气体水合物浆在空调蓄冷技术中的研究进展

气体水合物浆在空调蓄冷技术中的研究进展
气体水合物浆在空调蓄冷技术中的研究进展

文章编号:CAR112

气体水合物浆在空调蓄冷技术中的研究进展

轩小波 刘妮 刘道平

(上海理工大学动力工程学院,上海 200093)

摘 要 介绍了近几年国内外气体水合物蓄冷技术的研究进展。分析了气体水合物作为新型蓄冷工质在空调蓄冷应用中的重要性。分别从生成方法、分解焓、添加剂的影响等方面详细阐述了二氧化碳水合物浆在空调蓄冷应用中的的可行性。为气体水合物浆蓄冷技术特别是二氧化碳水合物浆技术尽快走向实用化提出了研究方向,并对其应用作了展望。

关键词 气体水合物蓄冷工质二氧化碳水合物浆

APPLICATION PROSPECTS OF GAS HYDRATE SLURRY AS COOL STORAGE MEDIA IN AIR-CONDITIONING

Xuan Xiaobo Liu Ni Liu Daoping

(University of Shanghai for Science and Technology, Shanghai 200093)

Abstract Recent advances in the cool storage technology with gas hydrate as cool storage media is presented in this paper. The importance of gas hydrate as the new-type cool storage media applied in thermal storage air-conditioning is analyzed. The application feasibility is elaborated respectively from aspects such as generation method, dissociation enthalpy and the effects of additives. Some advice about research work needed to do is put forward in order to apply this technology especially carbon dioxide hydrate slurry technology to the engineering practice.

Keywords Gas hydrate Cool storage media Carbon dioxide Hydrate slurry

0 引言

随着我国经济的飞速发展,节能与环保成为能源利用领域中的研究重点。但由于我国能源分布不均,利用效率普遍偏低,造成了能源供给的紧张。特别是电力资源的紧缺成为制约经济发展的重要因素。一方面电力的需求越来越大;另一方面,电力使用不平衡,峰谷负荷差不断增大,资源得不到充分利用。空调蓄冷技术[1]正是利用夜间低谷电力资源储存冷量,白天用电高峰期释放冷量进行制冷,因而空调蓄冷技术能够有效地移峰填谷,平衡能源系统,节约运行费用,实现能量的充分合理利用。

目前,用于空调的蓄冷方式很多,按蓄冷介质可分为水蓄冷、冰蓄冷、共晶盐蓄冷和气体水合物蓄冷4种方式[2]。气体水合物克服了冰蓄冷效率低、水蓄冷密度小、共晶盐换热效率低,易老化失效等蓄

基金项目:国家自然科学基金项目资助(50706028)

上海市重点学科建设项目资助(S30503)

作者简介:轩小波,(1984-),男,硕士生冷介质的弱点,具有蓄冷密度大、蓄冷效率高等优点,因此气体水合物是较为理想的新一代蓄冷工质。

1 气体水合物蓄冷技术发展概况

20世纪80年代初,气体水合物作为蓄冷工质提出后,世界各国学者开始对水合物蓄冷技术展开了研究,形成了所谓的气体水合物暖冰蓄冷技术[3-4]。其中以美国橡树岭国家实验室(Oak Ridge National Laboratory)和日本国家化学实验室以及日本Keio 大学机械工程系的研究最受关注。

我国对气体水合物蓄冷技术的研究起步较晚,始于20世纪90年代。华南理工大学搭建了一套内置换热器静态气体水合物蓄冷实验装置,详细分析了HCFC-141b,HCFC-142b,HFC-134a气体水合物的生成、分解过程,并研究了添加剂对水合物导热系数和生成过程的影响[5-7]。中国科学院广州能源所研究了单元气体水合物HFC-l34a,HFC-l52 a、HCFCl41b

以及混合气体水合物HFC-l34a/HCFC-l41b和HFCl52a/HCFC141b的生成过程和相平衡特性[8-9]。由于以上介绍的有机制冷剂难溶于水,国内外

对一些可溶于水的物质(如四氢呋喃[10],丙酮,乙撑氧,溴化铵等)的气体水合物蓄冷过程进行了相关研究。这类物质生成气体水合物不需要搅拌,且方便用来制备气体水合物浆[11],直接输送到风机盘管进行放冷。谢应明[12]等人考察了四氢呋喃水合物作为蓄冷工质应用于间接接触换热式蓄冷系统的可行性,对其在单根换热管外的结晶分解过程进行了分析,并与冰的结晶分解动力学特性进行了对比。法国的Myriam Darbouret[13]等人对四丁基溴化铵(TBAB)结晶生成水合物浆进行了研究,在标准大气压下,0℃~12℃的范围内,研究了TBAB水合物浆的结晶过程和流变特性,研究表明,这些水合物浆的流动性能良好,可以作为较好的空调蓄冷工质。

归纳研究可知,理想的蓄冷工质应满足以下要求:1)适当的相变温度(6~12℃)和工作压力(0.1~0.3MPa);2)合适的热物理性质,具有较高的分解焓和传热系数及较小的过冷度;3)有较好的流动性;4)化学性能稳定,环保无污染;5)价格合理,来源广。

2 CO2水合物浆特性

CO2水合物是水和CO2气体在一定的温度和压力条件下生成的一种笼形结晶化合物,具有较高的潜热,相变温度高于零度,环保无污染,与常规空调的制冷温度接近,因而适合作为一种较好的空调蓄冷工质应用于常规空调系统中。且二氧化碳来源广,可以从工业废气或大气中获得。而CO2水合物浆是一定浓度的CO2水合物固体颗粒悬浮于水溶液中的浆状流体。CO2水合物和CO2水合物浆的区别在于后者储气密度较低,生成条件相对容易(较高的温度和较低的压力),具有一定的流动性。

CO2水合物生成的化学反应式如下:

CO2+ nH2O=CO2?nH2O + Q(反应热)n≥5.75

2.1 生成方法

Anthony Delahaye[14]等人通过用注射泵将CO2气体连续注入到冷却的循环水溶液中来研究水合物浆的生成方法,其中一个水合物浆生成实验过程如图1所示。从气-液区的P点开始,系统被冷却到水合物-气-液三相区平衡曲线上的Q点,达到热力平衡以后,注射泵以一定的速率将CO2气体注入到反应系统中。一分钟内,压力从Q升到R点,此时系统处于亚稳态。随着亚稳态破裂,溶液中开始出现水合物结晶,温度升高压力下降,对应于S点,可知水合物的生成是一个放热过程。继续向溶液中注入CO2,压力和温度升高到T点,接近于水合物相平衡点,反应基本结束。最后,系统从T点被冷却到U点。

此方法的优点在于它是通过一个注射泵将CO2气体连续注入到水溶液中,水合物浆的生成不需要机械装置[15],在很大程度上减少了机械损耗。实验中还观察到,在注入的CO2泡沫附近也有水合物的结晶生成,这样可以提高反应速率,进一步缩短反应时间。

