光伏组件竖向、横向布置不同,发电量差异大!

光伏组件竖向、横向布置不同,发电量差异大!
光伏组件竖向、横向布置不同,发电量差异大!

光伏组件竖向、横向布置不同,发电量差异大!

王淑娟

在光伏电站的设计中,光伏组件的放置有两种设计方案:

方案一:竖向布置,如下图。

图1光伏组件竖向布置的光伏电站

方案二:横向布置,如下图。

图2光伏组件横向布置的光伏电站

根据我的了解,目前竖向布置的电站会更多一些。主要原因是,竖向布置安装方便,横向布置时,最上面的一块安装比较费劲!这就影响了施工进度。

经过与业内的多位专家探讨之后,发现一横、一竖,对发电量的影响太大了!逐步说明这个问题。

1、前后遮挡造成电站电量损失

在电站设计过程中,阵列间距是非常重要的一个参数。由于土地面积的限制,阵列间距一般只考虑冬至日6个小时不遮挡。然而,6小时之外,太阳能辐照度仍是足以发电的。从本人获得的光伏电站的实测数据来看,大部分电站冬至日的发电时间在7小时以上,在西部甚至可以达到9个小时。(一个简单的判别方法,日照时数是辐射强度≥120W/m2的时间长度,而辐射强度≥50W/m2时,逆变器就可以向电网供电。因此,当12月份的日照时数在6h以上时,发电时间肯定大于6h。)

结论1:我们为了减少占地面积,在早晚前后光伏方阵必然会有遮挡,造成发电量损失。

2、光伏组件都有旁路二极管

热斑效应:一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量,被遮蔽的太阳电池组件此时会发热,这就是热斑效应。

这种效应能严重的破坏太阳电池。有光照的太阳电池所产生的部分能量,都可能被遮蔽的电池所消耗。为了防止太阳电池由于热斑效应而遭受破坏,最好在太阳电池组件的正负极间并联一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。因此,旁路二极管的作用就是:当电池片出现热斑效应不能发电时,起旁路作用,

让其它电池片所产生的电流从二极管流出,使太阳能发电系统继续发电,不会因为某一片电池片出现问题而产生发电电路不通的情况。

上一张60片的光伏组件的电路结构图。

图3光伏组件的电路结构图

结论2:光伏组件式需要旁路二极管的。

3、二极管在纵向遮挡和横向遮挡时的作用

图4纵向布置时被遮挡的图

图5横向布置时被遮挡的图

当组件纵向排布时,阴影会同时遮挡3个电池串,3个二极管若全部正向导通,则组件没有功率输出,3个二极管若没有全部正向导

通,则组件产生的功率会全部被遮挡电池消耗,组件也没有功率输出。

当组件横向排布时,阴影只遮挡1个电池串,被遮挡电池串对应的旁路二极管会承受正压而导通,这时被遮挡电池串产生的功率全部被遮挡电池消耗,同时二极管正向导通,可以避免被遮挡电池消耗未被遮挡电池串产生的功率,另外2个电池串可以正常输出功率。

结论3:纵向遮挡,3串都受影响,3串的输出功率都降低;横向遮挡,只有1串受影响,另外2串正常工作。

标准测试条件(即温度25℃,光谱分布AM1.5,辐照强度是1000W/m2,)下,未遮挡、纵向遮挡、横向遮挡的输出功率图:

图6 组件未被遮挡时的输出功率图

图7纵向遮挡(图4遮挡方式)时组件的输出功率图

图8 横向遮挡(图5遮挡方式)时组件的输出功率图从图中可以看到,组件横向遮挡电池片时,组件的输出功率约为正常输出功率的2/3,说明二极管导通,起到保护作用,组件纵向遮挡电池片时,组件几乎没有功率输出,测试结果与理论一致。

结论4:在光伏电站中组件采用横向排布,可以减少阴影遮挡造成的发电量损失。

为了更好的说明这一问题,借用网友“李京大明”的一组实验实测

的数据来说明。

采用了下面7种不同的遮挡方式。

这7种遮挡方式中,方案2和方案6、方案3和方案7的遮挡量基本相同。那他们的输出功率呢?看下表。

方式 1 2345 6 7

24.5534.063433.1134.49 33.5

Voc 34.62

3.450.470.330.28 5.8 5.2

Isc 5.88

8516119200 174 P 204

可以看出,方案6的输出功率远大于方案2,方案7的输出功率远大于方案3。纵向安装阴影遮挡后,二极管全部导通,在这种情况下,组件的电流是很低,小于1A;横向安装阴影遮挡后,仅有一个二极管导通,其余两个是正常的,所以功率降低不大。

光伏电站发电量计算方法

光伏电站平均发电量计算方法小结 一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出与计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 光伏电站在做前期可行性研究的过程中,需要对拟建光伏电站的发电量做理论上的预测,以此来计算投资收益率,进而决定项目就是否值得建设。一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出与计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算 /估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 一、计算方法 1)国家规范规定的计算方法。 根据最新的《光伏发电站设计规范 GB50797-2012》第6 6条:发电量计算中规 疋: 1、光伏发电站发电量预测应根据站址所在地的太阳能资源情况,并考虑光伏发电站系统设计、光伏方阵布置与环境条件等各种因素后计算确定。 2、光伏发电站年平均发电量 Ep计算如下: Ep=HA< PAZX K 式中: HA为水平面太阳能年总辐照量(kW? h/m2); Ep——为上网发电量(kW?h); PAZ ――系统安装容量(kW); K ――为综合效率系数。 综合效率系数K就是考虑了各种因素影响后的修正系数,其中包括: 1)光伏组件类型修正系数; 2)光伏方阵的倾角、方位角修正系数 3)光伏发电系统可用率 ;

