溴化锂吸收式热泵传热系数的研究

一类、二类溴化锂吸收式热泵工作原理图

一类、二类溴化锂吸收式热泵工作原理图 一类吸收式热泵工作原理 一类吸收式热泵是以高品位热能(如蒸汽、高温热水、燃气等)为动力,回收低温热源(如废热水)的热量,制取较高温度的热水以供采暖或工艺等之需求的设备。 蒸发器中的冷剂水吸取废热水的热量后(即余热回收过程),蒸发成冷剂蒸汽进入吸收器。吸收器中溴化锂浓溶液吸收冷剂蒸汽变成稀溶液,同时放出吸收热,该吸收热加热热水,使热水温度升高得到制热效果。而稀溶液由溶液泵送

往发生器,被工作蒸汽(热水)加热浓缩成浓溶液返回到吸收器。浓缩过程产生的冷剂蒸汽进入冷凝器,继续加热热水,使其温度进一步升高得到最终制热效果,此时冷剂蒸汽也凝结成冷剂水进入蒸发器进入下一个循环,如此反复循环,从而形成了一个完整的工艺流程。 二类两段吸收式热泵工作原理

二类吸收式热泵通常情况下以温度较低的余热(或废热)做为动力,通过溴化 锂吸收式热泵特有功能“吸收热”,制取比余热温度高的热水的一种设备。这 种设备的一个典型特征是:在没有其它热源(或动力)的情况下,制取的热水 温度比余热(也是驱动热源)的温度要高。所以,二类吸收式热泵也称为升温 型吸收式热泵。 废热水以串连形式分别进入蒸发器2、蒸发器1和发生器1和发生器2。在蒸 发器1与蒸发器2中冷剂水吸取废热水的热量后(即余热回收过程),蒸发成冷剂蒸汽进入吸收器1与吸收器2,吸收器中溴化锂浓溶液吸收冷剂蒸汽变成 稀溶液,同时放出吸收热,该吸收热加热热水,使热水温度升高得到制热效果。而稀溶液流经换热器与浓溶液换热,温度降低后分别回到发生器1和发生器2。在压力较低的发生器内被废热水加,热浓缩成浓溶液后,再由溶液泵分别送往 吸收器1和吸收器2。产生的冷剂蒸汽则分别进入冷凝器1和冷凝器2。冷剂 蒸汽在冷凝器被低温冷却水凝结成冷剂水,由冷剂泵送到蒸发器1和蒸发器2,这样往复循环达到连续制取热水的目的。

溴化锂吸收式制冷机的工作原理讲解

溴化锂吸收式制冷机的工作原理是: 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃.以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0。85kPa的溴化锂溶液与具有1kPa 压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0。87kPa)为止. 图1 吸收制冷的原理

溴化锂吸收式制冷原理

溴化锂吸收式制冷原理 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 溴化锂吸收式制冷原理同蒸汽压缩式制冷原理有相同之处,都是利用液态制冷剂在低温、低压条件下,蒸发、气化吸收载冷剂(冷水)的热负荷,产生制冷效应。所不同的是,溴化锂吸收式制冷是利用“溴化 锂一水”组成的二元溶液为工质对,完成制冷循环的。 在溴化锂吸收式制冷机内循环的二元工质对中,水是制冷剂。在真空(绝对压力:870Pa)状态下蒸发,具有较低的蒸发温度(5℃),从而吸收载冷剂热负荷,使之温度降低,源源不断地输出低温冷水。 工质对中溴化锂水溶液则是吸收剂,可在常温和低温下强烈地吸收水蒸气,但在高温下又能将其吸收的水分释放出来。制冷剂在二元溶液工质对中,不断地被吸收或释放出来。吸收与释放周而复始,不断循环,因此,蒸发制冷循环也连续不断。制冷过程所需的热能可为蒸汽,也可利用废热,废汽,以及地下热水(75'C以上)。在燃油或天然气充足的地方,还可采用直燃型溴化锂吸收式制冷机制取低温水。这 些特征充分表现出溴化锂吸收式制冷机良好的经济性能,促进了溴化锂吸收式制冷机的发展。 因为溴化锂吸收式制冷机的制冷剂是水,制冷温度只能在o℃以上,一般不低于5℃,故溴化锂吸收式制冷机多用于空气调节工程作低温冷源,特别适用于大、中型空调工程中使用。溴化锂吸收式制冷机在某些生产工艺中也可用作低温冷却水。 第一节吸收式制冷的基本原理 一、吸收式制冷机基本工作原理 从热力学原理知道,任何液体工质在由液态向气态转化过程必然向周围吸收热量。在汽化时会吸收汽化热。水在一定压力下汽化,而又必然是相应的温度。而且汽化压力愈低,汽化温度也愈低。如一个大气压下水的汽化温度为100~C,而在o.05大气压时汽化温度为33℃等。如果我们能创造一个 压力很低的条件,让水在这个压力条件下汽化吸热,就可以得到相应的低温。 一定温度和浓度的溴化锂溶液的饱和压力比同温度的水的饱和蒸汽压力低得多。由于溴化锂溶液和水之间存在蒸汽压力差,溴化锂溶液即吸收水的蒸汽,使水的蒸汽压力降低,水则进一步蒸发并吸收热量,而使本身的温度降低到对应的较低蒸汽压力的蒸发温度,从而实现制冷。 蒸汽压缩式制冷机的工作循环由压缩、冷凝、节流、蒸发四个基本过程组成。吸收式制冷机的基本工作过程实际上也是这四个过程,不过在压缩过程中,蒸汽不是利用压缩机的机械压缩,而是使用另一种方法完成的。如图2—1所示,由蒸发器出来的低压制冷剂蒸汽先进人吸收器,成在吸收器中用一种液态吸收剂来吸收,以维持蒸发器内的低压,在吸收的过程中要放出大量的溶解热。热量由管内冷却水或其他冷却介质带走,然后用溶液泵将这一由吸收剂与制冷剂混合而成的溶液送人发生器。溶液在发

