2013-2014学年高二数学双基达标:2.1 随机变量及其概率分布(苏教版选修2-3)]

2013-2014学年高二数学双基达标:2.1 随机变量及其概率分布(苏教版选修2-3)]
2013-2014学年高二数学双基达标:2.1 随机变量及其概率分布(苏教版选修2-3)]

第2章 概 率

2.1 随机变量及其概率分布

双基达标 (限时15分钟)

1.接连射击,直到命中目标为止,所需要的射击次数为X ,则{X =k ,k ∈N *}表示的随机试验的结果为__________________________________________. 答案 射击了k 次,前k -1次都未击中目标,第k 次击中目标

2.一袋中装有5个球,编号为1,2,3,4,5,从袋中同时取3个,以X 表示取出的3个球的号码之和,则X 的所有可能的取值为________. 答案 6,7,8,9,10,11,12

3.已知X 的分布列为P (X =k )=c

2k (k =1,2,…,6),其中c 为常数,则P (X ≤2)=________.

解析 由题意得,c 2+c 4+c 8+c 16+c 32+c

64=1,

解得c =64

63,

P (X ≤2)=P (X =1)+P (X =2)=6463×(12+14)=16

21. 答案 16

21

4.某人投篮的命中率是不命中概率的3倍,以随机变量X 表示1次投篮的命中次数,则P (X =1)=________. 答案 3

4

5.一个袋中有5个白球和3个红球,从中任取3个,则随机变量为下列中的________(填序号).

①所取球的个数;②其中含白球的个数;③所取白球与红球的总数;④袋中球的总球.

解析 从袋中取出3个球,则①、③、④都是定值,不是随机变量.

答案 ②

6.袋中有5只乒乓球,编号为1至5,从袋中任取3只,若以X 表示取到的球中的最大号码,试写出X 的概率分布.

解 依题意知,X 可能的取值为3,4,5.取到每个值的概率分别为P (X =3)=C 22

C 3

5=110;

P (X =4)=C 23

C 35

=310;

P (X =5)=C 24C 35

=3

5.故X 的概率分布为:

7.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机地取出3个,用X 表示取出的球的最大号码,则{X =6}表示的试验结果是________. 解析 X =6表示取出的3个球的最大号码是6,其余的是1,2,3,4,5号球中的任意两个.

答案 从6个球中取出3个,其中一个是6号球,其余的2个是1,2,3,4,5号球中的任意两个.

8.随机变量X 的概率分布规律为P (X =k )=c

k (k +1)

,k =1,2,3,4,其中c 是常数,

则P ? ????1

2<X <52的值为______.

解析 P (X =1)=c 2,P (X =2)=c 6, P (X =3)=c 12,P (X =4)=c

20. ∴? ????12+16+1

12+120c =1,∴c =54. P ? ????1

2<X <52=P (X =1)+P (X =2) =? ??

??12+16c =23×54=56.

答案 5

6

9.袋内有5个白球,6个红球,从中摸出两球,记 X =???

0,两球全红,1,两球非全红,则X 的分布列为________.

解析 P (X =0)=C 26

C 211

=311,

P (X =1)=1-311=8

11.故X 的分布列如下表.

答案

10.已知随机变量η

解析 由分布列的性质得:0.2+x +0.25+0.1+0.15+0.2=1,解得x =0.1. P (η>3)=P (η=4)+P (η=5)+P (η=6)=0.1+0.15+0.2=0.45, P (1<η≤4)=P (η=2)+P (η=3)+P (η=4)=0.1+0.25+0.1=0.45. 答案 0.1 0.45 0.45

11.先后抛掷一个骰子两次,以下的随机变量可能取哪些值? (1)两次抛掷出的最大点数; (2)两次掷出的点数之和;

(3)第一次与第二次掷出的点数差.

解 (1)用随机变量X 表示抛掷骰子两次掷出的最大点数,则X 的取值集合为{1,2,3,4,5,6}.

(2)用随机变量ζ表示抛掷两次掷出的点数之和,则ζ的取值集合为{2,3,4,5,6,7,8,9,10,11,12}.

(3)用随机变量X 表示第一次与第二次掷出的点数差,则X 的取值集合为{-5,-4,-3,-2,-1,0,1,2,3,4,5}.

12.设随机变量X 的分布列为P (X =i )=i

10,(i =1,2,3,4). (1)求P (X <3); (2)求P ? ????12<X <72; (3)求函数F (x )=P (X <x ).

解 (1)P (X <3)=P (X =1)+P (X =2)=3

10. (2)P ? ????1

2<X <72=P (X =1)+

P (X =2)+P (X =3)=35

(3)F (x )=P (X <x )=???????

0 (x ≤1),

110 (1<x ≤2),3

10 (2<x ≤3),

35 (3<x ≤4),1 (x >4).

