上磁悬浮电路原理图-2016版

上拉电阻下拉电阻总结很全很好通俗易懂

上拉电阻: 1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。 2、OC门电路必须加上拉电阻,才能使用。 3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。 4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。 5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。 6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。 7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。 上拉电阻阻值的选择原则包括: 1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。 2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。 3、对于高速电路,过大的上拉电阻可能边沿变平缓。综合考虑 以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理 对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素: 1.驱动能力与功耗的平衡。以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。 2.下级电路的驱动需求。同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。 3.高低电平的设定。不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分 压值应确保在零电平门槛之下。 4.频率特性。以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。上拉电阻的设定应考虑电路在这方面的需求。 下拉电阻的设定的原则和上拉电阻是一样的。 OC门输出高电平时是一个高阻态,其上拉电流要由上拉电阻来提供,设输入端每端口不大于100uA,设输出口驱动电流约500uA,标准工作电压是5V,输入口的高低电平门限为0.8V(低于此值为 低电平);2V(高电平门限值)。 选上拉电阻时: 500uA x 8.4K= 4.2即选大于8.4K时输出端能下拉至0.8V以下,此为最小阻值,再小就拉不下来了。如果输出口驱动电流较大,则阻值可减小,保证下拉时能低于0.8V即可。 当输出高电平时,忽略管子的漏电流,两输入口需200uA

上拉电阻得到选取与详解

吴鉴鹰单片机开发板,学习单片机必备 二、拉电阻作用 1、一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。 2、数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定! 3、一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平;C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:比如:“当一个接有上拉电阻的端口设为输入状态时,他的常态就为高电平,用于检测低电平的输入”。 4、上拉电阻是用来解决总线驱动能力不足时提供电流的。一般说法是拉电流,下拉电阻是用来吸收电流的,也就是我们通常所说的灌电流 5、接电阻就是为了防止输入端悬空

电阻在选用时,选用经过计算后与标准值最相近的一个! P0为什么要上拉电阻原因有: 1。P0口片内无上拉电阻 2。P0为I/O口工作状态时,上方FET被关断,从而输出脚浮空,因此P0用于输出线时为开漏输出。 3。由于片内无上拉电阻,上方FET又被关断,P0输出1时无法拉升端口电平。 P0是双向口,其它P1,P2,P3是准双向口。准双向口是因为在读外部数据时要先“准备”一下,为什么要准备一下呢? 单片机在读准双向口的端口时,先应给端口锁存器赋1,目的是使FET关断,不至于因片内FET导通使端口钳制在低电平。 上下拉一般选10k!

手把手教你DIY磁悬浮详细教程--吊悬式上推式

手把手教你DIY磁悬浮 吊悬电路图 R3为距离调节,这个距离是有一定的大小,小到磁铁会吸住上面的铁芯,大到上面电磁铁没有力吸住下机的磁铁。 R4 是放大调节器,在PID中可看作P。 R5R6组成电压中线中。 距离调节,也可这样做:R3去掉不用,直接调节A放大器的中线电压。 R8,C1这个值要通过调试才能达到完美。这个可增加稳定性 这个3503磁感应器在电动摩托车车把找到的,线性的,当没有磁力线通过时输出为电压的一半。

3503放在线圈(线圈可以加铁芯)的下面中心点,这个放置有正反面之分。吊悬用强磁铁。 线圈的圈数和线直径大慨个数,没有算出要多少才可以,多圈几圈正常下多可以用单组电路(整个完整电路应有两组这样的电路) 电路分析: 这个电路中可分成几个部份 R2,R3,D1,C1组成稳压供给3503和中线电压取样 A放大器与R8,R7组成输入放大 因霍尔是放在磁场中间,和霍尔自身的工艺因素,所出输不一定刚好是电压的一半,所以放大器的中性电压一定要用R6来调节 R9,R10,C3,组成PID Q1,Q3,B放大器可看成一个放大器,R1是RF,这样就好理解了,D2,D3是保护Q1,Q3的。 R11,R12,Q2,Q4,C放大器这是一组约为1:1放大,正好与B放大输出成反相 也可这样来说,后级的电路是推勉放大器 如果不用R11,R12,Q2,Q4,C放大器,这个电路其实就是吊悬电路改变而来的 在调试中先试一组电路 当磁铁在线圈上方左右移动时,手能感觉到磁铁被电磁铁在上方一个位置中吸卡住(有点轻微,要认真去感觉),调节R6可改变吸卡的位置,

霍尔放在相对一组线圈中间,上下也要居中(这个很关健) 如果线圈的磁力够推动磁铁的话可以放在下面大磁铁中(这个看起比较好看),但初做这个还是先放在大磁铁上面,当然这个前提是下面的环形磁铁的磁力足以托起上面的悬磁铁一定距离,够放住线圈。左右线圈输出的磁性是想反的。对悬磁铁来说正好一个线圈是拉,一个线圈是推。 当悬磁铁向左漂移时,电磁铁会把它拉到右过来(一个推,一个拉),当悬磁向右漂移时,电磁铁也会把它拉到左过来,这样的结果会使悬磁铁居在两个线圈拉力的中间。上下两个线圈也是这个道理。