4)光照利用率; 5)逆变器效率 ; 6)集电线路、升压变压器损耗 ; 7)光伏组件表面污染修正系数 ; 8)光伏组件转换效率修正系数。 这种计算方法就是最全面一种 ,但就是对于综合效率系数的把握 , 对非资深光伏从业人员来讲 ,就是一个考验 ,总的来讲 ,K2 的取值在 75%-85%之间,视情况而定。 2)组件面积——辐射量计算方法 光伏发电站上网电量Ep计算如下: Ep=HA< SX K1X K2 式中: HA为倾斜面太阳能总辐照量(kW? h/m2); S――为组件面积总与(m2) K1 ——组件转换效率 ; K2 ——为系统综合效率。 综合效率系数K2就是考虑了各种因素影响后的修正系数,其中包括: 1)厂用电、线损等能量折减 交直流配电房与输电线路损失约占总发电量的3%,相应折减修正系数取为 97%。 2)逆变器折减 逆变器效率为 95%~98%。 3)工作温度损耗折减光伏电池的效率会随着其工作时的温度变化而变化。当它们的温度升高时 , 光伏组件发电效率会呈降低趋势。一般而言 , 工作温度损耗平均值为在 2、5%左右。 其她因素折减

光伏发电系统设计与简易计算方法

光伏发电系统设计与简易计算方法 乛、離网(独立) 型光伏发电系统 (一) 前言: 光伏发电系统的设计与计算涉及的影响因素较多,不仅与光伏电站所在地区的光照条件、地理位置、气侯条件、空气质量有关,也与电器负荷功率、用电时间有关,还与需要確保供电的阴雨天数有关,其它尚与光伏组件的朝向、倾角、表面清洁度、环境温度等等因素有关。而这些因素中,例如光照条件、气候、电器用电状况等主要因素均极不稳定,因此严格地讲,離网光伏电站要十分严格地保 持光伏发电量与用电量之间的始终平衡是不可能的。離网电站的设计计算只能按统计性数据进行设计计算,而通过蓄电池电量的变化调节两者的不平衡使之在发电量与用电量之间达到统计性的平衡。 (二) 设计计算依椐: 光伏电站所在地理位置(緯度) 、年平均光辐射量F或年平均每日辐射量f(f=F/365) (详见表1) 我国不同地区水平面上光辐射量与日照时间资料表1 注:1)1 kwh=3.6MJ;亻 2)f=F(MJ/m2 )/365天; 3)h=H/365天; 4) h1=F(KWh)/365(天)/1000(kw/m2 ) (小时); 5)表中所列为各地水平面上的辐射量,在倾斜光伏组件上的辐射量比水平面上辐射量多。

设y=倾斜光伏组件上的辐射量/水平面上辐射量=1.05—1.15。故设计计算倾斜光伏组件面上辐射量时应乘以量量时应乘以y。 2. 各种电器负荷电功率w及其每天用电时间t; 3. 確保阴雨天供电天数d; 4. 蓄电池放电深度DOD(蓄电池放电量与总容量之比) ; (三) 设计计算: 1. 每天电器用电总量Q: Q=( W1×t1十W2×t2十----------) (kwh) 2. 光伏组件总功率P m: P m= a×Q/F×y×η/365×3.6×1 或P m=a×Q/f×y×η/3.6×1 或P m= (a×Q/h1×y×η) (kw p) P m----光伏组件峰值功率,单位:W P或K W P (标定条件:光照强度1000W/m2,温度25℃,大气质量AM1.5) a-----全年平均每天光伏发电量与用电量之比 此值1≤a≤d η-----发电系统综合影响系数(详见表2) 光伏发电系统各种影响因素分析表表2 3. 蓄电池容量C: C=d×Q/DOD×η6×η9×η10(kwh)-----( 交流供电) C=d×Q/DOD×η9×η10(kwh)-----( 直流供电) 4. 蓄电池电压V、安时数AH、串联数N与并联数M设计: 蓄电池总安时数AH=蓄电池容量C/蓄电池组电压V 蓄电池电压根据负载需要确定,通常有如下几种: 1.2v; 2.4v; 3.6v; 4.8v;6v;12v;24v;48v;60v;110v;220v 蓄电池串联数N=蓄电池组电压V/每只蓄电池端电压v 蓄电池并联数M=蓄电池总安时数AH/每只蓄电池AH数 5. 光伏组件串联与并联设计: 光伏组件串联电压和组件串联数根据蓄电池串联电压确定:(见表3、表4、表5) (晶体硅)光伏组件串联电压和组件串联数表3

