N9000低成本信号分析仪的特性与技术指标

N9000低成本信号分析仪的特性与技术指标
N9000低成本信号分析仪的特性与技术指标

是德科技

N9000B CXA X 系列信号分析仪,

多点触控用户界面

9 kHz 至 3.0、7.5、13.6 或 26.5 GHz

技术资料

领先的低成本工具

CXA 是当今领先的低成本测试工具,主要用于基本信号表征。其强大功能为在通用应用和教育应用中实施经济高效测试提供了坚实的基础。

定义与条件 .......................................................................................3频率和时间技术指标 ........................................................................4幅度精度与范围技术指标 ................................................................6动态范围技术指标 ............................................................................8PowerSuite 测量技术指标 ..............................................................12跟踪发生器技术指标 ......................................................................1375 Ω 输入技术指标........................................................................14一般技术指标..................................................................................15输入和输出 .....................................................................................16I/Q 分析仪 .......................................................................................18相关文献 .. (18)

目录

本技术资料概括介绍了 CXA 信号分析仪的技术指标和工作条件。如需获取完整的技术指标指南,请访问https://www.360docs.net/doc/8e7203689.html,/find/cxa_specifications

了解更多信息

本 CXA 信号分析仪技术资料只是摘要,N9000B CXA 信号分析仪完整的技术指标和工作条件收录在《CXA 信号分析仪技术指标指南》中。您可以访问以下网站,获取《CXA 信号分析仪技术指标指南》:https://www.360docs.net/doc/8e7203689.html,/find/cxa_speci?cations

定义与条件

技术指标是指产品保修中包含的参数性能,除特别注明外,这些技术指标仅在 0℃至 55 ℃的温度范围内有效。

95% 表示环境温度在 20℃至 30℃内时,预计有 95% 的把握在 95% 的情况下能够达到性能容限范围(约 2 σ)。除了仪器样品的统计观测数据之外,这些值还包括外部校准参考的不确定度影响。但是不保证所有仪器都能达到这些值。如果仪器生产的统计观测行为出现重大变化,这些值可能不定期更新。

典型值是指不在产品保证范围之内的其他产品性能信息。当性能超出技术指标时,80% 的单元在 20 ℃至 30℃的温度范围内可以表现出 95% 的置信度。典型性能不包括测量不确定度。

标称值是指预计的性能,或描述在产品应用中有用但未包含在产品保证范围内的产品性能。在下列条件下,分析仪能够达到其技术指标:– 分析仪处于校准期内

– 除 Auto Sweep Time Rules (自动扫描时间规则)=Accy (精度)外,分析仪处于自动耦合控制下

– 如果分析仪曾经在允许的储存温度范围内但超出允许的工作温度范围的环境中存放,则在启动分析仪之前必须将其放在允许的工作温度范围环境中至少两小时。– 如果“Auto Align ”设置为 Normal ,分析仪必须开机至少 30 分钟才能够使用;如果“Auto Align ”设置为 Off 或 Partial ,则必须是在足够近的时间内运行过调整,以免出现告警消息。如果“告警”条件从“时间和温度”变成禁用的时间长度选择之一,则分析仪可能达不到技术指标并且不会向用户发出通知。如果“Auto Align ”设置为 Light ,则性能得不到保证,取决于校准,标称性能会降低为各技术指标(如振幅公差)的 1.4 倍。

订货信息请参阅《CXA 信号分析仪配置指南》(5992-1275CHCN )。

频率和时间技术指标

精度±(游标频率 x 频率参考精度 + 0.100 Hz)Δ计数器精度±(Δ频率 x 频率参考精度 + 0.141 Hz)计数器分辨率0.001 Hz

1. 水平分辨率等于扫宽/(扫描点 – 1)。

频率和时间技术指标(续)

远程测量和 LAN 传输速率 6 ms(167/s)标称值

游标峰值搜索 5 ms 标称值

中心频率调谐和传输22 ms 标称值

测量/模式切换速度75 ms 标称值

1 分析带宽是中心频率附近可用的瞬时带宽,输入信号可以在该带宽上转换成数字信息,以便在时域、频域或调制域中进行深入分析或处理。

2 扫描点数 = 101。

幅度精度和范围技术指标

(P03、P07) 3 至 5.25 GHz± 0.85 dB

5.25 至 7.5 GHz± 1.35 dB

微波(选件 513、526)(P03、P07、P13、P26)100 kHz 至 3 GHz± 0.7 dB 3 至 13.6 GHz± 1.0 dB 13.6 至 19 GHz± 1.1 dB 19 至 26.5 GHz± 2.5 dB

幅度精度和范围技术指标(续)

频率范围选件 P03100 kHz 至 3.0 GHz

选件 P07100 kHz 至 7.5 GHz

选件 P13100 kHz 至 13.6 GHz

选件 P26100 kHz 至 26.5 GHz

增益100 kHz 至 26.5 GHz+20 dB 标称值

噪声系数100 kHz 至 26.5 GHz DANL + 176.24 dB,标称值

动态范围技术指标

射频/微波(选件 503、507、513

、526)

微波(选件 513、526) 3.75 至 13.25 GHz+54 dBm

动态范围技术指标(续)

图 1.CXA 不同中心频率上的标称相位噪声

三阶互调失真(TOI )圆括号表示典型性能射频(选件 503、507)

前置放大器断开

10 至 400 MHz +10(+14)dBm (输入混频器上的两个 -20 dBm 音频,音频间隔 400 MHz 至 3 GHz +13(+17)dBm 100 kHz ,0 dB 衰减,20 到 30℃)

3 至 7.5 GHz +13(+15)dBm 微波(选件 513/526)

前置放大器断开

(输入混频器上的两个 -20 dBm 音频,音频间隔 100 kHz ,0 dB 衰减,20 到 30 ℃)

10 至 500 MHz +11 dBm ,(+15)dBm 500 MHz 至 2 GHz +12 dBm ,(+15)dBm 2 至 3 GHz +11 dBm ,(+15)dBm 3 至 7.5 GHz +12 dBm ,(+17)dBm 7.5 至 13.6 GHz +11 dBm ,(+15)dBm 13.6 至 26.5 GHz

+10 dBm ,(+14)dBm 选件 P03/P07/P13/P26

前置放大器接通

(前置放大器输入端上有两个 –45 dBm 音频,音频间隔 100 kHz ,0 dB 衰减,20 至 30 ℃)

10 MHz 至 26.5 GHz

-8 dBm 标称值

相位噪声

偏置

技术指标典型值

噪声边带(20 至 30 ℃,CF = 1 GHz )

1 kHz 10 kHz 100 kHz 1 MHz 10 MHz

-98 dBc/Hz -106 dBc/Hz -108 dBc/Hz -130 dBc/Hz

-103 dBc/Hz -110 dBc/Hz -110 dBc/Hz -130 dBc/Hz

-145 dBc/Hz ,标称值

不同中心频率上的标称相位噪声(包括 RBW 选择性曲线)随频偏的变化

频率(kHz )