小学科学二年级下册第五单元第16课《制作磁悬浮笔架》

小学科学二年级下册第五单元第16课《制作磁悬浮笔架》 皇华小学备课组坚永芹 教材分析: 通过对本册第二单元磁铁的学习,学生已基本了解了磁铁的基本性质,也初步尝试了利用磁铁的性质制作指南针为人类服务。但是在真实的生活情景下,磁铁的性质还有哪些真实应用,利用磁铁的性质还可以进行哪些发明和创新呢?本可利用磁悬浮笔架这个技术与工程活动,让学生了解科学、技术与工程活动紧密结合,能够为生活带来更多的便利,为什会带来更多的进步。 教学目标: 1.能利用磁铁美工刀等材料和工具,在教师的指导下完成磁悬浮笔架的制作。 2.能对自己和他人的作品提出改进建议。 3.能如实讲述事实,当发现事实与自己原有的想法不同时,能尊重事实,养成用事实说话的意识。 4.了解到人类可以利用科技产品让生活环境得到改善。 教学重难点: 重点:探究磁悬浮实验的工作原理。 难点:利用磁悬浮实验的工作原理,完成磁悬浮笔架的制作。 活动准备:环形磁铁、纸盒、美工刀,双面胶、铅笔 教学过程: 一、问题与猜测 教师先演示"小猫钓鱼"的游戏(用磁铁吸引曲别针) ,让学生回忆学过的有关磁铁的知识,再展示磁悬浮地球仪和磁悬浮飞机等,激发学生探究其中原理的欲望。 师:同学们,我们知道了每块磁铁上都有两个磁极。不同的磁极靠近时会相互吸引,相同的磁极靠近时会相互排斥。这节课,我们就来利用磁铁间的这种奇妙的性质,制作一个可以悬浮的笔架。 (教师板书:制作磁悬浮笔架。) (设计意图:带领学生回顾已学知识。从学生喜欢的玩具人手,激发学生的学习兴趣,引导学生对悬浮现象进行猜测和探究。) 二、探究过程

(一)设计磁悬浮笔架 1、师提问:我们手中的铅笔可以飘浮在空中吗?谁能想到好方法?(学生积极回答。) 师:同学们的想法真棒。 (学生交流讨论,积极回答环形磁铁同学们能根据它联想到什么呢? 2、老师演示。我们可以先把假笔套在环形磁铁中,再把磁铁放在纸盒中,这样它们就会相互推开使铅笔悬浮在空中了。 3、(救师展示材料:环形磁铁、纸盒美工刀,双面胶、铅笔)师:哪位同学能说说这些工具的名称?(学生积极交流回答。) 师:哪位同学知道这些材料的作用? (学生小组内积极交流讨论。) 4、教师总结:美工刀可以用来切制纸盒;铅笔可以用来绘制线条:直尺可以用来测量物体的直径和厚度:纸盒可以用来做磁悬浮笔架的底座:双面胶可以用来固定位置。 (二)制作磁悬浮笔架 师:同学们,在开始制作前,老师遇到了一个难题.需要同学们一起帮忙解决:怎样能把磁铁牢固地固定在纸盒上呢? (学生积极讨论、汇报。) 师:可以用双面胶把磁铁粘在纸盒上,但是这个方法还不是太牢固。哪位同学还有其他的想法? (学生回答。) 师:我们可以先用直尺测量出环形磁铁的厚度和长度,再用铅笔在纸盒上绘制出宽度与环形磁铁厚度相同的、长度与纸盒相同的长方形,然后用直尺测量出环形磁铁的直径,用蜡笔在绘制的长方形两侧画出长度略小于环形碰铁直径的长方形,最后用美工刀将纸盒上绘制的4个长方形挖出来。 师提出活动要求: (1)学生小组内分工合作,互相配合。 (2)不能用美工刀嬉戏打闹,制作过程中要注意安全。 (3)安装磁铁时,,要注意磁铁的南北极方向。 (4)调试笔筒上两块磁铁间的位置,直至笔筒能悬浮。提示学生注意操作规范和安全。)学生开展实验活动,教师巡视并适时指导。 (设计意图:教师通过设置问题,发散学生思维;通过设计磁悬浮笔架的活动指向,培养

上拉电阻和下拉电阻的原理以及部分应用总结

上拉电阻和下拉电阻的原理以及部分应用总结 推荐 图中上下两个电阻分别为下拉电阻和上拉电阻,上拉就是将A点的电位拉高,下拉就是将A点的电位拉低,图中 的12k有些是没有画出来的,或者是没有的. 他们的作用就是在电路驱动器关闭时,给该节点一个固定的电平. 上拉电阻: 1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS 电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电

