柱下条形基础设计案例

柱下条形基础设计案例
柱下条形基础设计案例

建筑结构常规设计方法结构体系的力学模型

上部结构设计:用固定支座代替基础,假设支座没有任何变形,求的结构的内力和支座反力。

基础设计:把支座反力作用于基础,用材料力学的方法求得地基反力,再进行基础得内力和变形验算。

地基验算:把基础反力作用于地基,验算地基的承载力和沉降。

常规设计得结果:上部底层和边跨的实际内力大于计算值,而基础的实际内力要比计算值小很多。

2 相对刚度影响

(上部结构+基础)与地基之间的刚度比

结构绝对柔性:相对刚度为0,产生整体弯曲,排架结构

结构绝对刚性:相对刚度为无穷大,产生局部弯曲,剪力墙、筒体结构

结构相对刚性:相对刚度为有限值,既产生整体弯曲,又产生局部弯曲, 砌体结构、钢筋混凝土框架结构

(敏感性结构 )

3 工程处理中的规定: ①按照具体条件不考虑或计算整体弯距时,必须采取措施同时满足整体弯曲的受力要求。

②从结构布置上,限制梁板基础(或称连续基础)在边柱或边墙以外的挑出尺寸,以减轻整体弯曲效应。

③在确定地基反力图形时,除箱形基础按实测以外,柱下条形基础和筏形基础纵向两端起向内一定范围,如1-2开间,将平均反力加大10%~20%设计。

④基础梁板的受力钢筋至少应部分通长配置(具体数量见有关规范),在合理的条件下,通长钢筋以多为好,尤其是顶面抵抗跨中弯曲的受拉钢筋,对筏板基础,这种钢筋应全部通长配置为宜

7.8.2 柱下刚进混凝土条形基础的设计

7.8.2.1 地基模型

地基模型:用以描述地基σ~ε的数学模型. 下面介绍的地基模型应注意其适用条件。

1 文克尔地基模型

基本假定:地基上任一点所受的压力强度与该点的地基沉陷s成正比,关系式如下:

P=ks

k—地基基床系数,表示产生单位变形所需的压力强度(kN/m3);

p—地基上任—点所受的压力强度(kPa);

s— p作用位置上的地基变形(m)。

注:基床系数k可根据不同地基分别采用现场荷载试验、室内三轴试验或室内固结试验成果获得。见下表。

适用条件:抗剪强度很低的半液态土(如淤泥、软粘土等)地基或塑性区相对较大土层上的柔性基础;厚度度不超过梁或板的短边宽度之半的薄压缩层地基(如薄的破碎岩层)上的柔性基础.

这个假定是文克勒于1867年提出的.故称文克勒地基模型。该模型计算简便,只要k值选择得当,可获得较为满意的结果。地基土越软弱,土的抗剪强度越低,该模型就越接近实际情况。

缺点:文克勒地基模型忽略了地基中的剪应力,按这一模型,地基变形只发生在基底范围内,而基底范围外没有地基变形,这与实际情况是不符的,使用不当会造成不良后果。

2半无限弹性体法

基本假定:假定地基土半无限弹性体,柱下条形基础看作时放在半无限弹性体上的梁,当荷载作用与半无限弹性体上时,某点的沉降不但和该点上的压力有关,和该点附近作用的荷载也有关。

特点:考虑了应力扩散,但扩散范围超出实际,未考虑地基的非均匀性。

适用条件:压缩层深度较大的一般土层的柔性基础。要求土的弹性模量和泊松比角准确。

7.8.2.2 柱下条形基础设计

1 构造要求

2 内力计算方法

简化的内力计算方法

(按线形分布的基底净反力)方法种类:倒梁法、剪力平衡法 (1)倒梁法

1)基本假定:a 、刚度较大,基础的弯曲挠度不致改变地基反力;

b 、地基反力分布呈直线,其重心与作用于板上的荷载合力作用线重合。

2)适用条件:地基较均匀,上部结构刚度较好,荷载分布较均匀,且条形基础梁的高度大于1/6柱

距(设计时尽可能按此设计),地基反力按直线分布,条形基础梁的内力可按连续梁计算,此时边跨跨中弯距及第一支座的弯距值乘以1.2系数。 补充:倒梁法计算假定

1.将地基净反力作为基础梁的荷载,柱子看成铰支座,基础梁看成倒置的连续梁;

2.作用在基础梁上的荷载为直线分布;

3.竖向荷载合力作用点必须与基础梁形心相重合,若不能满足,两者偏心距以不超过基础梁长的3%为宜;

4.结构和荷载对称时,或合力作用点与基础形心相重合时,地基反力为均匀分布; 3)计算步骤

①绘出条形基础的计算草图,包括荷载、尺寸等;

②求合力作用点的位置 (目的是尽可能的将偏心地基净反力化成均匀的地基反力,然后确定基础梁的长度)。

设合力作用点离边柱的距离为Xc ,用合力矩定理,以A 点为参考点,则有:

n

n

n

n

i

i i

i

i i

i 1

i 1

i 1

i 1

c n

N

a M N

a M x R

====?+?+=

=

∑∑∑∑

③确定基础梁的底面尺寸L,B

当Xc 确定后,按合力作用点与底面心形相重合的原则,可定出基础的长度L 。

确定后,宽度B 按地基承载力fa 确定

中心受荷 :

偏心受荷 :

④基础底板净反力计算

⑤确定基础梁的底板厚度h 及配筋

n n

i

i

w

w

i 1

i 1

M M T H G

e ===+?+?∑∑∑()c 1122c 1212c

L 2x a a a a a 2x a a a a a a 2x =+=++=+-=+-,若已知,

n

i

W i 1

k a

N

G G p f L B

=++=

≤?∑n

i

W i 1

k a

n

i

W i 1

kmax a

2n

i

W i 1

kmin 2

N

G G p f L B

N

G G 6M p 1.2f L B

B L N

G G 6M p 0

L B

B L ===++=

≤?++=

+

≤??++=

-

≥??∑∑∑∑∑n

i

W

i 1

nk n

i

W

i 1

nkmax 2n

i

W

i 1

nkmin 2

N

G p L B

N

G 6M p L B

B L N

G 6M p L B

B L ===+=

?+=

+

??+=-

??∑∑∑∑∑

则有:

⑥求基础梁纵向正截面强度计算斜截面强度计算

对连续梁可用弯矩分配法或连续梁系数法求解。由于柱下条基一般两端都有外伸部分,因此,若用连续

梁系数法,要对悬臂端进行处理,现有两种方法:

1)悬臂端在净反力作用下的弯矩全部由悬臂端承担,不再传给其他支座,其他跨按连续梁系数法计算; 2)悬臂端弯矩对其他跨有影响,此弯矩要传给其他支座,因此,悬臂端用弯矩分配法求出各支座及跨中弯矩,其他跨用连续梁系数法求出各支座及跨中弯矩,然后将所得结果叠加,或全梁用弯矩分配法求出各支座及跨中弯矩。

注意:按倒梁法求得的梁的支座反力,往往会不等于柱传来的竖向荷载(轴力)。此时,可采用所谓“基底反力局部调整法”,即:将支座处的不平衡力均匀分布在本支座两侧各1/3跨度范围内,从而将地基反力调整为台阶状,再按倒梁法计算出内力后与原算得的内力叠加。经调整后的不平衡力将明显减少,一般调整1~2次即可。 据基础梁的M 图,对各支座、跨中分别按矩形、T 形截面进行强度计算;据V 图,进行斜截面抗剪强度计算,并应满足构造要求

(2)剪力平衡法(静定分析法)

适用范围:上部结构为柔性结构,且自身刚度较大的条形基础以及联合基础。

计算方法:静力平衡条件(剪力平衡)计算出任意截面上的弯距 M 和剪力 V 。

()

222n11n211n11n21n2

nmax n1n11n2111211M p l p l l p l p l 22323p p p 1

V p l p l 2

=

?+??=?+?=-=?+

?0h t S 0y

V h 0.7f M A 0.9h f ≥β≥

【例】试确定如下图所示条形基础的底面尺寸,并用简化计算方法分析内力。已知:基础埋深d=1.5m,

地基承载力特征值fa=120Kpa,其余数据见图示。。

【解】1、确定基础底面尺寸

各柱竖向力的合力,距图中A 点的距离x 为

考虑构造需要,基础伸出A 点外

取b=2.5m 。

2、内力分析:

96014.71754 1.21740 4.2x 7.85m

96017541740554

?+?+?==+++,

5.01m x =k

a G F

41012891300711

b 2.47m

L(f r d)

16.7(12020 1.5)

+++≥

=

=-?-?∑

(1)倒梁法

因荷载的合力通过基底形心,故地基反力是均布的,沿基础每米长度上的净反力值

以柱底A 、B 、C 、D 为支座,按弯距分配法分析三跨连续梁,其弯距M 和剪力V 见图7-43b 。

(2)剪力平衡法

按静力平衡条件计算内力: AB 跨内最大负弯距的截面至A 点的距离:

则:

其余各截面的M 、V 均仿此计算,结果见图7-43c 。

比较两种方法的计算结果,按剪力平衡法算出的支座弯距较大;按倒梁法算得的跨中弯距较大。 倒梁法

(96017541740554)/16.7300/n q KN m

=+++=21M 3000.538KN m

2

=??=?1

554

0.5 1.35300

a

m

=

-=

剪力平衡法

【书例7-12】如图7-44为某柱网布置图。已知B 轴线上边柱荷载设计值中柱初选基础埋深为1.5m ,地基承

载力特征值fa=120Kpa ,试设计B 轴线上条形基础。

【解】1、确定基底面积

基础两边各放出:

基础底宽度(综合荷载分项系数取1.35):

取b=2.50m 设计。 2、梁的弯矩计算

在对称荷载作用下,由于基础底面反力为均匀分布,因此单位长度地基的净反力为:

基础梁可看成在均布线荷载 qn 作用下以柱为支座的五跨等跨度连续梁。为了计算方便,可将图7-45a 分解为图7-45b 和图7-45c 两部分。图7-45b 用力矩分配法计算,A 截面处的固端弯矩为:

m l 23

63==[]/1.351310410802

2.48(20)

(6522)(12020 1.5) 1.35

a F

b m

l f d ?+?≥

=

=-?+??-??∑

在图7-45c的荷载作用下,利用五跨等跨度连续梁的相应弯矩系数m,可得有关截面的弯矩:支座B (和B'):

其余同(略)。

将图7-45b与c的弯矩叠加,即为按倒梁法计算所得的JL—2梁的弯矩图[见图7-45d].

3、梁的剪力计算

基础梁TL—2的剪力图绘于图7-45e。

4、梁板部分计算

基底宽2500㎜,主助宽500㎜(400+2×50),翼板外挑长度 1/2 ×(2500-500)=1000㎜,翼板外边缘厚度200㎜,梁助处(相当于翼板固定端)翼板厚度300㎜(见图7-46)。翼板采用C20混凝土,HPB235钢筋。

基底净反力设计值:

(1)斜截面抗剪强度验算(按每米长计)

实际 >113.2㎜,可以。

21887.22.5

n n q p kPa b =

==0

87.2

113.20.70.7 1.0 1.10h a V h mm

f β===??300401025020o

h mm mm =--=(假定受力筋直径为,有垫层)

】(2)翼板受力筋计算

实际AS =942mm2)。

5、肋梁部分计算

肋梁高取 宽500㎜。主筋用HRB335钢筋,C20混凝土。 (1)正截面强度计算

根据图7-45d 的JL-2梁M 图,对各支座、跨中分别按矩形、T 形截面进行正截面强度计算。 轴②支座处(M=700KNm )

由 查混凝土设计手册可知 (2)斜截面强度计算

轴②左边截面(V=698KN ):

配 箍筋(四肢箍)。

,可以

各部分的正、斜截面配筋均可列表计算,此略。 统一调整后,JL-2梁的配筋见图7-46。

6

2043.610923/0.90.9250310

s y M A mm m

h f ?===??6000

1000,66

l mm ==622070010 1.55500950

M A bh ?===?%

54.0=ρ2

0.54%5009502565s A bh mm ρ==??=14

08000.70.7 1.10500950350950h t f h KN

β??

=????= ???

某框架结构柱下条形基础设计

某框架结构柱下条形基础设计

————————————————————————————————作者:————————————————————————————————日期: ?

