立体几何证明及答案

○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:_

_____

_

_

___姓名:___

_

_____

__班级:______

___

_

_考

号:_

_

____

__

__

_ ○

…装

……

订…

………线…………○………… 1.(本小题满分12分)如图, 四棱柱1111ABCD A B C D -的底面ABCD 是正方形, O 为底面中心,1 AO ⊥平面ABCD ,12,2AB AA ==. (1)证明:1AA BD ⊥; (2)证明: 平面1//A BD 平面11;CD B 2.(本小题满分12分)正方体1111D C B A ABCD -的棱长为l ,点F 、H 分别为A 1D 、A 1C 的中点. (1)证明:A 1B ∥平面AFC ; (2)证明:B 1H ⊥平面AFC . 4.(本题满分14分)如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点.求证:(1)PA //平面BDE ;(2)平面PAC ⊥平面BDE . 5.如图,四棱锥ABCD P -的底面是正方形,侧棱PD ⊥平面ABCD ,M 、N 分别是AB 、PC 的中点. A B C

D A 1 B 1 C 1 D 1 O P

E D A B C O

○…………外…………○…………装…………○…………订…………○…………线……

……○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※

○…………内…………○…………装…………○…………订…………○…………线…………○………… (1)求证://MN 平面PAD ;

(2)求证:PCD PBC ⊥平面平面.

6.如图,在四面体ABCD 中,CB CD AD BD =⊥,,点E F ,分别是AB BD ,的中点.

求证:(1)直线//EF 面ACD ;

(2)平面EFC ⊥面BCD .

7.如图,在直三棱柱111ABC A B C -中,1AA AC =,且11BC AC ⊥.

(1)求证:平面1ABC ⊥平面11A ACC ;

(2)若,D E 分别为是11A C 和1BB 的中点,求证:DE ‖平面1ABC .

8.如图,在直三棱柱ABC-A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点.求证:

P M D C B A N

○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:_

_____

_

_

___姓名

:___

_

_____

__班级:______

___

_

_考

号:_

_

____

__

___ ○

…装

……

订…

………线…………○………… (1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .

参考答案

1.(1)详见解析;(2)详见解析;(3)3.

【解析】

试题分析:(1)由题意BD ⊥AC ,因为A 1O ⊥平面ABCD 可知A 1O ⊥BD ,可证BD ⊥面A 1AC 即可证明结论;(2)由于A 1B 1∥AB ,AB ∥CD ,可得A 1B 1∥CD ,又A 1B 1=CD ,可得四边形A 1B 1CD 是平行四边形

所以A 1D ∥B 1C , 同理可证A 1B ∥CD 1,利用面面平行判定定理即可证明结结论; (3) 由于A 1O ⊥面ABCD 故A 1O 是三棱柱A 1B 1D 1-ABD 的高.又在RT △A 1OA 中,AA 1=2,AO = 1 ,可得A 1O=3,

根据柱体体积公式即可求出三棱柱ABD-A 1B 1D 1的体积.

试题解析:(1)证明:∵底面ABCD 是正方形 ∴BD ⊥AC

又∵A 1O ⊥平面ABCD BD ?面ABCD ∴A 1O ⊥BD

又∵A 1O∩AC=O A 1O ?面A 1AC ,AC ?面A 1AC

∴BD ⊥面A 1AC AA 1?面A 1AC

∴AA 1⊥BD 4分

(2)∵A 1B 1∥AB AB ∥CD ∴A 1B 1∥CD 又A 1B 1=CD ∴四边形A 1B 1CD 是平行四边形 ∴A 1D ∥B 1C 同理A 1B ∥CD 1

∵A 1B ?平面A 1BD, A 1D ?平面A 1BD, CD 1?平面CD 1B 1, B 1C ?平面CD 1B

且A 1B∩ A 1D=A 1 CD 1∩B 1C=C

∴平面A 1BD // 平面CD 1B 1 8分

(3) ∵A 1O ⊥面ABCD ∴A 1O 是三棱柱A 1B 1D 1-ABD 的高.

在正方形AB CD 中,AO = 1 .在RT △A 1OA 中,AA 1=2,AO = 1 ∴A 1O=3 ∴21(2)1 (332)

ABD V S AO ===三棱柱 所以, 三棱柱ABD-A 1B 1D 1的体积为3. 12分.

考点:1.线面垂直的判定;2.面面平行的判定;3.柱体的体积公式.

2.(1)见解析;(2)见解析.

【解析】

试题分析:(1)利用中点,结合三角形的中位线性质,只需取AC 中点E ,证A 1B ∥EF 即可;

(2)注意到B 1H 即B 1D ,只需证B 1D 与AF 、AC 均垂直即可.