溴化锂吸收式制冷机的工作原理最详细的讲解

溴化锂吸收式制冷机的工作原理是: https://www.360docs.net/doc/864975867.html,/showProduct.asp?f_id=737 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0.85kPa的溴化锂溶液与具有1kPa 压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。 图1 吸收制冷的原理

溴化锂热泵介绍

第一类溴化锂吸收式 热泵介绍

一、第一类溴化锂吸收式热泵 第一类吸收式热泵是利用工质的吸收循环实现热泵功能的一种装置,以少量的高温热源(蒸汽、燃气)为驱动热源,溴化锂溶液为吸收剂,水为载冷剂,回收利用低温热源(废热水)的热能,制取所需的工艺或采暖用高温热媒,实现从低温向高温输送热能的设备。 第一类吸收式热泵(AHP):也称增热型热泵,是利用少量的高温热源,提取低温热源的热量,产生大量能被利用的中温热能。即利用高温热能驱动, 把低温热源的热能提高到中温,从而提高了热能的利用效率。 驱动热源+ 废热源= 用热需求 1)可利用的废热:一般可以使用温度在10℃~70℃的废热水、单组分或多组分气体或液体。 2)可提供的热媒:可获得比废热源温度高40℃左右,不超过100℃的热媒。 3)驱动热源:0.1~0.8MPa蒸汽、燃气或高温烟气。 4)制热COP在1.6~1.8左右:就是利用1MW的驱动热源可以得到1.8MW左右的生产生活需要的热量。 5)废热水进出水温度越高获得的热媒温度越高,效率越高。 二、第一类吸收式热泵工作原理图

三、第一类吸收式热泵采暖原理图 四、吸收式热泵供暖方案论证说明 1、电厂余热 火力发电厂在能量传送和转化过程中是不可能把所有燃烧煤的

能量转化成电能的。按1Kg 标煤(7000 kcal/Kg )发电3度电(860 kcal/KW)考虑,发电厂的煤的能量只有35%左右转化成为电能时。除去设备及管道能量损失,电厂无论是水冷还是空冷,都将冷凝热排入大气,近60%的能量通过锅炉烟筒和汽轮机凝汽器的循环冷却水排放到环境当中。 排放到环境中的能量其中乏汽造成比例非常大,如果机组容量为25MW,那么循环水量每天为2424t ,如果温升为8~10度,那么每年向大气中排放掉的热量相当于3.4万吨标煤的发热量。 热力学第二定律告诉我们,一个巨大的热量损失时热机生产过程中不可避免的,因此只有通过其他途径进行利用,以期全部或部分回收,才能提高综合热效率,降低电厂煤耗,同时减少对环境的污染。 现在我们可以通过溴化锂吸收式热泵将这些以往排放到环境中的热量进行回收,在冬季时用作供暖使用。利用吸收式热泵回收汽机 排汽中量大、集中、品位低的冷凝热,实现城市集中供热,这种供热方式节能、节水、环保。每发25MW 电可以回收汽机的冷凝热30MW 。能量输入 100% 转变为电力 30-40% 循环水(通过冷却塔、海水 或河水)带走的热量 50-60% 其他损失 10-20%

