实验 微波的传输特性和基本测量

实验   微波的传输特性和基本测量
实验   微波的传输特性和基本测量

实验 微波的传输特性和基本测量

实验目的

1、 了解电磁波在矩形波导中传播的特点,学会用驻波测量线测量波的纵向分布。

2、 掌握一些微波基本量的测量基本技术,学会测量驻波比、波导波长、检测信号频率等。

3、 学会阻抗调配。

实验仪器

微波窄带扫频信号源、衰减器、频率计(波长计)、驻波测量线等。

一、实验原理

微波是指波长范围在11mm

m ,即频率范围在300300MHz GHz 的电磁波。微波信号系统

中最基本参数有频率、驻波比、功率等。

1. 矩形波导及其中的10TE 波:

矩形波导是一个横截面为a b ?矩形的均匀、无损耗的波导管。如下图1。本实验室使用的是国际通用的标准波导,其内壁尺寸为:22.86,10.16a mm b mm ==。波导中传播的电磁波被完全局限在波导管内。

假设矩形波导管内壁为理想导体且波导沿z 轴方向为无限长,由麦克斯韦电磁理论可求得矩形波导中10TE 波的各电磁场分量为:

0x E = ()

0sin j t z y x E E e

a ωβπ-??=

???

图1 矩形波导结构图

0z E = ()

0sin j t z x x H E e

a ωββ

πωμ--??=

???

0y H = ()

02s j t z z x H j

E co e

a a ωβππωμ-??= ???

波导中电磁场的电场强度分布如图2所示。电磁场的结构具有以下特性: ⑴0,0z E H =≠,电场在z 方向无分量,为横电波; ⑵电磁场沿x 方向为一个驻立半波,沿y 方向为均匀分布;

⑶电磁场沿z 方向为行波状态,在该方向,电磁场分量y E 与x H 的分布规律相同。 2.实验装置

其它元件:

x

E

图2 10TE 波的电场分量分布图

标准短路片 待测阻抗 匹配负载 阻抗调配器

3.传输线的特性参量与工作状态:

在波导中常用相移常数、波导波长、驻波系数等特性参量来描述波导中的传输特征,对于矩形波导中的10TE 波:

自由空间波长:c f λ= 截止波长:2c a λ=

波导波长:g λ=

相移常量:2g βπ

λ=

反射系数:E E Γ=入反 驻波比:

m i n M a x E E ρ=

由此可见,微波在波导中传输时,存在着一个截止波长c λ,波导中只能传输c λλ<的电磁波。波导波长大于自由空间波长。

在实际应用中,传输线并非是无限长,此时传输线中的电磁波由入射波与反射波迭加而成,传输线中的工作状态主要决定于负载的情况。波导终端接上负载后,由于负载反射电磁波性质的不同,电磁波在终端产生不同程度的反射。微波技术中,常用驻波比ρ来描述传输线阻抗匹配的情况。

驻波比ρ与反射系数Γ之间的关系为:

11ρ+Γ=

由于01Γ=,则ρ的值在1∞之间。

⑴波导终端接匹配负载时,微波功率全部被负载吸收,无反射波,波导中呈现行波状态。此时有:0,1ρΓ==;

⑵波导终端接标准短路片(即理想导体板)时,形成全反射,波导中呈现出纯驻波状态,此时有:1,ρΓ==∞

⑶波导终端接一般性负载时,形成部分反射,波导中呈现出驻波状态,此时01,1ρ<Γ<<<∞。

二、实验内容

实验测量过程中,打开信号源的电源, 调节与波导连接的衰减器,使在波导中传播的电磁波能

量大小适中。调节方法:在波导终端接上标准短路片,将驻波测量线的探针移至使电流表示值为极大时对应的位置,此位置即为波导中驻波的波腹,调节衰减器使电流计示值达到最大,但不超出量程。

1.微波频率的测量

微波的频率是表征微波信号的一个重要物理量。本实验中采用吸收式频率计进行测量。吸收式频率计的测量工作原理:当调节频率计,使其自身空腔的固有频率与微波信号频率相同时,则产生谐振,吸收式频率计对微波有最大的吸收,此时连接在微波通路上的电流计的示值有明显的减小,以减幅最大作为判断频率测量的依据。

微波频率的测量过程:在波导终端接上标准短路片,将探针移至某一波腹位置处,此时作检测用的电流计的示值为最大,仔细调节频率计,当电流计示值减小到最小时,吸收式频率计对通过的微波达到谐振吸收状态,频率计对应的读数即为微波信号的频率。

2.驻波比的测量

驻波比,定义为波导中驻波极大值点与驻波极小值点的电场之比。即

min

Max

E E ρ=

式中min ,Max E E 分别表示波导中驻波极大值点与驻波极小值点的电场强度。实验中通常采用驻波测量线来测定波导波长和驻波比。驻波测量线的探针是用于探测波导中的电场分布,由探针探测,经检波晶体(微小二极管)转换成检波电流由电流计显示。实验前应注意驻波测量线的谐振,使其有最佳灵敏度。实验中微波信号比较弱,驻波测量线中的检波二极管符合在平方律检波,即2

I E ∝。则驻波比测量依据公式为

min Max

E E ρ=

= 即使用驻波测量线测量驻波比,是通过移动测量线的探针分别处于驻波波腹及波节位置,由对应的

Max I 和min I 求得驻波比。

①短路测量:在波导终端接上标准短路片,测量此时的驻波比;

②观察行波状态:在波导终端接上匹配负载(又称为终端负载),测量此时的驻波比。 3.波导波长的测量

波导波长在数值上为相邻两个驻波极值点(波腹或波节)距离的两倍。在波导终端接上不匹配的负载(例如:标准短路片)时,波导中形成驻波,使用测量线探针的移动,测出相邻两个波节点位置坐标1D 和2D ,即可由下式计算波导波长