试题解析:(1)连BD 交AC 于点E ,则E 为BD 的中点,连EF ,

又F 为A 1D 的中点,所以EF ∥A 1B , 3分

又?EF 平面AFC ,?B A 1平面AFC ,

由线面平行的判断定理可得A 1B ∥平面AFC 5分

(2)连B 1C ,在正方体中A 1B 1CD 为长方形,

∵H 为A 1C 的中点 ,∴H 也是B 1D 的中点,

∴只要证⊥D B 1平面ACF 即可 6分

由正方体性质得BD AC ⊥,B B AC 1⊥,

∴⊥AC 平面B 1BD ,∴D B AC 1⊥ 9分

又F 为A 1D 的中点,∴D A AF 1⊥,又11B A AF ⊥,∴⊥AF 平面A 1B 1D ,

∴D B AF 1⊥,又AF 、AC 为平面ACF 内的相交直线, 11分

∴⊥D B 1平面ACF.即⊥H B 1平面ACF. 12分

考点:空间几何体,线面关系

3. 见解析.

【解析】

试题分析:(1)证明线面平行,要找线线平行,在平面1AB D 内找一直线与1AC 平行即可.连1A B 交1AB

于O,连OD ,则OD||1AC 即证.(2)依题意可得AD ⊥平面11BCC B ,故AD ⊥1BC .在矩形11BCC B 中,由条件可证111BDB BB C ??,从而得11BC DB ⊥,故可得1BC ⊥平面1AB D . 试题解析:(1)连接11,A B AB O OD ?=连接

111

1//,,AC OD OD AB D AC AB D ??面面 11//AC AB D 面 6分(漏线不在面内扣2分)

(2)设D 为BC 中点,∴AD ⊥BC ,

正三棱柱中,11BB ABC AD ABC AD BB ⊥?∴⊥面,面,,

1111,BC BB B BC BB BCC B =?,平面

111111,,AD BCC B BC BCC B AD BC ∴⊥?∴⊥平面平面 9分

设11B D BC F =

111DBB BB C 直角和直角中,

1111111222BB BD DBB BB C BB B C ===∴,

111,90,90BDF C BB CBB FBD BDF FBD ∴∠=∠∠+∠=∴∠+∠=又

11BC B D ∴⊥ 13分

又1111,,,BC AD AD B D D AD B D AB D ⊥=?平面

11BC AB D ∴⊥平面 16分

考点:线面平行,线面垂直的判定与性质

4.见解析

【解析】

试题分析:(1)连接OE ,OE||PA ,由直线与平面平行的判定定理,可证得PA||平面BDE ;(2)由PO ⊥底面ABCD ,可得PO ⊥BD ;底面为正方形,可得BD ⊥AC ,由直线和平面垂直的判定定理,可得BD ⊥平面PAC ,由面面垂直的判定定理,可证得平面PAC ⊥平面BDE . 试题解析:(1)连结OE Q O 是正方形的中心O AC \是的中点

又Q E 是PC 的中点 \OE 是PCA V 的中位线 \ OE||PA

又Q OE ì 平面BDE,PA ? 平面BDE \PA||平面BDE;

(2)Q PO ⊥底面ABCD ,BD ì平面ABCD \PO ⊥BD

又Q BD ⊥AC AC PO O ?\BD ⊥平面PAC

又Q BD ì 平面BDE \平面PAC ⊥平面BDE .

考点:平面与平面垂直的判定;直线与平面平行的判定.

5.(1)证明见解析;(2)证明见解析

【解析】

试题分析:(1)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质,注意把证明的条件写齐全;(2)要证平面与平面垂直,需要证明直线与平面垂直,证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也

垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化.

试题解析:解:(1)取PD 的中点F ,连接FN AF ,

点N 是PC 的中点

DC FN //∴,且DC FN 2

1= 又 四边形ABCD 是正方形,且点M 是AB 的中点

DC AM //∴,且DC AM 2

1=

AM FN //∴,且AM FN =

∴四边形FNMA 是平行四边形,FA MN //∴

又?MN 平面PAD ,?FA 平面PAD

//MN ∴平面PAD

⊥PD 平面ABCD ,且?BC 平面ABCD

BC PD ⊥∴

四边形ABCD 是正方形,CD BC ⊥∴

又D CD PD =

⊥∴BC 平面PCD

又?BC 平面PBC

∴平面PCD ⊥平面PBC . 考点:1、直线与平面平行的判定;2、平面与平面垂直的判定.

6.(1)见解析 (2)见解析

【解析】

试题分析:(1)利用线面平行的判断定理证明线面平行,首先说明线线平行,然后再说明线面平行.

(2)证明面面垂直的方法是利用线面垂直的判定定理首先说明线面垂直,然后再说明平面经过这条直线即可证明面面垂直解题时,注意线线、线面与面面关系的相互转化. 试题解析:(1)∵E F ,分别是AB BD ,的中点.

∴EF 是ABD ?的中位线,∴AD EF //,

∵//EF ?面ACD ,AD ?面ACD ,∴直线//EF 面ACD ;

(2)∵BD AD ⊥,AD EF //,∴BD EF ⊥,

∵CD CB =,F 是BD 的中点,∴BD CF ⊥

又F CF EF =?, ∴BD ⊥面EFC ,

∵BD ?面BCD ,∴面EFC ⊥面BCD

考点:平面与平面垂直的判定;直线与平面平行的判定.

7.(1)见解析;(2)见解析

【解析】

试题分析:(1)由已知易知11A ACC 为正方形,可证A 1C ⊥平面ABC 1 ,因此平面ABC 1⊥平面

11A ACC ;

(2)方法一:取1A A 中点F ,连EF ,FD ,易知平面EFD ∥平面1ABC ,所以ED ∥平面1ABC ;方法二:A 1C 交AC 1于G 点连BG ,易证四边形BEDG 为平行四边形,可证DE ∥平面ABC 1.