图1 水合物浆生成实验实例

2.2 分解焓

众所周知,一种合适的水合物蓄冷工质需要具有较高的分解焓,进而通过相变吸热从空间带走足够的热量以达到制冷的目的。Sandrine Marinhas[16]等人通过差式扫描量热仪(DSC)装置测得CO2水合物的的分解焓为500kJ/kg,大约是冰浆分解焓(333kJ/kg)的1.5倍。Osmann Sari[17]等人通过实验证实,CO2水合物浆在30bar压力下,生成温度为1~2℃,熔解温度为8~10℃。并且通过DSC实验设备测得其分解焓为:54kJ/kg,对应的水合物固相成分为10.8%,此结果与Sandrine Marinhas等人测得的结果相一致。下图所示为Osmann Sari等人制备的CO2水合物浆实物图。

3 添加剂对CO2水合物浆的影响

由于CO2水合物浆生成的平衡压力偏高(>1MPa),不适合直接应用于空调蓄冷系统。Laurence Fournaison[18]等人以四氢呋喃(THF)为

添加剂对CO2水合物的平衡压力和分解焓做了相关研究。研究发现,THF(6%)-CO2-H2O混合水合物浆在0.5 MPa 和280.3 K的条件下比较稳定,而单一CO2水合物在同样的温度下的生成压力为3.2 MPa,可见它比单一CO2水合物具有更低的稳定压力。而少量的THF能够在很大程度上提高水合物的分解焓。在280K,含有3.8%~15%THF的CO2水合物的分解焓大约是CO2水合物的分解焓的2~2.5倍。图3显示了溶液中含不同浓度THF的CO2水合物的分解焓。

图2 二氧化碳水合物浆实物图[23]

图3二氧化碳水合物和四氢呋喃-

二氧化碳水合物的分解焓[18]

W.Lin [19]等人还以TBAB为添加剂对CO2水合物浆生成压力的影响作了相关研究。由差热分析法(DTA)测得的结果显示:溶液中加入少量的TBAB,CO2水合物的生成压力会减少70~90%,且TBAB质量分数越大,CO2水合物的生成压力越低,如表1所示。研究还发现,与THF-CO2水合物相比,TBAB-CO2水合物的生成压力受温度变化的影响更大,温度从282.8K增加到288.1K,THF(9.01%)-CO2水合物的相平衡压力从0.386MPa增加到2.274MPa,而同样温度范围内,THF(10.16%)-CO2水合物的相平衡压力仅从0.507MPa增加到1.655MPa,且TBAB含量越高相平衡压力受温度影响越明显,因此在使用中应当避免TBAB质量分数过高。

表1 TBAB-CO2水合物的相平衡压力[19]

4.43%TBAB 9.01%TBAB

温度

(K)

平衡压

力(MPa)

压降

(%)

温度

(K)

平衡压

力(MPa)

压降

(%) 279.4

280.2

280.6

281.5

282.9

283.2

284.7

0.344

0.515

0.518

0.763

1.172

1.179

1.715

87.0

82.4

83.3

78.2

72.8

73.7

69.4

282.8

284.4

285.1

285.3

286.4

287.4

288.1

0.386

0.583

0.859

0.866

1.333

1.805

2.274

90.9

89.2

85.6

86.0

81.6

78.6

75.6

另外,Sandrine Marinhas[20] 等人还对水合物浆生成过程中造成的液相体积膨胀以及水合物固体分数做了一定研究。研究发现,在计算水合物固体分数时,对于CO2水合物浆,温度高于278K时,由于CO2的溶解造成的体积膨胀对计算结果会有一定影响。而对于THF-CO2水合物浆此影响可以忽略,这是因为其相平衡压力较低。在278K的相平衡温度下,CO2水合物浆总的固体分数受系统中水的量影响较小,在THF-CO2水合物浆中也同样如此,此性质非常适合于常规的空调制冷系统。

4 结语

目前,我国水合物浆蓄冷技术还不够成熟, 应该从微观和宏观动力学的角度对水合物浆生成和分解动力学进行近一步的研究。加强对现有蓄冷设备的性能改进,从而对蓄冷空调系统进行优化设计。二氧化碳水合物浆以其合适的生成条件、较高的分解含作为一种新型环保无污染的蓄冷工质有着良好的应用前景,加入适量添加剂能够在很大程度上降低相平衡压力,为常规蓄冷空调提供了更多的可选择性。一方面,我国要积极开展二氧化碳水合物浆的深入研究,建立数值分析模型,对其流动和传热特性及蓄冷性能进行测试分析;另一方面,扩大与国外二氧化碳水合物浆研究的合作力度,在吸收众多技术优点的基础上使我国空调蓄冷技术尽快达到节能,环保的实用化水平。

参考文献

[1] 樊栓狮,谢应明,郭开华,等.空调蓄冷及气体水合物蓄冷

技术[J].化工学报,2003,54:131-134.

[2] 方贵银.蓄冷空调工程实用新技术.北京:人民邮电出版

社,2000

[3] Tomlinson J J . Heat pump cool storage in a clathrate of

freon. In : Proc of the 17th IECEC , 1982,(4):2060-2064.

[4] 郭开华,舒碧芬.空调蓄冷及气体水合物蓄冷技术[J].制

冷,1995,53(4):15-21.

[5] 蔡毅,王世平,吕树申.替代CFC工质R141b气体水合物蓄

冷实验研究[J].暖通空调,1997,27(5):6-10.

[6] 刘莉,王世平,李芳明.R142b气体水合物分解放冷过程的

实验研究[J].制冷报,1999,20(2):1-5.

[7] 吕树申,王世平,邓颂九.R134a气体水合物蓄冷实验研究

[J].制冷学报,1998,19(2):1-4.

[8] 曾丽,郭开华,赵永利,等.制冷剂简单气体水合物相平衡

计算[J].工程热物理学报,2000,21(1):13-16.

[9] 曾丽,郭开华,赵永利,等.二元制冷剂气体水合物相平衡

计算[J].工程热物理学报,2000,21(3):269-272.

[10] Akiya T, Shimazaki T, Oowa M, et al. Formation

Characteristics of Tetrahydrofuran Hydrate to be Used as a Cool Storage Medium. Abstracts of the Society of Chemical Engineers(Japan), 1997, 3, 174

[11] Ichiro T , Shingo T. Clathrate hydrate slurry of tetra2n2

butylammonium bromide as a cold2storage material. In : Proc of the 4th ICGH , Yokohama , 2002, 963-967. [12] 谢应明,梁德青,郭开华,等.四氢呋喃水合物换热管外结

晶分解动力学研究[J].西安交通大学学

报,2005,39(3):313-316.

[13] Myriam D, Michel C, Jean H, et al. Study of an hydrate

slurry for air conditioning application[C]//Proceedings of the Fifth International Conference on Gas Hydrates,

Trondheim, Norway, 2005,6, 12-16.

[14] Delahaye A, Fournaison L, Lin W. Characterzation of

CO2-containing hydrate slurries[C]//International

Congress of Refrigeration, Beijing,2007.

[15] Fournaison L, Delahaye A, Chatti I, et al.CO2 hydrates in

refrigeration processes, I&ECR, 2004, 43, 6521–6526.