211

2

g D D λ=- 实际采用测定驻波极小点的位置来求出波导波长。考虑到驻波极小点附近变化平缓,因而测量值不够准确。为此,测量时通常不采取直接测量驻波极小点位置的方式,而是通过平均值法(也称为等电位法)间接测量,亦即测极小点附近两点(此两点检波显示电流计上的读数相等)的坐标,然后取这两点坐标的平均值,即得极小点坐标。如上图所示。两相邻极小点的距离为半个波导波长,测量计算式由上式可改为

()()2211211

222

g z z z z D D λ''''''++=-=-

由上面实验测得的波导波长,通过公式

g λ=计算出待测微波信号在自由空间的波长,再由波长与频率的关系式求出微波信号的频率,将计算的频

率与前面实验测得的频率进行比较分析。

4.(选做)练习阻抗调配技术

在波导终端依次相继接上待测阻抗、阻抗调配器、匹配负载,观察驻波比值。分别反复调节阻抗调配器的两个短路活塞,使驻波比尽可能小(实验要求达到小于1.5)。在实验报告中写出调节体会。

1

2z

微波基本参数测量

浙江师范大学实验报告 实验名称微波基本参数测量班级物理071 姓名陈群学号07180116 同组人刘懿钧实验日期09/10/27 室温气温 微波基本参数测量 摘要:微波是一种波长较短的电磁波。在电磁波波谱表中,微波的波长介于无线电波与光波之间。波长较长的分米波和无线电波的性能相近,波长较短的毫米波则 与光波的性质相一致。本实验有以下目的(1)了解微波传输系统的组成部分。 (2)掌握微波的基本测量:频率、功率、驻波比和波导波长 关键词:微波功率驻波比频率特性阻抗波长可变衰减器 引言:微波通常是指波长从1米(300MHZ)到1毫米(300GHZ)范围内的电磁波,其低频端与超短波波段相衔接,高频端与远红外相邻,由于它比一般无线电波的 波长要短的多,故把这一波段的无线电波称为微波,可划分为分米波,厘米波 和毫米波。微波有以下基本特征:1.微波的波长极短,比地球上一些物体的几 何尺寸小得多,因此当微波照射到这些物体上时,产生显著的反射,其传播特 性与几何光学相似,具有“似光性”直线传播的特点;2.微波的频率极高,即 振荡周期极短(10-9~10-12秒),与一般电真空器械中的电子渡越时间同一数量 级;3.微波可以毫无阻碍地穿过电离层,具有穿透性;4.许多的原子和分子发 射和吸收原子电磁波波长正好处于微波波段内;5.研究方法和测量技术上,要 从“电磁场”的概念去研究和分析,测量功率、驻波比、频率和特性阻抗等。 近年来,微波边缘学科,如微波超导、微波化学、微波生物学、微波医学都得 到长足的发展。 实验方案: 1、实验原理 微波的波长通常被认为在1mm~1M之间,其频率范围相当于300GHz~300MHz。如此之高的振荡频率,势必会引起一系列新的问题。现将微波与无线电波的主要不同点简述如下:(1)微波的产生具有其独特性 电子管中,电子由阴极到达阳极的时间称为“电子渡越时间”,一般是在s的数 量级。这对频率较低的无线电波来讲,几乎可被忽略。但对频率高于300 MHZ的微波,则将受到制约。若想从电子管中获得微波信号,只能借助于电子流与谐振腔相互交换能量的方式来进行。 (2)在研究方法上两者有明显的不同 在低频电路中,工作波长已远远超出实际电路的几何尺寸(例如:对应于50Hz的电磁波其波长值为6000KM)。电路中各点的电流和电压值可被认为是在同一时刻建立起来。

微波电路S参数测量实验报告

微波电路S参数测量实验报告 一、实验目的 掌握微波电路S参数的基本概念、测试的原理和方法。 二、实验内容 用矢量网络分析仪测试微波滤波器的二端口S参数。 三、基本原理 网络分析仪中最常用的应用是矢量网络分析仪,它是用来测量、分析各种微波器件和组件S参数的高精度仪器,在整个行业中使用率极高,作为重要仪器很多从事产品研发和测试的电子工程师都有可能需要使用。矢量网络分析仪的原理如图1所示。 图1 矢量网络分析仪的原理图 上图中各部分的功能如下: A、信号源:提供被测件激励输入信号,被测器件通过传输和反射对激励波作出响应,被测器件的频率响应可以通过信号源扫频来获取,由于测试结构需要考虑多种不同的信号源参数对系统造成的影响,故一般我们采用合成扫频信号源。 B、信号分离装置:含功分器和定向耦合器,分别提取被测件输入和反射信号,从而测量出它们各自的相位和幅度大小,测试装置可以单独也可以集成到分析仪的内部。 C、接收机:对被测件的反射、传输和输入信号进行测试;采用调谐接收机可以提供最好的灵敏度和动态范围,还能抑制谐波和寄生信号。 D、处理显示单元:对测试结果进行处理和显示,它作为多通道一起,需要有基准通道和测试通道,通过二者的比较才能知道测试的精准度,它的显示功能很强大并且灵活,如多种标记功能、极限线功能等,给系统和元器件的性能和参数测试带来很大的便利性。

矢量网络分析仪本身自带了一个信号发生器,可以对一个频段进行频率扫描. 如果是单端口测量的话,将激励信号加在端口上,通过测量反射回来信号的幅度和相位,就可以判断出阻抗或者反射情况。而对于双端口测量,则还可以测量传输参数。 图2 利用网络分析仪测微波电路的S参数 微波滤波器可看作是一个二端口网络,具有选频的功能,可以分离阻隔频率,使得信号在规定的频带内通过或被抑制。 滤波器按其插入衰减的频率特征来分有四种类型:(1)低通滤波器:使直流与某一上限角频率ωC(截至频率)之间的信号通过,而抑制频率高于截至频率ωC的所有信号;(2)高通滤波器:使下限频率ωC以上的所有信号通过,抑制频率在ωC以下的所有信号;(3)带通滤波器:使ω1至ω2频率范围内的信号通过,而抑制这个频率范围外的所有信号。(4)带阻滤波器:抑制ω1至ω2频率范围内的信号,而此频率范围外的信号可以通过。 测试前需要特别注意的一点是,如果待测件是有源器件,连接待测件前一定先将网络分析仪的两个端口的输出功率降到-25dBm以下。否则不但不会得到正确的测试结果,而且还有可能将网络分析仪损坏。这一点是测量有源器件时需要特别注意的一点。 四、微波滤波器技术指标 工作频率:9.36GHz; 电压驻波比:<1.3; 插入损耗:< 1dB。 五、实验步骤 1、矢量网络分析仪开机; 2、矢量网络分析仪校准; 3、连接矢量网络分析仪与被测器件; 4、按下“PRESET”键,准备进行设置,并设置监视的频率范围:按下“FREQ”键,按下“CENTER”软键,使用数字键输入扫频段的中心频率,例如9360,然后按下“MHz”软键。同时按下“SPAN”软键,输入测量带宽,使用数字键输入“500”,然后按下“MHz”软键。