试题解析:(1)证明:在直三棱柱111ABC A B C -中,有1A A ⊥平ABC .

AC ABC ?面 ∴1A A AC ⊥, 又1A A AC =,

∴11A ACC 为正方形,∴11A C AC ⊥ .

又BC 1⊥A 1C ,且111AC BC C = ∴A 1C ⊥平面ABC 1 ,

而1

AC ?面11A ACC 则平面ABC 1⊥平面11A ACC

(2)方法一:取1A A 中点F ,连EF ,FD ,EF AB ,DF ∥1AC

即平面EFD ∥平面1ABC , 则有ED ∥平面1ABC

方法二:A 1C 交AC 1于G 点连BG , BE DG ,则有DE ∥BG ,即DE ∥平面ABC 1.

考点:面面垂直的判定定理与线面平行的判定定理

8.(1)见试题解析;(2)见试题解析。

【解析】

试题分析:(1)根据面面垂直的判定定理,可先证直线AD ⊥平面11BCC B ,根据棱柱的性质可知1CC AD ⊥,又已知AD ⊥DE ,又1CC D E E =,所以AD ⊥平面11BCC B 。(2)根据两直线垂直于同一平面,则两直线平行,在结合(1),可先证1A F ⊥平面11BCC B ,设F

为11B C 的中点,则111A F B C ⊥,根据棱柱的性质可知11CC A F ⊥,又1111CC B C C =,则1A F ⊥平面11BCC B ,又AD ⊥平面11BCC B ,∴1//A F AD , 根据线面平行的判定定理可知直线A 1F ∥平面ADE .

试题解析:证明(1)∵111ABC A B C -是直三棱柱,∴1CC ⊥平面

ABC , 2分 ∵AD ?平面ABC ,∴1CC AD ⊥, 3分

∵AD DE ⊥,1CC ,DE ?平面11BCC B ,1CC DE E =,

∴AD ⊥平面11BCC B , 4分

∵AD ?平面ADE ,∴平面ADE ⊥平面11BCC B ; 6分

(2)∵1111A B AC =,F 为11B C 的中点,∴111A F B C ⊥, 7分

∵1CC ⊥平面111A B C ,且1A F ?平面111A B C ,∴11CC A F ⊥, 9分

∵1CC ,11B C ?平面11BCC B ,1

111CC B C C =,

∴1A F ⊥平面11BCC B , 10分

由(1)知,AD ⊥平面11BCC B ,∴1//A F AD , 11分

∵1A F ?平面ADE ,AD ?平面ADE ,∴1//A F 平面ADE .

考点:(1)棱柱的性质,(2)面面垂直、线面垂直的判定定理及性质定理,(3)线面平行的判定定理及性质定理。

立体几何证明垂直专项含练习题及答案

立体几何证明------垂直 一.复习引入 1.空间两条直线的位置关系有:_________,_________,_________三种。 2.(公理4)平行于同一条直线的两条直线互相_________. 3.直线与平面的位置关系有_____________,_____________,_____________三种。 4.直线与平面平行判定定理:如果_________的一条直线和这个平面的一条直线平行, 那么这条直线和这个平面平行 5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这 个平面相交,那么_________________________. 6.两个平面的位置关系:_________,_________. 7.判定定理1:如果一个平面有_____________直线都平行于另一个平面,那么这两 个平面平行. 8.线面垂直性质定理:垂直于同一条直线的两个平面________. 9.如果两个平行平面同时和第三个平面相交,那么它们的________平行. 10.如果两个平面平行,那么其中一个平面的所有直线都_____于另一个平面. 二.知识点梳理 要点诠释:定义中“平面的任意一条直线”就是指“平面的所有直线”,这与“无数条直线”不同(线 线垂直线面垂直) Ⅰ.二面角:从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle ). 这条直线叫做二 面角的棱,这两个半平面叫做二面角的面. 记作二面角AB αβ--. (简记P AB Q --)

二面角的平面角的三个特征: ⅰ. 点在棱上 ⅱ. 线在面 ⅲ. 与棱垂直 Ⅱ.二面角的平面角:在二面角αβ-l -的棱l 上任取一点O ,以点O 为垂足,在半平面,αβ分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角. 作用:衡量二面角的大小;围:000180θ<<. 知识点四、平面和平面垂直的定义和判定 (垂直问题中要注意题目中的文字表述,特别是“任何”“ 随意”“无数”等字眼) 三.常用证明垂直的方法 立体几何中证明线面垂直或面面垂直都可转化为线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等腰三角形底边上的中线的性质。 (3) 利用勾股定理。 (4) 利用直径所对的圆周角是直角 (1) 通过“平移”,根据若则a //b,且b⊥平面α,a⊥平面α 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB=2 1 DC ,中点为PD E . 求证:AE ⊥平面PDC. 2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD , ∠PDA=45°,点E 为棱AB 的中点.求证:平面PCE ⊥平面PCD ; (第2题