13.(创新拓展)有甲、乙两个盒子,甲盒子中有8张卡片,其中2张写有数字0,3张写有数字1,3张写有数字2;乙盒子中有8张卡片,其中3张写有数字0,2张写有数字1,3张写有数字2.

(1)如果从甲盒子中取2张卡片,从乙盒中取1张卡片,那么取出的3张卡片都写有1的概率是多少?

(2)如果从甲、乙两个盒子中各取1张卡片,设取出的两张卡片数字之和为X ,求X 的概率分布.

解 (1)取出3张卡片都写有1的概率为C 23C 1

2

C 28C 18

=3112.

(2)X 所有可能取的值为0,1,2,3,4.

P (X =0)=C 12C 13

C 18C 18

=664=332,

P(X=1)=C12C12

C18C18+

C13C13

C18C18=

13

64,

P(X=2)=C13C12

C18C18+

C12C13

C18C18+

C13C13

C18C18=

21

64,

P(X=3)=C13C12+C13C13

C18C18=

15

64,

P(X=4)=C13C13

C18C18=

9

64.

∴X的概率分布为:

高二数学 正态分布练习题

正态分布 ㈠ 知识点回顾: 1、正态分布概念:若连续型随机变量ξ的概率密度函数为 ),(,21)(2 22)(∞+-∞∈= --x e x f x σμσ π, 其中,σμ为常数,且0σ>,则称ξ服从正态分布,简记为ξ~()2,N μσ。 ()f x 的图象称为正态曲线。 2、正态分布的期望与方差 若ξ~()2,N μσ,则2,E D ξμξσ== 3、正态曲线的性质: ①曲线在x 轴的上方,与x 轴不相交. ②曲线关于直线x=μ对称. ③曲线在x=μ时位于最高点. ④当x<μ时,曲线上升;当x>μ时,曲线下降.并且当曲线向左、右两边无限延伸时,以 x 轴为渐进线,向它无限靠近. ⑤当μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,表示总体的分布越分散;σ 越小,曲线越“瘦高”,表示总体的分布越集中. 4、在标准正态分布表中相应于0x 的值()0x Φ是指总体取值小于0x 的概率即 ()()00x P x x Φ=< 00≥x 时,则)(0x Φ的值可在标准正态 分布表中查到 00

x y O (6)、()2,N μσ与()0,1N 的关系: ①若ξ~()2,N μσ,有()()000x P x F x μξσ-??<==Φ ??? ②若ξ~()2,N μσ,则()2112x x P x x x μμσσ--???? <<=Φ-Φ ? ????? (二)习题 一、选择题 1.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为 )(10 21 )(200 )80(2R x e x f x ∈?= --π,则下列命题不正确的是 ( B ) A .该市这次考试的数学平均成绩为80分; B .分数在120分以上的人数与分数在60分以下的人数相同; C .分数在110分以上的人数与分数在50分以下的人数相同; D .该市这次考试的数学成绩标准差为10. 2.设随机变量ξ服从标准正态分布()0,1N ,若()1P p ξ>=,则()10P ξ-<<=(D ) A. 2 p B. 1p - C. 12p - D. 12p - 3.设随机变量),(~2σμξN ,且 )()(c P c P >=≤ξξ,则c 等于( D ) μμσ...0.D C B A - 4. 已知正态分布曲线关于y 轴对称,则μ值为( ) A .1 B .-1 C .0 D.不确定 5.正态分布N (0,1)在区间(-2,-1)和(1,2)上的取值的概率分别为12,p p ,则12,p p 的大小关系为( ) A .12p p < B .12p p > C .12p p = D.不确定 6.设随机变量),(~2σμξN ,且1,3==ξξD E ,则)11(≤<-ξP =( B ) 1)2(2.)4()2(.)2()4(.1)1(2.-ΦΦ-ΦΦ-Φ-ΦD C B A 7.已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤( A ) A .0.16 B .0.32 C .0.68 D ,0.84 8.设随机变量ξ服从正态分布(2,9)N ,若(1)(1)P c P c ξξ>+=<-,则c = ( B ) A.1 B.2 C.3 D.4 9.已知随机变量ζ服从正态分布N (3,a 2),则P (3)ζ<=( D ) (A)15 (B)14 (C)13 (D)12 1 x 2 x )(0x Φ) (10x -Φ-

2.1随机变量及其概率分布(1)