光伏系统设计计算公式

光伏发电系统设计计算公式 1、转换效率: η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率) 其中:Pin=1KW/㎡=100mW/cm2。 2、充电电压: Vmax=V额×1.43倍 3.电池组件串并联 3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah) 3.2电池组件串联数=系统工作电压(V)×系数1.43/组件峰值工作电压(V) 4.蓄电池容量 蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度 5平均放电率 平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度 6.负载工作时间 负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率 7.蓄电池: 7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数 7.2蓄电池串联数=系统工作电压/蓄电池标称电压 7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量 8.以峰值日照时数为依据的简易计算 8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数 损耗系数:取1.6~2.0,根据当地污染程度、线路长短、安装角度等; 8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数 系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等; 9.以年辐射总量为依据的计算方式 组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量 有人维护+一般使用时,K取230;无人维护+可靠使用时,K取251;无人维护+环境恶劣+要求非常可靠时,K取276; 10.以年辐射总量和斜面修正系数为依据的计算 10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量 系数5618:根据充放电效率系数、组件衰减系数等;安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.3; 10.2蓄电池容量=10×负载总用电量/系统工作电压;10:无日照系数(对于连续阴雨不超过5天的均适用) 11.以峰值日照时数为依据的多路负载计算 11.1电流: 组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数 系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。 11.2功率:

光伏电站发电量的计算方法

光伏电站发电量计算方法 ①理论发电量 1)1MW屋顶光伏电站所需电池板面积一块235MW的多晶电池板面积 1.65*0.992=1.6368㎡,1MW需要1000000/235=4255.32块电池,电池板总面积 1.6368*4255.32=6965㎡ 2)年平均太阳辐射总量计算 上海倾角等于当地纬度斜面上的太阳总辐射月平均日辐照量H 由于太阳能电池组件铺设斜度正好与当地纬度相同,所以在计算辐照量时可以直接采 用表中所列数据(2月份以2 8天记)。 年平均太阳辐射总量=Σ(月平均日辐照量×当月天数) 结算结果为5 5 5 5.3 3 9 MJ/(m 2·a)。 3)理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率 =5555.339*6965*17.5% =6771263.8MJ=6771263.8*0.28KWH=1895953.86KWH =189.6万度 ②系统预估实际年发电量 太阳电池板输出的直流功率是太阳电池板的标称功率。在现场运行的太阳电池板往往 达不到标准测试条件,输出的允许偏差是5%,因此,在分析太阳电池板输出功率时 要考虑到0.9 5的影响系数。 随着光伏组件温度的升高,组f:l二输出的功率就会下降。对于晶体硅组件,当光伏组件内部的温度达到5 0-7 5℃时,它的输出功率降为额定时的8 9%,在分析太阳 电池板输出功率时要考虑到0.8 9的影响系数。 光伏组件表面灰尘的累积,会影响辐射到电池板表面的太阳辐射强度,同样会影响太 阳电池板的输出功率。据相关文献报道,此因素会对光伏组件的输出产生7%的影响,在分析太阳电池板输出功率时要考虑到0.9 3的影响系数。

发电效率PR计算公式

光伏电站发电效率的计算与监测 1、影响光伏电站发电量的主要因素 光伏发电系统的总效率主要由光伏阵列的效率、逆变器的效率、交流并网效率三部分组成。 1.1光伏阵列效率: 光伏阵列的直流输出功率与标称功率之比。光伏阵列在能量转换与传输过程中影响光伏阵列效率的损失主要包括:组件匹配损失、表面尘埃遮挡损失、不可利用的太阳辐射损失、温度的影响以及直流线路损失等。 1.2逆变器的转换效率: 逆变器输出的交流电功率与直流输入功率之比。影响逆变器转换效率的损失主要包括:逆变器交直流转换造成的能量损失、最大功率点跟踪(MPPT)精度损失等。 1.3交流配电设备效率: 即从逆变器输出至高压电网的传输效率,其中影响交流配电设备效率的损失最主要是:升压变压器的损耗和交流电气连接的线路损耗。 1.4系统发电量的衰减: 晶硅光伏组件在光照及常规大气环境中使用造成的输出功率衰减。 在光伏电站各系统设备正常运行的情况下,影响光伏电站发电量的主要因素为光伏组件表面尘埃遮挡所造成太阳辐射损失。 2、光伏电站发电效率测试原理 2.1光伏电站整体发电效率测试原理 整体发电效率E PR公式为: E PDR PR PT = —PDR为测试时间间隔(t?)内的实际发电量;—PT为测试时间间隔(t?)内的理论发电量;

理论发电量PT 公式中: i o I T I =,为光伏电站测试时间间隔(t ?)内对应STC 条件下的实际有效发电时间; -P 为光伏电站STC 条件下组件容量标称值; -I 0为STC 条件下太阳辐射总量值,Io =1000 w/m 2; -Ii 为测试时间内的总太阳辐射值。 2.2光伏电站整体效率测试(小时、日、月、年) 气象仪能够记录每小时的辐射总量,将数据传至监控中心。 2.2.1光伏电站小时效率测试 根据2.1公式,光伏电站1小时的发电效率PR H i H i PDR PR PT = 0I I i i T = —PDRi ,光伏电站1小时实际发电量,关口计量表通讯至监控系统获得; —P ,光伏电站STC 条件下光伏电站总容量标称值; —Ti ,光伏电站1小时内发电有效时间; —Ii ,1小时内最佳角度总辐射总量,气象设备采集通讯至监控系统获得; —I 0=1000w/m 2 。 2.2.2光伏电站日效率测试 根据气象设备计算的每日的辐射总量,计算每日的电站整体发电效率PR D D PDR PR PT = 0I I T = —PDR ,每日N 小时的实际发电量,关口计量表通讯至监控系统获得; —P ,光伏电站STC 条件下光伏电站总容量标称值; —T ,光伏电站每日发电有效小时数