立体几何证明题专题(教师版)分析

立体几何证明题 考点1:点线面的位置关系及平面的性质 例1.下列命题: ①空间不同三点确定一个平面; ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形; ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一直线的两直线平行; ⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是__________ . 【解析】由公理3知,不共线的三点才能确定一个平面,所以知命题①错,②中有可能出现 两平面只有一条公共线(当这三个公共点共线时),②错.③空间两两相交的三条直线有三个交点或一个交点,若为三个交点,则这三线共面,若只有一个交点,则可能确定一个平面或三个平面.⑤中平行四边形及梯形由公理2可得必为平面图形,而四边形有可能是空间四边形,如图(1)所示. ABC —A B C D'中,直线BB丄AB, BB丄CB但AB与CB不平行,???⑥错. AB // CD BB n AB= B,但BB与CD不相交,.??⑦错?如图(2)所示,AB= CD BC= AD四边形ABCD不是平行四边形,故⑧也错. I、m外的任意一点,贝U ( A.过点P有且仅有条直线与I、m都平行 B.过点P有且仅有条直线与I、m都垂直 C.过点P有且仅有条直线与I、m都相交 D.过点P有且仅有条直线与I、m都异面 答案 B 解析对于选项A,若过点P有直线n与I , m都平行,则I // m这与I , m异面矛盾. 对于选项B,过点P与I、m都垂直的直线,即过P且与I、m的公垂线段平行的那一条直线. 对于选项C,过点P与I、m都相交的直线有一条或零条. 对于选项D,过点P与I、m都异面的直线可能有无数条.

立体几何证明题定理推论汇总

立体几何公理、定理推论汇总 一、公理及其推论 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈?? 作用: ① 用来验证直线在平面内; ② 用来说明平面是无限延展的。 公理2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。(那么它们有且只有一条通过这个公共点的公共直线) 符号语言:P l P l α βαβ∈?=∈且 ! 作用:① 用来证明两个平面是相交关系; ② 用来证明多点共线,多线共点。 公理3 经过不在同一条直线上的三点,有且只有一个平面。 符号语言:,,,,A B C A B C ?不共线确定一个平面 推论1 经过一条直线和这条直线外的一点,有且只有一个平面。 符号语言:A a A a a αα??∈?有且只有一个平面,使, 推论2 经过两条相交直线,有且只有一个平面。 符号语言:a b P a b ααα?=???有且只有一个平面,使, ) 推论3 经过两条平行直线,有且只有一个平面。 符号语言://a b a b ααα???有且只有一个平面,使, 公理3及其推论的作用:用来证明多点共面,多线共面。 公理4 平行于同一条直线的两条直线平行(平行公理)。

符号语言://////a b a c c b ???? 图形语言: 作用:用来证明线线平行。 二、平行关系 - 公理4 平行于同一条直线的两条直线平行(平行公理)。(1) 符号语言://////a b a c c b ???? 图形语言: 1.线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。(2) 符号语言: ////a b a a b ααα???????? 图形语言: 线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。(3) 符号语言:////a b a a b βαβα??????=? 图形语言: 2.面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4) 符号语言://(/,///),a b b b O a a ββαααβ??=?????? 图形语言: ! 面面平行的判定 如果两个平面垂直于同一条直线,那么这两个平面平行。(5) 符号语言:,,//oo oo ααββ???? ⊥⊥ 图形语言:

(完整版)必修二立体几何11道经典证明题

1.如图,三棱柱 ABC — A i B i C i 中,侧棱垂直底面, 1 / ACB=90 , AC=BC= gAA i , D 是棱 AA i 的中点 (I )证明:平面 BDC i 丄平面BDC (n)平面BDC i 分此棱柱为两部分,求这两部分体积的 比? 2?如图5所示,在四棱锥 P ABCD 中, AB 平面 PAD , AB//CD , PD AD , E 是 1 PB 的中点,F 是CD 上的点且 DF —AB , 2 PH PAD 中AD 边上的高? (1) 证明:PH 平面ABCD ; (2) 若 PH i , AD 2, FC i ,求三 (3)证明:EF 平面PAB . 3.如图,在直三棱柱ABC ABG 中,AB i AC i , D ,E 分 别是棱 BC , CC i 上的点(点D 不同于点C ),且AD DE , F 为B,G 的 中点. 求证:(i )平面ADE 平面BCGB,; (2)直线AF 〃平面ADE . 棱锥E BCF 的体积 ; 妥5小

4. 如图,四棱锥P—ABCD中,ABCD为矩形,△ PAD为等腰直角三角 形,/ APD=90 面PAD丄面ABCD,且AB=1 , AD=2 , E、F分别为 PC和BD的中点. (1) 证明:EF//面PAD ; (2) 证明:面PDC丄面PAD ; (3) 求四棱锥P—ABCD的体积. 5. 在如图所示的几何体中,四边形ABCD是正方形, MA 平面ABCD , PD//MA , E、G、F 分别为MB、PB、 PC 的中点,且AD PD 2MA. (I)求证:平面EFG 平面PDC ; (II )求三棱锥P MAB与四棱锥P ABCD的体积之比. B