哈尔滨工业大学(威海)微波技术实验报告

《微波技术》实验 班级 学号 姓名

实验一ANSOFT HFSS软件的使用与魔T的仿真 一、实验内容 1.下载并且安装ANSOFT HFSS软件10.0版本 2.学习使用该软件 3.仿真魔T 4.写出仿真使用后的报告 二、验收方式 1.提交使用报告(封皮班级学号装订成册) 2.用电脑对进行实际的演示和操作 三、实验步骤 注:首先根据实验Word文档设置仿真环境变量以保证魔T仿真能正确进行。 1、建立工程文件 在Tool>Options>HFSS Options中讲Duplicate Boundaries with geometry复选框选中这样使得在复制模型时,所设置的边界一起复制。 2、设置求解类型 3、设置模型单位 将创建模型中的单位设置为毫米。 4、设置模型的默认材料 在工具栏中设置模型的默认材料为真空(Vacuum)。 5、创建魔T (1) 创建arm_1 利用Draw>Box创建。 (2) 设置激励端口 注意:在哪一个端口设置激励,就先画哪一个端口,并将端口命名为P1。 (3) 创建其他臂 利用旋转复制的方式创建arm_2,arm_3,arm_4。 (4) 组合模型 利用布尔运算将所有的arm组合成为一个模型,即魔T创建完成。

6、设置求解频率即扫频范围 (1) 设置求解频率。解设置窗口中做以下设置:Solution Frequency :4GHz;Maximum Number of Passes:5;Maximum Delta S per Pass :0.02。 (2) 设置扫频。在扫频窗口中做以下设置:Sweep Type:Fast;Frequency Setup Type:Linear Count;Start :3.4GHz;Stop:4GHz;Count:1001;将Save Field复选框选中。 实验仿真图如下: 图1 电场E分布 说明:图1以正z轴方向为激励端口1,负y轴端口2,正x轴端口3,正y轴端口4。 可知:(1)端口1作为激励端口,端口2和端口4有等幅反向波输出。 (2)端口3为隔离口。

北邮微波实验报告整理版

北京邮电大学信息与通信工程学院 微波实验报告 班级:20112111xx 姓名:xxx 学号:20112103xx 指导老师:徐林娟 2014年6月

目录 实验二分支线匹配器 (1) 实验目的 (1) 实验原理 (1) 实验内容 (1) 实验步骤 (1) 单支节 (2) 双支节 (7) 实验三四分之一波长阻抗变换器 (12) 实验目的 (12) 实验原理 (12) 实验内容 (13) 实验步骤 (13) 纯电阻负载 (14) 复数负载 (19) 实验四功分器 (23) 实验目的 (23) 实验原理 (23) 实验内容 (24) 实验步骤 (24) 公分比为1.5 (25) 公分比为1(等功分器) (29) 心得体会 (32)

201121111x 班-xx 号-xx ——电磁场与微波技术实验报告 实验二 分支线匹配器 实验目的 1.熟悉支节匹配器的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith 图解法设计微带线匹配网络 实验原理 支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。 单支节匹配器,调谐时主要有两个可调参量:距离d 和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d ,使其在距离负载d 处向主线看去的导纳Y 是Y0+jB 形式。然后,此短截线的电纳选择为-jB ,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,通过增加一个支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。 微带线是有介质εr (εr >1)和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr ,可以近似等效为均匀介质填充的传输线,等效介质电常数为 εe ,介于1和εr 之间,依赖于基片厚度H 和导体宽度W 。而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。 实验内容 已知:输入阻抗Z 75in ,负载阻抗Z (6435)l j ,特性阻抗0Z 75 ,介质基片 2.55r ,1H mm 。 假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离114d ,两分支线之间的距离为21 8 d 。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。 实验步骤 1.根据已知计算出各参量,确定项目频率。 2.将归一化阻抗和负载阻抗所在位置分别标在Smith 圆上。 3.设计单枝节匹配网络,在图上确定分支线与负载的距离以及分支线的长度,根据给定的介质基片、特性阻抗和频率用TXLINE 计算微带线物理长度和宽度。此处应该注意电长度和实际长度的联系。 4.画出原理图,在用微带线画出基本的原理图时,注意还要把衬底添加到图中,将各部分的参数填入。注意微带 分支线处的不均匀性所引起的影响,选择适当的模型。 5.负载阻抗选择电阻和电感串联的形式,连接各端口,完成原理图,并且将项目的频率改为1.8—2.2GHz 。 6.添加矩形图,添加测量,点击分析,测量输入端的反射系数幅值。 7.同理设计双枝节匹配网络,重复上面的步骤。