无锡地区分布式光伏电站发电量模拟分析

Grid-Connected System: Simulation parameters Project :715光伏发电 Geographical Site Wuxi CH Country China Situation Latitude31.6oN Longitude120.3oE Time defined as Legal Time Time zone UT+8Altitude30 m Albedo 0.20 Meteo data :Wuxi CH, Meteonorm SYN File Simulation variant :New simulation variant Simulation date07/10/14 19h49 Simulation parameters Collector Plane Orientation Tilt23 deg Azimuth0 deg Horizon Free Horizon Near Shadings No Shadings PV Array Characteristics PV module Si-mono Model STP 250S-24/Vb Manufacturer Suntech Number of PV modules In series17 modules In parallel168 strings Total number of PV modules Nb. modules2856Unit Nom. Power250 Wp Array global power Nominal (STC)714 kWp At operating cond.639 kWp (50oC) Array operating characteristics (50oC)U mpp532 V I mpp1202 A Total area Module area5542 m2 Inverter Model SG100K3 Manufacturer Sungrow Characteristics Operating Voltage450-820 V Unit Nom. Power100 kW AC Inverter pack Number of Inverter7 units Total Power700 kW AC PV Array loss factors Thermal Loss factor Uc (const)20.0 W/m2K Uv (wind)0.0 W/m2K / m/s => Nominal Oper. Coll. Temp. (G=800 W/m2, Tamb=20oC, Wind=1 m/s.)NOCT56 oC Wiring Ohmic Loss Global array res.7.4 mOhm Loss Fraction 1.5 % at STC Module Quality Loss Loss Fraction 1.5 % Module Mismatch Losses Loss Fraction 2.0 % at MPP Incidence effect, ASHRAE parametrization IAM = 1 - bo (1/cos i - 1)bo Parameter0.05 User's needs :Unlimited load (grid)

光伏发电年发电量计算

以1MW装机容量为例(300KW即0.3MW),你可以自己换算下。 电力系统的装机容量是指该系统实际安装的发电机组额定有效功率的总和。 由于光伏发电必然有损耗,所以实际发电量是无法达到理论值的。 1、1MW光伏电站理论年发电量: =年平均太阳辐射总量*电池总面积*光电转换效率 =5555.339*6965*17.5% =6771263.8MJ =6771263.8*0.28 KWH =1895953.86 KWH =189.6万度 2、实际发电效率 太阳电池板输出的直流功率是太阳电池板的标称功率。在现场运行的太阳电池板往往达不到标准测试条件,输出的允许偏差是5%,因此,在分析太阳电池板输出功率时要考虑到0.9 5的影响系数。 随着光伏组件温度的升高,组f:l二输出的功率就会下降。对于晶体硅组件, 当光伏组件内部的温度达到50-75℃时,它的输出功率降为额定时的89%,在分析太阳电池板输出功率时要考虑到0.89的影响系数。 光伏组件表面灰尘的累积,会影响辐射到电池板表面的太阳辐射强度,同样会影响太阳电池板的输出功率。据相关文献报道,此因素会对光伏组件的输出产生7%

的影响,在分析太阳电池板输出功率时要考虑到0.93的影响系数。 由于太阳辐射的不均匀性,光伏组件的输出几乎不可能同时达到最大功率输出,因此光伏阵列的输出功率要低于各个组件的标称功率之和。 另外,还有光伏组件的不匹配性和板问连线损失等,这些因素影响太阳电池板输出功率的系数按0.9 计算。 并网光伏电站考虑安装角度因素折算后的效率为0.88。 所以实际发电效率为:0.9 5 * 0.8 9 * 0.9 3*0.9 5 *0.8 8 =65.7%。 3、系统实际年发电量: =理论年发电量*实际发电效率 =189.6*0.9 5 * 0.8 9 *0.9 3*0.9 5 * 0.8 8 =189.6*65.7% =124.56万度

太阳能电池板日发电量简易计算方法

太阳能电池板日发电量简易计算方法 太阳能电池板日发电量 简易计算方法 太阳能交流发电系统是由太阳电池板、充电控制器、逆变器和蓄电池共同组成;太阳能直流发电系统则不包括逆变器。为了使太阳能发电系统能为负载提供足够的电源,就要根据用电器的功率,合理选择各部件。太阳能发电系统的设计需要考虑如下因素: Q1、太阳能发电系统在哪里使用?该地日光辐射情况如何? Q2、系统的负载功率多大? Q3、系统的输出电压是多少,直流还是交流? Q4、系统每天需要工作多少小时? Q5、如遇到没有日光照射的阴雨天气,系统需连续供电多少天? 下面以(负载)100W输出功率,每天使用6个小时为例,介绍一下计算方法: 1. 首先应计算出每天消耗的瓦时数(包括逆变器的损耗): 若逆变器的转换效率为90%,则当输出功率为100W时,则实际需要输出功率应为100W/90%=111W;若按每天使用6小时,则耗电量为111W*6小时=666Wh,即0.666度电。 2. 计算太阳能电池板: 按每日有效日照时间为5小时计算,再考虑到充电效率和充电过程中的损耗,太阳能电池板的输出功率应为666Wh÷5h÷70% =190W。其中70%是充电过程中,太阳能电池板的实际使用功率。 3. 180瓦组件日发电量 180×0.7×5=567WH=0.63度 1MW日发电量=1000000×0.7×5=3500,000=3500度 例2:安10w灯,每天照明6小时,3个连雨天,如何计算太阳能电池板wp?以及12V 蓄电池ah? 每天的用电量: 10W X 6H= 60WH, 计算太阳能电池板: 假设你安装点的平均峰值日照时数为4小时. 则:60WH/4小时, = 15WP 太阳能电池板. 再计算充放电损耗, 以及每天需要给太阳能电池板的补充: 15WP/0.6= 25WP, 也就是一块25W的太阳能电池板就够了. 再计算蓄电池. 60WH/12V=5AH. 每天要用12V5AH的电量. 三天则为12V15AH.

