安工大10-11高等代数2试卷(A)

安工大10-11高等代数2试卷(A)
安工大10-11高等代数2试卷(A)

学生姓名 学号:_____________________

密 封 线

10-11学年第一学期安徽工业大学高等代数2期末考试试卷(A )

324x x 经=( )

3、在[]4R x 中定义内为()()()1

1,x f g f x g x d -=?,求[]4R x 的一组由基

1,2

3,,x x

x 出发得到的标准正交基.

4、求矩阵A=???

?

? ??-340430241的特征值和特征向量.

四、证明题(10分×2)

1、设σ是线性空间V 上的线性变换,如果01≠-ξσk ,但0=ξσk ,求证:)0(,,,1>-k k ξσσξξ 线性无关.

2、f 是n 维欧氏空间V 的对称变换(即f 是V 的线性变换,且对任意

V ∈βα,都有(f(α),β)=(α,f(β))), 证明: f 的像子空间Imf 是f 的核子空间kerf 的正交补子空间.

《高等代数》期末试卷B

教育科学系14级小学教育(科学与数学)专业2014—2015学年度春学期 期末考试《高等代数Ⅱ》试卷(B ) 试卷说明:1.本试卷共2页,4个大题,满分100分,120分钟完卷; 2.试题解答全部书写在本试卷上。 班号: 学号 姓名 一、选择题:(每题3分,共15分) 1.当λ=( )时,方程组1231 231 222x x x x x x λ++=??++=?,有无穷多解。 A 1 B 2 C 3 D 4 2.若向量组中含有零向量,则此向量组( )。 A 线性相关 B 线性无关 C 线性相关或线性无关 D 不一定 3.设α是n 阶可逆矩阵A 的属于特征值λ的特征向量,在下列矩阵中,α不是( ) 的特征向量。 A 2()A E + B -3A C *A D T A 4.若A 为n 阶实对称矩阵,P 为n 阶正交阵,则1P A P -为( )。 A 实对称阵 B 正交阵 C 非奇异阵 D 奇异阵 5.设矩阵 A , B , C 均为n 阶矩阵,则矩阵A B 的充分条件是( )。 A A 与 B 有相同的特征值 B A 与B 有相同的特征向量 C A 与B 与同一矩阵相似 D A 一定有n 个不同的特征值 1.已知向量组)4,3,2,1(1=α,)5,4,3,2(2=α,)6,5,4,3(3=α,)7,6,5,4(4=α,则向量=+-+4321αααα 。 2.若120s ααα++ +=,则向量组12,, ,s ααα必线性 。 3.设向量空间1212{(,, )|0,}n n i V x x x x x x x R =++ +=∈,则V 是 维 空间。 4.A ,B 均为3阶方阵,A 的特征值为1,2,3,1B =-,则*A B B += 。 5.设矩阵A 满足条件2560A A E -+=,则矩阵A 的特征值 是 。 6.二次型yz xz xy z y x z y x f 222),,(222---++=的矩阵是____________。 二、填空题:(每题3分,共27分)

高等代数试卷及答案1

高等代数 一、填空题 (共10题,每题2分,共20 分) 1.只于自身合同的矩阵是 矩阵。 2.二次型()()11212237,116x f x x x x x ?? ??= ? ????? 的矩阵为__________________。 3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。 4.正交变换在标准正交基下的矩阵为_______________________________。 5.标准正交基下的度量矩阵为_________________________。 6.线性变换可对角化的充要条件为__________________________________。 7.在22P ?中定义线性变换σ为:()a b X X c d σ?? = ??? ,写出σ在基11122122,,,E E E E 下的矩阵_______________________________。 8.设1V 、2V 都是线性空间V 的子空间,且12V V ?,若12dim dim V V =,则_____________________。 9.叙述维数公式_________________________________________________________________________。 10.向量α在基12,,,n ααα???(1)与基12,,,n βββ???(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。 二、判断题 (共10 题,每题1分,共10分) 1.线性变换在不同基下的矩阵是合同的。( ) 2.设σ为n 维线性空间V 上的线性变换,则()1 0V V σσ -+=。 ( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实 数域上的线性空间。( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++???+=与12n x x x ==???=的解空间,则 12n V V P ⊕= ( ) 5.2 2 11n n i i i i n x x ==??- ??? ∑∑为正定二次型。( ) 6.数域上任意一个矩阵都合同于一对角矩阵。( ) 7.把复数域C 看作复数域上的线性空间,C ξ?∈,令σξξ=,则σ是线性变换。( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。( ) 9.欧氏空间中不同基的度量矩阵是相似的。( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。( )