阻,以提高输出高电平的值。 2、OC门电路必须加上拉电阻,才能使用。 3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。 4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。 5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。 6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。 7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。 上拉电阻阻值的选择原则包括: 1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。 2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。 3、对于高速电路,过大的上拉电阻可能边沿变平缓。综合考虑 以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理 对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性 进行设定,主要需要考虑以下几个因素: 1.驱动能力与功耗的平衡。以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。 2.下级电路的驱动需求。同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。

上拉电阻与下拉电阻的概念与用法

上拉电阻 定义: 上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。 上拉: 1TTL驱动CMOS时,如果TTL输出最低高电平低于CMOS最低高电平时,提高输出高电平值 2 OC门必须加上拉,提高电平值 3 加大输出的驱动能力(单片机较常用) 4 CMOS芯片中(特别是门的芯片),为防静电干扰,不用的引脚也不悬空,一般上拉,降低阻抗,提供泄荷通路 5 提高输出电平,提高芯片输入信号的噪声容限,增强抗干扰 6 提高总线抗电磁能力,空脚易受电磁干扰 7 长线传输中加上拉,是阻抗匹配抑制反射干扰 原则: 1 从节约功耗和芯片的电流、能力应是电阻尽量大,R大,I小啊 2 从确保驱动能力,应当电阻足够小,R小,I大啊 3 对高速电路,加上拉可能边沿平缓(上升时间延长) 建议可以在1K---10K之间选(可根据实际情况) 信号输入端上拉电阻的工作原理 (从电路原理的角度分析输入端口电压为何会被提高) 悬赏分:20 - 提问时间2008-11-7 02:57 假如信号输入端是外界电路送来的低电平,那么输入端的电压不是应该被锁定在低电平吗,为什么加了个上拉电阻和电源,输入端的电压就被提高了呢?这个问题一直很困惑,希望能耐心解答。 问题补充: 我想问的是上拉电阻如何实现电压上拉的,而不是问的上拉电阻的使用目的和必要性,我很清楚上拉电阻的作用和目的。 提问者:michael6810 - 二级 其实你不清楚上拉电阻的作用和目的。否则你不会困惑。 你的困惑,yao311yan805 已经说出来了。只是你没有细心看,或者没有想到你该专著的重点。

16制作磁悬浮笔架教案

《制作磁悬浮笔架》 一、教学目标: 1、知识目标: 通过对磁悬浮工作原理的探究,帮助儿童掌握磁的相关知识 2、能力目标: 锻炼学生利用简单器材完成实验能力 3、思维目标: 通过以上两点提升学生的观察、分析的思维能力 二、教学重点与难点: 1、教学重点: 探究磁悬浮实验的工作原理。 2、教学难点: 探究磁悬浮列车的工作原理 三、教学设计: 从一个小魔术开始回顾磁铁的性质及其作用——利用磁铁的性质探究磁悬浮原理——了解磁悬浮列车的运行原理——激发学生的兴趣,制作完成磁悬浮笔成品知识拓展,让学生了解各国对磁悬浮技术的应用。 四、教学方法: 演示、验证式、讨论式教学 五、教学准备: 教师演示器材学生器材 工具材料工具材料 无磁悬浮笔套件无磁悬浮笔套件 六、教学过程: 1、复习前课: 2、课程兴趣点:磁铁为什么可以漂浮? 3、引导质疑: 第一步通过演示一个小魔术,回顾磁铁的性质及其作用。 第二步利用磁铁的性质学习磁悬浮原理,并了解磁悬浮列车的运行原理。 第三步通过制作完成磁悬浮成品,激发学生的兴趣,并让学生了解各国对磁悬浮技术的应

用。 4、探究验证过程: ⑴实验器材:磁悬浮笔套件 ⑵实验目的:了解磁极同极相斥,异极相吸的性质 ⑶实验记录:当两磁铁靠近时,会出现两种情况,一种是两磁铁吸在一起,一种是上面的磁 铁悬浮起来。 学生实验:通过以上演示实验,让学生掌握实验规律,独立完成本节课实验(教师可以适当的点拨) 5、总结回顾: 磁悬浮也称作“磁浮”,是一种利用磁体间的吸引力和排斥力来使物件浮在空中的技术,还有利用电磁力的吸引或排斥,使物件不受引力束缚,从而自由浮动的。 6、拓展表达: (1)拓展视野: 磁悬浮列车是怎样运动的呢?当然靠磁力了,首先利用磁铁同性相斥的原理把列车悬浮 起来,再利用磁铁异性相吸、同性相斥的原理使列车前进,消耗了电能。根据我们现有的知 识可以这样理解,但是磁悬浮实际工作原理要复杂得多。 (2)表达知识: 磁悬浮就是运用磁体“同性相斥,异性相吸”的性质,使磁体具有抗拒地心引力的能力 悬浮起来。 七、板书设计: 磁悬浮 一、磁铁为什么可以漂浮? 二、实验部分 1、了解磁极同极相斥,异极相吸的性质 三、总结 磁极:南极(S)、北极(N) 同极相斥,异极相吸 八、课后延伸: 课下总结整理磁铁在生活中的应用,通过本节课的学习,学生掌握磁悬浮的原理,回家 后可以利用相关材料制作磁悬浮玩具,并写出实验步骤。