光伏发电系统计算方法

光伏发电系统计算方法 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到几瓦的太阳能庭院灯,大到MW级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。 太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或110V,还需要配置逆变器。各部分的作用为:(一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项; (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220V AC、110V AC的交流电源。由于太阳能的直接输出一般都是12VDC、24VDC、48VDC。为能向220V AC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。 光伏系统的设计包括两个方面:容量设计和硬件设计。 在进行光伏系统的设计之前,需要了解并获取一些进行计算和选择必需的基本数据:光伏系统现场的地理位置,包括地点、纬度、经度和海拔;该地区的气象资料,包括逐月的太阳能总辐射量、直接辐射量以及散射辐射量,年平均气温和最高、最低气温,最长连续阴雨天数,最大风速以及冰雹、降雪等特殊气象情

光伏电站平均发电量计算方法小结

光伏电站平均发电量计算方法小结 【大比特导读】一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出和计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 光伏电站在做前期可行性研究的过程中,需要对拟建光伏电站的发电量做理论上的预测,以此来计算投资收益率,进而决定项目是否值得建设。一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出和计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 一、计算方法 1)国家规范规定的计算方法。 根据最新的《光伏发电站设计规范 GB50797-2012》第6.6条:发电量计算中规定: 1、光伏发电站发电量预测应根据站址所在地的太阳能资源情况,并考虑光伏发电站系统设计、光伏方阵布置和环境条件等各种因素后计算确定。 2 、光伏发电站年平均发电量Ep计算如下: Ep=HA×PAZ×K 式中: HA——为水平面太阳能年总辐照量(kW·h/m2); Ep——为上网发电量(kW·h); PAZ ——系统安装容量(kW); K ——为综合效率系数。 综合效率系数K是考虑了各种因素影响后的修正系数,其中包括: 1)光伏组件类型修正系数; 2)光伏方阵的倾角、方位角修正系数;

3)光伏发电系统可用率; 4)光照利用率; 5)逆变器效率; 6)集电线路、升压变压器损耗; 7)光伏组件表面污染修正系数; 8)光伏组件转换效率修正系数。 这种计算方法是最全面一种,但是对于综合效率系数的把握,对非资深光伏从业人员来讲,是一个考验,总的来讲,K2的取值在75%-85%之间,视情况而定。 2)组件面积——辐射量计算方法 光伏发电站上网电量Ep计算如下: Ep=HA×S×K1×K2 式中: HA——为倾斜面太阳能总辐照量(kW·h/m2); S——为组件面积总和(m2) K1 ——组件转换效率; K2 ——为系统综合效率。 综合效率系数K2是考虑了各种因素影响后的修正系数,其中包括: 1) 厂用电、线损等能量折减 交直流配电房和输电线路损失约占总发电量的3%,相应折减修正系数取为97%。 2) 逆变器折减 逆变器效率为95%~98%。 3) 工作温度损耗折减

光伏电站发电量计算方法

一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出和计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 光伏电站在做前期可行性研究的过程中,需要对拟建光伏电站的发电量做理论上的预测,以此来计算投资收益率,进而决定项目是否值得建设。一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出和计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 一、计算方法 1)国家规范规定的计算方法。 根据最新的《光伏发电站设计规范 GB50797-2012》第条:发电量计算中规定:1、光伏发电站发电量预测应根据站址所在地的太阳能资源情况,并考虑光伏发电站系统设计、光伏方阵布置和环境条件等各种因素后计算确定。 2 、光伏发电站年平均发电量Ep计算如下: Ep=HA×PAZ×K 式中: HA——为水平面太阳能年总辐照量(kW·h/m2); Ep——为上网发电量(kW·h);

PAZ ——系统安装容量(kW); K ——为综合效率系数。 综合效率系数K是考虑了各种因素影响后的修正系数,其中包括: 1)光伏组件类型修正系数; 2)光伏方阵的倾角、方位角修正系数;

3)光伏发电系统可用率; 4)光照利用率; 5)逆变器效率; 6)集电线路、升压变压器损耗; 7)光伏组件表面污染修正系数; 8)光伏组件转换效率修正系数。 这种计算方法是最全面一种,但是对于综合效率系数的把握,对非资深光伏从业人员来讲,是一个考验,总的来讲,K2的取值在75%-85%之间,视情况而定。 2)组件面积——辐射量计算方法 光伏发电站上网电量Ep计算如下: Ep=HA×S×K1×K2 式中: HA——为倾斜面太阳能总辐照量(kW·h/m2); S——为组件面积总和(m2) K1 ——组件转换效率; K2 ——为系统综合效率。

双面组件的发电量计算方法

双面组件的发电量计算方法 一、前言 普通光伏组件的发电量计算,一般采用下列公式。 今年以来,双面组件开始较大规模的应用。这就给光伏电站的设计人员提出了新问题:双面组件背面的发电量如何计算。 实验证明,与普通组件一样,双面组件的发电量也受地表反射率的影响。除此之外,组件安装高度也对双面组件的发电量有较大影响。本文阐述了双面组件发电量的计算方法。 本文是由Kin翻译自德国solarworld的文章,原文题目为“Calculating the additional energy yield of bifacial solar modules”(翻译时有节选) 二、双面电池技术 双面组件顾名思义就是正、反面都能发电的组件。 当太照到双面组件的时候,会有部分光线被周围的环境反射到双面组件的背面,这部分光可以被电池吸收,从而对电池的光电流和效率产生一定的贡献。