S S B 相位噪声(d B /H z )

PowerSuite

测量技术指标cdma2000?(750 kHz 频偏)

相对动态范围(30 kHz RBW)绝对灵敏度

相对精度67.4 dB

-93.7 dBm

± 0.11 dB

(72.7 dB 典型值)

(-99.7 dBm 典型值)

3GPP W-CDMA(2.515 MHz 频偏)

相对动态范围(30 kHz RBW)绝对灵敏度

相对精度73.4 dB

-91.7 dBm

± 0.11 dB

(80.2 dB 典型值)

(-97.7 dBm 典型值)

跟踪发生器技术指标

9 kHz 至 6 GHz< 1.5:1 标称值1 不适用于微波 CXA(选件 513 或 526)。

75 Ω输入技术指标

前置放大器断开(10 dB 衰减) 1 MHz 至 1.5 GHz< 1.4:1 称值

1 MHz 至 1.5 GHz< 1.4:1 称值前置放大器接通(选件 P03/P07)

(0 dB 衰减)

1 不适用于微波 CXA(选件 513 或 526)。

一般技术指标

推荐校准周期为一年;校准服务由是德科技服务中心提供。

输入和输出10 MHz 输出

连接器输出幅度频率BNC 阴头,50 Ω标称值

≥ 0 dBm 标称值

10 MHz±(10 MHz x 频率参考精度)

外部参考输入

连接器

输入幅度范围输入频率

频率锁定范围BNC 阴头,50 Ω标称值

–5 至 10 dBm 标称值

10 MHz ±标称值

± 5 x 10–6特定外部参考输入频率

触发 1 输入

连接器

阻抗

触发器电平范围BNC 阴头

> 10 kΩ标称值-5 至 5 V

触发 1 输出

连接器阻抗电平BNC 阴头

50 Ω标称值5 V TTL 标称值

监测器输出

连接器格式分辨率VGA 兼容,15 针微型 D-SUB

XGA(60 Hz 垂直同步速率,非隔行扫描)模拟 RGB 1024 x 768

噪声源激励 + 28 V(脉冲)

连接器BNC 阴头SNS 系列噪声源

模拟输出

连接器BNC 阴头

输入和输出(续)USB 端口

主机,超高速标配

连接器

输出电流主机

标配

连接器

输出电流器件

标配

连接器2 端口(堆叠)

兼容 USB 3.0

USB Type A 阴头

0.9 A

1 端口(与 LAN 端口叠放)USB 2.0

USB Type A 阴头

0.5 A

兼容 USB 3.0

USB Type B 阴头

GPIB 接口

连接器GPIB 代码IEEE-488 总线连接器

SH1、AH1、T6、SR1、RL1、PP0、DC1、C1、C2、C3、C28、DT1、L4、C0控制器或设备

中心频率

SA 模式或 I/Q 分析仪322.5 MHz

转换增益-4 至 +7 dB(标称值)加上射频频率响应带宽

低频段高频段高达 120 MHz(标称值)高达 40 MHz(标称值)

1 不适用于微波 CXA(选件 513 或 526)。

I/Q 分析仪

时间记录长度

IQ 分析仪4,000,000 IQ 采样对采样率90 MSa/s

ADC 分辨率14 位

相关文献

文献出版物编号

N9000B CXA 信号分析仪——配置指南5992-1275CHCN X 系列信号分析——手册5992-1316CHCN

如欲了解更多信息或相关文献资源,请访问:

https://www.360docs.net/doc/8e7203689.html,/find/cxa

网络资源

产品页面:

https://www.360docs.net/doc/8e7203689.html,/?nd/N9000B

X 系列测量应用软件:

https://www.360docs.net/doc/8e7203689.html,/?nd/X-Series_Apps

X 系列信号分析仪:

https://www.360docs.net/doc/8e7203689.html,/?nd/X-Series

1939

未来

myKeysight

https://www.360docs.net/doc/8e7203689.html,/find/mykeysight

个性化视图为您提供最适合自己的信息 !

3 年保修

是德科技卓越的产品可靠性和广泛的 3 年保修服务完美结合,从另一途径帮

助您实现业务目标: 增强测量信心、降低拥有成本、增强操作方便性。

是德科技保证方案

https://www.360docs.net/doc/8e7203689.html,/find/AssurancePlans

10 年的周密保护以及持续的巨大预算投入,可确保您的仪器符合规范要求,

精确的测量让您可以继续高枕无忧。

https://www.360docs.net/doc/8e7203689.html,/go/quality

是德科技公司

DEKRA 认证 ISO 9001:2008

质量管理体系

Keysight Infoline

https://www.360docs.net/doc/8e7203689.html,/find/service

是德科技的洞察力帮助您实现最卓越的信息管理。免费访问您的是德科技设备

公司报告和电子图书馆。

是德科技渠道合作伙伴

https://www.360docs.net/doc/8e7203689.html,/find/channelpartners

黄金搭档: 是德科技的专业测量技术和丰富产品与渠道合作伙伴的便捷供货渠

道完美结合。

从惠普到安捷伦再到是德科技

传承 75 年创新史,我们始终帮助您开启测试测量新视野。我们独有的硬件、软件和技

术人员资源组合能够帮助您实现下一次突破。1939 年成立的惠普公司起源于电子测量,

是德科技将这一业务传承至今,并将继续发扬光大。

如欲获得是德科技的产品、应用和服务信息,

请与是德科技联系。如欲获得完整的产品列表,

请访问: https://www.360docs.net/doc/8e7203689.html,/?nd/contactus

本文中的产品指标和说明可不经通知而更改

? Keysight Technologies, 2016

Published in USA, January 26, 2016

出版号:5992-1274CHCN

https://www.360docs.net/doc/8e7203689.html,

cdma2000 is a US registered certification mark of the Telecommunications Industry

Association.