随机变量及其概率分布(1) 【教学目标】 1、在对具体问题的分析中,了解随机变量、离散型随机变量的意义,理解取有限值的离散性随机变量及其概率分布的概念。 2、会求出某些简单的离散型随机变量的概率分布,认识概率分布对于刻画随机现象的重要性。 3、提高学生的抽象概括能力,提高数学建模的能力,提高学生应用数学的意识。 4、随机变量是客观世界中极为普遍的,通过对各种现象及事件a 的分析,培养严谨的逻辑思维能力,激发学生学习兴趣,初步认识数学的应用价值、科学价值,并深刻体会数学是服务于实践的一门学科。 【教学过程】 1、相关知识回顾: (1)随机现象: 在一定条件下,某种现象可能发生,也可能不发生,事先也不能断定出现哪种结果的现象 (2)基本事件: 在一次试验中可能出现的每一个基本结果 (3)古典概型: 我们将具有:①试验中所有可能出现的基本事件只有有限个; ②每个基本事件发生的概率相等. 满足这两个特点的概率模型称为古典概率模型 2、新课引入: (1)在一块地里种下10棵树苗,成活的树苗棵数X 是0,1,…,10中的某个数; (2)抛掷一颗骰子,向上的点数Y 是1,2,3,4,5,6中的某一个数; (3)新生婴儿的性别,抽查的结果可能是男,也可能是女。如果将男婴用0表示, 女婴用1表示,那么抽查的结果Z 是0和1中的某个数; 上述问题有哪些共同特点? 上述问题中的X ,Y ,Z ,ε实际上是把每个随机试验的基本事件都对应一个确定的实数,即在试验结果(样本点)与实数之间建立了一个映射。 例如:上面的植树问题中成活的树苗棵数X : X=0,表示成活0棵; X=1,表示成活1棵;…… 思考:“X>7”表示什么意思? 3、新授: 知识点1:随机变量: 一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫随机变量。 通常用大写拉丁字母X ,Y ,Z (或小写希腊字母ζηε,,)等表示,而用小写拉丁字母z y x ,,(加上适当下标)等表示随机变量取得可能值。 引入随机变量后,随机试验中我们感兴趣的事件就可以通过随机变量的取值表达出来。 注:(1)随机试验中,可能出现的恶结果都可以用一个数来表示。如掷一枚硬币,“正

数学高考复习点拨 二项分布与超几何分布辨析

二项分布与超几何分布辨析 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ?? ??? ,. 03031464(0)55125P X C ????==?= ? ?????∴;12131448(1)55125P X C ????==?= ? ?????; 212 31412(2)55125P X C ????==?= ? ?????;30 33141(3)55125P X C ????==?= ? ?????. 因此,X 的分布列为 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有: 03283107(0)15C C P Y C ===;12283107(1)15 C C P Y C ===;21283101(2)15C C P Y C ===. 因此,Y 的分布列为

辨析:通过此例可以看出:有放回抽样时,每Array次抽取时的总体没有改变,因而每次抽到某物 的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样. 超几何分布和二项分布都是离散型分布,超几何分布和二项分布的区别: 超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复) 当总体的容量非常大时,超几何分布近似于二项分布........ 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决。在实际应用中,理解并区分两个概率模型是至关重要的。下面举例进行对比辨析。1.有放回抽样:每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型。 2.不放回抽样:取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型。因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样。所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的(特别注意:二项分布是在n次独立重复试验的3个条件成立时应用的)。 超几何分布和二项分布的区别:

人教版高中数学(理科)选修正态分布(一)

正态分布(一) 教学目的: 1 掌握正态分布在实际生活中的意义和作用 2.结合正态曲线,加深对正态密度函数的理理 3.通过正态分布的图形特征,归纳正态曲线的性质 教学重点:正态分布曲线的性质、标准正态曲线N(0,1) 教学难点:通过正态分布的图形特征,归纳正态曲线的性质 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 1.在实际遇到的许多随机现象都服从或近似服从正态分布在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口正态分布在统计学中是最基本、最重要的一种分布 2.正态分布是可以用函数形式来表述的其密度函数可写成: 2 () 2 (),(,) x f x x μ σ - - =∈-∞+∞,(σ>0) 由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的常把它记为) , (2 σ μ N 3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的 4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征 5.由于正态分布是由其平均数μ和标准差σ唯一决定的,因此从某种意义上说,正态分布就有好多好多,这给我们深入研究带来一定的困难但我们也发现,许多正态分布中,重点研究N(0,1),其他的正态分布都可以通过) ( ) ( σ μ - Φ = x x F转化为N(0,1),我们把N(0,1)称为标准正态分布,其密度函数为 2 2 1 2 1 ) (x e x F- = π ,x∈(-∞,+∞),从而使正态分布的研究得以简化 6.结合正态曲线的图形特征,归纳正态曲线的性质正态曲线的作图较难,教科书没做要求,授课时可以借助几何画板作图,学生只要了解大致的情形就行了,关键是能通过正态曲线,引导学生归纳其性质教学过程: 一、复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.

