LD光束经自聚焦透镜变换后的特性研究

zemax自聚焦透镜设计

目录 摘要................................................................ I Abstract........................................................... II 绪论. (1) 1 自聚焦透镜简介 (2) 1.1自聚焦透镜 (2) 1.2 自聚焦透镜的特点 (2) 1.3 自聚焦透镜的主要参数 (3) 2 自聚焦透镜的应用 (4) 2.1 聚焦和准直 (4) 2.2 光耦合 (5) 2.3 单透镜成像 (6) 2.4 自聚焦透镜阵列成像 (6) 3 球面自聚焦透镜设计仿真 (8) 3.1 确定透镜模型 (8) 3.2 设置波长 (8) 3.3数值孔径设定 (9) 3.4 自聚焦透镜光路 (9) 4 优化参数 (10) 4.1光线相差分析 (10) 4.2聚焦光斑分析 (12) 4.3 3D模型 (12) 结束语 (13) 致谢 (14) 参考文献 (15)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

Abstract This article main showing the impact analysis designs the self-focusing lens using the gradient refractive index to the light emission (GRIN lens), the self-focusing lens mainly apply in the optical fiber transmission system. The self-focusing lens lie in with the ordinary lens' difference, the self-focusing lens material can cause along the axial transmission light to have the refraction, and causes the refractive index the distribution to reduce gradually along the radial direction, thus realizes the exit ray by smooth and the continual gathering to a spot. Using this characteristic, G-lens in the optical fiber transmission system is the constitution collimation, the coupling, imaging system's main part. But its structure is simple, the volume small characteristic is suitable in the small optics equipment, for example looking glass system. Keywords:Gradient index, GRIN lens, Light coupling,Collimation

高斯光束的透镜变换实验哦

实验三 高斯光束的透镜变换实验 一 实验目的 1.熟悉高斯光束特性。 2.掌握高斯光束经过透镜后的光斑变化。 3.理解高斯光束传输过程. 二 实验原理 众所周知,电磁场运动的普遍规律可用Maxwell 方程组来描述。对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。使用高斯光束的复参数表示和ABCD 定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。 在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式: ()2 2 2() [ ]2() 00 ,() r z kr i R z A A r z e e z ωψωω---= ? (6) 式中,0A 为振幅常数;0ω定义为场振幅减小到最大值的1的r 值,称为腰斑,它是高斯光束光斑半径的最小值;()z ω、()R z 、ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为: ()z ωω=(7) 000()Z z R z Z Z z ?? =+ ??? (8)

1 z tg Z ψ-= (9) 其中,2 00Z πωλ =,称为瑞利长度或共焦参数(也有用f 表示)。 (A )、高斯光束在z const =的面内,场振幅以高斯函数2 2() r z e ω-的形式从中心向 外平滑的减小,因而光斑半径()z ω随坐标z 按双曲线: 22 00 ()1z z Z ωω-= (10) 规律而向外扩展,如图四所示 高斯光束以及相关参数的定义 图四 (B )、 在(10)式中令相位部分等于常数,并略去()z ψ项,可以得到高斯光束的等相面方程: 2 2() r z const R z += (11) 因而,可以认为高斯光束的等相面为球面。 (C )、瑞利长度的物理意义为:当0z Z = 时,00()Z ω=。在实际应用中通常取0z Z =±范围为高斯光束的准直范围,即在这段长度范围内,高斯光束近似认

zemax自聚焦透镜设计

目录 摘要 .................................................................................................................................................. I Abstract .......................................................................................................................................... I I 绪论 . (1) 1 自聚焦透镜简介 (2) 1.1自聚焦透镜 (2) 1.2 自聚焦透镜的特点 (2) 1.3 自聚焦透镜的主要参数 (3) 2 自聚焦透镜的应用 (4) 2.1 聚焦和准直 (4) 2.2 光耦合 (5) 2.3 单透镜成像 (6) 2.4 自聚焦透镜阵列成像 (6) 3 球面自聚焦透镜设计仿真 (8) 3.1 确定透镜模型 (8) 3.2 设置波长 (8) 3.3数值孔径设定 (9) 3.4 自聚焦透镜光路 (9) 4 优化参数 (10) 4.1光线相差分析 (10) 4.2聚焦光斑分析 (12) 4.3 3D模型 (12) 结束语 (13) 致 (14) 参考文献 (15)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