图:普通电池片(左)与双面电池片(右)正反面的对比 同常规单晶电池相比,双面光伏组件在正面直接照射的太和背面接收的太阳反射光下,都能进行发电。早在上世纪80年代,Cuevas等人报道了双面组件使用特殊的聚光系统后,其发电增益可达到50%。 在2015年,SolarWorld联合ISFH推出了名为“PERC+”的双面PERC太阳能电池,该太阳能电池在电池背面采用丝网印刷Al子栅电极,代替传统全尺寸Al背电极,Al浆消耗量大幅减少,前表面效率和背面效率分别达到21.5%和16.7% 。 图:PERC双面电池截面结构

三、双面组件 根据双面电池的封装技术可分为 双面双玻组件:采用双层玻璃+无边框结构, 双面(带边框)组件:采用透明背板+边框形式。 主流结构的双玻双面组件,具有生命周期较长、低衰减率、耐候性、防火等级高、散热性好、绝缘好、易清洗、更高的发电效率等优势。 双面组件的重要表征参数为双面发电系数BF,在STC条件下,反映了背面最大功率和正面最大功率的比值。 四、发电增益的影响因素 双面组件发电增益主要取决于两点:地表反射率和组件的安装高度。 太阳直接辐射和散射光到达地面后会被反射,有一部分将被反射到组件的背面。当组件最低点离地高度为0.5米时,使用TPO高反射率材料,双面发电的增益可达到25%。 图:组件背面接收辐射来源 4.1 地表反射率 地表反射率:是指地面反射辐射量与入射辐射量之比,表征地面对太阳辐射的吸收和反射能力。反射率越大,地面吸收太阳辐射越少; 反射率越小,地面吸收太阳辐射越多。如混凝土,

光伏电站平均发电量计算方法小结

光伏电站平均发电量计算方法小结【大比特导读】一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出和计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 光伏电站在做前期可行性研究的过程中,需要对拟建光伏电站的发电量做理论上的预测,以此来计算投资收益率,进而决定项目是否值得建设。一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出和计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 一、计算方法 1)国家规范规定的计算方法。 根据最新的《光伏发电站设计规范 GB50797-2012》第6.6条:发电量计算中规定: 1、光伏发电站发电量预测应根据站址所在地的太阳能资源情况,并考虑光伏发电站系统设计、光伏方阵布置和环境条件等各种因素后计算确定。 2 、光伏发电站年平均发电量Ep计算如下: Ep=HA×PAZ×K 式中: HA——为水平面太阳能年总辐照量(kW?h/m2); Ep——为上网发电量(kW?h); PAZ ——系统安装容量(kW); K ——为综合效率系数。

综合效率系数K是考虑了各种因素影响后的修正系数,其中包括: 1)光伏组件类型修正系数; 2)光伏方阵的倾角、方位角修正系数; in advance, closely associated with the party's patriotic youth Yu Qingzhi when Chang. Yu Qing Zhi, nanling County, Anhui Wuhu Brook family beach people, after the start of the war, participated in the third war zone relative to the officer training Corps trainees, young Chang Shen Liqun from Shangrao, Jiangxi province, is the only military 3)光伏发电系统可用率; 4)光照利用率; 5)逆变器效率; 6)集电线路、升压变压器损耗; 7)光伏组件表面污染修正系数; 8)光伏组件转换效率修正系数。 这种计算方法是最全面一种,但是对于综合效率系数的把握,对非资深光伏从业人员来讲,是一个考验,总的来讲,K2的取值在75%-85%之间,视情况而定。 2)组件面积——辐射量计算方法 光伏发电站上网电量Ep计算如下: Ep=HA×S×K1×K2 式中: HA——为倾斜面太阳能总辐照量(kW?h/m2); S——为组件面积总和(m2) K1 ——组件转换效率; K2 ——为系统综合效率。

光伏发电量计算及综合效率影响因素

光伏发电量计算及综合效率影响因素 Hessen was revised in January 2021

光伏发电量计算及综合效率影响因素 一、光伏电站理论发电量计算 1.太阳电池效率n的计算 在太阳电池受到光照时,输出电功率和入射光功率之比就称为太阳电池的效率,也称为光电转换效率。 厂巴一AX—〃仏匕 A几A几A几 其中,At为太阳电池总而积(包括栅线图形面积)。考虑到栅线并不产生光电,所以可以把At换成有效面积Aa (也称为活性面积),即扣除了栅线图形面积后的而积,同时计算得到的转换效率要高一些。Pin为单位而积的入射光功率。实际测量时是在标准条件下得到的:Pin取标准光强:AM 条件,即在25°C下,Pin 二1000W / nA 2.光伏系统综合效率(PR) n 总=HIX n 2X n 3 光伏阵列效率Hl:是光伏阵列在1000 W/m2太阳辐射强度下实际的直流输出功率与标称功率之比。光伏阵列在能量转换过程中的损失包括:灰尘/污渍,组件功率衰减,组件串联失配损失、温升损失、方阵相互遮挡损失、反射损失、光谱偏离损失、最大功率点跟踪精度及直流线路损失等,目前取效率86%计算。 逆变器转换效率112:是逆变器输岀的交流电功率与直流输入功率之比,取逆变器效率97%计算。 交流并网效率A3:是从逆变器输出,至交流配电柜,再至用户配电室变压器10 KV高压端,主要是升压变压器和交流线缆损失,按96%计算。