微波基本参数的测量原理

微波基本参数的测量 一、实验目的 1、了解各种微波器件; 2、了解微波工作状态及传输特性; 3、了解微波传输线场型特性; 4、熟悉驻波、衰减、波长(频率)和功率的测量; 5、学会测量微波介质材料的介电常数和损耗角正切值。 二、实验原理 微波系统中最基本的参数有频率、驻波比、功率等。要对这些参数进行测量,首先要了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,其次是要掌握一些微波测量的基本技术。 1、导行波的概念: 由传输线所引导的,能沿一定方向传播的电磁波称为“导行波”。导行波的电场E 或磁场H 都是x 、y 、z 三个方向的函数。导行波可分成以下三种类型: (A) 横电磁波(TEM 波): TEM 波的特征是:电场E 和磁场H 均无纵向分量,亦即:0=Z E ,0=Z H 。电场E 和磁场H ,都是纯横向的。TEM 波沿传输方向的分量为零。所以,这种波是无法在波导中传播的。 (B) 横电波(TE 波): TE 波即是横电波或称为“磁波”(H 波),其特征是0=Z E ,而0≠Z H 。亦即:电场E 是纯横向的,而磁场H 则具有纵向分量。 (C) 横磁波(TM 波): TM 波即是横磁波或称为“电波”(E 波),其特征是0=Z H ,而0≠Z E 。亦即:磁场H 是纯横向的,而电场E 则具有纵向分量。 TE 波和TM 波均为“色散波”。矩形波导中,既能传输mm TE 波,又能传输mm TM 波(其中m 代表电场或磁场在x 方向半周变化的次数,n 代表电场或磁场在y 方向半周变化的次数)。 2、波导管: 波导管是引导微波电磁波能量沿一定方向传播的微波传输系统,有同轴线波导管和微带等,波导的功率容量大,损耗小。常见的波导管有矩形波导和圆波导,本实验用矩形波导。 矩形波导的宽边定为x 方向,内尺寸用a 表示。窄边定为y 方向,内尺寸用b 表示。10TE 波以圆频率ω自波导管开口沿着z 方向传播。在忽略损耗,且管内充满均匀介质(空气)下,波导管内电磁场的各分量可由麦克斯韦方程组以及边界条件得到: ()sin()j t z o y x E j e ωβωμππα-=-, ()sin()j t z o x x H j e ωβμαππα -=

微波偏振实验报告

篇一:电磁场与微波实验六报告——偏振实验 偏振实验 1. 实验原理 平面电磁波是横波,它的电场强度矢量e和波长的传播方向垂直。如果e在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波称为线极化波,在光学中也称偏振波。电磁场沿某一方向的能量有sin2 φ的关系,这就是光学中的马吕斯定律:i=i0cos2 φ,式中i0为初始偏振光的强度,i为偏振光的强度,φ是i与i0之间的夹角。 2. 实验步骤 系统构建图 由于喇叭天线传输的是由矩形波导发出的te10波,电场的方向为与喇叭口天线相垂直的系列直线,中间最强。dh926b型微波分光仪的两喇叭天线口面互相平行,并与 地面垂直,其轴与偏振实验线在一条直线上。由于接收喇叭口天线是和一段旋转短波导 连在一起的,在旋转波导的轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭天线的转角可从此处读到。 在主菜单页面点击“偏振实验”,单击“ok”进入“输入采集参数”界面。 本实验默认选取通道3作为光栅通道插座和数据采集仪的数据接口。采集点数可根据提示选取。 顺时针或逆时针(但只能沿一个方向)匀速转动微波分光仪的接收喇叭,就可以得到转角与接收指示的一组数据。 终止采集过程后,按下“计算结果”按钮,系统软件将本实验根据实际采集过程处理得到的理论和实际参数。 注意事项: ①为避免小平台的影响,最好将其取下。 ②实验用到了接收喇叭天线上的光栅通道(光传感头),应将该通道与数据采集仪通道3用电缆线连接。 ③转动接收喇叭天线时应注意不能使活动臂转动。 ④由于轴承环处的螺丝是松的,读取电压值时应注意,接收喇叭天线可能会不自觉偏离原来角度。最好每隔一定读数读取电压值时,将螺丝重新拧紧。 ⑤接收喇叭天线后的圆盘有缺口,实验过程中应注意别将该缺口转动经过光栅通道,否则在该处软件将读取不到数据。 3. 实验结果

哈工大 微波技术实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 微波技术 实验报告 院系:电子与信息工程学院班级: 姓名: 学号: 同组成员: 指导老师: 实验时间:2014年12月18日 哈尔滨工业大学

目录 实验一短路线、开路线、匹配负载S参量的测量------------------------------3 实验二定向耦合器特性的测量------------------------------------------------------6 实验三功率衰减器特性的测量-----------------------------------------------------11 实验四功率分配器特性的测量-----------------------------------------------------14 附录一RF2000操作指南-------------------------------------------------------------19 附录二射频电路基本常用单位------------------------------------------------------23 实验总结------------------------------------------------------------------------------------24

实验一 短路线、开路线、匹配负载S 参量的测量 一、实验目的 1、通过对短路线、开路线的S 参量S11的测量,了解传输线开路、短路的特性。 2、通过对匹配负载的S 参量S11及S21的测量,了解微带线的特性。 二、实验原理 S 参量 网络参量有多种,如阻抗参量[Z],导纳参量[Y],散射参量[S]等。微波频段 通常采用[S]参量,因为它不仅容易测量,而且通过计算可以转换成其他参量, 例如[Y]、[Z] 图1-1 一个二端口微波元件用二端口网络来表示,如图1-1所示。图中,a1,a2分 别为网络端口“1”和端口“2”的向内的入射波;b1,b2分别为端口“1”和端口 “2”向外的反射波。对于线性网络,可用线性代数方程表示: b1=S11a1+S12a2 b2=S21a1+S22a2 (1-1) 写成矩阵形式: ?? ??????????????=????? ???a a S S S S b b 212212211121 (1-2) 式中S11,S12,S21,S22组成[S]参量,它们的物理意义分别为 S11=11 a b 02=a “2”端口外接匹配负载时, “1”端口的反射系数 S21=12 a b 02=a “2”端口外接匹配负载时, “1”端口至“2”端口的传输系数 S12=21 a b 01=a “1”端口外接匹配负载时, “2”端口至“1”端口的传输系数

微波仿真实验报告(北邮)