高等数学(2)--期末考试试题

高等数学(2)--期末考试试题

重庆三峡学院 2008 至 2009 学年度第 2 期 高等数学(二)试题(A ) 试题使用对象 : 全院 2008 级 工科各 专业(本科) 命题人: 陈晓春 考试用时 120 分钟 答题方式采用: 闭卷 说明:1、答题请使用黑色或蓝色的钢笔、圆珠笔在答题纸上书写工整。 2、考生应在答题纸上答题,在此卷上答题作废。 一、 填空题(每小题3分,本题共15分) 1.设22 z x y =+z z y x x y ??-=?? 2.设2 22 :D x y R +≤,则22D x y dxdy += 3.设2 222 :x y z R Ω++≤,则dxdydz Ω =??? 4.级数 ∑∞ =1 1n p n 收敛,则p 5.微分方程1 +=''x e y 的通解 二.单项选择题(每小题3分,本题共15分) 1.存在),(0 y x f x ,) (00y x f y 。则有( )。 A ,),(y x f z =在),(0 y x 点连续。 B ,),(y x f z =在),(0 y x 点有定 C ,),(y x f z =在),(0 y x 点可微。 D ,),(y x f z =在),(0 y x 点存在极

2.数∑∞ =1 n n u 收敛,则下列级数( )也收敛。 A,1+∑∞=1 n n u B ,∑∞ =+1 ) 1(n n u C ,∑∞=1 n n u D, ∑∞ =--1 1 ) 1(n n u 3. 20 12333 +--+=y x y x z 的极大值点为( )。 A(1,2) B(-1,2) C (-1,-2) (1,-2) 4. 设曲线L :? ? ?==t a y t a x sin cos ] 2,0[π∈t ,则曲线积分 ()?= +L ds y x 22 。 A 、2 a π B 、2 2a π C 、 3 a π D 、3 2a π 5.表达式dy y x Q dx y x P ),(),(+为某一函数的全微分的充要条件是( ) A 、x P ??=y Q ??; B 、y P ??=x Q ??; C 、x P ??=y Q ??-; D 、y P ??=x Q ??- 。 二、 计算题(每小题8分,共7小题,共56分) 1、设函数),(xy y x f +=μ,具有二阶连续偏导数,求x u ??,y x u ???2。 2、求曲线x t t y t z t t =+=-=+2742542 2,,在点(,,)--561处的切线及法 平面方程。 3、画出积分区域的草图,并计算二重积分??=D dxdy x I 2 , 其中D 是由曲线2=xy ,2 1x y +=及直线2=x 所围成的区域。 4、求幂级数∑ ∞ =-1 )2(n n n x 的收敛半径与收敛域。 5、设()(02),f x x x =≤≤将f x ()展成以4为周期的正弦级数。

高等代数试题附答案

科目名称:《高等代数》 姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ ≌≌≌≌ 一、填空题(每小题5分,共25分) 1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。 2、向 量 组 ()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。 3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。 4、假设??? ? ? ??-----=175131023A 的特征根是 ,特征向量分别 为 。 5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为 二、是非题(每小题2分,共20分) 1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。( ) 2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。( ) 3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。( ) 4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。( )

5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变 换。其中),,,()(24232221x x x x =ξδ。( ) 6、矩阵A 的特征向量的线性组合仍是A 的特征向量。( ) 7、若矩阵A 与B 相似,那么A 与B 等价。( ) 8、n 阶实对称矩阵A 有n 个线性无关的特征向量。( ) 9、在)(2R M 中,若W 由所有满足迹等于零的矩阵组成,那么W 是 )(2R M 的 子空间。( ) 10、齐次线性方程组0)(=-X A E λ的非零解向量是A 的属于λ的特征向量。( ) 三、明证题(每小题××分,共31分) 1、设n εεε,,,21 是线性空间V 的一组基,A 是V 上的线性变换,证明:A 可逆当且仅当n A A A εεε,,,21 线性无关。 (10) 2、设δ是n 维欧氏空间V 的一个线性变幻,证明:如果δ是对称变幻, 2δ=l 是单位变幻,那么δ是正交变换。(11) 3、设V 是一个n 维欧氏空间,证明:如果21,W W 都是V 得子空间,那么() ⊥⊥⊥ =+2121W W W W 。(10) 四、计算题(每小题8分,共24分) 1、求矩阵??? ? ? ??---=466353331A 的特征根与特征向量,并求满秩矩阵P 使 得AP P 1-为对角形矩阵。 2、求一个正交矩阵U ,使得AU U '使对角形式,其中