上拉电阻和下拉电阻的使用

吸电流、拉电流输出、灌电流输出 拉即泄,主动输出电流,从输出口输出电流; 灌即充,被动输入电流,从输出端口流入; 吸则是主动吸入电流,从输入端口流入。 吸电流和灌电流就是从芯片外电路通过引脚流入芯片内的电流;区别在于吸收电流是主动的,从芯片输入端流入的叫吸收电流。灌入电流是被动的,从输出端流入的叫灌入电流;拉电流是数字电路输出高电平给负载提供的输出电流,灌电流时输出低电平是外部给数字电路的输入电流。这些实际就是输入、输出电流能力。 拉电流输出对于反向器只能输出零点几毫安的电流,用这种方法想驱动二极管发光是不合理的(因发光二极管正常工作电流为5—10mA)。 上、下拉电阻 一、定义 1、上拉就是将不确定的信号通过一个电阻嵌位在高电平!“电阻同时起限流作用”!下拉同理! 2、上拉是对器件注入电流,下拉是输出电流 3、弱强只是上拉电阻的阻值不同,没有什么严格区分 4、对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。 二、拉电阻作用 1、一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。 2、数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定! 3、一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平;C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:比如:“当一个接有上拉电阻的端口设为输入状态时,他的常态就为高电平,用于检测低电平的输入”。 4、上拉电阻是用来解决总线驱动能力不足时提供电流的。一般说法是拉电流,下拉电阻是用来吸收电流的,也就是我们通常所说的灌电流 5、接电阻就是为了防止输入端悬空 6、减弱外部电流对芯片产生的干扰 7、保护cmos内的保护二极管,一般电流不大于10mA 8、通过上拉或下拉来增加或减小驱动电流 9、改变电平的电位,常用在TTL-CMOS匹配 10、在引脚悬空时有确定的状态

【硬件设计】上拉电阻和下拉电阻用法

【硬件设计】上拉电阻和下拉电阻的用法 一、什么是上拉电阻?什么是下拉电阻? 上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理! 上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。 二、上拉电阻及下拉电阻作用: 1、提高電壓准位:a.当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。b.OC门电路必须加上拉电阻,以提高输出的搞电平值。 2、加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。 3、N/A pin防靜電、防干擾:在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。同時管脚悬空就比较容易接受外界的电磁干扰。 4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。 5、預設空閒狀態/缺省電位:在一些 CMOS 输入端接上或下拉电阻是为了预设缺省电位. 当你不用这些引脚的时候, 这些输入端下拉接 0 或上拉接 1。在I2C 总线等总线上,空闲时的状态是由上下拉电阻获得。 6. 提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到随机电平而影响电路工作。同样如果输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个三极管的集电极。从而提高芯片输入信号的噪声容限增强抗干扰能力。 三、上拉电阻阻值的选择原则包括: 1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。 2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

最经典的解析:上拉电阻、下拉电阻、拉电流、灌电流的一些介绍

(一)上拉电阻的使用场合: 1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路 的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。 2、OC门电路必须加上拉电阻,才能使用。 3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。 4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉 电阻产生降低输入阻抗,提供泄荷通路。同時管脚悬空就比较容易接受外界的电磁干扰(MOS器件为高输入阻抗,极容易引入外界干扰)。 5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增 强抗干扰能力。 6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。 7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效 的抑制反射波干扰。 (二)上拉电阻阻值的选择原则包括: 1、从节约功耗及芯片的灌电流能力考虑应当足够大:电阻大,电流小。 2、从确保足够的驱动电流考虑应当足够小:电阻小,电流大。 3、对于高速电路,过大的上拉电阻可能边沿变平缓。 综合考虑以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理。

(三)对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行 设定,主要需要考虑以下几个因素: 1.驱动能力与功耗的平衡。以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。 2.下级电路的驱动需求。同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。 3.高低电平的设定。不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。 4.频率特性。以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。上拉电阻的设定应考虑电路在这方面的需求。 (四)下拉电阻的设定的原则和上拉电阻是一样的。 OC门输出高电平时是一个高阻态,其上拉电流要由上拉电阻来提供,设输入端每端口不大于100uA,设输出口驱动电流约500uA,标准工作电压是5V,输入口的高低电平门限为0.8V(低于此值为低电平);2V(高电平门限值)。选上拉电阻时:500uA x 8.4K= 4.2即选大于8.4K时输出端能下拉至0.8V以下,此为最小阻值,再小就拉不下来了。如果输出口驱动电流较大,则阻值可减小,保证下拉时能低于0.8V即可。当输出高电平时,忽略管子的漏电流,两输入口需200uA :200uA x15K=3V即上拉电阻压降为3V,输出口可达到2V,此阻值为最大阻值,再大就拉不到2V了。选10K可用。COMS门的可参考74HC系