吸收式制冷分析

第七章 吸收式制冷 吸收式制冷是液体气化制冷的另一种形式,它和蒸气压缩式制冷一样,是利用液态制冷剂在低温低压下气化以达到制冷目的的。所不同的是:蒸气压缩式制冷是靠消耗机械功(或电能)使热量从低温物体向高温物体转移,而吸收式制冷则依靠消耗热能来完成这种非自发过程。 第一节 吸收式制冷的基本原理 一、基本原理 对于吸收剂循环而言,可以将吸收器、发生器和溶液泵看作是一个“热力压缩机”,吸收器相当于压缩机的吸入侧,发生器相当于压缩机的压出侧。吸收剂可视为将已产生制冷效应的制冷剂蒸气从循环的低压侧输送到高压侧的运载液体。 二、吸收式制冷机的热力系数 蒸气压缩式制冷机用制冷系数ε评价其经济性,由于吸收式制冷机所消耗的能量主要是热能,故常以“热力系数”作为其经济性评价指标。热力系数ζ是吸收式制冷机所获得的制冷量0φ与消耗的热量g φ之比。 g φζφ= (7-1) 图7-1 吸收式与蒸气压缩式制冷循环的比较 (a )蒸气压缩式制冷循环 (b )吸收式制冷循环 (b ) (a )

0g a k e P φφφφφ++=+= (7-2) 00g e S S S S ?=?+?+?≥ (7-3) 0g e g e S T T T φφφ?=- - + ≥ (7-4) g e e g g T T T T P T T φφ--≥- (7-5) ) () (000T T T T T T e g e g g --≤ =φφζ (7-6) 最大热力系数ζmax 为 c c 0 max εηζ=--= T T T T T T e g e g (7-6a) 热力系数ζ与最大热力系数ζmax 之比称为热力完善度ηa ,即 max a ζηζ= (7-7) 第二节 二元溶液的特性 一、二元溶液的基本特性 B A v v V )1(1ξξ-+= (7-8) 两种液体混合前的比焓 k 蒸发器冷媒 环境 发生器热媒 图7-2 吸收式制冷系统与外界 的能量交换 图7-3 可逆吸收式制冷循环

第一类溴化锂吸收式热泵的设计

毕业设计(论文)中文摘要

2012届本科毕业设计

毕业设计(论文)外文摘要

目录 1 绪论 (1) 1.1 热泵的发展简介 (1) 1.2 热泵的热源及其分类 (1) 2 第一类溴化锂热泵特点及原理 (2) 3 溴化锂吸收式热泵的理论计算 (6) 3.1 溴化锂溶液的物理化学特性 (6) 3.2 吸收式热泵的设计计算 (8) 3.2.1热力计算 (8) 3.2.1.1参数选定 (9) 3.2.1.2设备热负荷计算 (12) 3.2.1.3各个流体流量的统计 (13) 3.2.2吸收热泵各部件的传热参数计算 (14) 3.2.3各换热设备管程数、单管程管子数计算 (17) 4 第一类溴化锂吸收式热泵结构及装配示意图 (20) 4.1各换热器配管接管及其法兰设计计算 (21) 4.2发生器和冷凝器的装配示意图 (23) 4.3吸收器和蒸发器的装配示意图 (24) 4.4溶液热交换器的装配示意图 (25) 4.5溴化锂吸收式热泵总装配示意图 (26) 4.6本章小结 (26) 全文总结 (27) 参考文献 (28) 致谢............................................. 错误!未定义书签。

主要符号Cp 定压比热,kJ/(kg·K) COP 性能系数 K 传热系数,W/(m·K) H 焓,kJ/kg D 制冷工质质量流量,kg/s t 温度,℃ △t 传热温差,℃ P 压力,Pa △P 压力差,Pa Q 总的热负荷,KW a 溶液循环倍率 F 表面积,2 m L 管长,m XL 吸收器出口稀溶液浓度,% XH 发生器出口浓溶液浓度,% δ圆管壁厚,m d 管径,m 下角标: e 蒸发器 g 发生器 c 冷凝器 a 吸收器 ex 溶液换热器 i 内侧 o 外侧 l 液体 v 蒸汽