用自聚焦透镜作平行光束

光子学报 ACTA PHOTONICA SINICA 1999年第28卷第2期Vol.28No.21999 用自聚焦透镜作平行光束 与单模光纤的最佳耦合 高应俊姚胜利高凤 摘要本文提出一种用两片自聚焦透镜组合而成的耦合系统,可以实现平行光束与单模光纤的最佳耦合.文中给出了该耦合系统的参数计算公式,并进行了计算机数字式计算,最后推导给出了最佳结构参数计算的解析公式.表明给出的耦合系统具有唯一最佳结构参数解,并且这种解具有和谐的对称性. 关键词耦合;自聚焦透镜;单模光纤 OPTIMIZED COUPLING OF GRADIENT INDEX ROD LENSES WITH SINGLE MODE FIBER GaoYingjun,YaoShengli,GaoFeng Xi′an Institute of Optics and Precision Mechanics,Xi′an,China 710068 Abstract A coupling system composed of two-pieces of gradient index rod lenses is developed to achieve optimized coupling between a collimating light beam and a single mode fiber.The calculating expressions for the construction parameters of the coupling system are given,and the digital computing by using computer was carried out,the analytical formula for obtaining the optimized construction parameters were derived.The formula show that the best solution for the coustruction parameters is exist and unique,and is harmonic and symmetric. Keywords Coupling;Gradient index rod lens;Single mode fiber 0 引言 在光纤的使用实践中,经常需要解决光束与单模光纤(single Mode Fiber,SMF)的高效耦合问题.自聚焦透镜(Gradient Index Rod Lens,GRIN or Selfoc Lens)由于其优越的小体积、平端面、易加工、易调整对准、易耦合组装、耦合效率高,而特别地受到重用.然而单片自聚焦透镜由于其确定的性能参数,难以同时满足单模光纤的小芯径(约8~