北京邮电大学 微波仿真实验报告实验名称:微波仿真实验

姓名:刘梦颉 班级:2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 一、实验目的 1、熟悉支节匹配的匹配原理。 2、了解微带线的工作原理和实际应用。 3、掌握Smith图解法设计微带线匹配网络。 4、掌握ADS,通过SmithChart和Momentum设计电路并仿真出结果。 二、实验要求 1、使用软件:ADS 2、实验通用参数: FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02 特性阻抗:50欧姆 3、根据题目要求完成仿真,每题截取1~3张截图。

三、实验过程及结果 第一、二次实验 实验一: 1、实验内容 Linecal的使用(工作频率1GHz) a)计算FR4基片的50欧姆微带线的宽度 b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线 宽度与接地板之间的距离) 2、相关截图 (a)根据实验要求设置相应参数

(b)根据实验要求设置相应参数 实验二 1、实验内容 了解ADS Schematic的使用和设置2、相关截图:

打开ADS软件,新建工程,新建Schematic窗口。 在Schematic中的tools中打开lineCalc,可以计算微带线的参数。 3、实验分析 通过在不同的库中可以找到想要的器件,比如理想传输线和微带线器件。在完成电路图后需要先保存电路图,然后仿真。在仿真弹出的图形窗口中,可以绘制Smith图和S参数曲线图。

实验三 1、实验内容 分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。观察Smith圆图变化。 2、相关截图 (1)理想传输线

微波技术实验报告

微波技术实验指导书目录 实验一微波测量仪器认识及功率测量 实验二测量线的调整与晶体检波器校准 实验三微波驻波、阻抗特性测量 实验一微波测量仪器认识及功率测量 实验目的 (1)熟悉基本微波测量仪器; (2)了解各种常用微波元器件; (3)学会功率的测量。 实验内容 一、基本微波测量仪器 微波测量技术是通信系统测试的重要分支,也是射频工程中必备的测试技术。它主要包括微波信号特性测量和微波网络参数测量。 微波信号特性参量主要包括:微波信号的频率与波长、电平与功率、波形与频谱等。微波网络参数包括反射参量(如反射系数、驻波比)和传输参量(如[S]参数)。 测量的方法有:点频测量、扫频测量和时域测量三大类。所谓点频测量是信号只能工作在单一频点逐一进行测量;扫频测量是在较宽的频带内测得被测量的频响特性,如加上自动网络分析仪,则可实现微波参数的自动测量与分析;时域测量是利用超高速脉冲发生器、采样示波器、时域自动网络分析仪等在时域进行测量,从而得到瞬态电磁特性。 图1-1 是典型的微波测量系统。它由微波信号源、隔离器或衰减器、定向耦合器、波长/频率计、测量线、终端负载、选频放大器及小功率计等组成。 图 1-1 微波测量系统 二、常用微波元器件简介 微波元器件的种类很多,下面主要介绍实验室里常见的几种元器件: (1)检波器(2)E-T接头(3)H-T接头(4)双T接头 (5)波导弯曲(6)波导开关(7)可变短路器(8)匹配负载 (9)吸收式衰减器(10)定向耦合器(11)隔离器 三、功率测量 在终端处接上微波小功率计探头,调整衰减器,观察微波功率计指示并作相应记录。 微波元器件的认识 螺钉调配器 E-T分支与匹配双T 波导扭转 匹配负载 波导扭转 实验总结:在实验中我们认识了各种的微波元器件,让我们更好的理解课本上的知识,更是为了以后的实验做了准备。 实验二测量线的调整与晶体检波器校准 实验目的 (1)学会微波测量线的调整; (2)学会校准晶体检波器特性的方法; (3)学会测量微波波导波长和信号源频率。 实验原理

微波仿真实验报告(北邮)

北京邮电大学 微波仿真实验报告

实验名称:微波仿真实验 姓名:刘梦颉 班级:2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 一、实验目的 1、熟悉支节匹配的匹配原理。 2、了解微带线的工作原理和实际应用。 3、掌握Smith图解法设计微带线匹配网络。 4、掌握ADS,通过SmithChart和Momentum设计电路并仿真出结果。 二、实验要求 1、使用软件:ADS 2、实验通用参数: FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02 特性阻抗:50欧姆 3、根据题目要求完成仿真,每题截取1~3张截图。 三、实验过程及结果

第一、二次实验 实验一: 1、实验内容 Linecal的使用(工作频率1GHz) a)计算FR4基片的50欧姆微带线的宽度 b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线宽 度与接地板之间的距离) 2、相关截图 (a)根据实验要求设置相应参数 (b)根据实验要求设置相应参数

实验二 1、实验内容 了解ADS Schematic的使用和设置 2、相关截图: 打开ADS软件,新建工程,新建Schematic窗口。 在Schematic中的tools中打开lineCalc,可以计算微带线的参数。

3、实验分析 通过在不同的库中可以找到想要的器件,比如理想传输线和微带线器件。在完成电路图后需要先保存电路图,然后仿真。在仿真弹出的图形窗口中,可以绘制Smith图和S参数曲线图。 实验三 1、实验内容 分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。观察Smith圆图变化。 2、相关截图 (1)理想传输线

微波检测原理

微波检测原理 微波是指频率为300MHz-3000GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到0.1毫米之间的电磁波,是分米波、厘米波、毫米波和亚毫米波的统称。微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。微波作为一种电磁波也具有波粒二象性.微波量子的能量为1 99×l0 -25~1.99×10-22j。 微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对金属类东西,则会反射微波。 从电子学和物理学观点来看,微波这段电磁频谱具有不同于其他波段的如下重要特点: 穿透性 微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长,因此具有更好的穿透性。微波透入介质时,由于介质损耗引起的介质温度的升高,使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规加热中的热传导时间,且在条件为介质损耗因数与介质温度呈负相关关系时,物料内外加热均匀一致。 选择性加热 物质吸收微波的能力,主要由其介质损耗因数来决定。介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。物质不同,产生的热效果也不同。水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力。而蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸收能力比水小得多。因此,对于食品来说,含水量的多少对微波加热效果影响很大。 热惯性小 微波对介质材料是瞬时加热升温,能耗也很低。另一方面,微波的输出功率随时可调,介质温升可无惰性的随之改变,不存在“余热”现象,极有利于自动控制和连续化生产的需要。 似光性和似声性 微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多,或在同一量级上。使得微波的特点与几何光学相似,即所谓的似光性。因此使用微波工作,能使电路元件尺寸减小;使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。 由于微波波长与物体(实验室中无线设备)的尺寸有相同的量级,使得微波的特点又与声波相似,即所谓的似声性。例如微波波导类似于声学中的传声筒;喇叭天线和缝隙天线类似与声学喇叭,萧与笛;微波谐振腔类似于声学共鸣腔非电离性 微波的量子能量还不够大,不足与改变物质分子的内部结构或破坏分子之间的键。再有物理学之道,分子原子核原子核在外加电磁场的周期力作用下所呈现的许多共振现象都发生在微波范围,因而微波为探索物质的内部结构和基本特性提供了有效的研究手段。另一方面,利用这一特性,还可以制作许多微波器件。信息性