溴化锂机组的制冷原理

工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0.85kPa的溴化锂溶液与具有1kPa压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。 0.87kPa和0.85kPa之间的压差用于克服连接管道中的流动阻力以及由于过程偏离平衡状态而产生的压差。水在5℃下蒸发时,就可能从较高温度的被冷却介质中吸收气化潜热,使被冷却介质冷却。 为了使水在低压下不断气化,并使所产生的蒸气不断地被吸收,从而保证吸收过程的不断进行,供吸收用的溶液的浓度必须大于吸收终了的溶液的浓度。为此,除了必须不断地供给蒸发器纯水外,还必须不断地供给新的浓溶液。 实际上采用对稀溶液加热的方法,使之沸腾,从而获得蒸馏水供不断蒸发使用。系统由发生器、冷凝器、蒸发器、节流阀、泵和溶液热交换器等组成。稀溶液在加热以前用泵将压力升高,使沸腾所产生的蒸气能够在常温下冷凝。例如,冷却水温度为35℃时,考虑到热交换器中所允许的传热温差,冷凝有可能在40℃左右发生,因此发生器内的压力必须是7.37kPa或更高一些(考虑到管道阻力等因素)。 发生器和冷凝器(高压侧)与蒸发器和吸收器(低压侧)之间的压差通过安装在相应管道上的膨胀阀或其它节流机构来保持。在溴化锂吸收式制冷机中,这一压差相当小,一般只有6.5~8kPa,因而采用U型管、节流短管或节流小孔即可。离开发生器的浓溶液的温度较高,而离开吸收器的稀溶液的温度却相当低。浓溶液在未被冷却到与吸收器压力相对应的温度前不可能吸收水蒸气,而稀溶液又必须加热到和发生器压力相对应的饱和温度才开始沸腾,因此通过一台溶液热交换器,使浓溶液和稀溶液在各自进入吸收器和发生器之前彼此进行热量交换,使稀溶液温度升高,浓溶液温度下降。 由于水蒸气的比容非常大,为避免流动时产生过大的压降,需要很粗的管道,为避免这一点,往往将冷凝器和发生器做在一个容器内,将吸收器和蒸发器做在另一个容器内。也可以将这四个主要设备置于一个壳体内,高压侧和低压侧之间用隔板隔开。 综上所述,溴化锂吸收式制冷机的工作过程可分为两个部分: (1)发生器中产生的冷剂蒸气在冷凝器中冷凝成冷剂水,经U形管进入蒸发器,在低压下蒸发,产生制冷效应。这些过程与蒸气压缩式制冷循环在冷凝器、节流阀和蒸发器中所产生的过程完全相同; (2)发生器中流出的浓溶液降压后进入吸收器,吸收由蒸发器产生的冷剂蒸气,形成稀溶液,用泵将稀溶液输送至发生器,重新加热,形成浓溶液。这些过程的作用相当于蒸气压缩式制冷循环中压缩机所起的作用。

溴化锂吸收式热泵性能实验报告

溴化锂吸收式热泵性能实验报告 一、实验目的 1.研究蒸汽型溴化锂吸收式热泵机组制热工况机组性能系数COP h变化规律。 2.研究蒸汽型溴化锂吸收式热泵机组制冷工况机组性能系数COP c变化规律。 3.研究蒸汽型溴化锂吸收式热泵机组制热工况机组热力完善度βh变化规律。 4.研究蒸汽型溴化锂吸收式热泵机组制冷工况机组热力完善度βc变化规律。 二、实验仪器设备 1. 实验仪器 300kW蒸汽型单效溴化锂吸收式热泵机器本体、5台36kW蒸汽发生器(电加热锅炉)、2个10m3冷热水水箱、1个140L高温蒸汽凝结水箱、1个1m3低温热源循环水箱及其附属动力设备等。 2. 测量仪器 3个玻璃转子流量计(量程6t/h、16t/h、0.4t/h)测量冷水流量、低温热源的流量以及驱动热源的凝结水流量。12个温度传感器、1个压力传感器。 图1. 蒸汽型吸收式热泵测点布置图

三、实验方法 1.实验方案 (1)选定热源蒸汽的温度 通过调节蒸汽发生器(电加热锅炉)上部热源蒸汽压力阀的开度,将热源蒸汽的温度调整为100℃(0.0142MPa )、105℃(0.2090MPa )、110℃(0.4338MPa )、115℃(0.6918MPa )、120℃(0.9867MPa )、125℃(0.13MPa )、130℃(0.17MPa )其中的一组。 (2)改变热水出口的温度 在选定的蒸汽工况下,通过热泵控制盘的设置依次改变热水出口的温度,将热水出口温度(下限40℃、上限120℃)分别依次调整至50℃、52.5℃、55℃、57.5℃、60℃、62.5℃、65℃、67.5℃、70℃、72.5℃、75℃、,获取不同温度下的运行状态参数。达到要求工况后,稳定运行2分钟,记录一组数据。 冷水箱 热水箱 热泵 凝结水箱 低温热源循环水箱 电加热 锅炉 图2.实验设备流程示意图 2.实验步骤 (1)开机要求 1)检查热泵真空度,发生器绝对压力在20kPa 左右,方可开机。 2)热水泵与热源水泵等辅机是否处于正常状态,热水系统、热源水系统的水封应完好,并排净空气。