网络分析仪工作原理及使用要点

网络分析仪工作原理及使用要点 本文简要介绍41所生产的AV362O矢量网络分析的测量基本工作原理以及正确使用矢量网络分析测量电缆传输及反射性能的注意事项。 1.DUT对射频信号的响应 矢量网络分析仪信号源产生一测试信号,当测试信号通过待测件时,一部分信号被反射,另一部分则被传输。图1说明了测试信号通过被测器件(DUT)后的响应。 图1DUT 对信号的响应 2.整机原理: 矢量网络分析仪用于测量器件和网络的反射特性和传输特性,主要包括合成信号源、S 参数测试装置、幅相接收机和显示部分。合成信号源产生30k~6GHz的信号,此信号与幅相接收机中心频率实现同步扫描;S参数测试装置用于分离被测件的入射信号R、反射信号A 和传输信号B;幅相接收机将射频信号转换成频率固定的中频信号,为了真实测量出被测网络的幅度特性、相位特性,要求在频率变换过程中,被测信号幅度信息和相位信息都不能丢失,因此必须采用系统锁相技术;显示部分将测量结果以各种形式显示出来。其原理框图如图2所示: 图2矢量网络分析仪整机原理框图 矢量网络分析内置合成信号源产生30k~6GHz的信号,经过S参数测试装置分成两路,一路作为参考信号R,另一路作为激励信号,激励信号经过被测件后产生反射信号A和传输信号B,由S参数测试装置进行分离,R、A、B三路射频信号在幅相接收机中进行下变频,产生4kHz的中频信号,由于采用系统锁相技术,合成扫频信号源和幅相接收机同在一个锁相环路中,共用同一时基,因此被测网络的幅度信息和相位信息包含在4kHz的中频信号中,此中频信号经过A/D模拟数字变换器转换为数字信号,嵌入式计算机和数字信号处理器

用频谱分析仪测量通信信号

用频谱分析仪测量通信信号 一、GSM信号的测量 现代高度发达的通信技术可以让人们在地球的任意地点控制频谱分析仪,因此就更要懂得不同参数设置和不同信号条件对显示结果的影响。 典型的全球移动通信系统(GSM)的信号测量如图1所示,它清楚地标明了重要的控制参数设置和测量结果。IFR2399型频谱分析仪利用彩色游标来加亮测量区域,此例中,被加亮的测量区域是占用信道和上下两个相邻信道的中心50kHz频带。 显示的水平轴(频率轴)中心频率为900MHz,扫频频宽为1MHz,而每一小格代表l00kHz。顶部水平线表示0dBm,垂直方向每一格代表10dB。信号已经被衰减了10dB,测量显示的功率电平已考虑了此衰减。 图1 GSM信道带宽显示和功率测量 GSM是以两个25MHz带宽来传送的:从移动发射机到基站采用890MHz到915MHz,从基站到移动接收机采用935MHz到960MHz。这个频带被细分为多个200kHz信道,而第50个移动发送信道的中心频率为900MHz,如图1所示。该信号很明显是未调制载波,因为它的频谱很窄。实际运用中,一个GSM脉冲串只占用200kHz稍多一点的信道带宽。 按照GSM标准,在发送单个信道脉冲串时,时隙持续0.58ms,而信道频率以每秒217次的变化速率进行慢跳变,再加上扫频仪1.3s的扫描时间,根据这些条件可以判定这是一个没有时间和频率跳变的静态测试,没有迹象表明900阳z的信号是间断信号。 为了保证良好的清晰度,选用1kHz的分辨带宽(RBW)滤波器。较新的频谱分析仪中的模拟滤波器的形状系数(3dB:60dB)为11,意思是60dB时滤波器带宽(从峰值衰减60dB)是3dB时滤波器带宽(从峰值衰减3dB)的11倍,即11kHz比1kHz。 与此相比,数字滤波器的形状系数还不到5。例如一个3dB带宽为50kHz的带通滤波器,其60dB带宽只有60kHz,这几乎是矩形通带。它保证在计算平均功率时只含有50kHz以外区域很小一点的功率。作为对比,如果分辨带宽RBW50kHz,使用前面提及的模拟滤波器而不是数字滤波器,其60dB带宽将为550kHz。 标记1处的信号电平是4.97dBm。为了使噪声背景出现在屏幕上,显示轨迹线已向上偏移了10dB(在图中不易察觉),这是由于信号峰值被预先衰减10dB使其不超过顶部水平线,这也是信号峰值读数比参考电平高的原因。 图中,主信道功率(CHP)读数为7.55dBm,与峰值(标记1处)的读数4.978m不一致,其原因就是主信道功率是在50kHz测量带宽内计算的,而标记1的读数是峰值。公式1定义了在整个带宽内计算主信道功率的方法。 其中, CHPwr:信道功率,单位dBm CHBW:信道带宽 Kn:噪声带宽与分辨带宽之比 N:信道内象素的数目 Pi:以1mW为基准的电平分贝数(dBm)

随机信号分析实验

实验一 随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法; 2、实现随机序列的数字特征估计。 二、实验原理 1. 随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: N y x N ky Mod y y n n n n /))((110===-, (1.1) 序列{}n x 为产生的(0,1)均匀分布随机数。 下面给出了上式的3组常用参数: (1) 7101057k 10?≈==,周期,N ; (2) (IBM 随机数发生器)8163110532k 2?≈+==,周期,N ; (3) (ran0)95311027k 12?≈=-=,周期,N ; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理1.1 若随机变量X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有

)(1R F X x -= (1.2) 由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。 2. MATLAB 中产生随机序列的函数 (1) (0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n) 功能:产生m ×n 的均匀分布随机数矩阵。 (2) 正态分布的随机序列 函数:randn 用法:x = randn(m,n) 功能:产生m ×n 的标准正态分布随机数矩阵。 如果要产生服从2N(,)μσ分布的随机序列,则可以由标准正态随机序列产生。 (3) 其他分布的随机序列 MATLAB 上还提供了其他多种分布的随机数的产生函数,下表列出了部分函数。 MATLAB 中产生随机数的一些函数 表1.1 MATLAB 中产生随机数的一些函数 3、随机序列的数字特征估计 对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特性。这里我们假定随机序列X (n)为遍历过程,样本函数为x(n),其中n=0,1,2,…,N-1。那么,X (n)的均值、方差和自相关函数的估计为