[16] Marinhas S, Delahaye A, Fournaison L, et al. Modelling of

the available latent heat of a CO2 hydrate slurry in an

experimental loop applied to secondary

refrigeration.Chem Eng Process, 2006,45(3):184-192.

[17] Osmann S,Jin H, Frederic B, et al. In-situ study of the

thermal properties of hydrate slurry by high pressure

dsc[C]//International Congress of Refrigeration,

Beijing,2007.

[18] Marinhas S, et al. Effet of THF on Equilibrium and

Dissociation Enthalpy of CO2 Hydrates Applied to

Secondary Refrigeration, In:Eng Chem Res. 2006,45(1):

391-397.

[19] Lin W, Delahaye A, Fournaison L,et al. Thermal

propertiles of CO2 hydrate in the presence of TBAB[C]

//International Congress of Refrigeration, Beijing,2007.

[20] Marinhas S, Delahaye A, Fournaison L. Solid fraction

modelling for CO2 and CO2-THF hydrate slurries used as

secondary refrigerants, International Journal of

Refrigeration,2007,1-9.

R134a气体水合物蓄冷实验

2007年1月重庆大学学报(自然科学版) Jan .2007第30卷第1期Journal of Chongqing University (Natural Science Editi on ) Vol .30 No .1 文章编号:10002582X (2007)0120058203 R134a 气体水合物蓄冷实验 3 李夔宁,刘玉东,吴治娟,唐 娟 (重庆大学动力工程学院,重庆 400030) 摘 要:空调蓄冷是实现电网“移峰填谷”的重要手段.为缩短蓄放冷时间,以R134a 为工质,在气 体水合物蓄冷循环中加入引射器,研究结果表明:引射器增强了水和R134a 气体的混合,在引射器内生成了部分水合物晶核.与无引射循环相比,水合物的成核过冷度降低约2~4℃,水合物的生成时间缩短13%~25%,获得了较好的蓄冷效果.并提出“热势”理论对实验现象进行解释,采用引射器后,水合物形成需要的“热势”降低,从而使水合物的成核过冷度和形成时间有明显降低. 关键词:气体水合物;蓄冷;引射器;热势 中图分类号:TK124 文献标识码:A 空调蓄冷技术是为实现电网电力移峰填谷而兴起的一门新技术,对建设节约型社会具有重要意义.但目前在工程中普遍应用的是冰蓄冷系统和冰-水混合蓄冷系统,压缩机运行在蒸发温度-5℃的制冷工况,而不是5℃左右的空调工况,降低了压缩机的运行效率.为使蓄冷系统在空调工况运行,要求蓄冷工质的相变温度在8~12℃,相变潜热大,传热性能好,传统的蓄冷工质水已不能满足要求.研究表明,氟利昂气体水合物具有以上特点,此外,这种高温相变蓄冷材料还具有很好的化学稳定性,长期使用也不会老化失效,腐蚀性低,安全性较好,因此被认为是理想的新一代空调蓄冷介质[1] .目前,强化传热传质,缩短蓄放冷时间是气体水合 物蓄冷技术研究的主要方向[223] .笔者以R134a 为气体水合物工质,在蓄冷循环中加入引射器,对气体水合物的成核过冷度和生成时间进行了实验研究和理论分析. 1 实验装置 实验装置按照非直接接触蓄冷和直接接触放冷方式设计[4] ,如图1所示,主要由蓄冷系统、放冷系统、制 冷系统、循环动力系统和数据采集系统5部分组成.引射器结构如图2所示.蓄冷罐体采用不锈钢管制做,内部尺寸为<200mm ×600mm ,在蓄冷罐的上部和下部设有观察窗,用以观察水合物的生成现象.在蓄冷罐内布置了15对铜-康铜热电偶测量温度,分别布置在高 度不同的5个层面上,每个层面布置3对热电偶其相对罐底的位置如表1所示. 图1 实验装置系统简图 图2 引射器结构示意图表1 蓄冷罐内的热电偶分布表热电偶位置/mm 数量/对 15032150332503445035 550 3 3 收稿日期:2006209212 作者简介:李夔宁(19702),男,重庆大学副教授,博士,主要从事制冷与低温工程方向的研究, 电话(Tel .):023*********;E 2mail :leekn@cqu .edu .cn .

水蓄冷、冰蓄冷空调系统浅析

水蓄冷、冰蓄冷空调系统浅析 发表时间:2019-03-21T15:47:56.907Z 来源:《防护工程》2018年第34期作者:丁岳峰 [导读] 在白天用电高峰时释放该冷量提供空调服务,从而缓解空调高峰电力的矛盾。目前较为流行的蓄冷方式有二种,即水蓄冷、冰蓄冷。 中冶华天南京工程技术有限公司江苏南京 210000 引言 蓄冷技术,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并通过介质将冷量储存起来,在白天用电高峰时释放该冷量提供空调服务,从而缓解空调高峰电力的矛盾。目前较为流行的蓄冷方式有二种,即水蓄冷、冰蓄冷。 正文 随着现代工业的发展和人民生活水平的提高。中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。 一、冰蓄冷 顾名思义蓄冷介质以冰为主,不同的制冰开式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况, 1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下,选择制冷机的最佳平衡计算公式应为 qc=Q/(N1+CfN2) Qs=N2Cfqc, 式中qc:以空调工况为基点时的制冷机制冷量,kw,Qs:蓄冰槽容量,KWH; N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)n. N2:夜间制冷主机在蓄冷工况下的运行小时数。 Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一般活塞式与离心式冷水机组约为0.65,螺杆式冷水机组约为0.7.它取决于工况的温度条件和机组型号。 根据这个公式,我们结合具体的工程,就可得出应配置的冷水机组的制冷能力与蓄冰槽容量。 2、空调系统部分夜间运行,而且所需的冷负荷比较大。在这种情况下,我样一般以夜间所需的冷负荷为依据。选择基载主机。然后从总负荷中扣除基载主机所承担的负荷,再按第一种情况合理配制冷水机与蓄冰槽。 二、水蓄冷 水蓄冷是利用3-7°C的低温水进行蓄冷,可直接与常规系统区配,无需其它专门设备。 其优点是:投资省,维修费用少,管理比较简单。但由于水的蓄能密度低,只能储存水的显热,故蓄水槽上地面积大。如若利用高层建筑内的消防水池,在确定制冷机容量与蓄冷槽的容量时,可根据消防水池的容量来计算出蓄冷量,然后根据剩余负荷量来确定制冷机组的制冷量。最后校核一下冷水机组能否满足夜间蓄冷的需要。 三、冰蓄冷与水蓄冷的对比 水蓄冷系统不仅从节能而且从节省初投资方面都具有很大的优越性,它充分利用了建筑的消防水池,不再占用建筑面积,节省了机房面积,但我们不能因此而完全肯定水蓄冷,否定冰蓄冷,他们各用各自的适用范围,下面我们来分析一下:根据公式qc=Q/(N1+CfN2) Qs=N2Cfqc 我们可得出蓄冷比率: η=Qs/Q=(N2Cfqc)/Q=(N2Cfqc)/[(N1+CfN2)×(N2Cfqc)/Q] =1/[1+(N1/(CfN2)) 对于一般的办公建筑来说,N1、Cf、N2均为确定值,分别为8.5,8,0.7,则η=1(1+8.5/0.7×8)=39.7% 在这个比率下,制冷机与蓄冷槽容量配置为最佳,对冰蓄冷而言,因蓄冰槽可根据蓄冷量的大小来配置,不受任何限制,我们就可根据这一比率来确定蓄冷量,从而配置出相应的制冷机与蓄冰槽,但对水蓄冷而言,因为它利用的是消防水池,而建筑物消防水池的容积只与建筑物的性质及使用功能有关,与建筑面积没有关系,那么在这一条件下限制下,对于空调面积只与建筑物的性质及使用功能有关,与建筑面积没有关系,那么在这一条件下,对空调面积较小的建筑物来说,水池所蓄存的冷量占全日总冷量的比率接近于39.7%,则我们建议采用冰蓄冷系统,对空调面积较小的建筑物来说,水池所蓄存的冷量占全日总冷量的比率接于39.7%,甚至高于39.7%,则我们应采用水蓄冷系统,同时,应与水系统的分区结合起来。 造价方面,同等蓄冷量的水蓄冷系统造价约为冰蓄冷的一半或更低。冰蓄冷需要的双工况制冷机组价格高,装机容量大,增加了配电装置的费用,且冰槽的价格高,使用有乙二醇数量多,价格贵,管路系统和控制系统均较复杂,因此总造价高。 蓄冷系统装机容量方面,水蓄冷的蒸发温度与常规空调相差不大,且可采取并联供冷等方式使装机容量减小。冰蓄冷工质的蒸发温度较低,制冷机组在蓄冰工况下的制冷能力系数Cf为0.6~0.65(制冰温度为-6℃时),其制冷能力比制冷机组在空调工况下低0.4~0.35。相同制冷量下,冰蓄冷的双工况制冷机组容量要大于常规空调工况机组。 移峰量上看在同等投入的情况下,水蓄冷系统一般设计为全削峰,节省电费大大多于冰蓄冷系统。冰蓄冷为降低造价,一般为1/2或1/3削峰,节省电费少于水蓄冷系统。