立体几何证明平行的方法及专题训练

D B A 1 立体几何证明平行的方法及专题训练 罗虎胜https://www.360docs.net/doc/8e7556539.html, 立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1) 通过“平移”。 (2) 利用三角形中位线的性质。 (3) 利用平行四边形的性质。 (4) 利用对应线段成比例。 (5) 利用面面平行的性质,等等。 (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形 2、如图,已知直角梯形ABCD 中,AB∥CD,AB⊥BC,AB =1,BC =2,CD =1+3, 过A 作AE⊥CD,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE⊥EC. (Ⅰ)求证:BC⊥面CDE ; (Ⅱ)求证:FG∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形 3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB (第1题图)

M 为BE 的中点, AC⊥BE . 求证: (Ⅰ)C 1D⊥BC; (Ⅱ)C 1D∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA 4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; 分析::取PD 的中点F ,连EF,AF 则易证ABEF 是 平行四边形 (2) 利用三角形中位线的性质 5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证: AM ∥平面EFG 。 分析:法一:连MD 交GF 于H ,易证EH 是△AMD 的中位线 法二:证平面EGF ∥平面ABC ,从而AM ∥平面EFG 6、如图,直三棱柱///ABC A B C -,90BAC ∠=, 2,AB AC ==AA ′=1,点M ,N 分别为/A B 和//B C 的中点。 A B C D E F G M

(完整版)高一数学常考立体几何证明的题目及答案.docx

实用标准文案 1、如图,已知空间四边形ABCD 中,BC AC , AD BD ,E是AB的中点。 求证:( 1)AB平面CDE;(2)平面CDE平面ABC。A E B C 2、如图,在正方体ABCD A1B1C1D1中, E 是 AA1的中点,D 求证: AC1 // 平面 BDE 。A D1 B1C E A 3、已知ABC 中ACB 90o,SA面ABC,AD SC , D B C 求证: AD面 SBC .S D A B ABCD A1B1C1D1,O是底ABCD对角线的交点.C 4、已知正方体 D1C1求证: (1 ) C1O∥面AB D; (2) AC面 AB D . B1 1 11 1 1 A1 D C O A B 5、正方体ABCD A ' B 'C ' D ' 中,求证: (1) AC 平面 B ' D ' DB ; (2) BD ' 平面 ACB ' . 6、正方体 ABCD —A B C D中. 1111 D 1C 1 (1) 求证:平面 A1 BD∥平面 B1D1C; A B1 (2) 若 E、 F 分别是 AA , CC的中点,求证:平面 EB D1F ∥平面 FBD . 1111 E G C

实用标准文案 2o 7、四面体ABCD 中,AC BD , E, F 分别为 AD , BC 的中点,且 EF AC ,BDC 90 , 求证: BD平面ACD 8、如图,在正方体ABCD A1B1C1D1中, E 、F、G分别是AB、AD、 C1 D1的中点.求证:平面 D1EF ∥平面 BDG . 9、如图,在正方体ABCD A1B1C1D1中, E 是 AA1的中点. (1)求证:A1C //平面BDE; (2)求证:平面A1AC平面BDE . 10、已知ABCD是矩形,PA平面ABCD,AB 2 , PA AD 4 , E 为 BC 的中点. ( 1)求证:DE平面PAE; ( 2)求直线DP与平面PAE所成的角. 11、如图,在四棱锥P ABCD 中,底面ABCD 是DAB 600且边长为 a 的菱形, 侧面 PAD 是等边三角形,且平面 PAD 垂直于底面 ABCD .( 1)若G为AD的中点,求证:BG平面PAD; ( 2)求证:AD PB. 12、如图 1,在正方体ABCD A B C D中, M 为 CC的中点, AC 交 BD 于点 O,求证:AO平面 MBD . 1 1 1 111 13 、如图2,在三棱锥A- BCD 中, BC= AC, AD= BD, 作BE⊥ CD,E为垂足,作 AH⊥ BE 于 H.求证: AH⊥平面 BCD.

必修二立体几何常考证明题

必修二立体几何常考证明题 一.证明线线平行,线面平行,面面平行 1.利用三角形中位线 2. 利用平行四边形 考点1:线面平行的判定(利用三角形中位线) 例1:如图,在正方体1111ABCD A BC D -中,E 是1AA 的中点, 求证: 1//AC 平面 BDE 。 考点2:线面平行的判定(利用平行四边形) 例2:已知正方体111 1 ABCD A BC D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ; 练习: 1、如图,在底面是矩形的四棱锥ABCD P -中,⊥PA 面ABCD ,E 、F 为别为PD 、 AB 的中点,求证:直线AE ∥平面PFC A E D 1 C B 1 D C B A D 1O D B A C 1 B 1 A 1 C

2正三棱柱ABC -A 1B 1C 1的底面边长为8,侧棱长为6,D 为AC 中点。 (1)求证:直线AB 1∥平面C 1DB ; 3、 如图,已知ABCD PA 矩形 所在平面,N M 、分别为PC AB 、的中点; (Ⅰ)求证:PAD MN 平面//; 4、如图,在三棱锥D-ABC 中,已知△BCD 是正三角形,AB ⊥平面BCD ,AB=BC=a ,E 为 BC 的中点,F 在棱AC 上,且AF=3FC . (1)求三棱锥D-ABC 的表面积;(2)求证AC ⊥平面DEF ; (3)若M 为BD 的中点,问AC 上是否存在一点N ,使MN ∥平面DEF ?若存在,说明点N 的位置;若不存在,试说明理由. A 1 C 1 C B A B 1

考点3:面面平行的判定 例7:如图,在正方体111 1 ABCD A BC D 中,E 、F 、G 分别是AB 、AD 、1 1 C D 的中点. 求证:平面1D EF ∥平面BDG . 5、棱长为a 的正方体AC 1中,设M 、N 、E 、F 分别为棱A 1B 1、A 1D 1、C 1D 1、B 1C 1的中点. (1)求证:E 、F 、B 、D 四点共面; (2)求证:面AMN ∥面EFBD .