测试装置的基本特性

第二章 测试装置的基本特性 (一)填空题 1、 某一阶系统的频率响应函数为1 21 )(+=ωωj j H ,输入信号2sin )(t t x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。 2、 试求传递函数分别为5.05.35.1+s 和2 224.141n n n s s ωωω++的两个环节串联后组成的系统的总灵敏度。 3、 为了获得测试信号的频谱,常用的信号分析方法有 、 和 。 4、 当测试系统的输出)(t y 与输入)(t x 之间的关系为)()(00t t x A t y -=时,该系统能实现 测试。此时,系统的频率特性为=)(ωj H 。 5、 传感器的灵敏度越高,就意味着传感器所感知的 越小。 6、 一个理想的测试装置,其输入和输出之间应该具有 关系为最佳。 (二)选择题 1、 不属于测试系统的静特性。 (1)灵敏度 (2)线性度 (3)回程误差 (4)阻尼系数 2、 从时域上看,系统的输出是输入与该系统 响应的卷积。 (1)正弦 (2)阶跃 (3)脉冲 (4)斜坡 3、 两环节的相频特性各为)(1ωQ 和)(2ωQ ,则两环节串联组成的测试系统,其相频特性 为 。 (1) )()(21ωωQ Q (2))()(21ωωQ Q + (3)) ()()()(2121ωωωωQ Q Q Q +(4))()(21ωωQ Q - 4、 一阶系统的阶跃响应中,超调量 。 (1)存在,但<5% (2)存在,但<1 (3)在时间常数很小时存在 (4)不存在 5、 忽略质量的单自由度振动系统是 系统。 (1)零阶 (2)一阶 (3)二阶 (4)高阶 6、 一阶系统的动态特性参数是 。 (1)固有频率 (2)线性度 (3)时间常数 (4)阻尼比 7、 用阶跃响应法求一阶装置的动态特性参数,可取输出值达到稳态值 倍所经过的 时间作为时间常数。 (1)0.632 (2)0.865 (3)0.950 (4)0.982 (三)判断对错题(用√或×表示) 1、 一线性系统不满足“不失真测试”条件,若用它传输一个1000Hz 的正弦信号,则必然导致输出波形失真。( ) 2、 在线性时不变系统中,当初始条件为零时,系统的输出量与输入量之比的拉氏变换称为传递函数。( ) 3、 当输入信号)(t x 一定时,系统的输出)(t y 将完全取决于传递函数)(s H ,而与该系统

微波实验报告

之前网上下的学长学姐的报告有很多不靠谱,但是调谐都要调到中心频率上,否则都不对, 还有老师验收的时候如果自己心情很不好,只要她发现一点错误就会坚定的认为不是自己 做的,所以一定要确保没有错误,原理一定要弄清楚.愿后来人好运~~~ 实验2 微带分支线匹配器 一.实验目的: 1.熟悉支节匹配的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith图解法设计微带线匹配网络 二.实验原理: 1.支节匹配器 随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。因此,在频率高达GHz以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。 支节匹配器分单支节、双支节和三支节匹配。这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。此电纳或电抗元件常用一终端短路或开路段构成。 本次实验主要是研究了微带分支线匹配器中的单支节匹配器和双支节匹配器,我都采用了短路模型,这类匹配器主要是在主传输线上并联上适当的电纳,用附加的反射来抵消主传输线上原来的反射波。 单支节调谐时,其中有两个可调参量:距离d和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d ,使其在距离负载d处向主线看去的导纳Y是Y0+JB形式。然后,此短截线的电纳选择为-JB,然后利用Smith圆图和Txline,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,比单支节匹配器增加了一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配,但需要注意的是,由于双支节匹配器不是对任意负载阻抗都能匹配,所以不能在匹配禁区内。 2.微带线 从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。 W为微带线导体带条的宽度;εr为介质的相对介电常数;T为导体带条厚度;H 为介质层厚度,通常H远大于T。L为微带线的长度。微带线的严格场解是由混合TM-TE 波组成,然而,在绝大多数实际应用中,介质基片非常薄(H<<λ),其场是准TEM波,因此可以用传输线理论分析微带线。 微带线的特性阻抗与其等效介电常数εr、基片厚度H和导体宽度W有关,计算公式较为复杂,故利用txline来计算。 3.微带线的模型