溴化锂吸收式制冷机的工作原理最详细的讲解

溴化锂吸收式制冷机的工作原理是: 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。以上循环如此反复进行,最终达到制取低温冷水的目的。溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0.85kPa的溴化锂溶液与具有 1kPa压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。 图1吸收制冷的原理

溴化锂吸收式制冷机的工作原理

溴化锂吸收式制冷机的工作原理 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 单效溴化锂吸收式制冷机 溴化锂吸收式制冷机原理工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0.85kPa的溴化锂溶液与具有1kPa压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。 图1 吸收制冷的原理 0.87kPa和0.85kPa之间的压差用于克服连接管道中的流动阻力以及由于过程偏离平衡状态而产生的压差,如图1所示。水在5℃下蒸发时,就可能从较高温度的被冷却介质中吸收气化潜热,使被冷却介质冷却。 为了使水在低压下不断气化,并使所产生的蒸气不断地被吸收,从而保证吸收过程的不断进行,供吸收用的溶液的浓度必须大于吸收终了的溶液的浓度。为此,除了必须不断地供给蒸发器纯水外,还必须不断地供给新的浓溶液,如图1所示。显然,这样做是不经济的。

溴化锂机组基本原理及分类

溴化锂机组又称溴化锂吸收式制冷机。 溴化锂是什么 溴化锂是由碱金属锂和卤族元素两种元素组成,分子式LiBr,分子量86.844,密度346kg/立方(25℃),熔点549℃,沸点1265℃。它的一般性质跟食盐大体类似,是一种稳定的物质,在大气中不变质、不挥发、不溶解,极易溶于水,常温下是无色粒状晶体,无毒、无臭、有咸苦味。溴化锂水溶液是由溴化锂和水这两种成分组成,它的性质跟纯水很不相同。纯水的沸点只与压力有关,而溴化锂水溶液的沸点不仅与压力有关还与溶液的浓度有关。 溴化锂吸收式制冷的工作原理 原理图 在溴化锂吸收式制冷中,水作为制冷剂,溴化锂作为吸收剂。 由于溴化锂水溶液本身沸点很高,极难挥发,所以可认为溴化锂饱和溶液液面上的蒸汽为纯水蒸汽;在一定温度下,溴化锂水溶液液面上的水蒸气饱和分压力小于纯水的饱和分压力;而且浓度越高,液面上的水蒸气饱和分压力越小。所以在相同的温度条件下,溴化锂水溶液浓度越大,其吸收水分的能力就越强。这也就是通常采用溴化锂作为吸收剂,水作为制冷剂的原因。 溴化锂吸收式制冷机主要由发生器、冷凝器、蒸发器、吸收器、换热器、循环泵等几部分组成。 在溴化锂吸收式制冷机运行过程中,当溴化锂水溶液在发生器内受到热媒水的加热后,溶液中的水不断汽化;随着水的不断汽化,发生器内的溴化锂水溶液浓度不断升高,进入吸收器;水蒸气进入冷凝器,被冷凝器

内的冷却水降温后凝结,成为高压低温的液态水;当冷凝器内的水通过节流阀进入蒸发器时,急速膨胀而汽化,并在汽化过程中大量吸收蒸发器内冷媒水的热量,从而达到降温制冷的目的;在此过程中,低温水蒸气进入吸收器,被吸收器内的溴化锂水溶液吸收,溶液浓度逐步降低,再由循环泵送回发生器,完成整个循环。如此循环不息,连续制取冷量。由于溴化锂稀溶液在吸收器内已被冷却,温度较低,为了节省加热稀溶液的热量,提高整个装置的热效率,在系统中增加了一个换热器,让发生器流出的高温浓溶液与吸收器流出的低温稀溶液进行热交换,提高稀溶液进入发生器的温度。 溴化锂吸收式制冷机的主要特点 优点 1、利用热能为动力,特别是可利用低位势热能(太阳能、余热、废热等); 2、整个机组除了功率较小的屏蔽泵之外,无其他运动部件,运转安静; 3、以溴化锂水溶液为工质,无臭、无毒、无害,有利于满足环保的要求; 4、制冷机在真空状态下运行,无高压爆炸危险,安全可靠; 5、制冷量调节范围广,可在较宽的负荷内进行制冷量五级调节; 6、对外界条件变化的适应性强,可在一定的热媒水进口温度、冷媒水出口温度和冷却水温度范围内稳定运转。 缺点 1、溴化锂水溶液对一般金属有较强的腐蚀性,这不仅影响机组的正常运行,而且还会影响机组的寿命; 2、溴化锂吸收式制冷主机的气密性要求高,即使漏进微量的空气也会影响机组的性能,这就对机组制造提出严格的要求; 3、浓度过高或者温度过低时,溴化锂水溶液均容易形成结晶,因此防止结晶是溴化锂主机在设计和运行中必须注意的重要问题。 溴化锂机组分类 根据使用能源分类 1.蒸汽型使用蒸汽作为驱动能源。根据工作蒸汽的品位高低,还可分为单效和双效型。单效型工作蒸汽压力范围为0.03~0.15MPa(表 压)(0.3~1.5kgf/cm’表压);双效型工作蒸汽压力范围一般为0.4~ 0.8MPa(表压)(4~8kgf/cm’表压),特殊的低压双效型工作蒸汽压力可低至0.25MPa(表压)(2.5kg{/cm2表压)。