挑战DIY 极限,我做的磁悬浮 磁悬浮原理

磁悬浮原理 磁悬浮想法由来已久,就是用磁力克服重力让物体悬空,但真正做起来并不容易,主要原因是没有稳定的平衡点。要达到悬浮,必须是稳定的悬浮。也就是说,用一个力(或位移)在任何方向上(上下左右前后等)来(小)扰动被悬浮物,都会有一个恢复力,使得外力撤消后重新恢复平衡。

我见过的磁悬浮可以分成有源的和无源的两大类,前者比如反馈式的,用光电、磁电等手段检测到被悬浮物体偏离正常悬浮点后,通过调节电磁铁的电流来使得物体保持在悬浮点附近,因此需要用电。这样的悬浮从道理上看,与开直升飞机悬停没什么区别。 无源悬浮又分为超导悬浮和普通磁悬浮两类,前者是靠超导体的完全抗磁性来达到的,超导体和磁体之间就像安装了弹簧一样。简单说就是任何磁铁在超导体附近的移动都会在超导体表面产生电流,而这个感生电流所产生的磁场阻碍磁铁的运动,因此磁铁就与超导体相对静止。 普通磁悬浮又可分成两类,排斥悬浮和吸引悬浮。排斥悬浮有成品可买到,就是所谓的陀螺悬浮。其原理是用五块大磁铁(比如四角四块N极向上、中间一块S极向上)在悬浮空间上方产生一个磁场谷(对N极向下的悬浮磁铁周围排斥力强但中间弱),那么只要被悬浮磁铁的极性得到保持,就可以成功悬浮。但处

于自由状态的磁铁会上下反转,把排斥力变成吸引力,结果悬浮就失败。解决这一问题的办法就是把悬浮磁铁做成陀螺,保证在运转期间极性不反转,这样才能悬浮起来。这个“玩具”我很早也买过,悬浮需要技巧,陀螺的重量要通过垫片调整到误差在0.1g之内才能悬浮,而且要求底座很平。 以上悬浮要么需要能量,要么需要不会持久保持的条件(超导的低温、陀螺的旋转),因此都不是永久悬浮方案。 最后一种,就是吸引悬浮。但吸引悬浮中,两块磁铁的吸引力基本上是与距离的平方成反比的,尽管吸力与重力有一个平衡点,但为非稳定平衡。 为了解决这一问题,需要用反磁性物质制造一个局部的稳定空间。 我先给出我的试验过程和结果,过一会儿再讲具体原理,并给出另一个制作实例。 1、花90元买来500克分析纯的铋粒。实际上用不了这么多,也用不着这么纯,但只有这个可买。

RS-485上拉电阻下拉电阻

RS-485上拉电阻下拉电阻 A:如下图的两个 Bias Resaitor 电阻就是上拉电阻和下拉电阻。图中,上部的一个Bias Resaitor 电阻因为是接地,因而叫做下拉电阻,意思是将电路节点A 的电平向低方向(地)拉;同样,图中,下部的一个Bias Resaitor 电阻因为是电源(正),因而叫做上拉电阻,意思是将电路节点A的电平向高方向(电源正)拉。当然,许多电路中上拉下拉电阻中间的那个12k电阻是没有的或者看不到的。我找来这个图是RS-485/RS-422总线上的,可以一下子认识上拉下拉的意思。但许多电路只有一个上拉或下拉电阻,而且实际中,还是上拉电阻的为多。 上拉下拉电阻的主要作用是在电路驱动器关闭时给线路(节点)以一个固定的电平。 1 在RS-485总线中,它们的主要作用就是在线路所有驱动器都释放总线时让所有节点的A-B端电压在200mV或200mV以上(不考虑极性)。不然,如果接收器输入端A和B间的电平低于±200mV(绝对值小于200mV),接收器输出的逻辑电平将被当作所传输数据的末位而被接收起来,这样显然是极容易产生通讯错误的。 2 最容易见到的上拉电阻应当是NE555电路7脚作为输出用的时候。实际上,它和一个三极管的C极或MOS管的D极有一个电阻接到电源+上是一样道理的。它的作用就是:当管子(晶体管或MOS管)输入关断电平时,C极或D极有一个高电平(空载时约等于电源电压);当管子(晶体管或MOS管)输入导通电平时,C极或D极将与电源地(-)接通,因而有一个低电平。理想的应为0V,但因为管子有导通电阻,因而有一定的电压,不同的管子可能不一样,相同的管子也可能因参数差异而小有差别,即便是真正的金属接触的电源开关,也是有接触电阻/导通压降(虽然不同电流下压降不同)的;仅仅就导通而言,对于不同系列的集成电路来说,因为应用对象不同,导通后的输出电压有不同的规定,典型是TTL电平和CMOS电平的不同。这方面超过了本问题的内容,将日志里另外处理。 3 建议:自己实验或用仿真软件看看。