某框架结构柱下条形基础设计(倒梁法) 一、设计资料 1、某建筑物为7层框架结构,框架为三跨的横向承重框架,每跨跨度为7.2m ;边柱传至基础顶部的荷载标准值和设计值分别为:Fk =2665KN 、Mk=572K N?M、Vk=146KN ,F=3331KN 、M=715KN ?M、V=182KN ;中柱传至基础顶部的荷载标准值和设计值分别为:F k=4231KN 、Mk=481K N?M 、Vk=165KN,F=5289KN 、M=601KN ?M 、V=206KN 。 2、根据现场观察描述,原位测试分析及室内试验结果,整个勘察范围内场地地层主要由粘性土、粉土及粉砂组成,根据土的结构及物理力学性质共分为7层,具体层位及工程特性见附表。勘察钻孔完成后统一测量了各钻孔的地下水位,水位埋深平均值为0.9m,本地下水对混凝土无腐蚀性,对钢筋混凝土中的钢筋无腐蚀性。 3、根据地质资料,确定条基埋深d=1.9m; 二、内力计算 1、基础梁高度的确定 取h=1.5m 符合G B50007-2002 8.3.1柱下条形基础梁的高度宜为柱距的 11 ~48 的规定。 2、条基端部外伸长度的确定 据GB50007-2002 8.3.1第2条规定外伸长度宜为第一跨的0.25倍考虑到柱端存在弯矩及其方向左侧延伸0.250.257.2 1.8l m m =?= 为使荷载形心与基底形心重合,右端延伸长度为ef l ,ef l 计算过程如下: a . 确定荷载合力到E 点的距离o x :

柱下条形基础计算方法与步骤

柱下条形基础简化计算及其设计步骤 提要:本文对常用的静力平衡法和倒梁法的近似计算及其各自的适用范围和相互关系作了一些叙述,提出了自己的一些看法和具体步骤,并附有柱下条基构造表,目的是使基础设计工作条理清楚,方法得当,既简化好用,又比较经济合理。 一、适用范围: 柱下条形基础通常在下列情况下采用: 1、多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足设计要求时。 2、当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时。 3、地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时。 4、各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时。 5、需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时。 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较 件下梁的计算。 二、计算图式 1、上部结构荷载和基础剖面图 2、静力平衡法计算图式 3. 倒梁法计算图式 三、设计前的准备工作 1. 确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础. 基础的纵向地基净反力为: j j i p F bL M bL min max =±∑∑62

式中 P jmax ,P jmin —基础纵向边缘处最大和最小净反力设计值. ∑F i —作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其他局部均布q i ). ∑M—作用于基础上各竖向荷载(F i ,q i ),纵向弯矩(M i )对基础底板纵向中点产生的总弯矩设计值. L —基础长度,如上述. B —基础底板宽度.先假定,后按第2条文验算. 当P jmax 与P jmin 相差不大于10%,可近似地取其平均值作为均布地基反力,直接定出基础悬臂长度a 1=a 2(按构造要求为第一跨距的1/4~1/3),很方便就确定了合理的基础长度L ;如果P jmax 与P jmin 相差较大时,常通过调整一端悬臂长度a 1或a 2,使合力∑F i 的重心恰为基础的形心(工程中允许两者误差不大于基础长度的3%),从而使∑M 为零,反力从梯形分布变为均布,求a 1和a 2的过程如下: 先求合力的作用点距左起第一柱的距离: 式中, ∑M i —作用于基础上各纵向弯矩设计值之和. x i —各竖向荷载F i 距F 1的距离. 当x≥a/2时,基础长度L=2(x+a 1), a 2=L-a-a 1. 当x

柱下条形基础计算书

1. 工程概况及设计资料 某柱下条形基础,所受外荷载大小及位置如图1.1所示。柱采用C40混凝土,截面尺寸800800mm mm ?。地基为均质粘性土,地基承载力特征值160ak a f KP =,土的重度3 19/KN m γ=。地基基础等级:乙级。地下防水等级:二级。 图1.1 2. 基础宽度计算 基础埋深定为2m 。总竖向荷载值 1000180014004000ki N KN KN KN KN =++=∑ 180********.5 5.334000N KN m KN m e m KN ?+?= = 假设两端向外延伸总长度为3m ,则 4.56313.5L m m m m =++= 地基底面以上土的加权重度3 19/m KN m γ= 查得《地基规范》中对于粘性土: 1.6d η=,0.3b η=

持力层经深度修正后的地基承载力特征值 3(0.5)160 1.619/(20.5)205.6a ak d m a a f f d m KP KN m m m KP ηγ=+-=+??-=()()3 4000 1.789205.620/ 2.013.5ki a G a N KN b m f d l KP KN m m m γ≥ = =--??∑取 2.0b m = 3. 两端外伸长度验算即地基承载力验算 320/ 2.013.5 2.01044k G KN m m m m KN =???= 400010445044ki k N G KN KN KN +=+=∑ 80ki M KN m =?∑ 800.0155244N G KN m e m KN +?= = 113.5 5.445 1.3052l m m ??=-= ??? 213.5 5.055 1.6952l m m ??=-= ??? 5244194.22205.62.013.5ki k k a a a N G KN p KP f KP bl m m +== =<=?∑ ,max ,min 6195.58 1.2246.7524460.015(1)(1)2.013.513.5192.860 ki k k N G a a a k a N G p e KP f KP KN p bl l m m KP ++>=?= ± =±=?>∑

柱下条形基础设计 课程设计

柱 下条形基础设计 一、设计资料 1、地形 拟建建筑场地平整。 2、工程地质条件 自上而下土层依次如下: ①号土层,耕填土,层厚,黑色,原为农田,含大量有机质。 ②号土层,黏土,层厚,软塑,潮湿,承载力特征值kPa f ak 120=。 ③号土层,粉砂,层厚,稍密,承载力特征值kPa f ak 160=。 ④号土层,中粗砂,层厚,中密,承载力特征值kPa f ak 200=。 ⑤号土层,中风化砂岩,厚度未揭露,承载力特征值kPa f ak 320=。 3、岩土设计技术参数 地基岩土物理力学参数如表所示。 土层编号 土的名称 重度γ 孔 隙 比e 液性指数 L I 粘聚力c )(kPa 内摩擦角?)(? 压缩 模量 S E 标准贯入锤击数N 承载力 特征值 ak f )(kPa ① 耕填土 ② 黏土 22 17 4 120 ③ 粉砂 12 160 ④ 中粗砂 20 30 16 200 ⑤ 中风化砂岩 22 320 4、水文地质条件 (1)拟建场区地下水对混凝土结构无腐蚀性。 (2)地下水位深度:位于地表下。 5、上部结构资料 拟建建筑物为多层全现浇框架结构,框架柱截面尺寸为mm mm 400400?。室外地坪标高同自然地面,室内外高差mm 450。柱网布置如图所示。 6、上部结构作用 上部结构作用在柱底的荷载效应标准组合值=1280kN =1060kN ,,上部结 构作用在柱底的荷载效应基本组合值 =1728kN , =1430kN (其中 k N 1为轴线②~⑥柱