网络分析仪的使用

一般而言,网络分析仪在射频及微波组件方面的量测上,是最基本、应用层次也最广的仪器,它可以提供线性及非线性特性组件的量测参数,因此,举凡所有射频主被动组件的仿真、制程及测试上,几乎都会使用到。在量测参数上,它不但可以提供反射系数,并从反射系数换算出阻抗的大小,且可以量测穿透系数,以及推演出重要的S参数及其它重要的参数,如相位、群速度延迟(Group Delay)、插入损失(Insertion Loss)、增益(Gain)甚至放大器的1dB压缩点(Compression point)等。 基本原理 电子电路组件在高频下工作时,许多特性与低频的行为有所不同,在高频时,其波长与实际电路组件的物理尺度相比会相对变小,举例来说,在真空下的电磁波其速度即为光速,则c=λ×f,其中c为光速3×108m/sec,若操作在2.4GHz的频率下,若不考虑空气的介电系数,则波长λ=12.5cm,亦即在短短的数公分内,电压大小就会因相位的偏移而有极大的变化。因此在高频下,我们会使用能量及阻抗的观念来取代低频的电压及电流的表示法,此时我们就会引入前述文章所提「波」的概念。 光波属于电磁波的一种,当我们用光分析一个组件时,会使用一个已知的入射光源测量未知的待测物,当光波由空气到达另一个介质时,会因折射率的不同产生部分反射及部分穿透的特性,例如化学成分分析上使用的穿透及反射光谱。对于同样是属电磁波的射频来说,道理是相通的,光之于折射率就好比微波之于阻抗的概念,当一个电磁波到达另一个不连续的阻抗接口时,同样也会有穿透及反射的行为,从这些反射及穿透行为的大小及相位变化中,就可以分析出该组件的特性。 用来描述组件的参数有许多种,其中某些只包含振幅的讯息,如回返损耗(R.L. Return Loss)、驻波比(SWR Standing Wave Ratio)或插入损失(I.L. Insertion Loss)等,我们称为纯量,而能得到如反射系数(Γ Reflection coefficient)及穿透系数(Τ Transmission coefficient)等,我们称之为向量,其中向量可以推导出纯量行为,但纯量却因无相位信息而无法推导出向量特性。 重要的向量系数 反射特性 在此,我们重点介绍几个重要的向量系数︰首先,我们从反射系数来定义,其中Vrefect为反射波、Vinc为入射波,两者皆为向量,亦即包含振幅及相位的信息,而反射系数代表入射与反射能量的比值,经过理论的演算,可以从传输线的特性阻抗ZO(Characteristic Impedance)得到待测组件的负载阻抗ZL,亦即,在网络分析中,一般使用史密斯图(Smith Chart)来标示不同频率下的阻抗值。另外,反射系数也可以使用极坐标表示:,其中为反射系数的大小,φ则表示入射与反射波的相位差值。

随机信号通过线性和非线性系统后地特性分析报告 实验报告材料

实验三 随机信号通过线性和非线性系统后的特性分析 一、实验目的 1、了解随机信号的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱特性。 2、研究随机信号通过线性系统和非线性系统后的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱有何变化,分析随机信号通过线性系统和非线性系统后的特性 二、实验仪器与软件平台 1、 微计算机 2、 Matlab 软件平台 三、实验步骤 1、 根据本实验内容和要求查阅有关资料,设计并撰写相关程序流程。 2、 选择matlab 仿真软件平台。 3、 测试程序是否达到设计要求。 4、 分析实验结果是否与理论概念相符 四、实验内容 1、 随机信号通过线性系统和非线性系统后的特性分析 (1)实验原理 ①随机信号的分析方法 在信号系统中,可以把信号分成两大类:确定信号和随机信号。确定信号具有一定的变化规律,二随机信号无一定的变化规律,需要用统计特性进行分析。在这里引入了一个随机过程的概念。所谓随机过程,就是随机变量的集合,每个随机变量都是随机过程的一个采样序列。随机过程可以分为平稳的和非平稳的,遍历的和非遍历的。如果随机信号的统计特性不随时间的推移而变化。则随机过程是平稳的。如果一个平稳的随机过程的任意一个样本都具有相同的统计特性。则随机过程是遍历的。下面讨论的随机过程都认为是平稳的遍历的随机过程,因此,可以随机取随机过程的一个样本值来描述随机过程中的统计特性。 随机过程的统计特性一般采用主要的几个平均统计特性函数来描述,包括、均方值、方差、自相关系数、互相关系数、概率密度、频谱及功率谱密度等。 a.随机过程的均值 均值E[x(t)]表示集合平均值或数学期望值。基于过程的各态历经行,可用时间间隔T 内的幅值平均值表示,即 ∑-==1 /)()]([N t N t x t x E 均值表达了信号变化的中心趋势,或称之为直流分量。

频谱分析报告仪地使用方法

频谱分析仪的使用方法 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。

频谱分析仪基础知识性能指标和实用技巧

频谱分析仪基础知识性能指标及实用技巧 频谱分析仪是用来显示频域幅度的仪器,在射频领域有“射频万用表”的美称。在射频领域,传统的万用表已经不能有效测量信号的幅度,示波器测量频率很高的信号也比较困难,而这正是频谱分析仪的强项。本讲从频谱分析仪的种类与应用入手,介绍频谱分析仪的基本性能指标、操作要点和使用方法,供初级工程师入门学习;同时深入总结频谱分析仪的实用技巧,对频谱分析仪的常见问题以Q/A的形式进行归纳,帮助高级射频的工程师和爱好者进一步提高。 频谱分析仪的种类与应用 频谱分析仪主要用于显示频域输入信号的频谱特性,依据信号方式的差异分为即时频谱分析仪和扫描调谐频谱分析仪两种。完成频谱分析有扫频式和FFT两种方式:FFT适合于窄分析带宽,快速测量场合;扫频方式适合于宽频带分析场合。 即时频谱分析仪可在同一时间显示频域的信号振幅,其工作原理是针对不同的频率信号设置相对应的滤波器与检知器,并经由同步多工扫瞄器将信号输出至萤幕,优点在于能够显示周期性杂散波的瞬时反应,但缺点是价格昂贵,且频宽范围、滤波器的数目与最大多工交换时间都将对其性能表现造成限制。 扫瞄调谐频谱分析仪是最常用的频谱分析仪类型,它的基本结构与超外差式器类似,主要工作原理是输入信号透过衰减器直接加入混波器中,可调变的本地振荡器经由与CRT萤幕同步的扫瞄产生器产生随时间作线性变化的振荡频率,再将混波器与输入信号混波降频后的中频信号放大后、滤波与检波传送至CRT萤幕,因此CRT萤幕的纵轴将显示信号振幅与频率的相对关系。 基于快速傅立叶转换(FFT)的频谱分析仪透过傅立叶运算将被测信号分解成分立的频率分量,进而达到与传统频谱分析仪同样的结果。新型的频谱分析仪采用数位,直接由类比/数位转换器(ADC)对输入信号取样,再经傅立叶运算处理后而得到频谱分布图。 频谱分析仪透过频域对信号进行分析,广泛应用于监测电磁环境、无线电频谱监测、电子产品电磁兼容测量、无线电发射机发射特性、信号源输出信号品质、反无线窃听器等领域,是从事电子产品研发、生产、检验的常用工具,特别针对无线通讯信号的测量更是必要工具。另外,由于频谱仪具有图示化射频信号的能力,频谱图可以帮助我们了解信号的特性和类型,有助于最终了解信号的调制方式和机的类型。在军事领域,频谱仪在电子对抗和频谱监测中