水合物气资源评

布莱克海台水合物气资源评价 摘要:布莱克海台是全世界天然气水合物研究的热点之一。该区研究程度高、资料丰富,是进行对比研究的典型地区。论述了布莱克海台天然气水合物形成的地质条件和地球化学特征, 综述了该区水合物的研究历史和进展,介绍了对水合物气资源量的评价方法和评价结果。根据不同评价者和不同方法的评价, 布莱克海台区水合物气的资源量在(8~80)×1012m3[其中预测为(50~ 80)×1012m3的资源量包含水合物层之下的游离气]之间。 关键词: 布莱克海台。水合物。资源评价 布莱克海台位于美国卡罗莱纳州南部查尔斯顿以东约400 km 的大西洋大陆性洋脊(图1) , 是一个由等深流沉积物堆积形成的大陆隆, 其东南延伸方向与北美大陆边缘成正交[1,2 ]。深海钻探计划(DSPD) 早就预测到了该台区存在有天然气水合物藏[2]。大洋钻探计划(ODP) 164 和172 航次也对该区进行了专门考察。可以说, 在过去的30多年里, 布莱克海台一直是水合物调查研究的热点区。 图1 布莱克海台的地理位置 1 布莱克海台天然气水合物研究简况 布莱克海台和卡罗莱纳高地是世界最著名的海洋气体水合物的赋存地, 对水合物的研究有着重要的意义。 1.1 研究历史

早在1970 年,DSDP 就开始在布莱克海台进行考察, 由于在采集到的沉积物样品中发现了高浓度的甲烷, 考察人员便把这种甲烷同地震探测数据联系起来 研究, 提出了布莱克海台存在甲烷水合物的假设。到了1980 年,DSDP 在该区采集到了水合物样品, 证实了这一假设。1995 年11 月和12 月,ODP第164 航次 对布莱克海台区气体水合物藏和邻近的卡罗莱纳州高地进行了专项探查[2]。1997 年2 月,ODP 172 航次从南卡罗莱纳州的查尔斯顿出发, 对北大西洋布莱克—巴哈马外海台和卡罗莱纳州一线进行了更深入的调查, 主要目的是获取一个全新 的晚第三纪的沉积物深度剖面, 以便认识北大西洋西部气候和洋流在上新世中 期到更新世的变化情况[3]。另外, 在布莱克—巴哈马外部海台一线上的地震数据都显示了BSR 的存在, 而且孔隙水样品中氯化物的浓度变化也证明了气体水合 物是存在的。 2001年9月, 科学家搭乘Alvin 潜水设备下潜2200 多M, 对布莱克海台进行了一次近距离的观察。除了收集到甲烷水合物的有关信息外, 还第一次观察到了冷泉化学合成生态系统。 1.2 天然气水合物形成机理研究 布莱克海台是由平行于海岸线的两股海底洋流在此的沉积作用而逐渐形成的。在古新世, 墨西哥湾暖流沿着大西洋海岸向北与向南的北冰洋寒流在此相汇, 导致两股洋流速度锐减而发生沉积作用。 较高的沉积速率有利于水合物的形成。已证实布莱克海台含水合物沉积物与海底等深流沉积有密切关系。等深流沉积是海洋沉积物沉积后又被活跃的深水流充分改造过的沉积, 它主要分布在沉积速率较高的地方, 它形成的首要条件是 由于沉积物的压实固结作用不稳定而导致上升流的流动。布莱克海台晚中新世至全新世沉积速率为40~340 cm/Ma, 属于快速沉积区。由于等深流沉积具有颗粒较粗、储集物性好、气源充足和流体运移条件优越等特点, 对水合物的形成相当有利, 因此等深流沉积作用强烈的布莱克海台区有利于水合物的富集[4]。 在布莱克海台, 大量的甲烷被包含在水合物层和以游离气的形式聚集在水 合物层之下。水合物形成和分解、甲烷的释放和重新聚集这一反复过程,是解释 布莱克海台区游离气浓度与气体水合物之间相互关系的依据。 关于布莱克海台主要拗陷过程与甲烷分解和释放之间的关系, 目前还没有 完全弄清楚, 但存在两种解释。一种解释强调气体和沉积物的灾难性爆炸, 如在末次间冰期, 海平面下降导致海底地层压力降低,引起水合物分解和气体释放。 由于布莱克海台沉积物渗透率低和气体不能有效扩散, 致使压力增加、构造隆升、气体喷发。第二种解释认为, 由于沉积物的快速沉积, 使更多的甲烷通过高渗透性通道逐渐逸出, 其中一些高渗透性通道就连接着海底水合物的分解带[5]。 2 布莱克海台区域地质研究 2. 1钻孔站位分布

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点:

蓄冷技术

蓄冷技术 随着生活水平的日益提高,空气调节作为控制建筑室内环境质量的重要技术手段得到广泛的应用。但因为耗电量大,且基本处于用电负荷峰值期,这就为蓄冷技术的应用提供了一个重要的应用领域。 一、蓄冷技术的定义 蓄冷技术是一门关于低于环境温度热量的储存和应用技术,是制冷技术的补充和调节。低于环境温度的热量通常称作冷量。人们的生活和生产活动在许多时候要用到冷量,但是,有些场合缺乏制冷设备,有些时段不能使用制冷设备就需要借助蓄冷技术解决用冷需要。简言之,即冷量的贮存。 二、蓄冷的方法 有显热蓄冷和相变潜热蓄冷两大类。如在蓄冷空调中的水蓄冷空调是显热蓄冷,冰蓄冷空调和优态盐水合物(PCM)是相变潜热蓄冷。 三、冰蓄冷系统技术 冰蓄冷是指用水作为蓄冷介质,利用其相变潜热来贮存冷量。 冰蓄冷系统技术类型主要有冰盘管式、完全冻结式、冰球式、滑落式、优态盐式、冰晶式。 1.冰盘管式蓄冷系统 冰盘管式蓄冷系统也称直接蒸发式蓄冷系统,其制冷系统的蒸发器直接放入蓄冷槽内,冰结在蒸发器盘管上。融冰过程中,冰由外向内融化,温度较高的冷冻水回水与冰直接接触,可以在较短的时间内制出大量的低温冷冻水,出水温度与要求的融冰时间长短有关。这种系统特别适合于短时间内要求冷量大、温度低的场所,如一些工业加工过程及低温送风空调系统使用。 2.完全冻结式蓄冷系统 该系统是将冷水机组制出的低温乙二醇水溶液(二次冷媒)送入蓄冰槽(桶)中的塑料管或金属管内,使管外的水结成冰。蓄冰槽可以将90%以上的水冻结成冰,融冰时从空调负荷端流回的温度较高的乙二醇水溶液进入蓄冰槽,流过塑料或金属盘管内,将管外的冰融化,乙二醇水溶液的温度下降,再被抽回到空调负荷端使用。这种蓄冰槽是内融冰式,盘管外可以均匀冻结和融冰,无冻坏的危险。这种方式的制冰率最高,可达IPF=90%以上(指槽中水90%以上冻结成冰)。生产这种蓄冰设备的厂家较多。 3.冰球式蓄冷系统 此种类型目前有多种形式,即冰球,冰板和蕊心褶囊冰球。冰球又分为园形冰球,表面有多处凹涡冰球和齿形冰球。 冰球式以法国CRISTOPIA为代表,蓄冰球外壳有高密度聚合烯烃材料制成,内注以具高凝固---融化潜热的蓄能溶液。其相变温度为0°C,分为直径77mm(S型)和95mm(C型)两种。以外径95mm冰球为例,其换热表面积为28.2ft2/RTH(0.75m2/KWH),每立方米空间可堆放1300个冰球;外径77mm冰球每立方米空间可堆放2550个冰球。冰球结构图见下左图。

空调共晶盐高温相变蓄冷技术的分析

空调共晶盐高温相变蓄冷技术的分析 专题研讨 空调共品盐高温相变蓄冷技术的分析 陈胜立,童明伟 (重庆大学动力工程学院,重庆400044) ● ●….---●----.-------------.------●------------●--..-.......’................● ● 摘要:全面介绍与分析了空调共晶盐高温相变蓄冷技术的相变材料的选择,配制,研究方法, 材料的封装和蓄冷系统的布置方式与蓄放冷特性,探讨了蓄冷技术研究中需要关注的难点.共晶 盐蓄冷技术吸收了水蓄冷,冰蓄冷系统的优点,具有广阔的市场前景. 关键词:蓄冷技术;共晶盐相变材料;空调 ● ●●____-------_---_-------●------------●---------------------------●--------.● ● ● ●-....--一---._---_-------’-----_------●---------------------------●--------.●’ 中图分类号:TU831.6文献标识码:A文章编

号:1006-8449(2007)01-0027-03 0引言 由于电能的紧张,城市空调的耗电量相当大,空调 蓄冷技术通过在夜间用电低谷期蓄冷,而在白天用电高峰期释冷,从而能够起到移峰填谷的作用,提高电网的效率,近年来国家电网公司也制定了相应的电价分时计价的政策,来促进空调蓄冷技术的推广,因此空调蓄冷技术能够产生很好的社会效益与经济效益,能实现电能的有效利用和节约电能. 空调蓄冷技术根据蓄冷材料主要有水,冰,共晶盐 相变蓄冷三种,共晶盐(eutectic)相变蓄冷其相变温度在0~C以上,相对冰系统制冷机效率较高达30%,虽然相变潜热比冰小但蓄冷能力比水大,也易与常规制冷系统结合,兼有水和冰蓄冷两种系统的优点,因此国 内外研究者都着力研究开发相变点在4—8的空调蓄冷材料,相变传热及对蓄冷系统的蓄放冷特性分析, 美国,日本发表了很多研究论文以及专利,并着手开 始实用性的实验.1995年中国建筑科学研究院空调所和台佳机构联合设计了国内首例7℃相变蓄冷工程. 1共晶盐相变材料(EutecticPhaseChange MateriaI,简称EPCM) 1.1共晶盐相变材料的介绍与选择

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点 和缺点 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的

运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点: ①系统异常复杂、庞大。冰蓄冷空调除了通常的制冷系统和空调设备外,还配备复杂的蓄冰设备,蓄冰设备包括蓄冷槽,乙二醇溶液泵、制冰泵、蓄冷介质

冰蓄冷技术(DOC)

1.技术原理 冰蓄冷空调技术是利用夜间电网谷电运转制冷主机制冷,并以冰的形式储存,在白天用电高峰时将冰融化提供空调用冷,从而避免中央空调争用高峰电力的一项调节负荷、节约能源的技术。 (1)削峰填谷、平衡电力负荷。 (2)改善发电机组效率、减少环境污染。 (3)减小机组装机容量、节省空调用户的电力花费。 (4)改善制冷机组运行效率。 (5)蓄冷空调系统特别适合用于负荷比较集中、变化较大的场合加体育馆、影剧院、音乐厅等。 (6)应用蓄冷空调技术,可扩大空调区域使用面积。 (7)适合于应急设备所处的环境,

计算机房、军事设施、电话机房和易燃易爆物品仓库等。 2.冰蓄冷空调系统组成 冰蓄冷空调系统包括:空调主机、冷水泵、冷却水泵、冷却塔、蓄冷水泵、释冷水泵、换热器、储冰槽等。相对于常规空调系统,冰蓄冷系统增加了储冰槽、换热器等装置 3..工艺流程 冰球式(也称封装式)冰蓄冷工艺流程:在制冰时,通常要求制冷主机蒸发器出口温度为零下5摄氏度,因此冰球外循环的介质通常采用乙二醇溶液,乙二醇溶液在冰球外流动,在制冰循环中,从制冷主机出来的低温乙二醇溶液流过冰球表面,使冰球内的水结冰;在融冰供冷时,乙二醇溶液流过冰球表面,通过换热器与流往空调末端的冷冻水热交换,被