方形自聚焦透镜的折射率分布研究

第34卷第2期2010年3月激光技术 LASERTECHNOLOGY V01.34,No.2 March,2010 文章编号:1001—3806(2010)02.0268.04 方形自聚焦透镜的折射率分布研究 杨永佳,周自刚’,韩艳玲,孙光春,王强 (西南科技大学理学院,绵阳621900) 摘要:为了获得方形自聚焦透镜的折射率分布,提出了一种求解其折射率分布的半经验方法。该方法利用圆形边界条件下获得的扩散方程的解去近似方形边界条件下扩散方程的解,该近似解中的4个待定系数用雅明干涉法测得的方形自聚焦透镜4个位置点上的折射率来确定。该方法避免了在方形边界条件下求解扩散方程的复杂过程,得到的半经验公式形式简单、计算方便,利用半经验公式计算得到的折射率与实验结果吻合得较好,二者之间的最大相对误差为0.94%,平均相对误差不超过0.3%。该公式为以后研究方形自聚焦透镜阵列成像问题提供了可供参考的理论依据。 关键词:信息光学;折射率分布;雅明干涉;方形自聚焦透镜 中图分类号:0435.1文献标识码:Adoi:10.3969/j.issn.1001-3806.2010.02.034 Studyonrefractiveindexdistributionofthesquareself-focusinglens YANGrong-jia,ZHOUZi—gang,HANYan—ling,SUNGuang—chun,WANGQia凡g (SchoolofScience,SouthwestUniversityofScienceandTechnology,Mianyang621000,China)Abstract:Inordertoacquiretherefractiveindexdistributionofasquareself-focusinglens.asemi-empiricalmethodwasputforward.Thediffusionequation’ssolutionunderthesquareboundaryconditionsWasapproximatedbythesolutionunderthe circularboundaryconditions.Thefourunknowncoefficientsoftheapproximatesolutionwereacquiredbytheknownrefractiveindexofthesquareself-focusinglen¥.andtherefractiveindexWasobtainedbyJamininterfefence.Thismethodavoidsthe complexprocessofsolvingthediffusionequationunderthesquare boundaryconditions,andtheobtainedsemi—empiricalformulaisverysimpleandeasycalculation.Thecalculationresultagreeswellwiththeexperimentaldata,themaximalrelativeerroris0.94%,andtheaverageislessthan0.3%,thisformulaprovidesabasisforthetheoreticalanalysisofimagingofthesquareself-mixinglensesarrays. Keywords:informationoptics;refractiveindexdistribution;Jamininterference;squareself-focusinglens 引言 自聚焦透镜是应用十分广泛的一类有重要意义的透镜,由于自聚焦透镜具有数值孔径大(可大于0.6)、焦距短(焦点可位于端面上)、直径小、圆柱形、聚焦光斑小(可小于1斗m)、成像分辨率高等优点,已广泛用于光纤通信、光纤传感和光信息处理等领域¨引。随着科技的发展,微透镜的集成化和阵列化是发展的必然趋势[4引。当前应用的微透镜阵列大多数是由圆柱形或者半圆球形微透镜构成的,均因不能很好地消除透镜元之间的空隙对光信息的损耗,不可能从根本上解决提高受光面积、减少光信息损失等问题¨1。为了解决这一问题,作者研制出了方形自聚焦透镜¨1。 方形自聚焦透镜也是一种变折射率光学元件,但 作者简介:杨永佳(1983-),女,硕士研究生,现主要从事微小光学的研究。 ?通讯联系人。E—mail:zhouzigan91973@163.com 收稿日期:2009-Ol一14;收到修改稿日期:2009—04-09 由于本身的特点,折射率分布不单纯关于某个轴对称,即折射率分布从整体上而言,不再是l维的,而变成了2维的情况旧J。要得到方形自聚焦透镜的折射分布,需要严格求解方形边界条件的扩散方程,但该过程较为复杂归J。作者首先介绍了制作自聚焦透镜的基本理论,然后从理论上分析了采用圆形边界条件下扩散方程的解,近似方形边界条件下扩散方程的解的可行性,在此基础上得到了一个描述自聚焦透镜折射率分布的半经验公式,该公式形式简单,对折射率的计算非常方便且有较高的精度。 1制作方形自聚焦透镜的基本理论 引起玻璃介质折射率变化的原因有很多种,最重要的一种就是通过离子交换使玻璃介质中的某种离子数目发生变化,其原理¨训就是在热驱动条件下,让引进的扩散离子部分置换玻璃中的某种离子,从而使得玻璃中该种离子数目按一定规律变化,并引起折射率也按相应的规律变化。 万方数据

zemax自聚焦透镜设计学习资料

目录摘要Abstract............................................................ I 绪论. 0 1 自聚焦透镜简介 (1) 1.1自聚焦透镜 (1) 1.2 自聚焦透镜的特点 (1) 1.3 自聚焦透镜的主要参数 (2) 2 自聚焦透镜的应用 (3) 2.1 聚焦和准直 (3) 2.2 光耦合 (4) 2.3 单透镜成像 (5) 2.4 自聚焦透镜阵列成像 (5) 3 球面自聚焦透镜设计仿真 (7) 3.1 确定透镜模型 (7) 3.2 设置波长 (7) 3.3数值孔径设定 (8) 3.4 自聚焦透镜光路 (8) 4 优化参数 (9) 4.1光线相差分析 (9) 4.2聚焦光斑分析 (11) 4.3 3D模型 (11) 结束语 (12) 致谢 (13)

参考文献 (14)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

Abstract This article main showing the impact analysis designs the self-focusing lens using the gradient refractive index to the light emission (GRIN lens), the self-focusing lens mainly apply in the optical fiber transmission system. The self-focusing lens lie in with the ordinary lens' difference, the self-focusing lens material can cause along the axial transmission light to have the refraction, and causes the refractive index the distribution to reduce gradually along the radial direction, thus realizes the exit ray by smooth and the continual gathering to a spot. Using this characteristic, G-lens in the optical fiber transmission system is the constitution collimation, the coupling, imaging system's main part. But its structure is simple, the volume small characteristic is suitable in the small optics equipment, for example looking glass system. Keywords:Gradient index, GRIN lens, Light coupling,Collimation