高等代数期末卷及答案

沈阳农业大学理学院第一学期期末考试 《高等代数》试卷(1) 1 ?设 f (x) = x 4 +x ? +4x - 9 ,贝H f (一3) = 69 .. 2?当 t = _2,-2 . 时,f(x)=x 3 —3x+t 有重因式。 3.令f(x),g(x)是两个多项式,且f(x 3) xg(x 3)被x 2 x 1整除,则 f(1)=_0_^ g(1)= 0 . 0 6 2 =23 。 1 1 — -2 0 1 x , 2x 2 2x 3 x 4 二 0 7. 2x 1 x 2 -2x 3 -2x 4 二 0 的一般解为 x( ~'X 2 _'4x 3 ~3x 4 = 0 题号 -一- -二二 -三 四 五 六 七 总分 得分 、填空(共35分,每题5 分) 得分 4.行列式 1 -3 5. ■’4 10" 1 0 3 -1、 -1 1 3 '9 -2 -1 2 1 0 2」 2 0 1 < 9 9 11 <1 3 4 丿 6. z 5 0 0 1 -1 <0 2 1; 0-2 3 矩阵的积

c 亠5 刘=2x3 X4 4 x3, x4任意取值。X2 二-2x^ --x4

、(10分)令f(x),g(x)是两个多项式。求证 当且仅当(f(x) g(x), f(x)g(x))=1。 证:必要性.设(f(x) g(x), f (x)g(x)) =1。(1% 令 p(x)为 f (x) g (x), f (x)g(x)的不可约公因式,(1% 则由 p(x) | f (x)g (x)知 p(x)| f (x)或 p(x) |g(x) o (1%) 不妨设 p(x) | f (x),再由 p(x)|(f(x) g (x))得 p(x) | g(x)。故 p(x) |1 矛盾。(2%) 充分性.由(f (x) g(x), f (x)g(x)^1知存在多项式u(x), v(x)使 u(x)(f(x) g(x)) v(x)f(x)g(x)=1,(2%) 从而 u(x)f(x) g(x)(u(x) v(x) f(x)) =1,(2%) 故(f (x), g(x)) =1 o (1%) ax 「bx 2 2x 3 =1 ax 1 (2 b -1)x 2 3x 3 =1 ax 1 bx 2 - (b 3)X 3 = 2b _1 有唯一解、没有解、有无穷解?在有解情况下求其解。 解: a b 2 1 a b 2 1 a 2b -1 3 1 T 0 b —1 1 0 b J* b+3 2b-1 , b+1 2b-2 ‘ (5%) a 2 - b 0 1 0 b -1 1 0 L 0 0 b+1 2b —2 当b =1时,有无穷解:X 3 = 0, X 2 = 1 - a%,人任意取值; 当a =0,b =5时,有无穷解:x 1 = k,x^ --3,x^ 4 ,k 任意取值;(3%) 当b = T 或a =0且b =二1且b = 5时,无解。(4%) 三、(16分)a,b 取何值时,线性方程组 当a(b 2 T) = 0时,有唯一解: 5-b a(b 1) X 2 2 b+1 x3 = 2b -2 b 1 ;4%) (f(x),g(x)) =1

高等代数试题及答案

中国海洋大学2007-2008学年第2学期期末考试试卷

授课教师命题教师或 命题负责人签字年月日院系负责人签 字年月日 共 2 页第 2 页

中国海洋大学 XXXX-XXXX 学年 第X 学期 期末考试试卷 五(10分)证明:设A 为n 级矩阵,()g x 是矩阵A 的最小多项式,则多项式()f x 以A 为根的充要条件是()g x |()f x . 六(10分)设V 是数域P 上的n 维线性空间,A B ,是V 上的线性变换,且=AB BA .证明:B 的值域与核都是A 的不变子空间. 七(10分)设2n 阶矩阵a b a b A b a b a ??????? ? =? ?? ??????? O N N O ,a b ≠,求A 的最小多项式. 八(10分)设f 是数域P 上线性空间V 上的线性变换,多项式()(),p x q x 互素,且满足 ()()0p f q f =(零变换) 求证:()()()(),ker ,ker V W S W p f S q f =⊕==

中国海洋大学 2007-2008学年 第2学期 期末考试 数学科学 学院 《高等代数》试题(A 卷)答案 一.判断题 1.× 2.× 3.× 4.√ 5.√ 二.解:A =???? ????????1111111111111111, 3|(4)E A λλλ-=-|,所以特征值为0,4(3重). 将特征值代入,求解线性方程组()0E A x λ-=,得4个线性无关的特征向量(答案可以不唯一),再正交单位化,得4个单位正交向量: 11111 ,,,)'2222α=( ,2α=, 3α= ,4'α=. 所以正交阵1 212 102610 2 T ?????? ?=??- ?? ???????? 而40'00T AT ??????=??????. 三.证:(1) ,.A B M ?∈ 验证,A B kA M +∈即可. (2) 令1101 010011 0n E D E -???? ? ??? ??== ????? ?????? O O O ,D 为循环阵, 00n k k k E D E -?? = ??? ,(k E 为k 阶单位阵) 则2 1 ,,,,n n D D D D E -=L 在P 上线性无关.