溴化锂吸收式制冷机的溶液循环

在吸收式制冷机中,溶液的循环是至关重要的。因为它是用溶液的浓缩和吸收而使低压蒸汽变成高压蒸汽,从而取代压缩机的的关键问题所在。 在溴化锂吸收式制冷机中,发生器和吸收器中起到上述作用的是溴化锂溶液,它的吸收水蒸汽的能力很强。吸收式制冷机的溶液循环原理如图2.2.1所示。 图2.2.1 吸收式制冷机的溶液循环 在吸收器中吸收了低压水蒸汽的溴化锂溶液浓度变小,温度也较低,被溶液泵送往使之浓缩的发生器中,被管内流动的高压工作蒸汽加热至对应压力下的沸点,使之沸腾并产生冷剂蒸汽,因发生器中的压力较高,所以冷剂蒸汽的压力也较高,也就是说通过泵的升压和工作蒸汽的加热,使低压蒸汽的压力升高。 溶液沸腾产生出冷剂蒸汽后,浓度和温度都有所升高,又具有了吸收水蒸汽的能力。因发生器中的压力比吸收器中的压力要高得多,故在送往吸收器中让其吸收水蒸汽时必须通过节流阀降压。 在吸收器中,溶液被喷淋在内通冷却水的传热管管簇上,因溶液在吸收水蒸汽时要放出大量的吸收热,故需大量的冷却水进行冷却,实验和理论都表明,溶液的浓度越高、温度越低,吸收水蒸汽的能力就越强,所以,在实际中,要努力提高其浓度、降低其温度,但要注意避免因浓度过高、温度过低而结晶。

图2.2.2 有溶液热交换器的吸收式制冷机的溶液循环 另外,从图中不难看出,一方面稀溶液温度较低,送往发生器后需消耗能量对其加热;而另一方面,浓溶液的温度较高,在吸收器中需冷却才能有较强的吸收水蒸汽的能力,所以,如能使浓溶液和稀溶液进行热交换,无疑可提高机组的性能系数。 因此,在实际的溴化锂吸收式制冷机中,一般都设有溶液热交换器(如图2.2.2所示)。在溶液热交换器中,稀溶液在管内流动,而浓溶液的管外(壳程)流动,从而达到热交换的目的。