第二章__随机变量及其概率分布_考试模拟题答案

第二章随机变量及其概率分布考试模拟题 (共90 分) 一.选择题(每题2分共20分) 1.F(X) 是随机变量X的分布函数,则下列结论不正确的是( B ) A.0 F( x) 1 B.F( x)=P{X=x} C.F( x)=P{X x} D.F( )=1, F( )=0 解析:A,C,D 都是对于分布函数的正确结论,请记住正确结论! B 是错误的。2.设随机变量X的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X 5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是 4x 0 x1 2x A.F(x)= B.F(x)= 其它其它 x<0 x<0 C.F(x)= 2x D.F(x)= 2x 0 x 0.5 其它≥0.5 解析:由分布函数F(x) 性质:0 F(x) 1,A,B,C 都不满足这个性质,选D 4.设X 的密度函数为f(x)=则P{-2

1 解析:根据密 度函数性质: A.有f(x) 0的情况,错; B.D. 不符合 f(x)dx 1错; 1 C. 1 12dx 21x|11 12 21 1 选 C 6.设随机变量 X~N(1 ,4), (1) 0.8413, (0) 0.5 ,则事件 {1 X 3 } 的概率为(D ) 解:P{1 X 3 }=F(3)-F(1)= (3 1) (1 1) (1) (0) 0.8413 0.5 0.3413 22 7.已知随机变量 X 的分布函数为( A ) 0 x 0 1 0 x 1 F(x)= 2 ,则 P X 1 = 2 1x3 3 1 x 3 112 A . 1 B . 1 C . 2 D . 1 623 A. 0 B. C. D. 848 解析: P {-2

高中数学必修2-3第二章2.4正态分布

2.4 正态分布 1.问题导航 (1)什么是正态曲线和正态分布? (2)正态曲线有什么特点?曲线所表示的意义是什么? (3)怎样求随机变量在某一区间范围内的概率? 2.例题导读 请试做教材P 74练习1题. 1.正态曲线 函数φμ,σ(x )=1 2πσ e -(x -μ)2 2σ2,x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数, φμ,σ(x )的图象为__________________正态分布密度曲线,简称正态曲线. 2.正态分布 一般地,如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=??a b φ μ,σ (x)d x , 则称随机变量X 服从正态分布.正态分布完全由参数________μ和________σ确定,因此正态分布常记作____________N(μ,σ2),如果随机变量X 服从正态分布,则记为________X ~N (μ,σ2). 3.正态曲线的性质 正态曲线φμ,σ(x)=1 2πσ e -(x -μ)22σ2,x ∈R 有以下性质: (1)曲线位于x 轴________上方,与x 轴________不相交; (2)曲线是单峰的,它关于直线________x =μ对称; (3)曲线在________x =μ处达到峰值________1 σ2π ; (4)曲线与x 轴之间的面积为________1; (5)当________σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图①; (6)当μ一定时,曲线的形状由σ确定,σ________越小,曲线越“瘦高”,表示总体的分布越集中;σ________越大,曲线越“矮胖”,表示总体的分布越分散,如图②. 4.正态总体在三个特殊区间内取值的概率值

第二章 随机变量及其概率分布

第二章 随机变量及其概率分布 教学目的与要求 1. 熟练掌握一维离散型随机变量及其分布的概念,会求一维离散型随机变量的分布列; 2. 熟练掌握一维随机变量分布函数的概念与性质; 3. 熟悉一维离散型随机变量的分布函数与分布列的关系; 3. 理解一维连续型随机变量分布函数与分布密度的概念及其关系; 4. 熟记常见的几种分布的表达形式. 6. 熟悉随机变量函数的分布函数与分布密度的计算公式. 教学重点 一维离散型、连续型随机变量及其分布 教学难点 随机变量函数的分布 教学方法 讲解法 教学时间安排 第11-12学时 第一节 随机变量 第四节 随机变量的分布函数 第13-16学时 第二节 离散型随机变量 第三节 连续型随机变量 第17-18学时 第五节 随机变量函数的分布 习题辅导 教学内容 第一节 随机变量 一、随机变量 在上一章所讲的有些随机试验的样本空间中基本事件是用数值描述的,这就提示我们,无论什么随机试验,如果用一个变量的不同取值来描述它的全部可能结果,样本空间的表达及其相应的概率就显得更明了、更简单.事实上,这种想法是可以的,为此,引入一个新概念. 定义2.1 设E 维随机试验,()ωΩ=为其样本空间,若对任意的ω∈Ω,有唯一的实数与之对应,且对{},x R x ξ?∈≤为事件,则称()ξω为随机变量. 这样,事件可通过随机变量的取值来表示,随机变量,(),(),b a b ξξξ≤<≤L 等都表