底竖向荷载标准组合值;k N 2为轴线①、⑦柱底竖向荷载标准组合值;1N 为轴线②~⑥柱底竖向荷载基本组合值;2N 为轴线①、⑦柱底竖向荷载基本组合值) 图 柱网平面图 其中纵向尺寸为6A ,横向尺寸为18m ,A=6300mm 混凝土的强度等级C25~C30,钢筋采用HPB235、HRB335、HRB400级。 二、柱下条形基础设计 1、确定条形基础底面尺寸并验算地基承载力 由已知的地基条件,假设基础埋深d 为m 6.2,持力层为粉砂层 (1) 求修正后的地基承载力特征值 由粉砂,查表10.7得,0.3,0.2==d b ηη 埋深范围内土的加权平均重度: 持力层承载力特征值(先不考虑对基础宽度的修正): (2) 初步确定基础宽度 设条形基础两端均向外伸出: m 9.19.63 1 =? 基础总长:m l 4623.269.6=?+?= 则基础底面在单位m 1长度内受平均压力: 基础平均埋深为:m d 825.2)05.36.2(2 1 =+= 需基础底板宽度b : 取m b 2.1=设计 (3) 计算基底压力并验算 基底处的总竖向荷载为: 基底的平均压力为: 满足条件 2、基础的结构设计 (1) 梁的弯矩计算 在对称荷载作用下,由于基础底面反力为均匀分布,因此单位长度地基的净反力为: m kN l F q n /28046 1550219605=?+?= =∑ 基础梁可看成在均布线荷载n q 作用下以柱为支座的六跨等跨度连续梁。为了计算方便,可将图 )(a 分解为图)(b 和图)(c 两部分。 图)(b 用力矩分配法计算,A 截面处的固端弯矩为: 图)(a

柱下条形基础简化计算及其设计步骤

柱下条形基础简化计算及其设计步骤 提要:本文对常用的静力平衡法和倒梁法的近似计算及其各自的适用范围和相互关系作了一些叙述,提出了自己的一些看法和具体步骤,并附有柱下条基构造表,目的是使基础设计工作条理清楚,方法得当,既简化好用,又比较经济合理. 一 适用范围: 柱下条形基础通常在下列情况下采用: 1.多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足设计要求时. 2.当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时. 3.地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时. 4.各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时. 5.需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时. 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较大,以致可忽略柱下不均匀沉降时,假定基底反力按线性分布,仅进行满足静力平衡条件下梁的计算. 二 计算图式 1.上部结构荷载和基础剖面图

2.静力平衡法计算图式 3.倒梁法计算图式 三.设计前的准备工作 在采用上述两种方法计算基础梁之前,需要做好如下工作: 1.确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础.基础的纵向地基净反力为: 式中 P jmax,P jmin —基础纵向边缘处最大和最小净反力设计值. ∑F i —作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其它局部均布q i). ∑M —作用于基础上各竖向荷载(F i ,q i ),纵向弯矩(M i)对基础底板纵向中点产生的总弯矩设计值. L —基础长度,如上述. B —基础底板宽度.先假定,后按第2条文验算. j j i p F bL M bL min max =±∑∑6 2

墙下条形基础设计例题.doc

目录 课程设计任务书 (1) 教学楼首层平面图 (4) 工程地质条件表 (5) 课程设计指导书 (6) 教学楼首层平面大图 (19)

《地基与基础》课程设计任务书 一、设计目的 1、了解一般民用建筑荷载的传力途径,掌握荷载计算方法; 2、掌握基础设计方法和计算步骤,明确基础有关构造; 3、初步掌握基础施工图的表达方式、制图规定及制图基本技能。 二、设计资料 工程名称:中学教学楼,其首层平面见附图。 建筑地点: 标准冻深:Z0 = 地质条件:见附表序号 工程概况:建筑物结构形式为砖混结构,采用纵横墙承重方案。建筑物层数为四~六层,层高3.6m,窗高2.4m,室内外高差为0.6m。教室内设进深梁,梁截面尺寸 b×h=250×500mm,其上铺钢筋混凝土空心板,墙体采用机制普通砖MU10, 砂浆采用M5砌筑,建筑物平面布置详见附图。 屋面作法:改性沥青防水层 20mm厚1:3水泥砂浆找平层 220mm厚(平均厚度包括找坡层)水泥珍珠岩保温层 一毡二油(改性沥青)隔气层 20mm厚1:3水泥砂浆找平层 预应力混凝土空心板120mm厚(或180mm厚) 20mm厚天棚抹灰(混合砂浆), 刷两遍大白 楼面作法:地面抹灰1:3水泥砂浆20mm厚 钢筋混凝土空心板120mm厚(或180mm厚) 天棚抹灰:混合砂浆20mm厚 刷两遍大白 材料重度:三毡四油上铺小石子(改性沥青)0.4KN/m2 一毡二油(改性沥青)0.05KN/m2 塑钢窗0.45KN/m2 混凝土空心板120mm厚 1.88KN/m2 预应力混凝土空心板180mm厚 2.37KN/m2 水泥砂浆20KN/m3 混合砂浆17KN/m3 浆砌机砖19KN/m3 水泥珍珠岩制品4KN/m3 钢筋混凝土25 KN/m3

柱下条形基础计算方法与步骤 (1)

柱下条形基础简化计算及其设计步骤 一 适用范围: 柱下条形基础通常在下列情况下采用: 1.多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足设计要求时. 2.当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时. 3.地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时. 4.各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时. 5.需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时. 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较大,以致可忽略柱下不均匀沉降时,假定基底反力按线性分布,仅进行满足静力平衡条件下梁的计算. 二 计算图式 1.上部结构荷载和基础剖面图 2.静力平衡法计算图式

3.倒梁法计算图式 三.设计前的准备工作 在采用上述两种方法计算基础梁之前,需要做好如下工作: 1.确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础.基础的纵向地基净反力为: 式中 P jmax,P jmin —基础纵向边缘处最大和最小净反力设计值. ∑F i —作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其它局部均布q i). ∑M —作用于基础上各竖向荷载(F i ,q i),纵向弯矩(M i)对基础底板纵向中点产生的总弯矩设计值. L —基础长度,如上述. B —基础底板宽度.先假定,后按第2条文验算. 当P jmax 与P jmin 相差不大于10%,可近似地取其平均值作为均布地基反力,直接定出基础悬臂长度a 1=a 2(按构造要求为第一跨距的1/4~1/3),很方便就确定了合理的基础长度L ;如果P jmax 与P jmin 相差较大时,常通过调整一端悬臂长度a 1或a 2,使合力∑F i 的重心恰为基础的形心(工程中允许两者误差不大于基础长度的3%),从而使∑M 为零,反力从梯形分布变为均布,求a 1和a 2的过程如下: j j i p F bL M bL min max =±∑∑6 2

墙下条形基础设计例题.