溴化锂制冷原理

溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。为使制冷过程能连续不断地进行下去,蒸发后的冷剂水蒸气被溴化锂溶液所吸收,溶液变稀,这一过程是在吸收器中发生的,然后以热能为动力,将溶液加热使其水份分离出来,而溶液变浓,这一过程是在发生器中进行的。发生器中得到的蒸汽在冷凝器中凝结成水,经节流后再送至蒸发器中蒸发。如此循环达到连续制冷的目的。可见溴化锂吸收式制冷机主要是由吸收器、发生器、冷凝器和蒸发器四部分组成的。 从吸收器出来的溴化锂稀溶液,由溶液泵(即发生器泵),升压经溶液热交换器,被发生器出来的高温浓溶液加热温度提高后,进入发生器。在发生器中受到传热管内热源蒸汽加热,溶液温度提高直至沸腾,溶液中的水份逐渐蒸发出来,而溶液浓度不断增大。单效溴化锂吸收式制冷机的热源蒸汽压力一般为0.098MPa(表压)。发生器中蒸发出来的冷剂水蒸气向上经挡液板进入冷凝器,挡液板起汽液分离作用,防止液滴随蒸汽进入凝凝器。冷凝器的传热管内通入冷却水,所以管外冷剂水蒸气被冷却水冷却,冷凝成水,此即冷剂水。积聚在冷凝器下部的冷剂水经节流后流入蒸发器内,因为冷凝器中的压力比蒸发器中的压力要高。如:当冷凝器温度为45℃时,冷凝压力为9580Pa(71.9mmHg);蒸发温度为5℃时,蒸发压力872Pa(6.45mmHg)。U型管是起液封作用的,防止冷凝器中的蒸汽直接进入蒸发器。 冷剂水进入蒸发器后,由于压力降低首先闪蒸出部分冷剂水蒸气。因蒸发器为喷淋式热交换器,喷啉量要比蒸发量大许多倍,故大部分冷剂水是聚集在蒸发器的水盘内的,然后由冷剂水泵升压后送入蒸发器的喷淋管中,经喷嘴喷淋到管簇外表面上,在吸取了流过管内的冷媒水的热量后,蒸发成低压的冷剂水蒸气。由于蒸发器内压力较低,故可以得到生产工艺过程或空调系统所需要的低温冷媒水,达到制冷的目的。例如蒸发器压力为872Pa时,冷剂水的蒸发温度为5℃,这时可以得到7℃的冷媒水。蒸发出来的冷剂蒸汽经挡液板将其夹杂的液滴分离后进入吸收器,被由吸收器泵送来并均匀喷淋在吸收管簇外表的中间溶液所吸收,溶液重新变稀。中间溶液是由来自溶液热交换器放热降温后的浓溶液和吸收器液囊中的稀溶液混合得到的。为保证吸收过程的不断进行,需将吸收过程所放出的热量由热管内的冷却水及时带走。中间溶液吸收了一定量的水蒸气后成为稀溶液,聚集在吸收器底部液囊中,再由发生器泵送到发生器,如此循环不已。 由上述循环工作过程可见,吸收式制冷机与压缩式制冷机在获取冷量的原理上是相同的,都是利用高压液体制冷剂经节流阀(或U型管)节流降压后,在低压下蒸发来制取冷量,它们都有起同样作用的冷凝、蒸发和节流装置。而主要区别在于由低压冷剂蒸汽如何变成高压蒸汽所采用的方法不同,压缩式制冷机是通过原动机驱动压缩机来实现的,而吸收式制冷机是通过吸收器,溶液泵和发生器等设备来实现的。 从吸收器出来的稀溶液温度较低,而稀溶液温度越低,则在发生器中需要更多热量。自发生器出来的浓溶液温度较高,而浓溶液温度越高,在吸收器中则要求更多的冷却水量。因此设置溶液交换器,由温度较高的浓溶液加热温度较低的稀溶液,这样既减少了发生器加热负荷,也减少了吸收器的冷却负荷,可谓一举两得。 溴化锂吸收式制冷机除了上述冷剂水和溴化锂溶液两个内部循环外,还有三个系统与外部相联,这就是:①热源系统;②冷却水系统;③冷媒水系统。

溴化锂吸收式制冷机参数

溴化锂吸收式制冷机工作原理、特点及相关产品参数 溴化锂吸收式制冷机工作原理、特点及相关产品参数 溴化锂吸收式制冷机工作原理:溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。为使制冷过程能连续不断地进行下去,蒸发后的冷剂水蒸气被溴化锂溶液所吸收,溶液变稀,这一过程是在吸收器中发生的,然后以热能为动力,将溶液加热使其水份分离出来,而溶液变浓,这一过程是在发生器中进行的。发生器中得到的蒸汽在冷凝器中凝结成水,经节流后再送至蒸发器中蒸发。如此循环达到连续制冷的目的。 溴化锂吸收式制冷机的特点 一、优点 (一)以热能为动力,电能耗用较少,且对热源要求不高。能利用各种低势热能和废汽、废热,如高于20kPa(0.2kgf/cm2)表压饱和蒸汽、高干75℃的热水以及地热、太阳能等,有利于热源的综合 利用。具有很好的节电、节能效果,经济性好。 (二)整个机组除功率很小的屏蔽泵外,没有其他运动部件,振动小、噪声低、运行比较安静。 (三)以溴化锂溶液为工质,机器在真空状态下运转,无臭、无毒、无爆炸危险、安全可靠、 无公害、有利于满足环境保护的要求。 (四)冷量调节范围宽。随着外界负荷变化,机组可在10%~100%的范围内进行冷量的无级 调节。即使低负荷运行,热效率几乎不下降,性能稳定,能很好适应负荷变化的要求。 (五)对外界条件变化的适应性强。如标准外界条件为:蒸汽压力5.88 X 105Pa(6kgf/cm2)表压,冷却水进口温度32℃,冷媒水出口温度10℃的蒸汽双效机,实际运行表明,能在蒸汽压力(1.96~7.84)X 105Pa(2.0~8.0kgf/cm2)表压,冷却水进口温度25~40℃,冷媒水出口温度5~15C的 宽阔范围内稳定运转。 (六)安装简便,对安装基础要求低。机器运转时振动小,无需特殊基础,只考虑静负荷即可。 可安装在室内、室外、底层、楼层或屋顶。安装时只需作一般校平,按要求连接汽、水、电即可。 (七)制造简单,操作、维修保养方便。机组中除屏蔽泵、真空泵和真空间等附属设备外,几乎都是换热设备,制造比较容易。由于机组性能稳定,对外界条件变化适应性强,因而操作比较简单。机 组的维修保养工作,主要在于保持其气密性。 二、缺点 (一)在有空气的情况下,溴化锂溶液对普通碳钢具有强烈的腐蚀性。这不仅影响机组的寿命, 而且影响机组的性能和正常运转。