傅里叶变换光学

中山大学光信息专业实验报告:傅里叶光学变换系统 一、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT 性质及常用函数与图形的关学频谱分析 透镜由于本身厚度的不同,使得入射光在通过透镜时, 图1 点的厚度。设原复振幅分布为(,)L U x y 的光通过透镜后,幅分布受到透镜的位相调制,附加了一个位相因子(,)x y ?为(,)L U x y ': 图1 (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为: 00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ?=-+=+- (2) (2)中的k =2π/λ,为入射光波波数。 用位相延迟因子(,)t x y 来表示即为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:

自聚焦透镜产品说明书范本

自聚焦透镜 产品讲明书 北京旭廷科技开发有限公司 2004年8月

讲明书目录 1.产品概述及参数列 表 (1) 2.订货信 息 (3) 3.使用注意事 项 (5) 附:自聚焦透镜原理简介 (6)

1.产品概述及参数列表 自聚焦透镜又称梯度渐变折射率(GRIN)透镜,其折射率从中心轴到周边沿径向梯度减小,呈轴对称抛物线分布。它具备准直、聚焦、耦合等功能,具有体积小、耦合效率高、插入损耗低的优点,同时能够在端面成像。自聚焦透镜广泛用于各种有源、无源光器件,如光纤连接器、光纤耦合器、波分复用器、光衰减器、光隔离器、光滤波器、光开关、光纤准直器、掺铒光纤放大器、光纤光栅等;同时它也广泛应用于医用光学领域,如数码电子宫腔镜等医用内窥镜。

本公司生产的自聚焦透镜要紧用于光通信领域,其表面质量指标如下: 针孔、麻点:直径范围内不同意存在直径大于30um的缺陷;不同意直径大于10um的杂质缺陷存在;直径在10um-30um之间的缺陷少于4处。 划痕:不同意宽度超过5um的划伤;同意宽度小于2um的划伤存在;不同意宽5um长200um划伤。 崩边:在中心区域的90%范围内不得有崩边。 要紧应用参数如下表:

其他技术指标如下: 2.产品订货信息 本公司产品采纳如下命名方法:

43o 55o 74o A-孔径角2θ 序号X1 X2 X3 B-直径(mm) 1.0 1.8 2.0 序号10 18 20 C-截距P 0.23 0.25 0.29 序号023 025 029 D-波长(nm) 630 830 1060 1310 1550 序号630 830 1060 1310 1550 E-镀膜单面镀膜双面镀膜不镀膜 序号AR1 AR2 N F-角度1o 2o 3o 4o 2o 4o 6o 8o 序号1D 2D 3D 4D 2 4 6 8 示例:SL-X2-10-025-1310-AR2-3D,表示需要定购的自聚焦透镜孔径角为55o、直径1.0mm、截距0.25P、应用波长1310nm、双端面倾角为3o同时双面镀膜。 依照客户要求,可对透镜进行的专门工艺处理讲明如下: (1)端面角度化处理:此种处理能够有效减少回光反射。有

自聚焦透镜产品说明书范本

自聚焦透镜产品说明书 北京旭廷科技开发有限公司 2004年8月

说明书目录 1.产品概述及参数列表 (1) 2.订货信息 (3) 3.使用注意事项 (5) 附:自聚焦透镜原理简介 (6)

1.产品概述及参数列表 自聚焦透镜又称梯度渐变折射率(GRIN)透镜,其折射率从中心轴到周边沿径向梯度减小,呈轴对称抛物线分布。它具备准直、聚焦、耦合等功能,具有体积小、耦合效率高、插入损耗低的优点,并且可以在端面成像。自聚焦透镜广泛用于各种有源、无源光器件,如光纤连接器、光纤耦合器、波分复用器、光衰减器、光隔离器、光滤波器、光开关、光纤准直器、掺铒光纤放大器、光纤光栅等;同时它也广泛应用于医用光学领域,如数码电子宫腔镜等医用内窥镜。 本公司生产的自聚焦透镜主要用于光通信领域,其表面质量指标如下: 针孔、麻点:直径范围内不允许存在直径大于30um的缺陷;不允许直径大于10um的杂质缺陷存在;直径在10um-30um之间的缺陷少于4处。 划痕:不允许宽度超过5um的划伤;允许宽度小于2um的划伤存在;不允许宽5um长200um划伤。 崩边:在中心区域的90%范围内不得有崩边。 主要应用参数如下表:

其他技术指标如下:

最小透镜长度 2.3 mm(对镀膜透镜) 圆柱度≤5μm 面垂直度≤6 mrad 材料耐温≤350 o C 热胀系数10×10-6/ o C 2.产品订货信息 本公司产品采用如下命名方法: A-孔径角2θ43o 55o 74o 序号X1 X2 X3 B-直径(mm) 1.0 1.8 2.0 序号10 18 20 C-截距P 0.23 0.25 0.29 序号023 025 029 D-波长 (nm) 630 830 1060 1310 1550 序号630 830 1060 1310 1550

傅里叶变换光学

中山大学光信息专业实验报告:傅里叶光学变换系统 一、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT 性质及常用函数与图形的关学频谱分析 力。图1 在该点的厚度。设原复振幅分布为(,)L U x y 其复振幅分布受到透镜的位相调制,附加了一个位相因(,)x y ?后变为(,)L U x y ': 图1 (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为: 00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ?=-+=+- (2) (2)中的k =2π/λ,为入射光波波数。 用位相延迟因子(,)t x y 来表示即为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:

22012 111(,)()()2D x y D x y R R =-+- (4) 其中1R 、2R 是构成透镜的两个球面的曲率半径。公式(4)对双凹、双凸、或凹凸透镜都成立。引入焦距f ,其定义为: 12 111(1)()n f R R =-- (5) 代入(3)得: 220(,)exp()exp[()]2k t x y jknD j x y f =-+ (6) 式(6)即是透镜位相调制的表达式,它表明复振幅(,)L U x y 通过透镜时,透镜各点都发生位相延迟。 从式(6)容易看出第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。第二项22exp[()]2k j x y f -+是具有调制作用的因子,它表明光波通过透镜的位相延迟与该点到透镜中心的距离的平方成正比。而且与透镜的焦距有关。当考虑透镜孔径后,有: 22(,)exp[()](,)2k t x y j x y p x y f =-+ (7) 其中的(,)p x y 为透镜的光瞳函数,表达式为: 1(,)0p x y ?=?? 孔径内 其 它 (8) 2、透镜的傅里叶变换性质 在单色平面波垂直照射下,夫琅和斐衍射光场的复振幅分布正比于衍射屏透射系数的傅里叶变换。衍射图像的强度分布正比于衍射屏的功率谱分布。一般情况下,我们是将夫朗和斐衍射图像成像到透镜的像方焦平面出,这就是说,作为成像元件的透镜,就相当于傅里叶变换器。 如图2所示,设单位振幅的单色平面光垂直照射一透射系数为(,)t x y 的衍射屏,与衍射屏相距Z 处放置一焦距为f 的薄透镜L ,先观察其像方平面L 的光场分布。为了讨论方便,这里我们忽略透镜材料的吸收、散射、透镜表面的反射以及透镜孔径大小等因素的影响。

物理光学 第三章

第三章 高斯光束基本理论 激光由于其良好的方向性、单色性、相干性和高亮度在军事中在已经有了很多应用,激光器发出的光束是满足高斯分布的,因而本章将对高斯光束的基本特性和一些参数进行简单地理论描述。 高斯光束及基本参数 激光器产生的光束是高斯光束。高斯光束依据激光腔结构和工作条件不 同,可以分为基模高斯光束、厄米分布高阶模高斯分布、拉盖尔分布高阶模高斯 分布和椭圆高斯光束等。激光雷达常常使用激光谐振腔的最低阶模00TEM 模。 高斯光束的分布函数: )ex p(),(22 0a r I a r I -= (3-1) 从激光谐振腔发出的模式辐射场的横截面的振幅分布遵守高斯分布,即光能量遵守高斯分布,但是高斯光束不是严格的电磁场方程解,而是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以很好地描述基模激光光束的性质。稳态传输电磁场满足赫姆霍兹方程: ()0,,),,(2=+?z y x E k z y x E (3-2) 式中),,(z y x E 与电场强度的复数表示),,,(t z y x E 间有关系: )exp(),,(),,,(t i z y x E t z y x E ω= (3-3) 高斯光束不是式子(2-3)的精确解,而是在缓变振幅近似下的一个特解。得到 2 20 U(,)exp()11r U r z iz iz Z Z ω= --- (3-4) 是赫姆霍兹方程在缓变振幅近似下的一个特解 ,它可以变形为基模高斯光束的 场强度复振幅的表达式: 2222002(x,y,z)exp exp (z)(z)(z)2(z)x y x y U U i k z R ω?ωω????????++?? =-+-???? ???????????? ? (3-5) 其中的(z)ω为振幅衰减到中心幅值1/e 时的位置到光束中心的距离,称为光束在