3. 理论发电量计算

太阳电池的名牌功率是在标准测试条件下测得的,也就是说在入射功率为 1000W/m:的光照条件下,lOOOWp太阳电池1小时才能发一度电。而实际上,同一天不同的时间光照条件不同,因此不能用系统的容量乘以日照时间来预测发电量。计算日发电量时,近似计算: 理论日发电量二系统峰值功率(kw) x等效日照小时数(h) x系统效率 等效峰值日照小时数h/d二(日太阳辐照量m7d) /lkW/m: (H照时数:辐射强度^120W/m2的时间长度) 二、影响发电量的因素 的发电量由三个因素决定:装机容量、峰值小时数、系统效率。当电站的 地点和规模确定以后,前两个因素基木己经定了,要想提高发电量,只能提高 此图:来源于王斯成老师的ppi 灿观

光伏电站发电量计算及故障解析

光伏电站发电量计算及故障解析 1.1一类地区 全年日照时数为3200~3300小时,辐射量在670~837x104kJ/cm2·a。相当于225~285kg标准煤燃烧所发出的热量。主要包括青藏高原、甘肃北部、宁夏北部和新疆南部等地。 1.2二类地区 全年日照时数为3000~3200小时,辐射量在586~670x104kJ/cm2·a,相当于200~225kg标准煤燃烧所发出的热量。主要包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。 1.3三类地区 全年日照时数为2200~3000小时,辐射量在502~586x104kJ/cm2·a,相当于170~200kg标准煤燃烧所发出的热量。主要包括山东、河南、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、广东南部、福建南部、江苏北部和安徽北部等地。 1.4四类地区

全年日照时数为1400~2200小时,辐射量在419~502x104kJ/cm2·a。相当于140~170kg标准煤燃烧所发出的热量。主要是长江中下游、福建、浙江和广东的一部分地区,春夏多阴雨,秋冬季太阳能资源还可以。 1.5五类地区 全年日照时数约1000~1400小时,辐射量在335~419x104kJ/cm2·a。相当于115~140kg标准煤燃烧所发出的热量。主要包括四川、贵州两省。 2.1光伏发电站年平均发电量Ep计算如下: Ep=HA×PAZ×K 式中:HA——水平面太阳能年总辐照量(kW·h/m2);Ep——上网发电量(kW·h); PAZ ——系统安装容量(kW);K ——为综合效率系数。 综合效率系数K是考虑了各种因素影响后的修正系数,其中包括: 1)光伏组件类型修正系数;2)光伏方阵的倾角、方位角修正系数;

分布式光伏电站投资成本分析

分布式光伏电站投资成本分析 有人留言问兔子君,说为什么现在市场上分布式光伏电站的造价报价范围从5元/瓦-10元/瓦不等,到底什么价格才是正常的呢今天兔子君与大家一同解剖光伏电站的构成及成本,让大家在购买光伏电站设备及选择安装服务商的时候做到心中有数。 兔子君简要的介绍一个分布式光伏电站都会涉及到什么内容及相应的价格 1、光伏组件 光伏组件是光伏电站的核心构成部分,组件的发电效率和寿命关系着电站建成后的收益,价格也占电站总价的50%以上,因此选购光伏组件的选购是电站建设中的重点。然而,光伏组件在生产过程中,为了确保客户的发电性能,一般都会在出厂时做严格检测,凡是一致化程度较差或有一些瑕疵的组件都会做等外品处理,也就是说每个厂家在生产过程中都会产生一定数量的等外品(B类组件)。这种B类组件,首先从质量角度就有问题,自然发电量无法与A类组件相比;其次,因为存在瑕疵,后续的功率和衰减率也无法保证能符合国家规定,最关键的,这类组件根本无法保证能有25年的使用寿命。某些不良安装服务商采用劣质的降级组件,可以将电站的造价极大的降低,代价则是业主收益完全无法保证。 目前市场上一线厂商组件价格:265W以上多晶光伏组件价格在元/瓦不等;而单晶270W以上组件价格则在元/瓦之间不等;CIGS组件价格在4-6元/瓦不等。当然,具体的购买价格会随组件的品牌、组件功率以及项目规模而定。当然,目前行业预期在630后,组件会有较大幅度的降价潮,兔子君预期降价在元/瓦。 2、逆变器 根据逆变器在光伏发电系统中的用途可分为独立型电源用和并网用二种。目前光伏系统一般采用并网方式,逆变器将光伏产生的直流电变成交流电,将电力送入电网。逆变器是电力转化的上网的关键设备,因此逆变器的选择与购买对系统的稳定运营有极大的影响。 目前500KW-1MW的集中式逆变器价格约在元/瓦,组串式逆变器在元/瓦,微