《地基与基础》课程设计任务书 一、设计目的 1、了解一般民用建筑荷载的传力途径,掌握荷载计算方法; 2、掌握基础设计方法和计算步骤,明确基础有关构造; 3、初步掌握基础施工图的表达方式、制图规定及制图基本技能。 二、设计资料 工程名称:中学教学楼,其首层平面见附图。 建筑地点: 标准冻深:Z0 = 地质条件:见附表序号 工程概况:建筑物结构形式为砖混结构,采用纵横墙承重方案。建筑物层数为四~六层,层高3.6m,窗高2.4m,室内外高差为0.6m。教室内设进深梁,梁截面尺寸 b×h=250×500mm,其上铺钢筋混凝土空心板,墙体采用机制普通砖MU10, 砂浆采用M5砌筑,建筑物平面布置详见附图。 屋面作法:改性沥青防水层 20mm厚1:3水泥砂浆找平层 220mm厚(平均厚度包括找坡层)水泥珍珠岩保温层 一毡二油(改性沥青)隔气层 20mm厚1:3水泥砂浆找平层 预应力混凝土空心板120mm厚(或180mm厚) 20mm厚天棚抹灰(混合砂浆), 刷两遍大白 楼面作法:地面抹灰1:3水泥砂浆20mm厚 钢筋混凝土空心板120mm厚(或180mm厚) 天棚抹灰:混合砂浆20mm厚 刷两遍大白 材料重度:三毡四油上铺小石子(改性沥青)0.4KN/m2 一毡二油(改性沥青)0.05KN/m2 塑钢窗0.45KN/m2 混凝土空心板120mm厚 1.88KN/m2 预应力混凝土空心板180mm厚 2.37KN/m2 水泥砂浆20KN/m3 混合砂浆17KN/m3 浆砌机砖19KN/m3 水泥珍珠岩制品4KN/m3 钢筋混凝土25 KN/m3

屋面、楼面使用活荷载标准值 附表—2 黑龙江省建筑地基基础设计规范地基承载力特征值表

柱下条形基础内力计算(zhang)

一、柱下条形基础的计算 1. 倒梁法 倒梁法假定上部结构是刚性的,柱子之间不存在差异沉降,柱脚可以作为基础的不动铰支座,因而可以用倒连续梁的方法分析基础内力。这种假定在地基和荷载都比较均匀、上部结构刚度较大时才能成立。此外,要求梁截面高度大于1/6柱距,以符合地基反力呈直线分布的刚度要求。 倒梁法的内力计算步骤如下: (1).按柱的平面布置和构造要求确定条形基础长度L ,根据地基承载力特征值确定基础 底面积A ,以及基础宽度B=A/L 和截面抵抗矩6/2 BL W =。 (2).按直线分布假设计算基底净反力n p : min max n n p p W M A F i i ∑±∑= (4-12) 式中 ∑i F 、∑i M ?相应于荷载效应标准组合时,上部结构作用在条形基础上的竖向力(不 包括基础和回填土的重力)总和,以及对条形基础形心的力矩值总和。当为轴心荷载时, n n n p p p ==min max 。 (3).确定柱下条形基础的计算简图如图4-13,系为将柱脚作为不动铰支座的倒连续梁。 基底净线反力 B p n 和除掉柱轴力以外的其它外荷载(柱传下的力矩、柱间分布荷载等)是 作用在梁上的荷载。 (4).进行连续梁分析,可用弯矩分配法、连续梁系数表等方法。 (5).按求得的内力进行梁截面设计。 (6).翼板的内力和截面设计与扩展式基础相同。 倒连续梁分析得到的支座反力与柱轴力一般并不相等,这可以理解为上部结构的刚度对基础整体挠曲的抑制和调整作用使柱荷载的分布均匀化,也反映了倒梁法计算得到的支座反力与基底压力不平衡的缺点。为此提出了“基底反力局部调整法”,即将不平衡力(柱轴力与支座反力的差值)均匀分布在支座附近的局部范围(一般取1/3的柱跨)上再进行连续梁分析,将结果叠加到原先的分析结果上,如此逐次调整直到不平衡力基本消除,从而得到梁的最终内力分布。由图4-14,连续梁共有n 个支座,第i 支座的柱轴力为i F ,支座反力为i R ,左右柱跨分别为1-i l 和i l ,则调整分析的连续梁局部分布荷载强度i q 为: 边支座)1(n i i ==或 3 /)(1)1(0) (1)(1)(1n n n n n l l R F q +-= + (4-13a ) 中间支座)1(n i << i i i i i l l R F q +-= -1)(3 (4-13b ) 当i q 为负值时,表明该局部分布荷载应是拉荷载,例如图4-14中的2q 和3q 。 倒梁法只进行了基础的局部弯曲计算,而未考虑基础的整体弯曲。实际上在荷载分布和地基都比较均匀的情况下,地基往往发生正向挠曲,在上部结构和基础刚度的作用下,边柱和角柱的荷载会增加,内柱则相应卸荷,于是条形基础端部的基底反力要大于按直线分布假设计算得到的基底反力值。为此,较简单的做法是将边跨的跨中和第一内支座的弯矩值按计算值再增加20%。