上拉电阻与下拉电阻的作用总结

上拉电阻与下拉电阻的作用总结 一、定义: 上拉就是将不确定的信号通过一个电阻钳位在高电平!电阻同时起限流作用!下拉同理! 上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输 出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。 二、上下拉电阻作用: 1、提高电压准位: a.当 TTL 电路驱动COMS 电路时,如果 TTL 电路输出的高电平低于 COMS 电路的最低高电平(一般为 3.5V),这时就需要在 TTL 的输出端接上拉电阻,以提高输出高电平的值。 b. OC 门电路必须加上拉电阻,以提高输出的高电平值。 2、加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。 3、N/A pin 防静电、防干扰:在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。同時管脚悬空就比较容易接受外界的电磁干扰。 4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干 扰。 5、预设空间状态/缺省电位:在一些CMOS 输入端接上或下拉电阻是为了预设缺省电位. 当你不用这些引脚的时候, 这些输入端

下拉接 0 或上拉接 1。在I2C总线等总线上,空闲时的状态是由上下拉电阻获得 6. 提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到 随机电平而影响电路工作。同样如果输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个三极管的集电极。从而提高 芯片输入信号的噪声容限增强抗干扰能力。 {电源到元件间的叫上拉电阻,作用是平时使该脚为高电平地到元件间的叫下拉电阻,作用是平时使该脚为低电平上拉电阻和下拉电 阻的范围由器件来定(我们一般用10K) +Vcc +------+=上拉电阻 |+-----+ |元件| |+-----+ +------+=下拉电阻 -Gnd 一般来说上拉或下拉电阻的作用是增大电流,加强电路的驱动能力 比如说51的p1口 还有,p0口必须接上拉电阻才可以作为io口使用 上拉和下拉的区别是一个为拉电流,一个为灌电流 一般来说灌电流比拉电流要大 也就是灌电流驱动能力强一些} 三、上拉电阻阻值的选择原则包括: 1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。 2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

自制磁悬浮装置

磁力悬浮器:玩儿的就是“气场”! chxmright发表于 2010-12-07 18:59 DIYer:J_Hodgie 制作时间:3-4小时 制作难度:★★★★☆ GEEK指数:★★★★☆ 这件小小的DIY作品向我们展现了一个磁力悬浮器是如何“神奇”地让各种物体漂浮在空中,而且仅仅利用了一个小小的磁铁而已哦~~简单易行,效果却是相当不凡的,一定能让围观者“大吃一斤”……

话说该神器和悬浮地球仪很神似~~但是我DIY的神器是电磁铁和永久磁铁配合的结果——这比简单的将几个永久磁铁捆绑了事,声称自己可以悬浮任何物体要高级多了,不是夸夸其谈,看我后续介绍吧。 我找来了一个微控制器(PLC或是单片机随你便)和一个红外传感器来侦查悬浮物的悬停高度,然后通过微处理器来设定电磁铁的电流值,从而让它乖乖地悬停在空中~ 当然咯,悬浮物的悬浮位置还是和悬浮物的重量与磁性大小有关滴。把物体放在磁铁和传感器之间时,我可以通过一个开关来侦测高度从而确定电流强度。 当物体悬浮时,物体的重力和磁铁对物体产生的吸引力是相等的,所以我们选择悬浮物体的时候一定要找使用非工业电磁铁,用较小的电磁力就可以摆平的物体啦~~而且这个小装置还能够进行动态调整以便物体保持完美的悬浮高度。 从前我总是被商店橱窗里的悬浮地球仪深深吸引,奈何钱包不鼓啊。何况那种玩意儿还非得捆绑销售那个悬浮物,而不能悬浮自己喜欢的物品! 因此呢,我决定自己利用磁铁DIY一个。先看看我的“神器”,酷吧? 双向电梯 ? 5 制作悬浮物 ? 6 飘起来向大家去炫耀吧 ?7 DIYer签到处

1 工具和材料 ○ATMega168微控制器○1个16-20MHz 晶体管○28针插座 ○双路全H桥集成电路卡○1个NPN型功率三极管○2个电磁铁 ○1个双色发光二极管 ○2个红外发光二极管 ○2个红外光敏二极管 ○1个5V稳压器