光伏发电量简单计算

太阳能电池板日发电量 简易计算方法 太阳能交流发电系统是由太阳电池板、充电控制器、逆变器和蓄电池共同组成;太阳能直流发电系统则不包括逆变器。为了使太阳能发电系统能为负载提供足够的电源,就要根据用电器的功率,合理选择各部件。太阳能发电系统的设计需要考虑如下因素: Q1、太阳能发电系统在哪里使用?该地日光辐射情况如何? Q2、系统的负载功率多大? Q3、系统的输出电压是多少,直流还是交流? Q4、系统每天需要工作多少小时? Q5、如遇到没有日光照射的阴雨天气,系统需连续供电多少天? 下面以(负载)100W输出功率,每天使用6个小时为例,介绍一下计算方法: 1. 首先应计算出每天消耗的瓦时数(包括逆变器的损耗): 若逆变器的转换效率为90%,则当输出功率为100W时,则实际需要输出功率应为100W/90%=111W;若按每天使用6小时,则耗电量为111W*6小时=666Wh,即0.666度电。 2. 计算太阳能电池板: 按每日有效日照时间为5小时计算,再考虑到充电效率和充电过程中的损耗,太阳能电池板的输出功率应为666Wh÷5h÷70% =190W。其中70%是充电过程中,太阳能电池板的实际 使用功率。 3. 180瓦组件日发电量 180×0.7×5=567WH=0.63度 1MW日发电量=1000000×0.7×5=3500,000=3500度 例2:安10w灯,每天照明6小时,3个连雨天,如何计算太阳能电池板wp?以及12V蓄 电池ah? 每天的用电量: 10W X 6H= 60WH, 计算太阳能电池板: 假设你安装点的平均峰值日照时数为4小时.

则:60WH/4小时, = 15WP 太阳能电池板. 再计算充放电损耗, 以及每天需要给太阳能电池板的补充: 15WP/0.6= 25WP, 也就是一块25W的太阳能电池板就够了. 再计算蓄电池. 60WH/12V=5AH. 每天要用12V5AH的电量. 三天则为12V15AH. 蓄电池配置需要设计成每天的用电量不超过20%, 或连续阴雨天内用电量不超过50%. 以达 到蓄电池最长寿命要求. 这样我们得出此系统的蓄电池为26AH-30AH足够. 例3:用6小时要充满12V45安的蓄电池要多少瓦的太阳能电池板? 12V45安的蓄电池为648瓦时(?) 6小时要充满的话太阳能电池板理论上只要108瓦但实际因为日照强度温度光伏控制器效率整体效率等因素影响108瓦的电池板6小时是冲不满12V45安蓄电池的将整体效率按0.8计算你需要选择135瓦的太阳能电池组件顺便说一句铅酸蓄电池的最佳充电电流是1/10电池容量电流也就是4.5A 过大的充电电流将加快电池极 板硫化影响电池寿命。 最简单计算方法: 电池:12V×45A=540WH 太阳能板功率=540/6/0.8(损耗)=112.5W 例4:请问2块20瓦(36片)太阳能电池板给12伏17安蓄电池充电需几个小时?一块普通的12v4AH的蓄电池,那用那两块太阳能电池板给它充电需要几小时呀? 1.20W的太阳能板工作电压一般是17.2V,电流是1.15A。如果板子质量不错,实测电流一般 在1.1A(本人测试过)。 2.假设你说的6小时光照是中午到下午这段时间,那么可以算4小时全功率发电,也就是说

光伏发电量计算及综合效率影响因素

光伏发电量计算及综合 效率影响因素 Hessen was revised in January 2021

光伏发电量计算及综合效率影响因素 一、光伏电站理论发电量计算 1.太阳电池效率η 的计算 在太阳电池受到光照时,输出电功率和入射光功率之比就称为太阳电池的效率,也称为光电转换效率。 其中,At 为太阳电池总面积(包括栅线图形面积)。考虑到栅线并不产生光电,所以可以把 At 换成有效面积 Aa (也称为活性面积),即扣除了栅线图形面积后的面积,同时计算得到的转换效率要高一些。Pin 为单位面积的入射光功率。实际测量时是在标准条件下得到的:Pin 取标准光强:AM 条件,即在 25℃下, Pin= 1000W / m 2。 2.光伏系统综合效率(PR) η总=η1×η2×η3 光伏阵列效率η1:是光伏阵列在 1000 W/m2 太阳辐射强度下实际的直流输出功率与标称功率之比。光伏阵列在能量转换过程中的损失包括:灰尘/污渍,组件功率衰减,组件串联失配损失、温升损失、方阵相互遮挡损失、反射损失、光谱偏离损失、最大功率点跟踪精度及直流线路损失等,目前取效率86%计算。 逆变器转换效率η2:是逆变器输出的交流电功率与直流输入功率之比,取逆变器效率97%计算。 交流并网效率η3:是从逆变器输出,至交流配电柜,再至用户配电室变压器10 KV 高压端,主要是升压变压器和交流线缆损失,按96%计算。 3.理论发电量计算

太阳电池的名牌功率是在标准测试条件下测得的,也就是说在入射功率为1000W/m2的光照条件下,1000Wp 太阳电池 1 小时才能发一度电。而实际上,同一天不同的时间光照条件不同,因此不能用系统的容量乘以日照时间来预测发电量。计算日发电量时,近似计算: 理论日发电量=系统峰值功率(kw)x等效日照小时数(h)x系统效率 等效峰值日照小时数h/d=(日太阳辐照量m2/d)/1kW/m2 (日照时数:辐射强度≥120W/m2的时间长度) 二、影响发电量的因素 的发电量由三个因素决定:装机容量、峰值小时数、系统效率。当电站的地点和规模确定以后,前两个因素基本已经定了,要想提高发电量,只能提高

相关文档
最新文档