冷却后的冷冻水流向各个房间,通过风机盘管供冷,因此,空调末端的形式可以与常规中央空调相同。 冰盘管冰蓄冷工艺流程: 、 4.适用范围: 商场、饭店、写字楼、体育馆、展览馆、影剧院、宾馆、居民小区等场所;制药、食品加工、啤酒工业、奶制品工业等;需要对现有单班、两班空调系统扩大供冷量的场所,可以不增加主机,改造成冰蓄冷系统。5.冰蓄冷空调系统的适用条件 执行峰谷电价,且差价较大的地区。(峰谷电价比至少要达到4:1,否则无经济性可言)

丙烷气体水合物合成实验的设计与研究

丙烷气体水合物合成实验的设计与研究 摘要针对高中化学和大学化学中有关气体水合物的内容,设计了丙烷气体水合物的教学实验。该实验采用简单的方法合成丙烷水合物,操作简单、安全,实验重复性高,可以调动学生的学习兴趣。通过实验,便于学生了解丙烷水合物的物理化学性质、水合物相图的构成及作用。 关键词丙烷水合物合成冰粉教学实验气体水合物 气体水合物是水与甲烷、乙烷、丙烷、CO2及H2S等小分子气体形成的一种外观似冰的笼形晶体化合物[1]。现行高中化学课本中所说的“可燃冰”——天然气水合物就是其中的一种。气体水合物中,水分子通过氢键相连形成一些多面体笼,尺寸合适的客体分子可填充在这些笼中。 气体水合物的研究历史可追溯到1810年,Davy发现氯气可使水在0℃以上变成固体,这种固体就是氯气水合物[2]。到1934年,Hammersdhmidt在天然气管道中发现水合物堵塞管道,水合物的研究得到快速发展。近二十年来在海洋和冻土带发现储量巨大的天然气水合物资源,使得天然气水合物被认为是21世纪重要的后续能源,气体水合物的研究受到世界范围内的高度重视。 气体水合物的结构与冰相似,基本结构特征是主体水分子通过氢键在空间相连,形成一系列大小不同的多面体孔穴。空的水合物晶格可以认为是一种不稳定的冰,当这种冰的孔穴被客体分子填充后,就变成稳定的气体水合物。其孔穴被客体分子填充的百分数越大,水合物越稳定。目前已发现的水合物晶体结构有I型,II 型和H型[3]。客体分子在水分子形成的笼形孔穴中的分布是随机的,只有当客体分子达到一定的孔穴占有率时水合物晶格才能稳定存在。至于形成哪种水合物结构主要由客体分子大小决定,另外也受客体分子形状、温度、压力、是否有水合物促进剂等因素影响。 为了使课本知识与最新的科研动态相结合,激发学生兴趣,使学生在学习过程中对气体水合物有更加感性的认识,设计了适合高中及大学化学的丙烷气体水合物合成实验,让学生可以自己动手合成气体水合物,以便学生可以更好地认识、了解气体水合物的性质。 选择丙烷作为客体分子原因:一是丙烷气体与水是不互溶的,将2种不互溶的物质混合形成一种稳定物质,可以提高学生对实验的兴趣;二是丙烷气体水合物的相平衡条件比较温和,易于学生在实验室实现。图1为丙烷水合物相平衡[3]和饱和蒸气压曲线[4],在冰点附近,丙烷的饱和蒸气压为0.5 MPa,而丙烷水合物的生成压强为0.2 MPa,故很容易实现丙烷水合物的形成条件;三是合成后的丙烷水合物可以通过简单的方法进行检测,如点燃或放在水中观察是否有气泡产生。

浅谈冰蓄冷空调与常规中央空调的优缺点

浅谈冰蓄冷空调与常规中央空调的优缺点 发表时间:2016-08-18T10:15:48.877Z 来源:《低碳地产》2015年第2期作者:韩广玉 [导读] 冰蓄冷中央空调系统是在常规中央空调系统的基础上多加一套蓄冰装置。 深圳机械院建筑设计有限公司广东深圳 518000 本人前段时间做了一个小型的冰蓄冷项目,通过这个项目认真学习了一下蓄冰系统,在此跟各位浅谈一下蓄冰空调与常规空调优缺点对比,以及本人累积的些许设计经验,希望能对初次做蓄冰项目的设计同行带来一些帮助。 现简单分析一下冰蓄冷中央空调系统、常规空调系统的特点。 1)冰蓄冷中央空调系统特点 冰蓄冷中央空调系统是在常规中央空调系统的基础上多加一套蓄冰装置,利用夜间低谷用电时段开启制冷机组,将蓄冰装置中的水制成冰,白天在空调用电高峰时段利用融冰取冷满足部分空调负荷,宏观上起到调峰移谷,微观上在提高室内空调品质的同时大大降低用户运行费用的作用。 该技术在二十世纪30年代起源于美国,在70年代能源危机中得到发达国家的大力发展。从美国、日本、韩国、台湾等较发达的国家和地区的发展情况来看,冰蓄冷已经成为中央空调的发展方向。比如,韩国明令超过2000㎡建筑,必须采用冰蓄冷或煤气空调,日本超过5000㎡的建筑物,就在设计时考虑采用冰蓄冷空调系统。很多国家都采取了奖励措施来推广这种技术,比如韩国转移1KW高峰电力,一次性奖励2000美元,美国一次性奖励500美元,等等。 中国在近年加大对蓄能技术的推广力度,国家计委和经贸委2001年底特地下达《节约用电管理办法》,要求各单位推广蓄能技术,并逐步加大峰谷电差价。一些建筑采用蓄能技术后直接给用户带去了收益,节约了运行成本。2001年10月举办APEC会议的10万㎡的上海科技城、广州大学城500万㎡等大型建筑采用的就是冰蓄冷空调系统。 冰蓄冷空调从其原理和实践中可以看出它有如下特点 优点: ①减少冷水机组容量(降低主机一次性投资),总用电负荷少,减少变压器配电容量与配电设施费。 ②冷主机制冷效率高(COP大于5.3),同时利用峰谷荷电价差,大大减少空调年运行费,可节约运行费用35%以上。 ③减少建筑的配电容量,节约变配电的投资,节约约30%(空调的配电投资);免双线路的高可靠性费用,节约投资。 ④使用灵活,部分区域使用空调可由融冰提供,不用开主机,节能效果明显。 ⑤可以为较小的负荷(如只使用个别办公室)融冰定量供冷,而无需开主机。 ⑥在过渡季节,可以融冰定量供冷,而无需开主机,不会出现大马拉小车的状况,运行更合理,费用节约明显。 ⑦具有应急功能,提高空调系统的可靠性。在拉闸限电时更能显示其优势:只要具备带动水泵的电力(如发电机发电、限电减电力供电)就能够融冰供冷,不会出现空调不能使用的状况。 ⑧制冷温度低而稳定,空调效果佳,提高大楼的舒适性和品位。 ⑨有低温冷源制冷速度快,上班前启动时间短。上班前启动时间越长,则空调无效运行越多,无谓的浪费越大。 ⑩作为驱动能源,清洁、环保、稳定、简单可靠,且峰谷电差价在不久的将来势必更优惠(周边省份在去年均已大幅优惠,国外的峰谷差更大)。 对于大型多建筑区域供冷,可以低温供水,降低送水能耗、减少管网投资;同时与每一建筑一个供冷站的形式比可以节约投资、减少管理费用、减少机房面积。 可以为末端提供低温冷冻水,降低末端的投资;加强除湿能力,大幅提高空调舒适性;如果采用低温送风系统,更是可以节约末端的风机能耗、提高空调品质、减少风管的尺寸和投资。 空调系统智能化程度高,可以实现系统的全自动运行,而且具备与大楼的BAS接口,是目前世界上最先进的空调系统。 不足之处: ①如果主机和蓄冰装置等设备均布置于冷冻机房内,蓄冰装置需要占用一定的空间。 ②机房设备投资比常规水冷电制冷和溴化锂机组系统稍高。 ③冰蓄冷只能夏天供冷,需要供热系统。(可以采用热网换热采暖,热网容量远低于溴化锂机组所需,只有50%左右容量)2)常规电制冷中央空调系统特点 是目前使用较多的空调形式,经过一个多世纪的发展,制冷主机的形式多种多样,具有制冷效率高等的优点,它有如下特点:优点: ①系统简单,占地比其他形式的稍小。