高等数学二试题及完全解析

2018年全国硕士研究生入学统一考试 数学二考研真题与全面解析(Word 版) 一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1.若( ) 2 12 lim 1x x x e ax bx →++=,则() (A )1,12a b ==-(B )1,12a b =-=-(C )1,12a b ==(D )1 ,12a b =-= 【答案】(B ) 【解析】由重要极限可得 ()()()22 222 22 11 220 1 1 1 lim 21 1lim lim 1(1)lim 1(1)x x x x x x x x x x e ax bx e ax bx x x e ax bx x x e ax bx e ax bx e ax bx e →→→++-++-? ++-→=++=+++-=+++-=, 因此,2222 22 001 () 12lim 0lim 0x x x x x ax bx x e ax bx x x →→++++++-=?=ο 或用“洛必达”:2(1)200012212lim 0lim lim 0222 x x x b x x x e ax bx e ax b e a a x x ?=-→→→++-++++=?=======, 故1 ,12 a b ==-,选(B ). 2.下列函数中在0x =处不可导的是() (A )()sin f x x x =(B )()sin f x x x = (C )()cos f x x =(D )()cos f x x = 【答案】(D ) 【解析】根据导数定义,A.0 00sin ()(0) lim lim lim 0x x x x x x x f x f x x x →→→-===,可导; B.0 00sin ()(0) lim lim lim 0x x x x x x x f x f x x x →→→-===,可导;

高数2-期末试题及答案

北京理工大学珠海学院 2010 ~ 2011学年第二学期《高等数学(A)2》期末试卷A (答案) 适用年级专业:2010级信息、计算机、机械与车、化工与材料学院各专业 一.选择填空题(每小题3分,共18分) 1.设向量 a =(2,0,-2),b = (3,-4,0),则a ?b = 分析:a ?b = 2 234 i j k -- = -6j – 8k – 8i = (-8,-6,-8) 2.设 u = 2 2 3 x xy y ++.则 2u x y ??? = 分析:u x ?? = 22x y +, 则2u x y ??? = 2' (2)x y += 2y 3.椭球面 2 2 2 2315x y z ++= 在点(1,-1,,2)处的切平面方程为 分析:由方程可得,2 2 2 (,,)2315F x y z x y z =++- ,则可知法向量n =( Fx, Fy, Fz ); 则有 Fx = 2x , Fy = 4y , Fz = 6z ,则过点(1,-1,,2)处的法向量为 n =(2,-4,,12) 因此,其切平面方程为:2(1)4(1)12(2)0x y z --++-= ,即 26150x y z -+-= 4.设D :y = x, y = - x, x = 2直线所围平面区域.则 (2)D y d σ+=??___________ 分析:画出平面区域D (图自画),观图可得, 2 (2)(2)8x x D y d dx y dy σ-+=+=???? 5.设L :点(0 , 0 )到点(1 , 1)的直线段.则 2L x ds =? _________ 分析:依题意可知:L 是直线y = x 上点(0 , 0 )与点(1 , 1)的一段弧,则有 1 1 2 L x ds x x === ? ?? 6.D 提示:级数 1 n n u ∞ =∑发散,则称级数 1 n n u ∞ =∑条件收敛 二.解答下列各题(每小题6分,共36分)

高等代数习题及答案(1)

高等代数试卷 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、)(x p 若是数域F 上的不可约多项式,那么)(x p 在F 中必定没有根。 ( ) 2、若线性方程组的系数行列式为零,由克莱姆法则知,这个线性方程组一定是无解的。 ( ) 3、实二次型),,,(21n x x x f 正定的充要条件是它的符号差为n 。 ( ) 4、 321321;3,2,1,,,x x x i R x x x x W i 是线性空间3R 的一个子空间。( ) 5、数域F 上的每一个线性空间都有基和维数。 ( ) 6、两个n 元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。 ( ) 7、零变换和单位变换都是数乘变换。 ( ) 8、线性变换 的属于特征根0 的特征向量只有有限个。 ( ) 9、欧氏空间V 上的线性变换 是对称变换的充要条件为 关于标准正交基的矩阵为实对称矩阵。 ( ) 10、若 n ,,,21 是欧氏空间V 的标准正交基,且 n i i i x 1 ,那么 n i i x 1 2 。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写 在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、关于多项式的最大公因式的下列命题中,错误的是( ) ① n n n x g x f x g x f ,, ; ② n j i j i f f f f f j i n ,,2,1,,,1,1,,,21 ; ③ x g x g x f x g x f ,, ; ④若 1,1, x g x f x g x f x g x f 。 2、设D 是一个n 阶行列式,那么( ) ①行列式与它的转置行列式相等; ②D 中两行互换,则行列式不变符号; ③若0 D ,则D 中必有一行全是零; ④若0 D ,则D 中必有两行成比例。 3、设矩阵A 的秩为r r (>)1,那么( ) ①A 中每个s s (<)r 阶子式都为零; ②A 中每个r 阶子式都不为零;