示为事件,其中,a b 表示任意实数.即用随机变量的各种取值状态和取值范围来表示随机事件. 二、分布函数的定义与性质 定义2.2 定义在样本空间Ω上,取值于实数域的函数()ξω,称为是样本空间Ω上的(实值)随机变量,并称 ()(()), (,)F x P x x ξω=≤∈-∞∞ 是随机变量()ξω的概率分布函数.简称为分布函数. 分布函数的性质: (1)单调性 若12,x x <则12()()F x F x ≤; (2)()lim ()0x F F x →-∞ -∞== ()lim ()1x F F x →+∞ +∞== (3)右连续性 (0)()F x F x += 反过来,任一满足这三个性质的函数,一定可以作为某个随机变量的分布函数.因此,满足这三个性质的函数通常都称为分布函数. 由分布函数还可以下列事件的概率: {()}1(){()}(0) {()}1(0){()}()(0) P x F x P x F x p x F x P x F x F x ξωξωξωξω>=-<=-≥=--==-- 由此可见,形如12121212{()},{()},{()},{()}x x x x x x x x ξωξωξωξω≤≤<<<≤≤<这些事件以及它们经过有限次或可列次并、交、差以后的概率,都可以由()F x 算出来,所以()F x 全面地描述了随机变量()ξω的统计规律. 第二节 离散型随机变量 一、离散型随机变量的概念及其分布 定义 2.2 定义在样本空间Ω上,取之于实数域R ,且只取有限个或可列个值的变量 ()ξξω=,称作是一维(实值)离散型随机变量,简称为离散型随机变量.称

随机变量及其概率分布

第二章 随机变量及其概率分布 【内容提要】 一、随机变量及其分布函数 设()X X ω=是定义于随机试验E 的样本空间Ω上的实值函数,且x R ?∈, {}()X x ωω≤是随 机事件,则称()X X ω=为随机变量,而称()()()F x P X x ω=≤为其概率分布函数。 随机变量()X X ω=的概率分布函数()()()F x P X x ω=≤具有如下性质: ⑴.非负性: x R ?∈,有0()1F x ≤≤; ⑵.规范性: ()0,()1F F -∞=+∞=; ⑶.单调性: 若12x x ≤,则12()()F x F x ≤; ⑷.右连续性: x R ?∈,有(0)()F x F x +=。 二、离散型随机变量 1.离散型随机变量及其概率分布律 若随机变量()X X ω=只取一些离散值12n x x x -∞<<=其中而。 三、连续型随机变量

高二数学-正态分布练习题

x y O 正态分布 ㈠ 知识点回顾: 1、正态分布概念:若连续型随机变量ξ的概率密度函数为 ),(,21 )(22 2)(∞+-∞∈=--x e x f x σμσπ, 其中,σμ为常数,且0σ>,则称ξ服从正态分布,简记为ξ~()2,N μσ。 ()f x 的图象称为正态曲线。 2、正态分布的期望与方差 若ξ~()2,N μσ,则2,E D ξμξσ== 3、正态曲线的性质: ①曲线在x 轴的上方,与x 轴不相交. ②曲线关于直线x=μ对称. ③曲线在x=μ时位于最高点. ④当x<μ时,曲线上升;当x>μ时,曲线下降.并且当曲线向左、右两边无限延伸时,以x 轴为渐进线,向它无限靠近. ⑤当μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中. 4、在标准正态分布表中相应于0x 的值()0x Φ是指总体取值小于0x 的概率即 ()()00x P x x Φ=< 00≥x 时,则)(0x Φ的值可在标准正态 分布表中查到 00

(6)、()2,N μσ与()0,1N 的关系: ①若ξ~()2,N μσ,有()()000x P x F x μξσ-??<==Φ ??? ②若ξ~()2,N μσ,则()2112x x P x x x μμσσ--????<<=Φ-Φ ? ????? (二)习题 一、选择题 1.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为 )(10 21)(200)80(2R x e x f x ∈?=--π,则下列命题不正确的是 ( B ) A .该市这次考试的数学平均成绩为80分; B .分数在120分以上的人数与分数在60分以下的人数相同; C .分数在110分以上的人数与分数在50分以下的人数相同; D .该市这次考试的数学成绩标准差为10. 2.设随机变量ξ服从标准正态分布()0,1N ,若()1P p ξ>=,则()10P ξ-<<=(D ) A. 2 p B. 1p - C. 12p - D. 12p - 3.设随机变量),(~2σμξN ,且 )()(c P c P >=≤ξξ,则c 等于( D ) μμσ...0.D C B A - 4. 已知正态分布曲线关于y 轴对称,则μ值为( ) A .1 B .-1 C .0 D.不确定 5.正态分布N (0,1)在区间(-2,-1)和(1,2)上的取值的概率分别为12,p p ,则12,p p 的大小关系为( ) A .12p p < B .12p p > C .12p p = D.不确定 6.设随机变量),(~2σμξN ,且1,3==ξξD E ,则)11(≤<-ξP =( B ) 1)2(2.)4()2(.)2()4(.1)1(2.-ΦΦ-ΦΦ-Φ-ΦD C B A 7.已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤( A ) A .0.16 B .0.32 C .0.68 D ,0.84 8.设随机变量ξ服从正态分布(2,9)N ,若(1)(1)P c P c ξξ>+=<-,则c = ( B ) A.1 B.2 C.3 D.4 9.已知随机变量ζ服从正态分布N (3,a 2),则P (3)ζ<=( D ) (A)15 (B)14 (C)13 (D)12 10.若φ(3)=0.9987,则标准正态总体在区间(-3,3)内取值的概率为 (B) A .0.9987 B .0.9974 C .0.944 D . 0.8413 1x 2 x