布莱克海台水合物气资源评价

文章编号:167221926(2003)0620514205 收稿日期:2003210210;修回日期:20032102161 基金项目:国家自然科学基金项目(编号:40272066)资助1 作者简介:官宝聪(19792),男,福建将乐人,硕士生,主要从事海洋地质研究1 布莱克海台水合物气资源评价 官宝聪,雷怀彦,郭占荣,孙爱梅 (厦门大学海洋与环境学院,福建厦门 361005) 摘 要:布莱克海台是全世界天然气水合物研究的热点之一。该区研究程度高、资料丰富,是进行对比研究的典型地区。论述了布莱克海台天然气水合物形成的地质条件和地球化学特征,综述了该区 水合物的研究历史和进展,介绍了对水合物气资源量的评价方法和评价结果。根据不同评价者和不同方法的评价,布莱克海台区水合物气的资源量在(8~80)×1012m 3[其中预测为(50~80)×10 12 m 3 的资源量包含水合物层之下的游离气]之间。 关键词:布莱克海台;水合物;资源评价 中图分类号:T E 155 文献标识码:A 布莱克海台位于美国卡罗莱纳州南部查尔斯顿以东约400km 的大西洋大陆性洋脊(图1),是一个由等深流沉积物堆积形成的大陆隆,其东南延伸方向与北美大陆边缘成正交[1,2]。深海钻探计划(D SPD )早就预测到了该台区存在有天然气水合物藏[2]。大洋钻探计划(OD P )164和172航次也对该区进行了专门考察。可以说,在过去的30多年里,布莱克海台一直是水合物调查研究的热点区。 图1 布莱克海台的地理位置 1 布莱克海台天然气水合物研究概况 布莱克海台和卡罗莱纳高地是世界最著名的海洋气体水合物的赋存地,对水合物的研究有着重要 的意义。1.1 研究历史 早在1970年,D SD P 就开始在布莱克海台进行考察,由于在采集到的沉积物样品中发现了高浓度的甲烷,考察人员便把这种甲烷同地震探测数据联系起来研究,提出了布莱克海台存在甲烷水合物的假设。到了1980年,D SD P 在该区采集到了水合物样品,证实了这一假设。1995年11月和12月,OD P 第164航次对布莱克海台区气体水合物藏和邻近的卡罗莱纳州高地进行了专项探查[2]。1997年2月,OD P 172航次从南卡罗莱纳州的查尔斯顿出发,对 北大西洋布莱克—巴哈马外海台和卡罗莱纳州一线进行了更深入的调查,主要目的是获取一个全新的晚第三纪的沉积物深度剖面,以便认识北大西洋西部气候和洋流在上新世中期到更新世的变化情况[3]。另外,在布莱克—巴哈马外部海台一线上的地震数据都显示了BSR 的存在,而且孔隙水样品中氯化物的浓度变化也证明了气体水合物是存在的。 2001年9月,科学家搭乘A lvin 潜水设备下潜2200多米,对布莱克海台进行了一次近距离的观 察。除了收集到甲烷水合物的有关信息外,还第一次观察到了冷泉化学合成生态系统。1.2 天然气水合物形成机理研究 布莱克海台是由平行于海岸线的两股海底洋流 第14卷第6期 2003年12月 天然气地球科学 NA TU RAL GA S GEOSC IENCE V o l .14N o .6D ec . 2003

冰蓄冷中央空调技术原理及经济性分析

冰蓄冷中央空调技术原理及经济性分析 江苏安厦工程项目管理有限公司□卢义生 摘要:由于冰蓄冷中央空调系统具有节能环保等诸多优点,近几年在我国得到了迅速发展。以滁州第一人民医院为例,通过冰蓄冷中央空调系统与常规中央空调系统的经济性分析对比,可以看出冰蓄冷中央空调系统在实际应用中的优势。 关键词:冰蓄冷空调系统常规空调系统经济性分析 国外利用机械制冷机的蓄能空调最早出现在二十世纪三十年代,但随着机械制造业的进步,蓄能技术的发展很快停滞下来。直到二十世纪八十年代初期,蓄能空调在美国、日本等发达国家再次得到研究推广。到九十年代中后期,美国、日本、欧洲等国家和我国台湾地区的蓄能空调系统已得到广泛的应用,并取得了良好的经济效益。我国于九十年代中期正式引入冰蓄冷空调系统,近年来国家及地方电力部门相继制定了峰谷电价政策及优惠措施以促进冰蓄冷空调的发展。2000年,国家电力公司国电财[2000]114号文件明确要求加大峰谷电价推广力度,为此,全国多个省市纷纷出台了分时电价政策,一般低谷电价只相当于高峰电价的1/2甚至1/5,而且有取消电力增容费、电贴费等不同程度的优惠,在政策上支持冰蓄冷空调的发展。近两年来,随着我国节能减排政策的不断推广,冰蓄冷空调技术得到了迅猛发展。中国建筑设计研究院机电专业设计研究院总工程师、北京制冷学会常务理事宋孝春表示:“冰蓄冷空调系统是人类在面对能源危机时优化资源配置、保护生态环境的一项技术革新,能产生良好的社会效应和经济效益……。我国冰蓄冷空调市场已走向成熟,全国范围内,近两年的工程几乎等于前十年的总和。未来一段时间内,这个数字仍以几何级数字向上递增……” 1冰蓄冷技术介绍 1.1冰蓄冷系统原理 冰蓄冷中央空调是在夜间利用制冷主机制冰,将冷量以冰的形式蓄存起来,然后在白天根据空调负荷要求释放这些冷量,这样在电力低谷段蓄冰,在用电高峰时期就可以少开甚至不开主机。这样就可以将电网高峰时间的空调用电量转移至电网低谷时使用,从而利用峰谷电价政策,达到为用户节约电费的目的。 在一般大楼中,空调系统用电量占总耗电量的35%~65%,而制冷主机的电耗在空调系统耗电量中又占65%~75%。在常规空调设计中,冷水主机及辅助设备容量均按尖峰负荷来选配,这不仅使空调系统的电力容量增大,而且使得主机等空调设备在大部分情况下都处于低效率的部分负荷状态运行,设备利用率也低,投资效益低。