上拉下拉原理

上拉下拉原理 重要信号线的上下拉问题 一般说来,不光是重要的信号线,只要信号在一段时间内可能出于无驱动状态,就需要处理。 比如说,一个CMOS门的输入端阻抗很高,没有处理,在悬空状况下很容易捡拾到干扰,如果能量足够甚至会导致击穿或者闩锁,导致器件失效。祈祷输入的保护二极管安全工作吧。如果电平一直处于中间态,那输出就可能是不确定的情况,也可能是上下MOS都导通,对器件寿命造成影响。 总线上当所有的器件都处于高阻态时也容易有干扰出现。因为这时读写控制线处于无效状态,所以不一定会引起问题。你如果觉得自己能够接受的话也就将就了。但是这时你就要注意到,控制线不能悬空,不然…… TTL电路的输入端是一个发射极开路引出的结构,拉高或者不接都是高电平,但是强烈建议不要悬空不接。 上拉还是下拉?要看需要。一方面器件可能又要求,另一方面,比如总线上两个器件,使能控制都是高有效,那么最好下拉,否则当控制信号没有建立的时候就会出现两个冲突,可能烧片。如果计算机总线上面挂了一个D/A,上电复位信号要对它清零或者预置,那么总线可以上下拉到你需要的数字。至于上下拉电阻的大小,这个情况就比较多了。CMOS输入的阻抗很高,上下拉电阻阻值可以大一些,一般低功耗电路的阻值取得都比较大,但是抗干扰能力相应比较弱一些。 很多场合下拉电阻取值比上拉电阻要小,这个是历史遗留问题。如上面所说,TTL电路上拉时输入3集管基射反偏,没有什么电流,但是下拉时要能够使得输入晶体管工作,这个在TTL的手册中可以查到。 也是为了这个历史遗留问题,有些CMOS器件内部采用了上拉,这时它会告诉你可以不处理这些管脚,但是这时你就要注意了,因为下拉再用10K可能不好使,因为也许内置的20K电阻和外置的10K把电平固定在了1V左右。 有时候你会看到150欧姆或者50欧姆左右的上下拉电阻,尤其是在高速电路中会看到。 150欧姆电阻下拉一般在PECL逻辑中出现。PECL逻辑输出级是设计开路的电压跟随器,需要你用电阻来建立电压。 50欧姆的电阻在TTL电路中用的不多,因为静态功耗实在是比较大。在CML 电路和PECL电路中兼起到了端接和偏置的作用。 CML电路输出级是一对集电极开路的三极管,需要一个上拉电阻来建立电平。这个电阻可以放在发送端,那么接受端还需要端接处理,也可以放到接受端,这时候端接电阻和偏置电阻就是一个。PECL电路结构上就好像CML后面跟了一个射极跟随器。 OC门也使用上拉电阻,这个和CML有一点相像,但是还不太一样。CML和PECL

三极管基础之上拉电阻,下拉电阻讲解学习

我们先来说说集电极开路输出的结构。集电极开路输出的结构如图1所示,右边的那个三极管集电极什么都不接,所以叫做集电极开路(左边的三极管为反相之用,使输入为“0”时,输出也为“0”)。对于图1,当左端的输入为“0”时,前面的三极管截止(即集电极C跟发射极E之间相当于断开),所以5V电源通过1K电阻加到右边的三极管上,右边的三极管导通(即相当于一个开关闭合);当左端的输入为“1”时,前面的三极管导通,而后面的三极管截止(相当于开关断开)。 我们将图1简化成图2的样子。图2中的开关受软件控制,“1”时断开,“0”时闭合。很明显可以看出,当开关闭合时,输出直接接地,所以输出电平为0。而当开关断开时,则输出端悬空了,即高阻态。这时电平状态未知,如果后面一个电阻负载(即使很轻的负载)到地,那么输出端的电平就被这个负载拉到低电平了,所以这个电路是不能输出高电平的。 再看图三。图三中那个1K的电阻即是上拉电阻。如果开关闭合,则有电流从1K电阻及开关上流过,但由于开关闭和时电阻为0(方便我们的讨论,实际情况中开关电阻不为0,另外对于三极管还存在饱和压降),所以在开关上的电压为0,即输出电平为0。如果开关断开,则由于开关电阻为无穷大(同上,不考虑实际中的漏电流),所以流过的电流为0,因此在1K电阻上的压降也为0,所以输出端的电

压就是5V了,这样就能输出高电平了。但是这个输出的内阻是比较大的(即1KΩ),如果接一个电阻为R的负载,通过分压计算,就可以算得最后的输出电压为5*R/(R+1000)伏,即5/(1+1000/R)伏。所以,如果要达到一定的电压的话,R就不能太小。如果R真的太小,而导致输出电压不够的话,那我们只有通过减小那个1K的上拉电阻来增加驱动能力。但是,上拉电阻又不能取得太小,因为当开关闭合时,将产生电流,由于开关能流过的电流是有限的,因此限制了上拉电阻的取值,另外还需要考虑到,当输出低电平时,负载可能还会给提供一部分电流从开关流过,因此要综合这些电流考虑来选择合适的上拉电阻。 如果我们将一个读数据用的输入端接在输出端,这样就是一个IO口了(51的IO口就是这样的结构,其中P0口内部不带上拉,而其它三个口带内部上拉),当我们要使用输入功能时,只要将输出口设置为1即可,这样就相当于那个开关断开,而对于P0口来说,就是高阻态了。 对于漏极开路(OD)输出,跟集电极开路输出是十分类似的。将上面的三极管换成场效应管即可。这样集电极就变成了漏极,OC就变成了OD,原理分析是一样的。 另一种输出结构是推挽输出。推挽输出的结构就是把上面的上拉电阻