人教新课标版数学高二-人教选修2-3学案设计独立重复试验与二项分布

2.2.3 独立重复试验与二项分布 问题导学 一、独立重复试验 活动与探究1 某气象站天气预报的准确率为80%,计算:(结果保留到小数点后面第2位) (1)5次预报中恰有2次准确的概率; (2)5次预报中至少有2次准确的概率; (3)5次预报中恰有2次准确,且其中第3次预报准确的概率. 迁移与应用 1.(2013四川广元模拟)打靶时,某人每打10发可中靶8次,则他打100发子弹有4发中靶的概率为() A.C41000.84×0.296B.0.84 C.0.84×0.296D.0.24×0.296 2.某市公租房的房源位于A,B,C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的.该市的4位申请人中恰有2人申请A片区房源的概率为__________. (1)n次独立重复试验的特征: ①每次试验的条件都完全相同,有关事件的概率保持不变; ②每次试验的结果互不影响,即各次试验相互独立; ③每次试验只有两种结果,这两种可能的结果是对立的. (2)独立重复试验概率求解的关注点: ①运用独立重复试验的概率公式求概率时,要判断问题中涉及的试验是否为n次独立重复试验,判断时可依据n次独立重复试验的特征. ②解此类题常用到互斥事件概率加法公式,相互独立事件概率乘法公式及对立事件的概率公式. 二、二项分布 活动与探究2 某市医疗保险实行定点医疗制度,按照“就近就医,方便管理”的原则,参加保险人员

可自主选择四家医疗保险定点医院和一家社会医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在地区有A,B,C三家社区医院,并且他们的选择相互独立.设4名参加保险人员选择A社区医院的人数为X,求X的分布列. 迁移与应用 1.某射手每次射击击中目标的概率是0.8,现在连续射击4次,则击中目标的次数X 的概率分布列为__________. 2.如图,一个圆形游戏转盘被分成6个均匀的扇形区域,用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每位家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为(a,b)(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动).若规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品. (1)求某个家庭获奖的概率; (2)若共有5个家庭参加家庭抽奖活动,记获奖的家庭数为X,求X的分布列. 利用二项分布来解决实际问题的关键在于在实际问题中建立二项分布的模型,也就是看它是否是n次独立重复试验,随机变量是否为在这n次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布,否则就不服从二项分布. 三、二项分布的综合应用 活动与探究3 甲、乙两队参加世博会知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一 分,答错者得零分.假设甲队中每人答对的概率均为2 3,乙队中3人答对的概率分别为 2 3, 2 3, 1 2,且各人答对正确与否相互之间没有影响.用ξ表示甲队的总得分. (1)求随机变量ξ的分布列; (2)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB). 迁移与应用

人教版高数选修2-3第二章2.1随机变量及其分布(教师版)