厦门大学《高等代数》期末试题及答案(数学系)

10-11学年第一学期厦门大学《高等代数》期末试卷 厦门大学《高等代数》课程试卷 数学科学学院 各 系 2010 年级 各 专业 主考教师:杜妮、林鹭 试卷类型:(A 卷) 2011.1.13 一、 单选题(32 分. 共 8 题, 每题 4 分) 1) 设b 为 3 维行向量, 123123 V {(,,)|(,,)} x x x x x x b == ,则____。C A)对任意的b ,V 均是线性空间;B)对任意的b ,V 均不是线性空间;C)只有当 0 b = 时,V 是线性空间;D)只有当 0 b 1 时,V 是线性空间。 2)已知向量组 I : 12 ,,..., s a a a 可以由向量组 II : 12 ,,..., t b b b 线性表示,则下列叙述正确的是____。 A A)若向量组 I 线性无关,则s t £ ;B)若向量组 I 线性相关,则s t > ; C)若向量组 II 线性无关,则s t £ ;D)若向量组 II 线性相关,则s t > 。 3)设非齐次线性方程组AX b = 中未定元个数为 n ,方程个数为m ,系数矩阵 A 的秩为 r ,则____。 D A)当r n < 时,方程组AX b = 有无穷多解; B) 当r n = 时,方程组AX b = 有唯一解;C)当r m < 时,方程组AX b = 有解;D)当r m = 时,方程组AX b = 有解。 4) 设 A 是m n ′ 阶矩阵,B 是n m ′ 阶矩阵,且AB I = ,则____。A A)(),() r A m r B m == ;B)(),() r A m r B n == ;C)(),() r A n r B m == ; D)(),() r A n r B n == 。 5) 设 K 上 3 维线性空间 V 上的线性变换j 在基 123 ,, x x x 下的表示矩阵是 111 101 111 ?? ?÷ ?÷ ?÷ è? ,则j 在基 123 ,2, x x x 下的表示矩阵是____。C A) 121 202 121 ?? ?÷ ?÷ ?÷ è? ; B) 1 2 11 22 1 2 11 0 11 ?? ?÷ ?÷ ?÷ è? ; C)11 22 121 0 121 ?? ?÷ ? ÷ ?÷ è? ;D) 1 2 1 2 11 202 11 ?? ?÷ ?÷ ?÷ è? 。 6) 设j 是 V 到 U 的线性映射,dim V ,dim U n m == 。若m n < ,则j ____。B A)必是单射; B)必非单射; C)必是满射;D)必非满射。

高等代数试卷及答案--(二)

一、填空题 (共10题,每题2分,共20 分) 1.只于自身合同的矩阵是 矩阵。 2.二次型()()11212237,116x f x x x x x ?? ??= ? ????? 的矩阵为__________________。 3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。 4.正交变换在标准正交基下的矩阵为_______________________________。 5.标准正交基下的度量矩阵为_________________________。 6.线性变换可对角化的充要条件为__________________________________。 7.在22P ?中定义线性变换σ为:()a b X X c d σ?? = ??? ,写出σ在基11122122,,,E E E E 下的 矩阵_______________________________。 8.设1V 、2V 都是线性空间V 的子空间,且12V V ?,若12dim dim V V =,则_____________________。 9.叙述维数公式_________________________________________________________________________。 10.向量α在基12,,,n ααα???(1)与基12,,,n βββ???(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。 二、判断题 (共10 题,每题1分,共10分) 1.线性变换在不同基下的矩阵是合同的。( ) 2.设σ为n 维线性空间V 上的线性变换,则()1 0V V σσ -+=。 ( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实数域上的线性空间。( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++???+=与12n x x x ==???=的解空间,则 12n V V P ⊕= ( ) 5.2 2 11n n i i i i n x x ==??- ??? ∑∑为正定二次型。( ) 6.数域上任意一个矩阵都合同于一对角矩阵。( ) 7.把复数域C 看作复数域上的线性空间,C ξ?∈,令σξξ=,则σ是线性变换。( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。( ) 9.欧氏空间中不同基的度量矩阵是相似的。( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。( ) 三、计算题 (共3题,每题10分,共30分)