高斯光束

?基本定律/概念 o几何光学基本理论o概念与完善成像 o光路计算/近轴系统o球面光学成像系统?理想光学系统 o共线成像理论 o基点与基面 o物像关系 o放大率 o系统的组合 o透镜 ?平面系统 o平面镜成像 o平行平板 o反射棱镜 o折射棱镜与光楔 o光学材料 ?OS的光束限制 o照相系统和光阑 o望远镜的光束的选择o显微镜的光束限制o光学系统的景深 ?光度学/色度学 o辐射量/光学量 o传播中光学量的变化o系统像面的光照度o颜色分类/表现特征o颜色混合定律 o颜色匹配 o色度学中的几个概念o颜色相加原理 o CIE标准色度学系统o均匀颜色空间 ?光路计算/像差 o概述 o光线的光路计算 o轴上点球差 ?典型光学系统 o眼睛系统 o放大镜 o显微镜系统 o望远镜系统 o目镜 o摄影系统 o显外形尺寸计算 ?现代光学系统 o激光光学系统 o傅里叶变换光学

§8.1 激光光学系统 激光自60年代初问世以来,由于其亮度高、单色性好、方向性强等优点,在许多领域得到了广泛应用。例如激光加工、激光精密测量与定位、光学信息处理和全息术、模式识别和光计算、光通信等。但无论激光在哪方面的应用,都离不开激光束的传输,因此研究激光束在各种不同介质中的传输形式和传输规律,并设计出实用的激光光学系统,是激光技术应用的一个重要问题。 一、高斯光束的特性 在研究普通光学系统的成像时,我们都假定点光源发出的球面波在各个方向上的光强度是相同的,即光束波面上各点的振幅是相等的。而激光作为一种光源,其光束截面内的光强分布是不均匀的,即光束波面上各点的振幅是不相等的,其振幅A与光束截面半径r的函数关系为 其中A0为光束截面中心的振幅,w为一个与光束截面半径有关的参数,r为光束截面半径。光束波面的振幅A呈高斯(Guass)型函数分布所以激光光束又称为高斯光束。高斯光束的光斑延伸到无限远,其光束截面的中心处振幅最大,随着r的增大,振幅越来越小,因此我们常以r=w时的光束截面半径作为激光束的名义截面半径,并以w来表示,即当r=w时 说明高斯光束的名义截面半径w是当振幅A下降到中心振幅A0的1/e时所对应的光束截面半径。 二、高斯光束的传播 由激光谐振腔衍射理论可知,在均匀的透明介质中,高斯光束沿Z轴方向传播的光场分布为 式中, C为常数因子,,为波数,、和分别为高斯光束的截面半径、波面曲率半径和位相因子,它们是高斯光束传播中的三个重要参数. 1、高斯光束的截面半径高斯光束截面半径的表达式为

旭廷自聚焦透镜产品说明书

旭廷自聚焦透镜产品说 明书 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

自聚焦透镜 产品说明书 北京旭廷科技开发有限公司 2004年8月 说明书目录 1.产品概述及参数列表 (1) 2.订货信息 (3) 3.使用注意事项 (5) 附:自聚焦透镜原理简介 (6) 1.产品概述及参数列表 自聚焦透镜又称梯度渐变折射率(GRIN)透镜,其折射率从中心轴到周边沿径向梯度减小,呈轴对称抛物线分布。它具备准直、聚焦、耦合等功能,具有体积小、耦合效率高、插入损耗低的优点,并且可以在端面成像。自聚焦透镜广泛用于各种有源、无源光器件,如光纤连接器、光纤耦合器、波分复用器、光衰减器、光隔离器、光滤波器、光开关、光纤准直器、掺铒光纤放大器、光纤光栅等;同时它也广泛应用于医用光学领域,如数码电子宫腔镜等医用内窥镜。 本公司生产的自聚焦透镜主要用于光通信领域,其表面质量指标如下:针孔、麻点:直径范围内不允许存在直径大于30um的缺陷;不允许直径大于10um的杂质缺陷存在;直径在10um-30um之间的缺陷少于4处。