随机变量及其分布 __________________________________________________________________________________ __________________________________________________________________________________ 1.理解随机变量的概念. 2.熟练掌握随机变量的概率分布及其性质. 3.能熟练应用两点分布. 4.能熟练运用超几何分布. 1.随机变量: 一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫做随机变量,通常用大写拉丁字母X ,Y ,Z (或小写希腊字母,,ξηζ)等表示,而用小写拉丁字母x ,y ,z (加上适当下标)等表示随机变量取的可能值. 注意:(1)一般地,一个试验如果满足下列条件:i)试验可以在相同的情形下重复进行;ii)试验的所有可能结果是明确可知的,并且不止一个;iii)每次试验总是恰好出现这些可能结果中的一个,但在试验之前却不能肯定这次试验会出现哪一个结果.这种试验就是个随机试验,为了方便起见,也简称试验. (2)所谓随机变量,即是随机试验的试验结果与实数之间的一个对应关系,这种对应关系是人为建立起来的,但又是客观存在的.这与函数概念的本质是一样的,只不过在函数概念中,函数f (x )的自变量是实数,而在随机变量的概念中,随机变量的自变量是试验结果. (3)一般情况下,我们所说的随机变量有以下两种: 如果随机变量所有可能的取值都能一一列举出来,这样的随机变量叫做离散型随机变量.如果随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型随机变量. (4)离散型随机变量和连续型随机变量的区别: 离散型随机变量和连续型随机变量都用来刻画随机试验所出现的结果,但二者之间又有着根本的区别:对于离散型随机变量来说,它所可能取的值为有限个或至多可列个,或者说能将它的可能取值,按一定次序一一列出,而连续型随机变量可取某一区间内的一切值,我们无法将其中的值一一列举. 2.随机变量的概率分布 一般地,假定随机变量X 有n 个不同的取值,它们分别是12,, ,,n x x x 且()i P X x == ,1,2,3, ,i p i n =①,则称①为随机变量X 的概率分布列. 3.随机变量概率分布的性质 (1)对于随机变量的研究,我们不仅要知道随机变量取哪些值,随机变量所取的值表示的随机试验的结果,而且需要进一步了解随机变量:取这些值的概率. (2)随机事件A 的概率满足0≤P (A )≤1,必然事件U 的概率P (U )=1.若离散型随机变量X 所有可能取的值为12,, ,.n x x x X 取每一个值i x (i =1,2,…,n )的概率为(),i i P X x p ==○ 10,1,2,3,,;i p i n ≥=○2123 1.n p p p p ++++=不满足上述两条性质的分布列一定是错误的, 即分布列满足上述两条性质是该分布列正确的必要不充分条件. (3)由离散型随机变量分布列的概念可知,离散型随机变量各个可能的取值表示的事件是互斥的.

超几何分布教学案

2.1.3超几何分布 教学目标:1、理解理解超几何分布;2、了解超几何分布的应用. 教学重点:1、理解理解超几何分布;2、了解超几何分布的应用 教学过程 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量: 随机变量 只能取有限个数值 或可列无穷多个数 值 则称 为离散随机变量,在高中阶段我们只研究随机变量 取有限个 数值的情形. 3. 分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1) 对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 即 ?? ?+=+==≥+)()()(1k k k x P x P x P ξξξ 5.二点分布:如果随机变量X 的分布列为: 二、讲解新课: 在产品质量的不放回抽检中,若N 件产品中有M 件次品,抽检n 件时所得次品数X=m 则()m M m n N n M N C C P X m C --==.此时我们称随机变量X 服从超几何分布 1)超几何分布的模型是不放回抽样 2)超几何分布中的参数是M,N,n

第二章__随机变量及其概率分布_考试模拟题答案

第二章 随机变量及其概率分布 考试模拟题 (共90分) 一.选择题(每题2分共20分) 1.F(X)是随机变量X 的分布函数,则下列结论不正确的是( B ) A.≤0F(x )1≤ B.F(x )=P{X=x } C.F(x )=P{X x ≤} D.F(∞+)=1, F(∞-)=0 解析: A,C,D 都是对于分布函数的正确结论,请记住正确结论!B 是错误的。 2.设随机变量X 的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X ≤5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是( D ) 4x 01≤≤x 2x 10<≤x A.F(x)= B.F(x)= 1 其它 2 其它 -1 x<0 0 x<0 C.F(x)= 2x 10<≤x D.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.5 解析:由分布函数F(x)性质:01)(≤≤x F ,A,B,C 都不满足这个性质,选D 4 x 31<<-x 4.设X 的密度函数为f(x)= 则P{-2

A. 0 B.83 C. 43 D. 85 解析:P{-2

北师版数学高二-《超几何分布(一)》 同步教学设计 北京 北师大

2.2 超几何分布 教学目标 1.通过实例,理解超几何分布及其特点; 2.通过对实例的分析,掌握超几何分布列及其导出过程,并能简单的应用. 教学重点,难点:理解超几何分布的概念,超几何分布列的应用. 教学过程 一.问题情境 1.情境: 在产品质量管理中,常常通过抽样来分析合格品和不合格品的分布,进而分析产品 质量.假定一批产品共N 件,其中有M 件不合格品,随机取出的n 件产品中,不合格品数X 的概率分布如何? 2.问题:用怎样的数学模型刻画上述问题? 二.学生活动 以100N =,5M =,10n =为例,研究抽取10件产品中不合格品数X 的概率分布. 三.建构数学 从100件产品中随机抽取10件有10 100C 种等可能基本事件.{}2X =表示的随机事 件是“取到2件不合格品和8件合格品”,依据分步计数原理有28 595C C 种基本事件,根 据古典概型, 28 595 10 100 (2)C C P X C ==. 类似地,可以求得X 取其他值时对应的随机事件的概率,从而得到不合格品数X 对一般情形,一批产品共N 件,其中有M 件不合格品,随机取出的n 件产品中,其中min(,)l n M =. 一般地,若一个随机变量X 的分布列为()r n r M N M n N C C P X r C --==, 其中0r =,1,2,3,…,l ,min(,)l n M =,则称X 服从超几何分布,记为