高等数学试卷2及答案

1 高等数学(A2)试卷(二) 答案及评分标准 一、选择题(本大题共8小题,每题4分,共32分) 1. B, 2. D, 3. B, 4. C, 5. D, 6. B, 7. D, 8. B. 二、计算题(本大题共4小题,没题7分,共28分) 1. 设),(y x z z =是由方程333a xyz z =-确定的隐函数, 求dz . 解: 方程两边对x 求导,得 03332='--'x x z xy yz z z (1分) 解得 xy z yz z x -= '2 (3分) 方程两边对x 求导,得 xy z xz z y -= '2 (5分) 所以, )(2 xdy ydx xy z z dz +-= (7分) 2. 求?? -= D dxdy y x I 22, D 由1,==x x y 及x 轴围成. 解: x y x D ≤≤≤≤0,10:, 故有 ? ? -= 10 22x dy y x dx I (2分) 令t x y cos =, 则有 ? ?=10 20 22 sin π tdt dx x I (6分) 12 π = (7分) 3. 求函数)1ln()(432x x x x x f ++++=的麦克劳林展开式及收敛区间. 解: x x x f --=11ln )(5 (2分) 由∑ ∞=-≤<--= +11 )11() 1()1ln(i n n t n t t , 可得 (4分) ∑∞ =<≤--=-155 )11()1ln(i n x n x x (5分) ∑∞ =<≤--=-1)11()1ln(i n x n x x (6分) 所以, ∑∑∞=∞ =<≤--=151)11()(i n i n x n x n x x f (7分) 4. 求微分方程1 cos 1222-=-+'x x y x x y 满足1)0(=y 的特解. 解: 方程两边同乘1)(2122-=?=-- x e x dx x x μ得 (2分) x y x dx d cos ])1[(2=-, c x y x +=-sin )1(2 (4分) 通解为, 1 sin 2 -+=x c x y (5分) 由1)0(=y 得1-=c , 所求特解为1 1 sin 2 --=x x y (7分) 三、计算题(本题8分) 用高斯公式计算?? ∑ ++= dxdy z dzdx y dydz x I 222, 其中∑为立体 c z b y a x ≤≤≤≤≤≤Ω0,0,0:的表面外侧. 解: 由高斯公式可得

哈理工(2)高数考试试题B

考试科目: 高等数学 考试时间:120分钟 试卷总分100分 一、选择题(在每个小题四个备选答案中选出一个正确答案,填在括号中)(本大题共5 小题,每小题4分,总计20分) 1、设L 是2 2 2 a y x =+(0>a )的正向圆周,则y y xy x y x x L d )(d )(3223? -+-的 值为( ). (A) 2π4a ; (B) 4 πa -; (C) 4πa ; (D) 33 π2a . 2、设 Ω为立方体:10≤≤x ,10≤≤y ,10≤≤z ,则 =??? Ω z y x y x d d d 2 ( ). (A) 31 ; (B) 41; (C) 61; (D) 8 1 3、幂级数 () ∑∞ =-1 1n n n n x 的收敛域为( ). (A) ]1,1[-; (B) )1,1[-; (C) ]1,1(-; (D) )1,1(-. 4、设a ,b +=-,则必有( ). (A) =+; (B) =-; (C) =?; (D) 0=? . 5、微分方程x x y y y 2e e 36+=+'-''的特解应具有的形式为( ). (A ))e e (2x x B A x +; (B )x x B A 2e e +; ( C )x x Bx A 2e e +; ( D )x x B Ax 2e e +. 二、填空题(将正确的答案填在横线上)(本大题共5小题,每小题4分,总计20分) 1、设y x u =(0>x ,1≠x ),则.= u d .

2、曲线 ?? ???==-01 422 z x y 绕x 轴旋转一周,所得的旋转曲面的方程为 . 3、设∑的方程为22y x z += 在10≤≤z 部分的上侧,则??∑ =y x z d d 2 . 4、设2 2 2),,(z xy x z y x f ++=,则),,(z y x f 在点)2,1,1(-处沿方向{}1,2,2-=l 的方向导数为 . 5、设D 是两坐标轴及直线1=+y x 围成的区域,则 ??+D y x y x d d )(的值为 . 三、解答下列各题(1、2、3、4每小题7分,5、6每小题10分,总48分) 1、求过点)4,2,1(-A 且与二平面02=-+z y x 及023=++z y x 都平行的直线方程. 2、求曲面0582 =++--z x xy x 在点)1,3,2(-处的切平面与法线方程.