划痕:不允许宽度超过5um的划伤;允许宽度小于2um的划伤存在;不允许宽5um长200um划伤。 崩边:在中心区域的90%范围内不得有崩边。 主要应用参数如下表:

2.产品订货信息 本公司产品采用如下命名方法: 示例:SL-X2-10-025-1310-AR2-3D,表示需要定购的自聚焦透镜孔径角为55o、直径1.0mm、截距0.25P、应用波长1310nm、双端面倾角为3o并且双面镀膜。 根据客户要求,可对透镜进行的特殊工艺处理说明如下: (1)端面角度化处理:此种处理可以有效减少回光反射。有两种形式的角度化处理可供选择,一种是单端面角度化处理:一端倾斜、而另一端垂直于光轴(见图1图2);另一种是双端面角度化处理:两端面相互平行并都倾斜于光轴(见图3)。

高斯光束的传输变换

2.7 高斯光束的传输 本节利用高斯光束的复参数表示法和ABCD 定律简洁地处理基模高斯光束在自由空间和通过近轴光学元件的传输变换。 2.7.1 光线传输矩阵 光线传输矩阵法就是以几何光学为基础,用矩阵的形式表示光线的传输和变换的方法。该方法主要用于描述几何光线通过近轴光学元件和波导的传输,也可用来处理激光束的传输。 任一旁轴光线在某一给定参考面内都可以由两个坐标参数来表征,光线离轴线的距离r 及光线与轴线的夹角θ。将这两个参数构成一个列阵,各种光学元件或光学系统对光线的变换作用可用一个二行二列的方阵来表示,变换后的光线参数可写成方阵与列阵乘积的形式。 1. 近轴光线通过距离L 均匀空间的变换 我们分析近轴光线在均匀空间通过距离L 的传输,如图2-22所示,假定光线从入射参考面P 1出发,其初始坐标参数为r 1和θ1,传输到参考面P 2时,光束参数变为r 2和θ2,由几何光学的直进原理可知 图2-22 近轴光线通过长度L 均匀空间的传输 1 2112θθθ=+=L r r (2.7.1) 这个方程组可表示成下述矩阵形式 ???? ?????? ? ?=???? ??1122101θθr L r (2.7.2) 即可用一个二阶方阵来描述光线在均匀空间中传输距离L 时所引起的坐标变换 ??? ? ??=???? ??101L D C B A (2.7.3) 2. 近轴光线通过薄透镜的变换 如图2-23所示,近轴光线通过一个焦距为f 的薄透镜。设透镜的两个主平面(此处为两参考面P 1和P 2)间距可忽略,入射透镜前光束参数为r 1和θ1,出射后变为r 2和θ2,由透镜成像公式,可写成如下关系式

【CN109856729A】一种分光自聚焦透镜镀膜方法及Glens透镜【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910183753.3 (22)申请日 2019.03.12 (71)申请人 飞秒光电科技(西安)有限公司 地址 710119 陕西省西安市高新区新型工 业园发展大道18号 (72)发明人 张红菊 刘政  (74)专利代理机构 西安佩腾特知识产权代理事 务所(普通合伙) 61226 代理人 张倩 (51)Int.Cl. G02B 6/32(2006.01) G02B 3/00(2006.01) G02B 1/10(2015.01) C23C 14/30(2006.01) (54)发明名称 一种分光自聚焦透镜镀膜方法及Glens透镜 (57)摘要 本发明涉及分光自聚焦透镜镀膜方法及 Glens透镜,包括以下方法:1)确定膜系结构:根 据Glens透镜的折射率分布及技术需求,确定高 折射率材料H和低折射率材料L,进而确定初步膜 系结构;2)优化膜系结构:根据技术需求和初步 膜系结构,利用TFC软件,计算初步膜系结构的等 效折射率,对初步膜系结构进行优化,得到优化 膜系结构;3)根据优化的膜系结构采用IAD离子 束辅助沉积法在Glens透镜的出光面上镀膜。本 发明解决了现有的分光膜镀膜方式所存在的问 题,本发明为Glens透镜提供了一种镀膜方法,工 艺简单, 稳定性高。权利要求书1页 说明书3页 附图2页CN 109856729 A 2019.06.07 C N 109856729 A