(,,)X H n M N ,并将()r n r M N M n N C C P X r C --==记为(;,,)H r n M N . 说明:(1)超几何分布的模型是不放回抽样; (2)超几何分布中的参数是M ,N ,n . 四.数学运用 1.例题: 例1.高三(1)班的联欢会上设计了一项游戏:在一个口袋中装有10个红球,20个白球,这些球除颜色外完全相同.现一次从中摸出5个球, (1)若摸到4个红球1个白球的就中一等奖,求中一等奖的概率. (2)若至少摸到3个红球就中奖,求中奖的概率. 解:(1)若以30个球为一批产品,其中红球为不合格产品,随机抽取5个球,X 表 示取到的红球数,则X 服从超几何分布(5,10,30)H . 由公式得45410205 30700 (4;5,10,30)0.029523751 C C H C -==≈, 所以获一等奖的概率约为2.95%. (2)根据题意,设随机变量X 表示“摸出红球的个数”,则X 服从超几何分布 (5,10,30)H ,X 的可能取值为0,1,2,3,4,5,根据公式可得至少摸到3个红 球的概率为: 324150102010201020 555 303030 (3)(3)(4)(5)0.1912C C C C C C P X P X P X P X C C C ≥==+=+==++≈, 故中奖的概率为0.1912. 例2.生产方提供50箱的一批产品,其中有2箱不合格产品.采购方接收该批产品的准则是:从该批产品中任取5箱产品进行检测,若至多有1箱不合格产品,便接收该批产品.问:该批产品被接收的概率是多少? 解:以50箱为一批产品,从中随机抽取5箱,用X 表示“5箱中不合格产品的箱数”,则X 服从超几何分布(5,2,50)H .这批产品被接收的条件是5箱中没有不合格的箱或只有1箱不 合格,所以被接收的概率为(1)P X ≤,即 0514******** 5050243 (1)245 C C C C P X C C ≤=+=. 答:该批产品被接收的概率是243 245 (约为0.99184). 说明:(1)在超几何分布中,只要知道N 、M 和n ,就可以根据公式,求出X 取不同m 值时的概率()P X m =,从而列出X 的分布列. (2)一旦掌握了X 的分布列,就可以算出相应试验的很多事件的概率,从而就完全掌握了

高中数学必修正态分布

2.4 正态分布 1.问题导航 (1)什么是正态曲线和正态分布? (2)正态曲线有什么特点?曲线所表示的意义是什么? (3)怎样求随机变量在某一区间范围内的概率? 2.例题导读 请试做教材P 74练习1题. 1.正态曲线 函数φμ,σ(x )=12πσ e -(x -μ)22σ2,x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数,φμ,σ(x )的图象为__________________正态分布密度曲线,简称正态曲线. 2.正态分布 一般地,如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=??a b φμ,σ(x)d x ,则称随机变量X 服从正态分布.正态分布完全由参数________μ和________σ确定,因此正态分布常记作____________N(μ,σ2),如果随机变量X 服从正态分布,则记为________X ~N (μ,σ2). 3.正态曲线的性质 正态曲线φμ,σ(x)=1 2πσe -(x -μ)2 2σ2,x ∈R 有以下性质: (1)曲线位于x 轴________上方,与x 轴________不相交; (2)曲线是单峰的,它关于直线________x =μ对称;

(3)曲线在________x=μ处达到峰值________1 σ2π ; (4)曲线与x轴之间的面积为________1; (5)当________σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图①; (6)当μ一定时,曲线的形状由σ确定,σ________越小,曲线越“瘦高”,表示总体的分布越集中;σ________越大,曲线越“矮胖”,表示总体的分布越分散,如图②. 4.正态总体在三个特殊区间内取值的概率值 P(μ-σ<X≤μ+σ)=________0.682_________6; P(μ-2σ<X≤μ+2σ)=________0.954_________4; P(μ-3σ<X≤μ+3σ)=________0.997_________4. 1.判断(对的打“√”,错的打“×”) (1)函数φμ,σ(x)中参数μ,σ的意义分别是样本的均值与方差.() (2)正态曲线是单峰的,其与x轴围成的面积是随参数μ,σ的变化而变化的.() (3)正态曲线可以关于y轴对称.() 答案:(1)×(2)×(3)√ 2.设随机变量X~N(μ,σ2),且P(X≤C)=P(X>C),则C=() A.0 B.σ C.-μD.μ 答案:D

相关文档
最新文档