频谱分析仪和信号分析仪的区别

在实验室和车间最常用的信号测试仪器是电子示波器。人的思维对时间概念比较敏感,每时每刻都与时域事件发生联系,但是信号往往以频率形式出现,用示波器观察最简单的调幅载波信号也不方便,往往显示载波时看不清调制仪,屏幕上获得的是三条谱线,即载频和在载频左右的调制频。调制方式越复杂,电子示波器越难显示,频谱分析器的表达能力强,频谱分析仪是名副其实的频域仪器的代表。沟通时间一频率的数字表达方法就是傅里叶变换,它把时间信号分解成正弦和余弦曲线的叠加,完成信号由时间域转换到频率域的过程。 早期的频谱分析仪实质上是一台扫频接收机,输入信号与本地振荡信号在混频器变频后,经过一组并联的不同中心频率的带通滤波器,使输入信号显示在一组带通滤波器限定的频率轴上。显然,由于带通滤波器由无源元件构成,频谱分析器整体上显得很笨重,而且频率分辨率不高。既然傅里叶变换可把输入信号分解成分立的频率分量,同样可起着滤波器类似的作用,借助快速傅里叶变换电路代替低通滤波器,使频谱分析仪的构成简化,分辨率增高,测量时间缩短,扫频范围扩大,这就是现代频谱分析仪的优点了。 矢量信号分析仪是在预定,频率范围内自动测量电路增益与相应的仪器,它有内部的扫频频率源或可控制的外部信号源。其功能是测量对输入该扫频信号的被测电路的增益与相位,因而它的电路结构与频谱分析仪相似。频谱分析仪需要测量未知的和任意的输入频率,矢量信号分析仪则只测量自身的或受控的已知频率;频谱分析仪只测量输入信号的幅度(标量仪器),矢量信号分析仪则测量输入信号的幅度和相位(矢量仪器)。由此可见,矢量信号分析仪的电路结构比频谱分析仪复杂,价位也较高。现代的矢量信号分析仪也采用快速傅里叶变换,以下介绍它们的异同。 频谱分析议和FFT颁谱分析议 传统的频谱分析仪的电路是在一定带宽内可调谐的接收机,输入信号经下变频后由低通滤器输出,滤波输出作为垂直分量,频率作为水平分量,在示波器屏幕上绘出坐标图,就是输入信号的频谱图。由于变频器可以达到很宽的频率,例如30Hz-30GHz,与外部混频器配合,可扩展到100GHz以上,频谱分析仪是频率覆盖最宽的测量仪器之一。无论测量连续信号或调制信号,频谱分析仪都是很理想的测量工具。 但是,传统的频谱分析仪也有明显的缺点,首先,它只适于测量稳态信号,不适宜测量瞬态事件;第二,它只能测量频率的幅度,缺少相位信息,因此属于标量仪器而不是矢量仪器;第三,它需要多种低频带通滤波器,获得的测量结果要花费较长的时间,因此被视为非实时仪器。 既然通过傅里叶运算可以将被测信号分解成分立的频率分量,达到与传统频谱分析仪同样的结果,出现基于快速傅里叶变换(F盯)的频谱分析仪。这种新型的频谱分析仪采用数字方法直接由模拟/数字转换器(ADC)对输入信号取样,再经FFT处理后获得频谱分布图。据此可知,这种频谱分析仪亦称为实时频谱分析仪,它的频率范围受到ADC采集速率和FFT运算速度的限制。

频谱仪测试时几个重要参数的设置

- 49 - 频谱仪测试时几个重要参数的设置 冯菊香 (玉林师范学院,广西 玉林 537000) 【摘 要】频谱仪的最佳工作状态是由诸多因素、参数决定的,而各种参数之间又相互关联,因此在设置频谱仪时需要统筹考虑。文章从频谱仪的基本原理出发,对输入衰减、前置放大、混频、分辨率带宽、视频带宽、扫频宽度和扫描时间等参数作了重点介绍,并就它们之间的最佳工作状态关系设置进行了阐述。 【关键词】频谱仪;分辨率带宽;视频带宽;扫频宽度 【中图分类号】TM935.21 【文献标识码】A 【文章编号】1008-1151(2009)10-0049-02 频谱分析仪是信号分析处理中常用的仪器设备,它不仅 用于测量各种信号的频谱,而且还可测量功率、失真、增益 和噪声特性等。其覆盖的频率范围可达40GHz甚至更高,因而 被广泛用于所有的无线或有线通信应用中,包括开发、生产、 安装与维护等。 从工作原理上看,频谱分析仪可以分为模拟式与数字式 两大类。数字式频谱分析仪主要用于超低频或低频段,其中 最有代表性的为傅立叶分析仪。模拟式频谱分析仪根据使用 滤波器的不同,又分为带通滤波器频谱分析仪与外差式扫频 频谱分析仪。 (一)频谱仪的基本原理 频谱分析仪的基本电路是超外差接收机,亦即利用超过 输入信号频率的本地振荡频率通过混频器获得差频输出。频 谱仪显示屏的水平坐标为频率轴,垂直坐标为功率轴,主要 用于观测和记录某个指定频率段内的载波频谱。其基本原理 如图1: 图1 频谱分析仪基本原理框图 信号的流程是:射频信号RF 接入频谱仪,经过前端的衰 减器和放大器,达到频谱仪的量程电平指标后,再经过混频 器,通过与本振信号的和频或差频而产生中频频率,然后, 通过中频带通滤波器和检波器峰值检波后的信号,再经过视 频滤波器滤波,经由A/D 转换后显示出来。由于本振电路的振 荡频率随着时间变化,因此频谱分析仪在不同的时间接收的 频率是不同的。当本振振荡器的频率随着时间进行扫描时, 屏幕上就显示出被测信号在不同频率上的电压包络,从而得 到被测信号的频谱。 (二)频谱仪的几个重要参数分析 用频谱分析仪对电信号进行测量时,要充分发挥频谱仪 的性能,尽可能地减少测量误差,显示其巨大的优越性,首 先必须根据所测的信号特点来设定频谱仪的衰减器、分辨率 带宽、视频带宽和扫描宽度(或时间)等,才可能使频谱仪 处于最佳工作状态。 1.合理使用输入衰减器和前置放大器 为了防止高电平输入信号对混频器产生的非线性失真,各种不同型号和不同类型的频谱仪,在仪器内部都设有输入衰减器,以此来选择最佳的混频电平。输入信号的电平不随衰减增加而下降,这是因为每当衰减降低加到检波器的信号电平10dB时,中放(IF)增益同时增加10dB来补偿这个损失,其结果使仪表显示的信号幅度保持不变。但是,噪声信号受到放大器的影响很大,其电平被放大,增加了10dB。既然内部噪声主要由中放第一级产生,因而输入衰减器不影响内部噪声电平。但是,输入衰减器影响到混频器的信号电平,并降低信噪比。也就是说,衰减器的衰减量每增加10dB,频谱仪显示的噪声电平就增加10dB。这样,要提高频谱分析仪的灵敏度就需要将衰减设置得尽可能小,降低噪声电平的值,使得信号不被噪声淹没。 使用前置放大器可以提高RF输入信号的信噪比,在测量小信号时,用前置放大器配合频谱仪的测量是非常有帮助的,特别是对卫星信号下行链路的弱信号进行检测时,需要加前置放大器改善系统的接收效果,否则,信号将很难看到或者根本看不到。但是,使用前置放大器时需要考虑两个重要的因素: 噪声值和增益。接收到的信号强度已经包含了放大器的增益,因此在计算信号的实际强度时,需要将天线增益、放大器增益以及监测系统的其它增益或损耗均排除掉,才能 够得到信号的实际强度。前置放大器有内部和外部之分,内 部前置放大器需要选件,工作频率范围一般为3GHz;外部前置放大器可根据待监测的频率范围,选择相应的放大器,放大器的增益要足够大,以便于监测。 2.最佳混频电平 混频器是频谱仪的前端电路,如果工作不正常,频谱仪自身就会产生多种频率成份,导致测量不准确。为了满足大的动态范围和最好的信噪比,希望混频器的驱动电平尽可能大;为了减少非线性失真,又希望加到混频器的电平尽可能低。究竟混频器的电平取多大呢?多数使用说明书建议最佳的混频电平在-30~0dBm 之间,这时混频器内部产生的失真电平低于显示的平均噪声电平,也就是说混频器产生的失真电平观察不到,可以忽略。 3.分辨率带宽 (RBW:Resolution Band Width) 在频谱分析仪中,分辨率带宽 RBW 是一个非常重要的参【收稿日期】2009-07-02 【作者简介】冯菊香(1972-),女,安徽滁州人,玉林师范学院讲师,桂林电子科技大学在读工程硕士,从事电子与通信测试技术研究。