免费-高等代数试卷二及答案

高等代数试卷二 一、 单项选择题(每小题2分,共10分) 【 】1、设)(x f 为3次实系数多项式,则 A.)(x f 至少有一个有理根 B. )(x f 至少有一个实根 C.)(x f 存在一对非实共轭复根 D. )(x f 有三个实根. 【 】2、设,A B 为任意两个n 级方阵,则如下等式成立的是 A. 222()2A B A AB B +=++ B. A B A B +=+ C. AB B A = D. A B A B -=- 【 】3、设向量组12,αα线性无关,则向量组1212,a b c d αααα++线性无关的充分必要条件为 A. ad bc ≠ B. ad bc = C. ab cd ≠ D. ab cd = 【 】4.一个(2)n ≥级方阵A 经过若干次初等变换之后变为B , 则一定有 A. A B = B. 0Ax =与0Bx =同解 C. 秩()A =秩()B D. * * A B = 【 】5、设矩阵A 和B 分别是23?和33?的矩阵,秩()2A =,秩()3B =,则秩 ()AB 是 A. 1 B. 2 C. 3 D. 4二、填空题(每小题2分,共20分) 1.多项式)(x f 没有重因式的充要条件是 . 2 .若()()1f x g x +=,则((),())f x g x = . 3. 设1230231002A ??????=???????? ,则*1 ()A -= .

4. 行列式1 23 00 00 a a a 的代数余子式之和:313233A A A ++为______________. 5.设3级方阵1211222,2A B ααββββ???? ? ? == ? ? ? ????? ,其中,i i αβ均为3维行向量。若16,2A B ==, 则A B -= . 6. 若矩阵A 中有一个r 级子式不为0, 则 r(A)= . 7.线性方程组 121232 343414 x x a x x a x x a x x a -=??-=??-=??-=?, 有解的充要条件是 . 8. 若向量组12,,r ααα可由12,,s βββ线性表示,且12,,r ααα线性无关,则 r s. 9.设A 为3级矩阵, 且1 2 A = , 则 1*A A --= 10. 设00120 0373*******A ?? ? ? = ? ? ??? , 则1A -= . 三、判断题(每小题2分,共10分) 【 】1、若不可约多项式p(x)是()f x '的2重因式,则p(x)是)(x f 的3重因式. 【 】2、设n 级方阵A 为可逆矩阵,则对任意的n 维向量β,线性方程组Ax β=都有解。 【 】3、若有方阵,,A B C 满足AB AC =,则B C = 【 】4、初等矩阵的转置矩阵均为初等矩阵。 【 】5、设A 为n 阶方阵, B 是A 经过若干次矩阵的初等变换后所得到的矩阵,则||0A = 当且仅当 ||0B =.四、计算题(每小题10分,共40分)

《高等代数》(上)期末试卷(A)

《高等代数》(上)期末试卷(A ) 一、填空题(每空3分,共15分) 1.设方阵1112223 3 3b x c A b x c b x c ????=??????,1 112 223 3 3b y c B b y c b y c ?? ??=? ????? ,且2,3A B =-=, 则行列式2A B += . 2.已知A 是一个34?矩阵,且秩()2A =,而102020103B ????=?????? ,则秩()BA = . 3. 多项式2005 20042 322006()(54)31(8112)f x x x x x x ??=--+-+?? 的所有系数之和 = ,常数项= . 4. ()f x 为多项式,用1x -除时余式为3,用3x -除时余式为5,则用(1)(3)x x --除时余式为 . 二、选择题(每题3分,共12分) 1.设n 维向量组12345,,,,ααααα的秩为3,且满足135230,ααα+-= 242,αα=则向量组的一个极大无关组为( ) A . 125,,ααα; B . 124,,ααα; C. 245,,ααα; D. 135,,ααα. 2. A 是m n ?矩阵,B 是n m ?矩阵,则( ) A . 当m n >时,必有行列式0A B ≠; B . 当m n >时,必有行列式0AB =; C . 当n m >时,必有行列式0AB ≠; D . 当n m >时,必有行列式0AB =. 3.设,A B 都是可逆矩阵,则矩阵0A C B ??????的逆矩阵为( ) A . 1 1 10A C B ---?? ????; B . 1110B C A ---?????? ;

高等代数真题答案

第六章习题册 1. 检验下述集合关于所规定的运算是否构成实数域R 上的线性空间? (a) 集合{()[]deg()}f x R x f n ∈|=关于多项式的加法和数乘. (b) 集合{()}T n A M R A A ∈|=关于矩阵的加法和数乘. (c) 集合0{{}}n n n x x R ∞=|∈关于数列的加法和数乘. 2. 设V 是数域F 上的线性空间, 证明(αβ)αβk k k ?=?, 这里αβV k F ,∈,∈.