权 利 要 求 书1/1页CN 109856729 A 1.一种分光自聚焦Glens透镜镀膜方法,其特征在于,包括以下方法: 1)确定膜系结构: 根据Glens透镜的折射率分布及技术需求,确定高折射率材料H和低折射率材料L,进而确定初步膜系结构; 2)优化膜系结构: 根据技术需求和初步膜系结构,利用TFC软件,计算初步膜系结构的等效折射率,对初步膜系结构进行优化,得到优化膜系结构; 3)根据优化的膜系结构采用IAD离子束辅助沉积法在Glens透镜的出光面上镀膜。 2.根据权利要求1所述的分光自聚焦镀膜方法,其特征在于,在步骤3)之前还包括在Glens透镜的出光面涂布结合层。 3.一种分光自聚焦Glens透镜,其特征在于:包括透镜本体,所述透镜本体的出光面上镀有分光膜。 4.根据权利要求3所述的分光自聚焦Glens透镜,其特征在于:还包括结合层,透镜出光面与分光膜之间涂布有结合层。 5.根据权利要求3或4所述的分光自聚焦Glens透镜,其特征在于:所述分光膜包括高折射率材料层和低折射率材料层。 6.根据权利要求5所述的分光自聚焦Glens透镜,其特征在于:分光膜的结构为LH0.35LHLH0.5L1.2H(LH)^6L1.6H0.5L1.4H1.6L0.7HL,其中L代表低折射率材料层,H代表高折射率材料层,数字代表当前层的厚度,^6代表(LH)层重复6次。 2

傅里叶变换光学系统

傅里叶变换光学系统 组号 A13 03光信 陆林轩 033012017 合作人: 邱若沂 一、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT 性质及常用函数与图形的关学频谱分析 力。图1 在该点的厚度。设原复振幅分布为(,)L U x y 其复振幅分布受到透镜的位相调制,附加了一个位相因(,)x y ?后变为(,)L U x y ': 图1 (,)(,)e x p [(,L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为: 00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ?=-+=+- (2) (2)中的k =2π/λ,为入射光波波数。 用位相延迟因子(,)t x y 来表示即为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:

对高斯光束传输理论的一些学习笔记

高斯光束传输理论 研究光与光纤耦合的时候,必须清楚的知道高斯光束在自由空间中是如何传输的,还有光束经过光学元件后高斯光束如何变化。 高斯光束的传输规律 激光光束具有方向性好的特点,光束的能量在空间的分布高度的集中在光的传播方向上,其光束具有一定的发散角,光束分布有着特殊的结构。由球面波构成谐振腔产生的激光束,在它的横截面上,光强是以高斯函数型分布的,称为高斯光束。高斯光束在光学设计中有着广泛的应用。 沿z 轴方向传播的基模高斯光束可以表示为如下的一般形式: ??? ???-+--=])2([exp ))(exp()(),,(222200f z arctg R r z k i z r z E z y x E ωωω (1) 其中E 0为常数因子,z f z z f f z f z f z z R R 2 2)(])(1[)(+=+=+== 20)(1)(f z z +=ωω; 222y x r +=; λ π 2= k ; λ πω20=f ; π λωf = 0;(2) ω0为基模高斯光束的腰斑半径;f 为高斯光束的共焦参数;R(z)为与传播轴相较于z 点的高斯光束等相位面的曲率半径; 由上式我们可以看出,高斯光束具有下述基本性质: (1)基模高斯光束在横截面内的场振幅分布按高斯函数)) (exp(22 z r ω-所描述的规律从中 心(即传输轴线)向外平滑地降落。由振幅降落到中心值的1/e 的点所定义的光斑半径为 2 2 020)( 1)(1)(πωλωωωz f z z +=+= 可见,光斑半径随坐标z 按照双曲线规律增大 1)(22 2 2=-f z z ωω

相关文档
最新文档