柱下条形基础计算简化及步骤

柱下条形基础简化计算及其设计步骤 摘要:本文对常用的静力平衡法和倒梁法的近似计算及其各自的适用范围和相互关系作了一些叙述,提出了自己的一些看法和具体步骤,并附有柱下条基构造表,目的是使基础设计工作条理清楚,方法得当,既简化好用,又比较经济合理. 关键字:柱下条形基础简化计算设计步骤 一.适用范围: 柱下条形基础通常在下列情况下采用: 1.多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足 设计要求时. 2.当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时. 3.地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时. 4.各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时. 5.需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时. 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较大,以致可忽略柱下不均匀沉降时,假定基底反力按线性分布,仅进行满足静力平衡条件下梁的计算. 二.计算图式 1.上部结构荷载和基础剖面图 2.静力平衡法计算图式 3.倒梁法计算图式

三.设计前的准备工作 在采用上述两种方法计算基础梁之前,需要做好如下工作: 1.确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础.基础的纵向地基净反力为: 式中Pjmax,Pjmin—基础纵向边缘处最大和最小净反力设计值. ∑Fi—作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其它局部均布qi). ∑M—作用于基础上各竖向荷载(Fi,qi),纵向弯矩(Mi)对基础底板纵向中点产生的总弯矩设计值. L—基础长度,如上述. B—基础底板宽度.先假定,后按第2条文验算. 当Pjmax与Pjmin相差不大于10%,可近似地取其平均值作为均布地基反力,直接定出基础悬臂长度a1=a2(按构造要求为第一跨距的1/4~1/3),很方便就确定了合理的基础长度L;如果Pjmax与Pjmin相差较大时,常通过调整一端悬臂长度a1或a2,使合力∑Fi的重心恰为基础的形心(工程中允许两者误差不大于基础长度的3%),从而使∑M为零,反力从梯形分布变为均布,求a1和a2的过程如下: 先求合力的作用点距左起第一柱的距离: 式中,∑Mi—作用于基础上各纵向弯矩设计值之和. xi—各竖向荷载Fi距F1的距离. 当x≥a/2时,基础长度L=2(X+a1),a2=L-a-a1.

柱下条形基础简化计算及其设计步骤

柱下条形基础简化计算及其设计步骤 一、适用范围: 柱下条形基础通常在下列情况下采用: 1、多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足设计要求时。 2、当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时。 3、地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时。 4、各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时。 5、需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时。 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较大,以致可忽略柱下不均匀沉降时,假定基底反力按线性分布,仅进行满足静力平衡条件下梁的计算。 二、计算图式 1、上部结构荷载和基础剖面图 2、静力平衡法计算图式 3、倒梁法计算图式 三、设计前的准备工作 在采用上述两种方法计算基础梁之前,需要做好如下工作:

1、确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度。当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础。基础的纵向地基净反力为: 式中Pjmax,Pjmin—基础纵向边缘处最大和最小净反力设计值。 ∑Fi—作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其它局部均布qi)。 ∑M—作用于基础上各竖向荷载(Fi ,qi),纵向弯矩(Mi)对基础底板纵向中点产生的总弯矩设计值。 L—基础长度,如上述。 B—基础底板宽度。先假定,后按第2条文验算。 当Pjmax与Pjmin相差不大于10%,可近似地取其平均值作为均布地基反力,直接定出基础悬臂长度a1=a2(按构造要求为第一跨距的1/4~1/3),很方便就确定了合理的基础长度L;如果Pjmax与Pjmin相差较大时,常通过调整一端悬臂长度a1或a2,使合力∑Fi的重心恰为基础的形心(工程中允许两者误差不大于基础长度的3%),从而使∑M为零,反力从梯形分布变为均布,求a1和a2的过程如下: 先求合力的作用点距左起第一柱的距离: 式中,∑Mi—作用于基础上各纵向弯矩设计值之和。 xi—各竖向荷载Fi距F1的距离。 当x≥a/2时,基础长度L=2(X+a1), a2=L-a-a1。 当x

柱下条形基础设计计算书

柱下条形基础课程设计计算书 由平面图和荷载可知A 、D 轴的基础受力情况相同,B 、C 轴的基础受力情况相同。所以在计算时,只需对A 、B 轴的条形基础进行计算。 一、A 、D 轴基础尺寸设计 1、确定基础底面尺寸并验算地基承载力 由已知的地基条件,地下水位埋深12m ,假设基础埋深1.55m (基础底面到室外地面的距离),持力层为粘土层。 (1)求修正后的地基承载力特征值 查得0=b η,0.1=d η, 3180.518 1.05 18/1.55 m kN m γ?+?= = (0.5)160 1.018(1.550.5)178.9a ak d m f f d kPa ηγ=+-=+??-= (2)初步确定基础宽度 条形基础轴线方向不产生整体偏心距,设条形基础两端均向外伸出0.25 5.4 1.35m ?= 基础总长57 5.40.25259.7l m =+??= 则基础底面在单位1m 长度内受平均压力 1864.73 282.536.6k F kN = = 则基础底面在单位1m 长度内受平均弯矩 83.50 12.656.6 k M kN m = =? 282.53 1.87178.918 1.55 k a G F b m f d γ≥ ==--? 考虑偏心荷载的作用,取b=2.5m 。 (3)计算基底压力并验算 基底处的总竖向荷载为: 282.5318 1.0 1.55 2.5352.28k k F G kN +=+???= 基底总弯矩为:83.50k M kN m =? 偏心距为:83.50 2.5 0.2370.417352.2866 k k k M l e m m F G = ==<==+ 基底平均压力为:352.28 140.9178.92.5 1.0 k k k a F G p kPa f kPa A +===<=? 基底最大压力为: max 660.2371140.91201.04 1.2214.682.5k k a e p p kPa f kPa l ????? =+=?+=<= ? ???? ?满 足条件。

砖混结构墙下条形基础设计实例

墙下条形基础设计实例 根据设计资料、工程概况和设计要求,教学楼采用墙下钢筋混凝土条形基础。基础材料选 用C25混凝土,=t f 1.27N/mm 2;HPB235钢筋,=y f 210N/mm 2 . 。建筑场地工程地质条件, 见附图-1所示。下面以外纵墙(墙厚0.49m )基础为例,设计墙下钢筋混凝土条形基础。 (一)确定基础埋深 已知哈尔滨地区标准冻深Z o =2m,工程地质条件如附图-1所示: 附图-1 建筑场地工程地质条件 根据建筑场地工程地质条件,初步选择第二层粉质粘土作为持力层。根据地基土的天然含水量以及冻结期间地下水位低于冻结面的最小距离为8m ,平均冻胀率η=4,冻胀等级为Ⅲ级,查表7-3,确定持力层土为冻胀性土,选择基础埋深d=1.6m 。 (二)确定地基承载力 1、第二层粉质粘土地基承载力 5.019 2919 24=--=--= ωωωωL P L I 75.017 .18) 24.01(8.971.21) 1(=-+??= -+= γ ωγωs d e 查附表-2,地基承载力特征值aK f =202.5 KPa 按标准贯入试验锤击数N=6,查附表-3, aK f =162.5KPa 二者取较小者,取aK f =162.5KPa 2、第三层粘土地基承载力 9.0118 ) 29.01(8.97.21) 1(=-+??= -+= γ ωγωs d e