北理工微波实验报告总结

实验一一般微波测试系统的调试 一、实验目的 1.了解一般微波测试系统的组成及其主要元、器件的作用,初步掌握它们的调整方法。 2.掌握频率、波导波长和驻波比的测量方法。 3.掌握晶体校正曲线的绘制方法。 二、实验装置与实验原理 常用的一般微波测试系统如1-1所示(示意图)。 微波 信号源 隔离 器 可变衰减器 频率计精密 衰减 器 测量线终端 负载 测量放大器图1-1 本实验是由矩形波导(3厘米波段, 10 TE模)组成的微波测试系统。其中,微波信号源(固态源或反射式速调管振荡器)产生一个受到(方波)调制的微波高频振荡,其可调频率范围约为7.5~12.4GHz。隔离器的构成是:在一小段波导内放有一个表面涂有吸收材料的铁氧体薄片,并外加一个恒定磁场使之磁化,从而对不同方向传输的微波信号产生了不同的磁导率,导致向正方向(终端负载方向)传播的波衰减很小,而反向(向信号源)传播的波则衰减很大,此即所谓的隔离作用,它使信号源能较稳定地工作。频率计实际上就是一个可调的圆柱形谐振腔,其底部有孔(或缝隙)与波导相通。在失谐状态下它从波导内吸收的能量很小,对系统影响不大;当调到与微波信号源地频率一致(谐振)时,腔中的场最强,从波导(主传输线)内吸收的能量也较多,从而使测量放大器的指示数从某一值突然降到某一最低值,如图1-2(a)所示。此时即可从频率计的刻度上读出信号源的频率。从图1-1可知,腔与波导(主传输线)只有一个耦合元件(孔),形成主传输线的分路,这种连接方式称为吸收式(或称反应式)连接方法。另一种是,腔与主传输线有两个耦合器件,并把腔串接于主传输线中,谐振时腔中的场最强,输出的能量也较多,因而测量放大器的指示也最大,如

极化波实验报告

内蒙古工业大学信息工程学院 实验报告 课程名称:电磁场与电磁波实验名称:反射实验和极化波的产生 与检测实验类型:验证性■综合性□设计性□实验室名称:电磁场与电磁波实 验室班级:电子10-1班学号:201010203008 姓名:苏宝组别: 同组人:成绩:实验日期: 2013年5月21 电磁场与电磁波实验 实验一:反射实验 实验目的 熟悉dh926ad型数据采集仪、dh926b型微波分光仪的使用方法掌握分光仪验证电磁波 反射定律的方法 实验设备与仪器 dh926ad型数据采集仪 dh926b型微波分光仪 dh1121b型三厘米固态信号源金属板 实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍 物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和 通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 如图所示,平行极化的均匀平面波以角度? 入射到良介质表面时,入射波、反射波和折 射波可用下列式子表示为 平行极化波的斜入射示意图 实验内容与步骤 系统构建时,如图1,开启dh1121b型三厘米固态信号源。dh926b型微波分光仪的两喇 叭口面应互相正对,它们各自的轴线应在一条直线上,指示两喇叭位置的指针分别指于工作 平台的0-180刻度处。将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉 起平台上四个压紧螺钉旋转一个角度后放下,即可压紧支座。反射全属板放到支座上时,应 使金属板平面与支座下面的小圆盘上的90-90这对刻线一致,这时小平台上的0刻度就与金属板的法线方向一致。 将dh926ad型数据采集仪提供的usb电缆线的两端根据具体尺寸分别连接 图1 反射实验 到数据采集仪的usb口和计算机的usb口,此时,dh926ad型数据采集仪的usb指示灯 亮(蓝色),表示已连接好。然后打开dh926ad型数据采集仪的电源开关,电源指示灯亮(红 色),将数据采集仪的通道电缆线两端分别连接到dh926b型微波分光仪分度转台底部的光栅 通道插座和数据采集仪的相应通道口上(本实验应用软件默认为通道1)。最后,察看dh1121b 型三厘米固态信号源的“等幅”和“方波”档的设置,将dh926ad型数据采集仪的“等幅/ 方波”设置按钮等同于dh1121b型三厘米固态信号源的设置。 转动微波分光仪的小平台,使固定臂指针指在某一刻度处,这刻度数就是入射角度数, 然后转动活动臂在dh926ad型数据采集仪的表头上找到一最大指示,此时微波分光仪的活动 臂上的指针所指的刻度就是反射角度数。如果此时表头指示太大或太小,应调整微波分光仪 微波系统中的可变衰减器或晶体检波器,使表头指示接近满量程做此项实验。入射角最好取 30°至65°之间,因为入射角太大或太小接收喇叭有可能直接接收入射波。做这项实验时应 注意系统的调整和周围环境的影响。 采集过程中,dh926ad型数据采集仪的usb指示灯连续闪动(蓝色),表示采集过程正在 继续。应用软件屏幕上的信号灯颜色也随着实验的继续进行红色、绿色切换。您需要顺时针

用谐振腔微扰法测量微波介质特性 2

用谐振腔微扰法测量微波介质特性 微波技术中广泛使用各种微波材料,其中包括电介质和铁氧体材料。微波介质材料的介电特性的测量,对于研究材料的微波特性和制作微波器件,获得材料的结构信息以促进新材料的研制,以及促进现代尖端技术(吸收材料和微波遥感)等都有重要意义。 本实验是采用反射式矩形谐振腔用微扰法来测量微波介质特性的。反射式谐振腔是把一段标准矩形波导管的一端加上带有耦合孔的金属板,另一端加上封闭的金属板,构成谐振腔,它具有储能、选频等特性。而微扰法则是通过分析腔体的微小变形对谐振频率的影响,来测量谐振腔的一些主要参数的,它不仅对加深谐振腔的理解有帮助,而且在谐振腔的设计和调试中也有实际的应用。 2.1 实验目的 1.了解谐振腔的基本知识。 2.学习用谐振腔法测量介质特性的原理和方法 实验原理: 一、谐振腔的基本知识 谐振腔是在微波频率下工作的谐振元件,它是一个任意形状的导电壁(或导磁壁)包围的,并能在其中形成电磁振荡的介质区域,它具有储存电磁能及选择一定频率信号的特性。 1、谐振腔的基本参数 谐振腔通常采用谐振频率0f (或谐振波长0λ)、品质因数0Q 及等效电导0G 作为它的基本参数。 (1) 谐振频率0f (或谐振波长0λ) 谐振频率描述电磁能量在谐振腔中的运动规律。它是指在谐振腔中激起的电磁振荡的工作频率(或工作波长)。比较普遍的求解谐振频率的方法是“场分析的方法”,它从求解谐振腔的电磁场边值问题入手,导出谐振频率或波长。 从电磁场理论可知,在自由空间中,电磁场满足的波动方程及边界条件为 02 2 =+?E k E 0=?E n 02 2 =+?H k H 0=?H n 1 式中,2 2022022βγμεω+?? →?-==k k k 无耗,μ、ε为谐振腔中介质参数,n 是由腔壁导体指向外的法向单位矢量,k 是与谐振腔的几何形状、尺寸及波型有关的数值。在谐振腔内满足式1的电磁场对应于一系列的确定的n k 值(称为本征值)。即 εμ?0n n k = 2 或 εμ π20n n k f = 3