随机信号统计特性分析

实验一、随机信号统计特性分析 学生姓名刘冰 学院名称精密仪器与光电子工程 专业生物医学工程 学号3010202286

一、实验目的 随机信号是生物医学信号处理软件调试所必须的信号。通过本实验,了解一种伪随机信号产生的方法,及伪随机信号的数字特征。 二、实验要求 1.用同余法编制产生伪随机信号的程序。 2.检验所产生的伪随机信号是高斯分布的。 3.检验伪随机信号的自相关函数。 三、实验方法 1.伪随机信号的产生 用下式产生一组在[-0.5,0.5]内均匀分布的伪随机信号: ()()() k i C k i M =?-1% (1) ()()n i k i M =-/.05 (2) 其中(1)表示k(i)为(())/C k i M ?-1的余数,n(i)为一组在[-0.5,0.5]区间的均值为0的伪随机信号。令C =+239,M =212,i=0,1,2,…499。通过任意给定k(0),用上式可以产生一组伪随机信号。 2.用中心极限定理产生一组服从正态分布的伪随机信号 中心极限定理:设被研究的随机变量可以表示为大量独立随机变量的和,其中每个随机变量对总和只起微小作用,则这个随机变量是服从正态分布的。 产生一个长度为500的伪随机信号,其中每一项为L 个伪随机变量和。检验落在 []σσ+-,内概率68%,[]-+22σσ,内概率95.4%,[]-+33σσ,内概率99.7%。 () σ2 20 1 1= =-∑N n i i N 3.用自相关函数检验上述信号 对于产生的伪随机信号,其自相关函数是δ函数,k=0时函数值取得最大。 ()()() R k N n i n i k n i N k = *+=-∑1 四.实验流程框图 按照实验方法用matlab 实现

第4章测试系统的基本特性解析

第4章测试系统的基本特性 4.1 知识要点 4.1.1测试系统概述及其主要性质 1.什么叫线性时不变系统? 设系统的输入为x (t )、输出为y (t ),则高阶线性测量系统可用高阶、齐次、常系数微分方程来描述: )(d )(d d )(d d )(d 01111t y a t t y a t t y a t t y a n n n n n n ++++--- )(d )(d d )(d d )(d 01111t x b t t x b t t x b t t x b m m m m m m ++++=--- (4-1) 式(4-1)中,a n 、a n -1、…、a 0和b m 、b m -1、…、b 0是常数,与测量系统的结构特性、输入状况和测试点的分布等因素有关。这种系统其内部参数不随时间变化而变化,称之为时不变(或称定常)系统。既是线性的又是时不变的系统叫做线性时不变系统。 2.线性时不变系统具有哪些主要性质? (1)叠加性与比例性:系统对各输入之和的输出等于各单个输入的输出之和。 (2)微分性质:系统对输入微分的响应,等同于对原输入响应的微分。 (3)积分性质:当初始条件为零时,系统对输入积分的响应等同于对原输入响应的积分。 (4)频率不变性:若系统的输入为某一频率的谐波信号,则系统的稳态输出将为同一频率的谐波信号。 4.1.2测试系统的静态特性 1.什么叫标定和静态标定?采用什么方法进行静态标定?标定有何作用?标定的步骤有哪些? 标定:用已知的标准校正仪器或测量系统的过程。 静态标定:就是将原始基准器,或比被标定系统准确度高的各级标准器或已知输入源作用于测量系统,得出测量系统的激励-响应关系的实验操作。 静态标定方法:在全量程范围内均匀地取定5个或5个以上的标定点(包括零点),从零点开始,由低至高,逐次输入预定的标定值(称标定的正行程),然后再倒序由高至低依次输入预定的标定值,直至返回零点(称标定的反行程),并按要求将以上操作重复若干次,记录下相应的响应-激励关系。 标定的主要作用是:确定仪器或测量系统的输入-输出关系,赋予仪器或测量系统分度

频谱分析仪和信号分析仪有什么区别呢

频谱分析仪:测量在仪器的整个频率范围内输入信号幅度随频率进行变化的情况。其最主要的用途是测量已知和未知信号的频谱功率。可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。 信号分析仪:它一方面集成了频谱分析仪的功能,另一方面测量在仪器的中频带宽内输入信号在单一频率上的幅度和相位。测量信号更加丰富如振动信号、声学信号等。 频谱分析仪和信号分析仪这两个术语多数情况下可以相互使用。但用信号分析仪描述更贴切,可进行更全面的频域、时域和调制域信号分析。 我们通过比较两款典型的频谱分析仪和信号分析仪来更深入对定义的理解。 安捷伦Agilent35670a是一种有二通道或四通道(选件AY6)的FFT类型频谱分析仪。这种标准仪器可在直流至100KHz左右的范围内进行频谱、网络、时域及幅度域测量。 晶钻仪器CoCo-80X是新一代手持一体化的动态信号分析仪与数据采集仪。四至八个通道数,最高150dB的动态范围,102.4kHz的采样率,进行各类频谱分析、结构分析、倍频程分析与声级计、旋转机械阶次跟踪等。另外,它支持多种语言动态切换,有英语、中文、日文、法语和西班牙语。