75.05 .215.315 .2129=--=--= ωωωωL P L I 查附表-2,aK f =135 KPa ,按标准贯入锤击数查表-3,aK f =145 KPa ,二者取较小者,取aK f =135 KPa 。 3 、修正持力层地基承载力特征值 根据持力层物理指标e =0.9, I L =0.75,二者均小于0.85。 查教材表4-2 =b η0.3,=η 1.6 3/63.176 .16 .07.18117m KN m =?+?= γ a m d ak a KP d f f 5.193)5.06.1(63.176.15.162)5.0(=-??+=-+=γη (五)计算上部结构传来的竖向荷载 K F 对于纵横墙承重方案,外纵墙荷载传递途径为: 屋面(楼面)荷载→进深梁→外纵墙→墙下基础→地基

第3章_柱下条形基础

第3章柱下条形基础、筏形和箱形基础 §3-1概述 柱下条形基础、筏形基础和箱形基础与柱下独立基础相比,具有优良的结构特征、较大的承载能力等优点,适合作为各种地质条件复杂、建设规模大、层数多、结构复杂的建筑物基础。 柱下条形基础、筏形基础和箱形基础将建筑物底部连成整体加强了建筑物整体刚度,调整和均衡传递给地基的上部结构荷载,减小荷载差异和地基不均匀造成的建筑物不均匀沉降,减小上部结构的次应力。该类基础一般埋深较大,可提高地基的承载力,增大基础抗水平滑动的稳定性,并可利用地基补偿作用减小基底附加应力,减小建筑物的沉降量。此外,筏形和箱形基础还可在建筑物下部构成较大的地下空间,提供安置设备 和公共设施的合适场所。 但是,这类基础尤其箱形基础,技术要求及造价较高,施工中需处理大基坑、深开挖所遇到的许多问题,箱形基础的地下空间利用 不灵活,因此,选用时需根据具体条件通过技术经济及应用比较确 定。 如前所述的刚性及扩展基础,因建筑物较小,结构较简单,计算分析中将上部结构、基础和地基简单地分割成彼此独立的三个组成 部分,分别进行设计和验算,三者之间仅满足静力平衡条件。这种 设计方法称为常规设计,由此引起的误差一般不致于影响结构安全 或增加工程造价,但计算分析简单,工程界易于接受。然而对于条 形、筏形和箱形等规模较大、承受荷载多和上部结构较复杂的基础,上述简化分析,仅满足静力平衡条件而不考虑三者之间的相互作用,则常常引起较大误差。由于基础在地基平面上一个或两个方向的尺 度与其竖向截面相比较大,一般可看成是地基上的受弯构件—梁或 板。其挠曲特征、基底反力和截面内力分布都与地基、基础以及上 部结构的相对刚度特征有关,故应从三者相互作用的角度出发,采 用适当的方法进行设计。 应该指出,上部结构、基础和地基共同作用是一个复杂的研究课题,尽管已取得较丰硕的成果,但是由于涉及到的因素很多,尤其 地基土是一种很复杂的材料,目前尚缺少一种理想的地基模型去确 切模拟,因此考虑共同工作的分析结果与实测资料对比往往存在着 不同程度的差异,有时误差还较大,说明理论分析方法尚有待进一 步完善,许多设计人员提出,设计这些基础宜以“构造为主,计算 为辅”的原则,本章在介绍柱下条形基础、筏形基础、箱形基础设 计计算的同时,也介绍其结构和构造要求,供设计时采用。 §3-2弹性地基上梁的分析

柱下条形基础设计课程设计

柱下条形基础设计 一、设计资料 1、地形 拟建建筑场地平整。 2、工程地质条件 自上而下土层依次如下: ①号土层,耕填土,层厚0.7m ,黑色,原为农田,含大量有机质。 ②号土层,黏土,层厚1.8m ,软塑,潮湿,承载力特征值kPa f ak 120=。 ③号土层,粉砂,层厚2.6m ,稍密,承载力特征值kPa f ak 160=。 ④号土层,中粗砂,层厚4.1m ,中密,承载力特征值kPa f ak 200=。 ⑤号土层,中风化砂岩,厚度未揭露,承载力特征值kPa f ak 320=。 3、岩土设计技术参数 地基岩土物理力学参数如表2.1所示。 4、水文地质条件 (1)拟建场区地下水对混凝土结构无腐蚀性。 (2)地下水位深度:位于地表下0.9m 。

5、上部结构资料 拟建建筑物为多层全现浇框架结构,框架柱截面尺寸为mm mm 400400 。室外地坪标高同自然地面,室内外高差mm 450。柱网布置如图2.1所示。 6、上部结构作用 上部结构作用在柱底的荷载效应标准组合值=1280kN =1060kN ,,上 部结构作用在柱底的荷载效应基本组合值 =1728kN ,=1430kN (其中 k N 1为轴 线②~⑥柱底竖向荷载标准组合值;k N 2为轴线①、⑦柱底竖向荷载标准组合值; 1N 为轴线②~⑥柱底竖向荷载基本组合值;2N 为轴线①、⑦柱底竖向荷载基本 组合值) 图2.1 柱网平面图 其中纵向尺寸为6A ,横向尺寸为18m ,A=6300mm 混凝土的强度等级C25~C30,钢筋采用HPB235、HRB335、HRB400级。