吸收式制热

吸收式热泵是一种利用低品位热源,实现将热量从低温热源向高温热源泵送的循环系统。是回收利用低温位热能的有效装置,具有节约能源、保护环境的双重作用。吸收式热泵可以分为两类。 第一类吸收式热泵,也称增热型热泵,是利用少量的高温热源,产生大量的中温有用热能。即利用高温热能驱动,把低温热源的热能提高到中温,从而提高了热能的利用效率。第一类 吸收式热泵的性能系数大于1,一般为1.5~2.5。 第二类吸收式热泵,也称升温型热泵,是利用大量的中温热源产生少量的高温有用热能。即利用中低温热能驱动,用大量中温热源和低温热源的热势差,制取热量少于但温度高于中 温热源的热量,将部分中低热能转移到更高温位,从而提高了热源的利用品位。第二类吸收式热泵性能系数总是小于1,一般为0.4~0.5。两类热泵应用目的不同,工作方式亦不同。 但都是工作于三热源之间,三个热源温度的变化对热泵循环会产生直接影响,升温能力增大,性能系数下降。 目前,吸收式热泵使用的工质为LiBr--H2O或NH3--H2O,其输出的最高温度不超过150℃。升温能力ΔT一般为30-50℃。制冷性能系数为0.8~1.6,增热性能系数为1.2~2.5,升温性能系数为0.4~0.5。 第一类溴化锂吸收式热泵原理简介: 第一类溴化锂吸收式热泵机组是一种以高温热源(蒸汽、高温热水、燃油、燃气)为驱动热源,溴化锂溶液为吸收剂,水为制冷剂,回收利用低温热源(如废热水)的热能,制取所需要的工艺或采暖用高温热媒(热水),实现从低温向高温输送热能的设备。热泵由发生器、冷凝器、蒸发器、吸收器和热交换器等主要部件及抽气装置,屏蔽泵(溶液泵和冷剂泵)等辅助部分组成。抽气装置抽除了热泵内的不凝性气体,并保持热泵内一直处于高真空状态。 第二类溴化锂吸收式热泵原理简介: 第二类溴化锂吸收式热泵机组也是回收利用低温热源(如废热水)的热能,制取所需要的工艺或采暖用高温热媒(热水),实现从低温向高温输送热能的设备。它以低温热源(废热水)为驱动热源,在采用低温冷却水的条件下,制取比低温热源温度高的热媒(热水)。它与第一类溴化锂吸收式热泵机组的区别在于,它不需要更高温度的热源来驱动,但需要较低温度的冷却水。 第二类热泵也是由发生器、冷凝器、蒸发器、吸收器和热交换器等主要部件及抽气装置、屏蔽泵(溶液泵和冷却泵)等辅助部分组成。抽气装置抽除了热泵内的空气等不凝性气体,并保持热泵内一直处于高真空状态。 二段第二类溴化锂吸收式热泵原理简介: 二段第二类溴化锂吸收式热泵机组是将第二类热泵的蒸发器、吸收器、发生器和冷凝器各分为完全隔开的两个,驱动热源(废热水)、热媒(热水)和冷却水分别顺序流经分隔成两个的各部件,使各部件分别均形成一个高温段和一个低温段。高温段的发生器、蒸发器分别与高温段的冷凝器、吸收器对应,利用高温段的驱动热源温度较高的优势,尽量提高热媒出口温度;低温段的发生器、蒸发器则分别与低温段的冷凝器、吸收器对应,充分利用低温段冷却水和热媒温度较低的优势,尽量利用温度已降低的驱动热源的热量,使驱动热源(废热水)温度降得更低,从而回收利用更多的驱动热源(废热水)热量。

相关文档
最新文档