高考立体几何大题经典例题.

N M P C B A <一 >常用结论 1.证明直线与直线的平行的思考途径:(1转化为判定共面二直线无交点; (2转化为二直 线同与第三条直线平行; (3转化为线面平行; (4转化为线面垂直; (5转化为面面平行 . 2.证明直线与平面的平行的思考途径:(1转化为直线与平面无公共点; (2转化为线线平 行; (3转化为面面平行 . 3. 证明平面与平面平行的思考途径:(1 转化为判定二平面无公共点; (2 转化为线面平行; (3转化为线面垂直 . 4.证明直线与直线的垂直的思考途径:(1转化为相交垂直; (2转化为线面垂直; (3转 化为线与另一线的射影垂直; (4转化为线与形成射影的斜线垂直 . 5.证明直线与平面垂直的思考途径:(1转化为该直线与平面内任一直线垂直; (2转化为该直线

与平面内相交二直线垂直; (3转化为该直线与平面的一条垂线平行; (4转化为该直线垂直于另一个平行平面; (5转化为该直线与两个垂直平面的交线垂直 . 6.证明平面与平面的垂直的思考途径:(1转化为判断二面角是直二面角; (2转化为线面垂直 . 3、如图,在正方体 1111ABCD A B C D -中, E 是 1AA 的中点, 求证: 1//AC 平面BDE 。 5、已知正方体 1111ABCD A B C D -, O 是底 ABCD 对角线的交点 . 求证:(1 C1O ∥面 11AB D ; (21 AC ⊥面 11AB D . 9、如图 P 是ABC ?所在平面外一点, , PA PB CB =⊥平面 PAB , M 是 PC 的中点, N 是 AB 上的点, 3AN NB = A D 1 C B D C D D B A C 1

立体几何证明题专项练习一

1如图,四棱椎P —ABCD 的底面为直角梯形,∠ABC=90°,AD ∥ BC , BA=BC=1,AD=2,PA ⊥平面ABCD 。 (1)若E 是线段PA 的中点,证明BE ∥平面PCD 。 (2)证明:CD ⊥CP ; 2.如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD , AD//BC ,BC=2AD , PB ⊥AC ,Q 是线段PB 的中点. (I )求证:AQ//平面PCD. (II )求证:AB ⊥平面PAC ; 3.如图:已知四棱锥P ABCD -中,,PD ABCD ABCD ⊥平面是正方形,E 是PA 的中点, 求证:(1)//PC 平面EBD ;(2) B C ⊥P C 。 4. 如图1,在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中 点,点F 为 线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图2. (1)求证:DE ∥平面A 1CB ; (2)求证:A 1F ⊥BE ; (3)线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ ?说明理由。 5. 如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3。 (1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ; (3)求点C 到平面PDA 的距离。 E 6、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,为BC 的中点. (1)求证:DE ⊥平面PAE ; (2)求直线DP 与平面PAE 所成的角. 7.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD .

立体几何证明题精选

立体几何大题证明 解答题(共10道题) 1.(2014四川,18,12分) (本小题满分12分) 在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形. (Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1; (Ⅱ)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论. 2.(2014江苏,16,14分)如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5. 求证:(1)直线PA∥平面DEF; (2)平面BDE⊥平面ABC. 3.(2014山东,18,12分) 如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点. (Ⅰ)求证:AP∥平面BEF; (Ⅱ)求证:BE⊥平面PAC.

4.(2014天津,17,13分) 如图,四棱锥P-ABCD的底面ABCD是平行四边形,BA=BD=,AD=2,PA=PD=,E,F分别是棱AD,PC的中点. (Ⅰ)证明EF∥平面PAB; (Ⅱ)证明平面PBC⊥平面ABCD; 5.(2014北京,17,14分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点. (Ⅰ)求证:平面ABE⊥平面B1BCC1; (Ⅱ)求证:C1F∥平面ABE; (Ⅲ)求三棱锥E-ABC的体积. 6.(2014课标Ⅱ,18,12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD 的中点. (Ⅰ)证明:PB∥平面AEC; (Ⅱ)设AP=1,AD=,三棱锥P-ABD的体积V=,求A到平面PBC的距离.