从上面两款仪器比较我们可以了解,外观上台式频谱分析仪有20Kg,而手持式动态信号分析仪只有2Kg。信号分析仪从可操作性、便携性、功能上都具有明细的优越性。功能上来说,频谱分析仪主要对FFT频谱信息分析,起到信号调节的功能。而动态信号分析仪除了继承频谱分析功能外,增加了振动结构分析、声学分析、转子动力学分析等功能,这些功能都是在频谱分析功能基础上增加的分析功能。 杭州锐达数字技术有限公司是美国晶钻仪器公司中国总代理,负责产品销售、技术支持与产品维护,是机械状态监测、振动噪声测试、动态信号分析、动态数据采集、应力应变测试等领域的供应商,提供手持一体化动态信号分析系统、多通道动态数据采集系统、振动控制系统、多轴振动控制系统、三综合试验系统和远程状态监测系统等。

第三章 随机信号分析 总结

第三章 总结 对随机的东西只能作统计描述。 1).统计特性( 概率密度与概率分布); 2).数字特征( 均值、方差、相关函数等)。 节1 随机过程概念 一、随机过程定义 二、随机过程统计特性的描述 1.随机过程的概率分布函数 2.随机过程的概率密度函数 三、随机过程数字特征的描述 1、数学期望: 性质:① E[k] = k ② E[ξ(t) + k] = E[ξ(t)] + k ③ E[ kξ(t)] = k E[ξ(t)] ④ E[ξ 1(t) + …+ξ n (t)] = E[ξ 1 (t)] + …+E[ ξ n (t)] ⑤ ξ 1(t)与ξ 2 (t)统计独立时,E[ξ 1 (t)ξ 2 (t)] = E[ξ 1 (t)] E[ξ 2 (t)] 2、方差: 性质:① D[k] = 0 ② D[ξ(t) + k] = D[ξ(t)] ③ D[kξ(t)] = K2 D[ξ(t)] ④ξ 1(t)ξ 2 (t)统计独立时, D[ξ 1 (t)+ξ 2 (t)] = D[ξ 1 (t)] + D[ξ 2 (t)] 3、相关函数和协方差函数 节2 平稳随机过程概念 一、定义:狭义平稳、广义平稳 广义平稳条件:

① 数学期望与方差是与时间无关的常数; ② 相关函数仅与时间间隔有关。 二、性能讨论 1、各态历经性(遍历性):其价值在于可从一次试验所获得的样本函数 x(t) 取时间平均来得到它的数字特征(统计特性) 2、相关函数R(τ)性质 ① 对偶性(偶函数) R(τ)=E[ξ(t)ξ(t+τ)]=E[ξ(t 1-τ)ξ(t 1 )]= R(-τ) ② 递减性 E{[ξ(t) ±ξ(t+τ)]2} = E[ξ2(t)±2 ξ(t) ξ(t+τ) + ξ2(t+τ) ] = R(0)±2R(τ) + R(0) ≥ 0 ∴R(0)≥±R(τ) R(0)≥|R(τ)| 即τ=0 处相关性最大 ③ R(0)为 ξ ( t ) 的总平均功率。 ④ R(∞)=E2{ξ(t)}为直流功率。 ⑤ R(0) - R(∞)= E[ξ 2(t)]- E2[ξ(t)]=σ2为交流功率 3、功率谱密度Pξ(ω) 节3 几种常用的随机过程 一、高斯过程 定义: 任意n维分布服从正态分布的随机过程ξ(t)称为高斯过程(或正态随机过程)。 ① 高斯过程统计特性是由一、二维数字特征[a k, δ k 2, b jk ]决定的 ②若高斯过程满足广义平稳条件,也将满足狭义平稳条件。 ③若随机变量两两间互不相关,则各随机变量统计独立。二、零均值窄带高斯过程 定义、零均值平稳高斯窄带过程 同相随机分量 ξ c (t), 正交随机分量 ξ s (t) 结论:零均值窄带高斯平稳过程 ξ( t ) ,其同相分量 ξ c ( t ) 和正交分量 ξ s ( t )

频谱分析仪的使用方法

电磁干扰测量与诊断 当你的产品由于电磁干扰发射强度超过电磁兼容标准规定而不能出厂时,或当由于电路模块之间的电磁干扰,系统不能正常工作时,我们就要解决电磁干扰的问题。要解决电磁干扰问题,首先要能够“看”到电磁干扰,了解电磁干扰的幅度和发生源。本文要介绍有关电磁干扰测量和判断干扰发生源的方法。 1.测量仪器 谈到测量电信号,电气工程师首先想到的可能就是示波器。示波器是一种将电压幅度随时间变化的规律显示出来的仪器,它相当于电气工程师的眼睛,使你能够看到线路中电流和电压的变化规律,从而掌握电路的工作状态。但是示波器并不是电磁干扰测量与诊断的理想工具。这是因为: A. 所有电磁兼容标准中的电磁干扰极限值都是在频域中定义的,而示波器显示出的时域波形。因此测试得到的结果无法直接与标准比较。为了将测试结果与标准相比较,必须将时域波形变换为频域频谱。 B. 电磁干扰相对于电路的工作信号往往都是较小的,并且电磁干扰的频率往往比信号高,而当一些幅度较低的高频信号叠加在一个幅度较大的低频信号时,用示波器是无法进行测量。 C. 示波器的灵敏度在mV级,而由天线接收到的电磁干扰的幅度通常为V级,因此示波器不能满足灵敏度的要求。 测量电磁干扰更合适的仪器是频谱分析仪。频谱分析仪是一种将电压幅度随频率变化的规律显示出来的仪器,它显示的波形称为频谱。频谱分析仪克服了示波器在测量电磁干扰中的缺点,它能够精确测量各个频率上的干扰强度。 对于电磁干扰问题的分析而言,频谱分析仪是比示波器更有用的仪器。而用频谱分析仪可以直接显示出信号的各个频谱分量。 1.1 频谱分析仪的原理 频谱分析仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。 图1 频谱分析仪的原理框图