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告 实验五极化实验 学院:电子工程学院 班号:2011211204 组员: 执笔人: 学号:2011210986

一、实验目的 1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理 二、实验设备 S426型分光仪 三、实验原理 平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。如果E 在垂直于传播方向的平面沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫偏振波。偏振波电磁场沿某一方向的能量有一定关系。这就是光学中的马吕斯定律: 2 0cos I I θ = 式中I 为偏振波的强度,θ为I 与I0间的夹角。 DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。 四、实验步骤 1.设计利用S426型分光仪验证电磁波马吕斯定律的方案; 根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。 2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。 实验仪器布置 通过调节,使A1取一较大值,方便实验进行。 然后,再利用前面推导出的θ,将仪器按下图布置。

五、实验数据 I(uA) θ° 0 10 20 30 40 50 60 70 80 90 理论值90 87. 3 79. 5 67. 5 52. 8 37. 2 22. 5 10. 5 2.7 0 实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11. 1 14. 3 25. 9 - 1、数据分析: 由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许围,所以可以认为马吕斯定律得到了验证。 2、误差分析: 实验中可能存在仪器仪表误差,人为误差以及各组互相影响造成的误差等。但是角度比较大的时候,相对误差都比较小,也比较精准。角度比较小的时候,由于理论值较小,相对误差会大一点,但是从整体趋势来看,结果也是合理的。所以不影响我们对马吕斯定律进行验证。 六、思考题 1、垂直极化波是否能够发生折射?为什么?给出推导过程。 答:不能。 A1

第三章测试装置的基本特性

第三章测试装置的基本特性 第一节测试装置的组成及基本要求 一、对测试系统的基本要求 测试过程是人们获取客观事物有关信息的认识过程。在这一过程中,需要利用专门的测试系统和适当的测试方法,对被测对象进行检测,以求得所需要的信息及其量值。对测试系统的基本要求自然是使测试系统的输出信号能够真实地反映被测物理量的变化过程,不使信号发生畸变,即实现不失真测试。任何测试系统都有自己的传输特性,如果输入信号用x(t)表 示,测试系统的传输特性用h(t)表示,输 出信号用y(t)表示,则通常的工程测试问 题总是处理x(t)、h(t)和y(t)三者之间的 关系,如图2-1所示,即 1)若输入x(t)和输出y(t)是已知量, 图3-1 则通过输入、输出可推断出测试系统的传 输特性h(t)。 2)若测试系统的传输特性h(t)已知,输出y(t)亦已测得,则通过h(t)和y(t)可推断出对应于该输出的输入信号x(t)。 3)若输入信号x(t)和测试系统的传输特性h(t)已知,则可推断出测试系统的输出信号y(t)。 本章主要讨论系统传递(传输)特性的描述方法。 二、测试系统的组成 一个完善的测试系统是由若干个不同功能的环节所组成的,它们是实验装置、测试装置(传感器、中间变换器)、数据处理装置及显示或记录装置,如图2-2所示。 当测试的目的和要求不同时,以上四个部分并非必须全部包括。如简单的温度测试系统只需要一个液柱式温度计,它既包含了测量功能,又包含了显示功能。而用于测量 图3-2

机械构件频率响应的测试系统,则是一个相当复杂的多环节系统,如图2-3所示。 实验装置是使被测对象处于预定状态下,并将其有关方面的内在特性充分显露出来,它是使测量能有效进行的一种专门装置。例如,测定结构的动力学参数时,所使用的激振系统就是一种实验装置。它由信号发生器、功率放大器和激振器组成。信号发生器提供正弦信号,其频率可在一定范围内变化,此正弦信号经功率放大器放大后,去驱动激振器。激振器产生与信号发生器的频率相一致的交变激振力,此力通过力传感器作用于被测对象上,从而使被测对象处于该频率激振下的强迫振动状态。 测试装置的作用是将被测信号(如激振力、振动产生的位移、速度或加速度等)通过传感器变换成电信号,然后再经过后接仪器的再变换、放大和运算等,将其变成易于处理和记录的信号。测试装置是根据不同的被测机械参量,选用不同的传感器和相应的后接仪器而组成的。例如图中采用测力传感器和测力仪组成力的测试装置,同时又采用测振传感器和测振仪组成振动位移(或振动速度、振动加速度)的测试装置。 数据分析处理装置是将测试装置输出的电信号进一步分析处理,以便获得所需要的测试结果。如图中的双通道信号分析仪,它可对被测对象的输入信号(力信号)x (t )与输出信号(被测对象的振动位移信号)y (t )进行频率分析、功率谱分析、相关分析、频率响应函数分析、相干分析及概率密度分析等,以便得到所需要的明确的数据和资料。 显示或记录装置是测试系统的输出环节,它将分析和处理过的被测信号显示或记录(存储)下来,以供进一步分析研究。在测试系统中,现常以微处理机、打印机和绘图仪等作为显示和记录的装置。 在测试工作中,作为整个测试系统,它不仅包括了研究对象,也包括了测试装置,因此要想从测试结果中正确评价研究对象的特性,首先要确知测试装置的特性。 理想的测试装置应该具有单值的、确定的输入、输出关系。其中以输出和输入成线性关系为最佳。在静态测量中,虽然我们总是希望测试装置的输入输出具有这种线性关系,但由于在静态测量中,用曲线校正或输出补偿技术作非线性校正尚不困难,因此,这种线性关系并不是必须的;相反,由于在动态测试中作非线性校正目前还相当困难,因而,测试装置本身应该力求是线性系统,只有这样才能作比较完善的数学处理与分析。一些实际测试装置 ,

相关文档
最新文档