高中数学立体几何常考证明题汇总97186

立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成 的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =? ?⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?=∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC ,∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证:1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线∴1//EO AC A E D 1 C B 1 D C B A A H G F E D C B A E D B C

又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?= AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥面1111A B C D 11!CC B D ∴⊥ 又1111 A C B D ⊥∵, 1111B D A C C ∴⊥面1 11AC B D ⊥即 同理可证 11A C AD ⊥, 又 1111 D B AD D ?= ∴1A C ⊥面11AB D 考点:线面平行的判定(利用平行四边形),线面垂直的判定 6、正方体''''ABCD A B C D -中,求证: (1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面. 考点:线面垂直的判定 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 证明:(1)由B 1B ∥DD 1,得四边形BB 1D 1D 是平行四边形,∴B 1D 1∥BD , S D C B A D 1O D B A C 1 B 1 A 1 C A 1 B 1 C 1 D 1 F

立体几何平行证明题复习过程

立体证明题(2) 1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥ 平面ACE. (1)求证:AE⊥平面BCE; (2)求二面角B﹣AC﹣E的余弦值. 2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP=. (1)求证:平面EFP⊥平面ABFE; (2)求二面角B﹣AP﹣E的大小.

3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且 PA=PD=AD,若E、F分别为PC、BD的中点. (Ⅰ)求证:EF∥平面PAD; (Ⅱ)求证:EF⊥平面PDC. 4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°. (1)求证:AB⊥CD; (2)求二面角D﹣AB﹣C的正切值. 5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD. (1)求证:平面PAD⊥平面PBD; (2)求二面角A﹣PB﹣C的余弦值.

6.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ; (Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值. 7.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,∠DAB 为直角,AB ∥CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点. (Ⅰ)证明:AB ⊥平面BEF ; (Ⅱ)若PA= ,求二面角E ﹣BD ﹣C . 8.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC=4,点M 为PC 中点. (1)求证:DM ⊥平面PBC ; (2)若点E 为BC 边上的动点,且λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为 3 2 ?若存在,求出实数λ的值;若不存在,请说明理由.

高中数学立体几何专题证明题训练(供参考)

1文档来源为:从网络收集整理.word 版本可编辑. A P B C F E D 立体几何专题训练 1.在四棱锥P -ABCD 中,PA =PB .底面ABCD 是菱形, 且∠ABC =60°.E 在棱PD 上,满足DE =2PE ,M 是AB 的中点. (1)求证:平面PAB ⊥平面PMC ; (2)求证:直线PB ∥平面EMC . 2.如图,正三棱柱ABC —A 1B 1C 1的各棱长都相等,D 、 E 分别是CC 1和AB 1的中点,点 F 在BC 上且满足BF ∶FC =1∶3. (1)若M 为AB 中点,求证:BB 1∥平面EFM ; (2)求证:EF ⊥BC 。 3.如图,在长方体1111ABCD A B C D -中,,E P 分别是 11,BC A D 的中点,M 、N 分别是1,AE CD 的中点,1,2AD AA a AB a === (1)求证://MN 面11ADD A (2)求三棱锥P DEN -的体积 4 如图1,等腰梯形ABCD 中,AD//BC,AB=AD,∠ABC= 60,E 是BC 的中点,如图2,将三角形ABE 沿AE 折起,使平面BAE ⊥平面AECD,F.P 分别是CD,BC 的中点,(1)求证:AE ⊥BD (2)求证:平面PEF ⊥平面AECD; (3)判断DE 能否垂直于平面ABC,并说明理由。 5,如图, ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD , AB =4a ,BC = CF =2a , P 为AB 的中点. (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. 6如图,等腰梯形ABEF 中,//AB EF ,AB =2, 1AD AF ==,AF BF ⊥,O 为AB 的中点,矩形 ABCD 所在的平面和平面ABEF 互相垂直. (Ⅰ)求证:AF ⊥平面CBF ; (Ⅱ)设FC 的中点为M ,求证://OM 平面DAF ; (Ⅲ)求三棱锥C BEF -的体积. 7在直三棱柱111C B A ABC -中,,900=∠ABC E 、F 分别为 11A C 、11B C 的中点,D 为棱1CC 上任一点. (Ⅰ)求证:直线EF ∥平面ABD ;(Ⅱ)求证:平面ABD ⊥平面11BCC B D A B C P E M A B D C E A B C D E P F A B C D E F M O

高一数学常考立体几何证明题及答案

高一数学常考立体几何证明题 1、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 2、如图,在正方体1111 ABCD A B C D -中,E 是 1 AA 的中点, 求证: 1// A C 平面BDE 。 3、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥, 求证:AD ⊥面SBC . 4、已知正方体 1111 ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C1O ∥面11 AB D ;(2) 1 AC ⊥面 11 AB D . 5、正方体''''ABCD A B C D -中,求证: ''AC B D DB ⊥平面; 6、正方体ABCD —A1B1C1D1中. (1)求证:平面A1BD ∥平面B1D1C ; (2)若E 、F 分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD . 7、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且 22EF AC = ,90BDC ∠=, A E D B C A E D 1 C B 1 D C B A S D C B A D 1 O D B A C 1 B 1 A 1 C A 1 A B 1 B C 1 C D 1 D G E F