频谱分析仪的几大技术指标

频谱分析仪的几大技术指标 频谱分析仪用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。 频谱分析仪的几大技术指标 1、输入频率范围 指频谱仪能够正常工作的频率区间,以HZ表示该范围的上限和下限,由扫描本振的频率范围决定,现代频谱仪的频率范围通常可从低频段至射频段,甚至微波段,如1KHz~4GHz,这里的频率是指中心频率,即位于显示频谱宽度中心的频率。 2、分辨力带宽 指分辨频谱中两个相邻分量之间的小谱线间隔,单位是HZ,它表示频谱仪能够把两个彼此靠得很近的等幅信号在规定低点处分辨开来的能力,在频谱仪屏幕上看到的被测信号的谱线实际是一个窄带滤波器的动态幅频特性图形(类似钟形曲线),因此,分辨力取决于这个幅频生的带宽,定义这个窄带滤波器幅频特性的3dB带宽为频谱仪的分辨力带宽。 3、灵敏度 指在给定分辨力带宽、显示方式和其他影响因素下,频谱仪显示小信号电平的能力,以dBm、dBu、dBv、V等单位表示,超外差频谱仪的灵敏度取决于仪器的内噪声,当测量小信号时,信号谱线是显示在噪声频谱之上的,为了易于从噪声频谱中看清楚信号谱线,一般信号电平应比内部噪声电平高10dB,另处,灵敏度还与扫频速度有关,扫频速度赶快,动态幅频特性峰值越低,导致灵敏度越低,并产生幅值差。 4、动态范围 指能以规定的准确度测量同时出现在输入端的两个信号之间的差值,动态范围的上限爱到非线性失真的制约,频谱仪的幅值显示方式有两种:线性的对数,对数显示的优点是在有限的屏幕有效的高度范围内,可获得较大的动态范围,频谱仪的动态范围一般在60dB以上,有时甚至达到100dB以上。 5、频率扫描宽度(Span) 另有分析谱宽、扫宽、频率量程、频谱跨度等不同叫法。通常指频谱仪显示

系统及其特性教学设计

系统及其特性 一、教材分析 本节内容是在《技术与设计2》中,第三章第一节内容。系统与设计可以说是一个承上启下的中枢环节,它既是在“结构”与“流程”的基础上加以展开,又为“控制与技术”的讲述做好了铺垫,是全书的重点之一。本节先通过具体实例对系统的含义进行初步分析与学习,让学生形成系统意识,为学生用系统的观点和方法分析和认识事物奠定基础。系统的基本特性分析是对系统概念的深入研究,皆在让学生初步掌握系统的分析方法。系统的基本特性是本章的重点,让学生建立系统的观点是本节的难点。 二、学情分析 本节课的教学对象是高二的学生,总的来说,他们已经有一定的生活经历,对事物也有了一定的判断能力。在日常生活中,学生虽然接触过系统,知道系统这个名词,但实际上并不知道什么是系统,还不会有意识地用系统的方法去分析问题﹑解决问题。本节课结合丰富的案例,旨在教会学生认识系统,转变看待问题的方式。 三、教学目标 知识与技能目标: 1、理解系统的含义。 2、体会系统的组成和层次关系 3、理解系统的基本特性 4、能利用基本特性对系统进行简单的分析 过程与方法目标: 1、学会用系统的观点认识事物 2、培养学生理解实际问题的能力 通过案例分析,能联系各个领域对系统分析进行交流和讨论。 情感、态度与价值观目标: 培养学生养成严谨的学习态度和团结协作的作风,让学生感悟从系统的角度认识分析事物,渗透事物各部分普遍联系的观点。 四、教学重难点: 重点:1、系统的含义,2、系统的基本特性 难点:建立系统的观点 五、教学策略

教法:通过丰富的案例,在教学中把知识点的学习置于具体的情景中,把从日常生活中获得的感受提升到理性分析的思维上。在教学中要根据学生的认知规律,由浅到深,由易到难,以回想——分析——归纳——迁移为主线,组织教学。 学法:鼓励学生进行自主探究式的学习方法,交流讨论、归纳,要有团结合作的意识。明确技术离不开生活。要想真正的把技术这一学科掌握好,必须把学到的知识迁移到生活实际中去,要带着问题走进课堂,再从课堂中走进社会、走进生活的环境中。 六、教学资源准备:多媒体课件。 七、教学过程: 良好的教学设想必须通过教学实践来实现,根据以上的教学理念和设想,我将教学过程分为以下内容: (一)新课引入 虽然系统给我们的印象很模糊,似乎看不清,摸不透,但它却无处不在,学生展示系统在各个领域应用的图片。 (二)新课学习 对汽车与自行车的结构分析,汽车由车身、底盘、发动机、轮胎等构成,自行车由车架、车把、鞍座、前叉、脚蹬、链轮、车闸等主要部件组成。只有这些零件有机的组合在一起,才能让汽车和自行车都动以来,才能发挥它们的整体功能。 通过以上的实例,我们不难得出“系统是什么”, 什么是系统 1、系统的含义: 系统是由相互联系、相互作用、相互以来和相互制约的若干要素或部分组成的具有特定功能的有机整体。 要素:指构成系统的最主要的元素。 部分:相对整体而言,要素和部分可以通用 2、小组活动:拆卸圆珠笔 圆珠笔是系统,笔壳、笔芯、弹簧、等是组成要素。 3、两人一组讨论:请指出下列系统分别由哪些要素(部分)组成,并说出相互之间有怎样的联系。 系统的名称和组成要素(部分) 台灯:灯座、灯泡、灯罩、电线、开关等。 学校多媒体教室:计算机、实物展示台、投影机、电动屏幕、展台、音响设

多功能虚拟信号分析仪使用说明书

多功能虚拟信号分析仪使用说明书(U(User ser G uide 1.1.33.1.166 uide)) 1.1. 仪星电子科技 2011-3-29

目录 1.1.分析仪功能介绍 分析仪功能介绍………………………………………………………………12.2.软件中基本操作简介 软件中基本操作简介..................................................................22.1鼠标拖动、鼠标跟踪和区域选择切换鼠标拖动、鼠标跟踪和区域选择切换 (2) 22.2水平缩放水平缩放 (2) 22.3水平移动水平移动 (2) 22.4垂直缩放垂直缩放 (2) 22.5垂直移动垂直移动 (2) 22.6鼠标跟踪鼠标跟踪 (2) 22.7区域放大区域放大 (2) 23.3.函数发生器的使用 函数发生器的使用……………………………………………………………33.3.11声卡使用说明声卡使用说明……………………………………………………………… ………………………………………………………………33.2USB 模块使用说明模块使用说明……………………………………………………………………………………………………………………43.3.33波形文件输出波形文件输出………………………………………………………………………………………………………………………………44.4.示波器的使用 示波器的使用…………………………………………………………………54.4.11示波器分析流程示波器分析流程…………………………………………………………… ……………………………………………………………54.4.22属性设置属性设置…………………………………………………………………… ……………………………………………………………………64.2.1声卡属性声卡属性…………………… ………………………………………………………………………64.2.2USB 模块属性模块属性……………… …………………………………………………………………74.2.3仿真模式属性仿真模式属性………………… …………………………………………………………………74.2.3串口捕获属性串口捕获属性………………… …………………………………………………………………74.4.33数据抓帧数据抓帧…………………………………………………………………………………………………………………………………………84.4.44波形处理波形处理…………………………………………………………………… ..............................................................................84.4.1分析视图管理 (8) 4.4.2波形视图 (9) 4.4.3频率频率/ /相关视图...............................................................94.4.4李萨茹视图 (10) 4.5滤波器文件滤波器文件……………………………………………………………… (10)

相关文档
最新文档