性引伸出自适应这个概念。自适应滤波器属于现代滤波器的范畴,它是40年代发展起来的自适应信号处理领域的一个重要应用。60年代,美国B.Windrow和Hoff首先提出了主要应用于随机信号处理的自适应滤波器算法,从而奠定自适应滤波器的发展。所谓自适应滤波器,即利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号与噪声未知的或随时间变化的统计特性,从而实现最优滤波。 自适应信号处理主要是研究结构可变或可调整的系统,它可以通过自身与外界环境的接触来改善自身对信号处理的性能。通常这类系统是时变的非线性系统,可以自动适应信号传输的环境和要求,无须详细知道信号的结构和实际知识,无须精确设计处理系统本身。自适应系统的非线性特性主要是由系统对不同的信号环境实现自身参数的调整来确定的。自适应系统的时变特性主要是由其自适应响应或自适应学习过程来确定的,当自适应过程结束和系统不再进行时,有一类自适应系统可成为线性系统,并称为线性自适应系统,因为这类系统便于设计且易于数学处理,所以实际应用广泛。本文研究的自适应滤波器就是这类滤波器。自适应信号处理的应用领域包括通信、雷达、声纳、地震学、导航系统、生物医学和工业控制等。自适应滤波器是相对固定滤波器而言的,固定滤波器属于经典滤波器,它滤波的频率是固定的,自适应滤波器滤波的频率则是自动适应输入信号而变化的,所以其适用范围更广。在没有任何关于信号和噪声的先验知识的条件下,自适应滤波器利用前一时刻已获得的滤波器参数来自动调节现时刻的滤波器参数,以适应信号和噪声未知或随机变化的统计特性,从而实现最优滤波。 自适应滤波器出现以后,发展很快。由于设计简单、性能最佳,自适应滤波器是目前数字滤波器领域是活跃的分支,也是数字滤波器研究的热点。主要自适应滤波器有:递推最小二乘(RLS)滤波器、最小均方差(LMS)滤波器、格型滤波器、无限冲激响应(IIR)滤波器。其中RLS滤波器具有稳定的自适应行为而且算法简单,收敛性能良好。 实际情况中,由于信号和噪声的统计特性常常未知或无法获知,这就为自适应滤波器提供广阔的应用空间、系统辨识、噪声对消、自适应谱线增强、通信信道的自适应均衡、线性预测、自适应天线阵列等是自适应滤波器的主要应用领域。 2自适应滤波器设计原理 自适应滤波器是以最小均方误差为准则,由自适应算法通过调整滤波器系数,以达到最优滤波的时变最佳滤波器. 设计自适应滤波器时,可以不必预先知道信号与噪声的自相关函数,在滤波过程中,即使噪声与信号的自相关函数随时间缓慢变化,滤波器也能自动适应,自动调节到满足均方误差最小的要求。自适应滤波器主要由参数可调的数字滤波器和调整滤波器系数的自适应算法两部分构成自适应滤波器的一般结构如图1所示。参数可调数字滤波器可以是FIR滤波器或IIR数字滤波器,也可以是格形滤波器。 图1中d(n)为期望响应,x(n)为自适应滤波器的输入,y(n)为自适应滤波器的输出,e(n)为估计误差,e(n)=d(n)-y(n),前置级完成跟踪信号的选择,确定是信号还是噪声;后置级根据前置级的不同选择对数字滤波器输出作不同的处理,以得到信号输出。自适应滤波器的滤波器系数受误差信号e(n)控制,e(n)通过某种自适应算法对l滤波器参数进行调整,最终使e(n)的均方值最小。因此,实际上,自适应滤波器是一种能够自动调整本身参数的特殊维纳滤波器,在设计时不需要实现知道关于输入信号和噪声的统计特性的知识,它能够在自己的工作过程中逐渐“了解”或估计出所需的统计特性,并以此为依据自动调整自己的参数,以达到最佳滤波效果。一旦输入信号的统计特性发生变化,它又能够跟踪这种变化,自动调整

相关文档
最新文档