求证:BD ⊥平面ACD 8、如图,在正方体 1111 ABCD A B C D -中,E 、F 、G 分别是AB 、AD 、 11 C D 的中点.求证:平面 1D EF ∥平面BDG . 9、如图,在正方体1111 ABCD A B C D -中,E 是 1 AA 的中点. (1)求证: 1// A C 平面BDE ; (2)求证:平面1A AC ⊥ 平面BDE . 10、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==, E 为BC 的中点. 求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 11、如图,在四棱锥P ABCD -中,底面ABCD 是0 60DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥. 12、如图1,在正方体 1111 ABCD A B C D -中,M 为 1 CC 的中点,AC 交BD

高中数学立体几何常考证明题汇总

新课标立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1//,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =??⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?=∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC ,∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证:1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 A E D 1 C B 1 D C B A A H G F E D C B A E D B C

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。 对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。 (一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: ?a c //) αβ αγβγ //,// ==???? a b a b 面面平行性质 线面平行性质 a a b a b ////αβαβ?=???? ? ? 面面平行性质1 αβαβ ////a a ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化:

2016—高二高中立体几何证明垂直的专题训练

高中立体几何证明垂直的练习 立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等腰三角形底边上的中线的性质。 (3) 利用勾股定理。 (4) 利用三角形全等或三角行相似。 (5) 利用直径所对的圆周角是直角,等等。 (1) 通过“平移”,根据若αα平面则平面且⊥⊥a b b a ,,// 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB= 2 1 DC ,中点为PD E .求证:AE ⊥平面PDC. 分析:取PC 的中点F ,易证AE//BF ,易证 B F ⊥平面PDC

2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,∠PDA=45°,点E 为棱AB 的中点. 求证:平面PCE ⊥平面PCD ; 分析:取PC 的中点G ,易证EG//AF ,又易证A F ⊥平面PDC 于是E G ⊥平面PCD,则平面PCE ⊥平面PCD 3 、如图所示,在四棱锥P ABCD -中, AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点,且1 2 DF AB = ,PH 为PAD ?中AD 边上的高。 (1)证明:PH ABCD ⊥平面; (2)若121PH AD FC ===,,,求三棱锥E BCF -的体积; (3)证明:EF PAB ⊥平面. 分析:要证EF PAB ⊥平面,只要把FE 平移到DG ,也即是取AP 的中点G ,易证EF//GD, 易证D G ⊥平面PAB E F B A C D P (第2题图)

高中数学立体几何常考证明题汇总(全)

新课标立体几何常考证明题汇总 考点:证平行(利用三角形中位线),异面直线所成的角 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 考点:线面垂直,面面垂直的判定 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 考点:线面平行的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//AC 平面BDE 。 A E D 1 C B 1 D C B A A H G F E D C B A E D B C

考点:线面垂直的判定 4、已知ABC ?中90ACB ∠= ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 考点:线面平行的判定(利用平行四边形),线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 考点:线面垂直的判定 6、正方体''''ABCD A B C D -中,求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面. 考点:线面平行的判定(利用平行四边形) 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . S D C B A D 1O D B A C 1 B 1 A 1 C A 1

(完整)高中立体几何证明平行的专题

1 D B A 1 A F 立体几何——平行的证明 【例1】如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 分析:取PC 的中点G ,连EG .,FG ,则易证AEGF 是平行四边形 【例2】如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC 。 (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形 【例3】已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA (第1题图)

2 【例4】如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; 分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形 (2) 利用三角形中位线的性质 【例5】如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线 【例6】如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE 【例7】如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 1//面BDC 1; 分析:连B 1C 交BC 1于点E ,易证ED 是 △B 1AC 的中位线 A B C D E F G M

必修二立体几何经典证明题

1、垂直于同一条直线的两条直线一定 A 、平行 B 、相交 C 、异面 D 、以上都有可能 2、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b M , a ∥ b ,则a ∥M ;③若a ⊥ c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有 A 、0个 B 、1个 C 、2个 D 、3个 3.对两条不相交的空间直线a 与b ,必存在平面α,使得( ) A .a ?α,b ?α B .a ?α,b ∥α C .a ⊥α,b ⊥α D .a ?α,b ⊥α 4.下面四个命题: ①若直线a ,b 异面,b ,c 异面,则a ,c 异面; ②若直线a ,b 相交,b ,c 相交,则a ,c 相交; ③若a ∥b ,则a ,b 与c 所成的角相等; ④若a ⊥b ,b ⊥c ,则a ∥c . 其中真命题的个数为( ) A .4 B .3 C .2 D .1 5.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是线段A 1B 1,B 1C 1上的不与端点重合的动点,如果A 1E =B 1F ,有下面四个结论: ①EF ⊥AA 1;②EF ∥AC ;③EF 与AC 异面;④EF ∥平面ABCD . 其中一定正确的有( ) A .①② B .②③ C .②④ D .①④ 6.设a ,b 为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是( ) A .若a ,b 与α所成的角相等,则a ∥b B .若a ∥α,b ∥β,α∥β,则a ∥b C .若a ?α,b ?β,a ∥b ,则α∥β D .若a ⊥α,b ⊥β,α⊥β,则a ⊥b 7.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ?l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,n ∥β,则下列四种位置关系中,不一定成立的是( ) A .A B ∥m B .A C ⊥m C .AB ∥β D .AC ⊥β 1. 如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1 2AA 1,D 是 棱AA 1的中点

相关文档
最新文档