二、柱下条形基础设计 1、确定条形基础底面尺寸并验算地基承载力 由已知的地基条件,假设基础埋深d 为m 6.2,持力层为粉砂层 (1) 求修正后的地基承载力特征值 由粉砂,查表10.7得,0.3,0.2==d b ηη 埋深范围内土的加权平均重度: 3/69.116 .2) 105.19(1.06.1)104.18(2.04.187.06.17m kN m =-?+?-+?+?= γ 持力层承载力特征值(先不考虑对基础宽度的修正): kPa d f f m d ak a 65.233)5.06.2(69.110.3160)5.0(=-??+=-?+=γη (2) 初步确定基础宽度 设条形基础两端均向外伸出:m 9.19.63 1 =? 基础总长:m l 4623.269.6=?+?= 则基础底面在单位m 1长度内受平均压力: kN F k 61.20746 5145021150=?+?= 基础平均埋深为:m d 825.2)05.36.2(2 1 =+= 需基础底板宽度b : m d f F b G a k 06.1)] 9.0825.2(10825.220[65.23361 .207=-?-?-=?-≥ γ 取m b 2.1=设计 (3) 计算基底压力并验算 基底处的总竖向荷载为: kN G F k k 73.2583.11)]9.0825.2(10825.220[32.251=??-?-?+=+ 基底的平均压力为: kPa f kPa G F P a k k k 65.23360.2152 .1173 .258A =<=?=+= 满足条件 2、基础的结构设计 (1) 梁的弯矩计算 在对称荷载作用下,由于基础底面反力为均匀分布,因此单位长度地基的净反力为:

柱下条形基础简化计算及设计步骤

柱下条形基础简化计算及其设计步骤 柱下条形基础简化计算及其设计步骤 提要:本文对常用的静力平衡法和倒梁法的近似计算及其各自的适用范围和相互关系作了一些叙述,提出了自己的一些看法和具体步骤,并附有柱下条基构造表,目的是使基础设计工作条理清楚,方法得当,既简化好用,又比较经济合理. 一.适用范围: 柱下条形基础通常在下列情况下采用: 1.多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足设计要求时. 2.当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时. 3.地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时. 4.各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时. 5.需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时. 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较大,以致可忽略柱下不均匀沉降时,假定基底反力按线性分布,仅进行满足静力平衡条件下梁的计算. 二.计算图式 1.上部结构荷载和基础剖面图 2.静力平衡法计算图式 3.倒梁法计算图式 三.设计前的准备工作 在采用上述两种方法计算基础梁之前,需要做好如下工作: 1.确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础.基础的纵向地基净反力为: 式中Pjmax,Pjmin—基础纵向边缘处最大和最小净反力设计值. ∑Fi—作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其它局部均布qi). ∑M—作用于基础上各竖向荷载(Fi ,qi),纵向弯矩(Mi)对基础底板纵向中点产生的总弯矩设计值. L—基础长度,如上述. B—基础底板宽度.先假定,后按第2条文验算. 当Pjmax与Pjmin相差不大于10%,可近似地取其平均值作为均布地基反力,直接定出基础悬臂长度a1=a2(按构造要求为第一跨距的1/4~1/3),很方便就确定了合理的基础长度L;如果Pjmax与Pjmin相差较大时,常通过调整一端悬臂长度a1或a2,使合力∑Fi的重心恰为基础的形心(工程中允许两者误差不大于基础长度的3%),从而使∑M为零,反力从梯形分布变为均布,求a1和a2的过程如下: 先求合力的作用点距左起第一柱的距离: 式中,∑Mi—作用于基础上各纵向弯矩设计值之和. Xi—各竖向荷载Fi距F1的距离. 当x≥a/2时,基础长度L=2(X+a1), a2=L-a-a1. 当x按上述确定a1和a2后,使偏心地基净反力变为均布地基净反力,其值为: 式中, pj—均布地基净反力设计值. 由此也可得到一个合理的基础长度L. 2.确定基础底板宽度b. 由确定的基础长度L和假定的底板宽度b,根据地基承载力设计值f,一般可按两个方向分别进行如下验算,从而确定基础底板宽度b.

柱下条形基础内力计算

1. 倒梁法 倒梁法假定上部结构是刚性的,柱子之间不存在差异沉降,柱脚可以作为基础的不动铰支座,因而可以用倒连续梁的方法分析基础内力。这种假定在地基和荷载都比较均匀、上部结构刚度较大时才能成立。此外,要求梁截面高度大于1/6柱距,以符合地基反力呈直线分布的刚度要求。 倒梁法的内力计算步骤如下: (1).按柱的平面布置和构造要求确定条形基础长度L,根据地基承载力特征值确定基础底面积A,以及基础宽度B=A/L和截面抵抗矩。 (2).按直线分布假设计算基底净反力: (4-12) 式中、?相应于荷载效应标准组合时,上部结构作用在条形基础上的竖向力(不包括基础和回填土的重力)总和,以及对条形基础形心的力矩值总和。当为轴心 荷载时,。 (3).确定柱下条形基础的计算简图如图4-13,系为将柱脚作为不动铰支座的倒连续梁。基底净线反力和除掉柱轴力以外的其它外荷载(柱传下的力矩、柱间分布荷载等)是作用在梁上的荷载。 (4).进行连续梁分析,可用弯矩分配法、连续梁系数表等方法。 (5).按求得的内力进行梁截面设计。 (6).翼板的内力和截面设计与扩展式基础相同。 倒连续梁分析得到的支座反力与柱轴力一般并不相等,这可以理解为上部结构的刚度对基础整体挠曲的抑制和调整作用使柱荷载的分布均匀化,也反映了倒梁法计算得到的支座反力与基底压力不平衡的缺点。为此提出了“基底反力局部调整法”,即将不平衡力(柱轴力与支座反力的差值)均匀分布在支座附近的局部范围(一般取1/3的柱跨)上再进行连续梁分析,将结果叠加到原先的分析结果上,如此逐次调整直到不平衡力基本消除,从而得到梁的最终内力分布。由图4-14,连续梁共有n个支座,第支座的柱轴力为,支座反力为,左右柱跨分别为和,则调整分析的连续梁局部分布荷载强度为: 边支座(4-13a) 中间支座(4-13b) 当为负值时,表明该局部分布荷载应是拉荷载,例如图4-14中的和。 倒梁法只进行了基础的局部弯曲计算,而未考虑基础的整体弯曲。实际上在荷载分布和地基都比较均匀的情况下,地基往往发生正向挠曲,在上部结构和基础刚度的作用下,边柱和角柱的荷载会增加,内柱则相应卸荷,于是条形基础端部的基底反力要大于按直线分布假设计算得到的基底反力值。为此,较简单的做法是将边跨的跨中和第一内支座的弯矩值按计算值再增加20%。 图4-13 柱下条形基础简化计算计算简图图4-14 基底反力局部调整法

相关文档
最新文档