3. 下述集合是否是()n M R 的子空间 (a) { ()}T n V A M R A A =∈|=? (b) {()()[]}V f A f x R x =|∈, 这里()n A M R ∈是一个固定方阵. 4. 叙述并证明线性空间V 的子空间1W 与2W 的并12W W ∪仍为V 的子空间的充分必要条件. 5. 设1S 与2S 是线性空间V 的两个非空子集, 证明: (a) 当12S S ?时, 12()()Span S Span S ?. (b) 1212()()()Span S S Span S Span S =+∪. (c) 1212()()()Span S S Span S Span S ?∩∩.

6. 如果123f f f ,,是实数域上一元多项式全体所成的线性空间[]R x 中三个互素的多项式, 但其中任意两个都不互素, 那么它们线性无关.试证之. 7. 设S 是数域F 上线性空间V 的一个线性无关子集, α是V 中一个向量, αS ?, 则{α}S ∪线性相关充分必要条件α()Span S ∈. 8. (a) 证明{|()}ij ji E E i j +≤是()n M F 中全体对称矩阵组成的子空间的一个基. (b). 求3()M F 的子空间{()()[]}f A f x F x |∈ 的一个基和维数, 这里010001000A ???? =?????? 9. 在4 R 中, 求向量ξ在基1234(εεεε),,,下的坐标, 其中 12341210111112εεεεξ0301311014??????????????????????????????=,=,=,=,=????????????????????????????????????????

高等代数期末卷 及答案

沈阳农业大学理学院第一学期期末考试 《高等代数》试卷(1) 一、 填空(共35分,每题5分) 1.设4 2 ()49f x x x x =++-, 则(3)f -= 69_ .. 2.当t = _2,-2 .时, 3()3f x x x t =-+有重因式。 3. 令 ()f x ,()g x 是两个多项式, 且33()()f x xg x +被21x x ++整除, 则 (1)f = 0_ , (1)g = _0 . 4. 行列式 31 0210 62 101132 1 -=-- 23 。 5. 矩阵的积41010311 1321022 011 34?? ? --?? ?= ? ??? ??? 9219911--?? ???。 6. 1 500031021-?? ?= ? ??? 1 05011023?? ? ?- ? ? - ??? 7. 1234123412342202220430 x x x x x x x x x x x x +++=?? +--=??---=?的一般解为 134234523423x x x x x x ? =+??? ?=--?? , 34,x x 任意取值。 二、(10分)令()f x ,()g x 是两个多项式。求证((),())1f x g x =当且仅当

(()(),()())1f x g x f x g x +=。 证:必要性. 设(()(),()())1f x g x f x g x +≠。(1%) 令()p x 为()(),()()f x g x f x g x +的不可约公因式,(1%)则由()|()()p x f x g x 知 ()|()p x f x 或()|()p x g x 。(1%) 不妨设()|()p x f x ,再由()|(()())p x f x g x +得()|()p x g x 。故()|1p x 矛盾。(2%) 充分性. 由(()(),()())1f x g x f x g x +=知存在多项式(),()u x v x 使 ()(()())()()()1u x f x g x v x f x g x ++=,(2%) 从而()()()(()()())1u x f x g x u x v x f x ++=,(2%) 故((),())1f x g x =。(1%) 三、(16分),a b 取何值时,线性方程组 有唯一解、没有解、有无穷解?在有解情况下求其解。 解: 21212131011032100122201011000122a b a b a b b a b b b b b a b b b b ???? ? ?-→- ? ? ? ?+-+-????-?? ?→- ? ?+-?? (5%) 当2 (1)0a b -≠时,有唯一解:1235222 , (1)+11 b b x x x a b b b ---= ==++,; (4%) 当1b =时,有无穷解:3210,1,x x ax ==-1x 任意取值; 当a 0,5b ==时,有无穷解:14 12333,,,x k x x k ==-=任意取值;(3%) 当1b =-或0 1 5a b b =≠±≠且且时,无解。(4%) 四、(10分)设12,,...,n a a a 都是非零实数,证明 证: 对n 用数学归纳法。当n=1时 , 1111 1 1(1)D a a a =+=+, 结论成立(2%); 假设n-1时成立。则n 时

相关文档
最新文档