上拉、 下拉电阻的定义以及用法

上拉、下拉电阻 上拉、下拉电阻的定义以及用法 在数字电路中不用的输入脚都要接固定电平,通过1k电阻接高电平或接地。 1. 电阻作用: l 接电组就是为了防止输入端悬空 l 减弱外部电流对芯片产生的干扰 l 保护cmos内的保护二极管,一般电流不大于10mA l 上拉和下拉、限流 l 1. 改变电平的电位,常用在TTL-CMOS匹配 2. 在引脚悬空时有确定的状态 3.增加高电平输出时的驱动能力。 4、为OC门提供电流 l 那要看输出口驱动的是什么器件,如果该器件需要高电压的话,而输出口的输出电压又不够,就需要加上拉电阻。 l 如果有上拉电阻那它的端口在默认值为高电平你要控制它必须用低电平才能控制如三态门电路三极管的集电极,或二极管正极去控制把上拉电阻的电流拉下来成为低电平。反之,l 尤其用在接口电路中,为了得到确定的电平,一般采用这种方法,以保证正确的电路状态,以免发生意外,比如,在电机控制中,逆变桥上下桥臂不能直通,如果它们都用同一个单片机来驱动,必须设置初始状态.防止直通! 2、定义: l 上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!l 上拉是对器件注入电流,下拉是输出电流 l 弱强只是上拉电阻的阻值不同,没有什么严格区分 l 对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。 3、为什么要使用拉电阻: l 一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。 l 数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定! l 一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平,C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗: 比如:当一个接有上拉电阻的端口设为输如状态时,他的常态就为高电平,用于检测低电平的输入。 l 上拉电阻是用来解决总线驱动能力不足时提供电流的。一般说法是拉电流,下拉电阻是用来吸收电流的,也就是你同学说的灌电流

上拉电阻、下拉电阻的原理和作用

上拉电阻、下拉电阻的原理和作用 一.应用EDA365 PCB论坛网站|PC B layo ut设计高速PCB设计|SI|P I|EMC仿真设计# l e: z9 K+ F* Q 1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。 PCB论坛 `: D; R; v% U- O0 Y3 r/ n4 _ 2、OC门电路必须加上拉电阻,以提高输出的搞电平值。 3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。 4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。 https://www.360docs.net/doc/896042854.html,# x% E/ L6 e4 G- z" c! x: Q$ ~ 5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。 6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。PCB论坛网站% R6 A5 n5 B; l, u# D0 n1 b 7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。 上拉电阻阻值的选择原则包括:EDA365 PCB论坛网站PCB la yout设计高速PCB设计|S I|PI|E MC仿真设计: y0 }9 f {% h+ w' x& L PCB论坛网站* C0 T- f! W0 t# d1 k5 [: }3 \ 1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。 2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。 3、对于高速电路,过大的上拉电阻可能边沿变平缓。 https://www.360docs.net/doc/896042854.html,5 t6 V) {0 f0 n9 z- \: p% O4 K 综合考虑以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理。PCB论坛6 r! c P- s) Q3 y' c) B 二.原理:PCB论坛4 l2 G8 ^8 h2 s, n4 R: N/ N: ^; D. M 上拉电阻实际上是集电极输出的负载电阻。不管是在开关应用和模拟放大,此电阻的选则都不是拍脑袋的。工作在线性范围就不多说了,在这里是讨论的是晶体管是开关应用,所以只谈开关方式。找个TTL器件的资料单独看末级就可以了,内部都有负载电阻根据不同驱动能力和速度要求这个电阻值不同,低功耗的电阻值大,速度快的电阻值小。但

上拉电阻和下拉电阻的作用

浅谈上、下拉电阻的作用 ? ?油菜no1 ?14位粉丝 ? 1楼浅谈上、下拉电阻的作用 上下拉电阻: 1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于CMOS电路的最低高电平(一般为3. 5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。 2、OC门电路必须加上拉电阻,以提高输出的高电平值。 3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。 4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。 5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。 6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。 7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。 上拉电阻阻值的选择原则包括: 1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。 3、对于高速电路,过大的上拉电阻可能边沿变平缓。综合考虑 以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理 电阻的具体取值怎么计算的? 上拉电阻是不是应该是接Vcc再接电阻,然后接到管脚上的? 一般上下拉的电阻取值都有个特定的范围,不能太大, 也不能太小.都在几K到几十K之间吧,具体的还要看电路要求. 至于接法,上拉电阻简单来说就是把电平拉高,通常用4.7-10K的电阻接到Vcc电源,下拉电阻则是把电平拉低,电阻接到GND地线上。所以是接电源或者接地,再接到需要拉高或者拉地电平的节点上的. 一般说来,不光是重要的信号线,只要信号在一段时间内可能出于无驱动状态,就需要处理。 比如说,一个CMOS门的输入端阻抗很高,没有处理,在悬空状况下很容易捡拾到干扰,如果能量足够甚至会导致击穿或者闩锁,导致器件失效。祈祷输入的保护二极管安全工作吧。如果电平一直处于中间态,那输出就可能是不确定的情况,也可能是上下MOS都导通,对器件寿命造成影响。 总线上当所有的器件都处于高阻态时也容易有干扰出现。因为这时读写控制线处于无效状态,所以不一定会引起问题。你如果觉得自己能够接受的话也就将就了。但是这时你就要注意到,控制线不能悬空,不然……

相关文档
最新文档