冰蓄冷空调原理

冰蓄冷空调原理 冰蓄冷空调技术是指在用电低谷时用电制冰并暂时蓄存在蓄冰装置中, 在需要时( 用电高峰) 把。由此可以实现对电网的“移峰填谷”, 有利于降低发电装机容量, 维持电网的安全高效运行。 一、蓄冰空调系统组成部分 (1)制冷主机。 ①作用:制冷主机(双工况机组)负责对载冷剂(乙二醇)降温,输出冷源。 ②工作原理:制冷剂经过压缩机变成液态,在蒸发器气化吸热把冷量传递到盘管系统。(2)蓄冷设备。 ①作用:蓄冷设备(蓄冰罐、槽)主要功能是储存冷源并阻隔与外界冷热交换。 ②工作原理:蓄冰罐、槽外壁采用保温隔热材料层,隔绝与外界冷热交换,保持罐、 槽内的温度 (3)用户风机盘管系统。 ①作用:把冷源送到需要制冷房间。 ②工作原理:水经过换热板吸收冷量,经过冷冻泵输送到需要制冷的房间。 ③④⑤⑥二、蓄冰空调系统工作原理 (1)制冷机组(双工况机组)运行,将载冷剂(20%浓度的乙二醇液)流经主机降温,再输送至蓄冰罐对蓄冰罐中的水降温,降温一般降至-3℃左右,于此同时蓄冰罐的另一侧管道把乙二醇输送出,经过冷冻泵回流主机中,就这样低温的乙二醇对蓄冰罐的水进行循环降温。 (2)另一方面,经过主机降温的乙二醇液流经融冰式换热板,向风机盘管输送冷量,进入换热板前3.5℃,通过换热板后载冷剂温度上升到10.5℃,载冷剂通过冷冻泵回流制冷机组。

三、夜间蓄冰 夜间,用户风机盘管系统停止运行,前段只运行工况机组,打开V3、V1节流阀,关闭V2、V4、V5节流阀,让-3~-3.5℃低温20%浓度的乙二醇溶液被主机运送到蓄冰罐,在蓄冰罐中吸收热量,然后通过冷冻泵回流工况机组,一直循环,让蓄冰罐中的水冰化90%以上,白天高峰负荷时,储冰罐中0℃的水被输送到融冰板式换热器,换热后的高温水回流到储冰罐,被洒在冰上直接进行融冰,只要罐中有冰就可以一直保持出水温度在3.5℃左右,为融冰板式换热器的另一侧提供5-7℃的冷冰用于供冷

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用 1、冰蓄冷空调系统原理及主要特点 冰蓄冷空调技术就是在夜间低电价时段(同时也是空调负荷很低的时间)采用电制冷机组制冷,将水在专门的蓄冰槽冻结成冰以蓄存冷量;在白天的高电价时段(同时也是空调负荷高峰时间)停开制冷机组,直接将蓄冰槽的冷能释放出来,满足空调用冷的需要。因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高,完全可以弥补蓄冰的冷能损失。 冰蓄冷空调系统具有以下主要特点: (1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧; (2)冰水主机的容量减少,节省增容费用; (3)总用电设施容量减少,可减少基本电费支出; (4)利用低谷段电价的优惠可减少运行电费; (5)冰水温可低至1~4℃,减少空调设备风管的费用; (6)冷却水泵、冷冻水泵、冷却塔容量减少; (7)电力高压侧及低压侧设备容量减少; (8)室相对湿度低,冷却速度快,舒适性好; (9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小; (10)充分利用24h有效时间,减少了能量的间歇耗损;

(11)充分利用夜间气温变化,提高机组产冷量; (12)投资费用与常规空调相当,经济效益佳。 冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。 2系统的组成及制冰方式分类 2.1系统组成 冰蓄冷空调系统一般由制冷机组、蓄冷设备(或蓄水池)、辅助设备及设备之间的连接、调节控制装置等组成。冰蓄冷空调系统设计种类多种多样,无论采用哪种形式,其最终的目的是为建筑物提供一个舒适的环境。另外,系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全可靠的冰蓄冷空调系统。 2.2制冰方式分类 根据制冰方式的不同,冰蓄冷可以分为静态制冰、动态制冰两大类。此外还有一些特殊的制冰结冰,冰本身始终处于相对静止状态,这一类制冰方式包括冰盘管式、封装式等多种具体形式。动态制冰方式在制冰过程中有冰晶、冰浆生成,且处于运动状态。每一种制冰具体形式都有其自身的特点和适用的场合。 3运行策略与自动控制 3.1运行策略

制冷剂气体水合物相平衡分解条件预测

第37卷第5期 2016年10月制冷剂气体水合物相平衡分解条件预测Vol.37,No.5October,2016 文章编号:0253-4339(2016)05-0033-06 doi:10 3969/j issn 0253-4339 2016 05 033 制冷剂气体水合物相平衡分解条件预测 杨行一李璞一张龙明一李娜 (西安交通大学化工学院热流科学与工程教育部重点实验室一西安一710049) 摘一要一本文从理论方面探究制冷剂气体水合物的相平衡分解条件,应用经典的vanderWaals?Platteeuw水合物热力学模型预测了R22,R23,R125和R143a水合物的分解条件三在模型预测过程中,应用SRK状态方程对气相和液相进行了模拟计算三该模型预测结果与实验数据误差分别为1 21%,2 84%,2 23%和1 02%,并得到了制冷剂水合物相平衡图及四相平衡点三同时对制冷剂水合物分解热进行了计算,对比发现Ⅱ型制冷剂水合物的分解热大于Ⅰ型三 关键词一气体水合物;制冷剂;相平衡;热力学模型 中图分类号:TB61+1;TB61+2文献标识码:A ThermodynamicModelforPredictingPhaseEquilibriumof RefrigerantGasHydrates YangHang一LiPu一ZhangLongming一LiNa (SchoolofChemicalEngineeringandTechnology,KeyLaboratoryofThermo?fluidScienceandEngineering,MinistryofEducation,Xi?anJiaotongUniversity,Xi?an,710049,China) Abstract一Thisstudyaimstoinvestigatethephaseequilibriumofrefrigerantgashydratesbasedonthermodynamictheory.Athermody?namicmodelbasedonthevanderWaals?Platteeuwmodelisusedtopredictthehydratedissociationconditions.RefrigerantsmodeledinthisstudyincludeR22,R23,R125andR143a.TheSRKequationofstateisemployedformodelingthevaporandfluidphases.Thede?viationvaluesbetweenmodelpredictionsandtheexperimentaldataare1.21%,2.84%,2.23%and1.02%,respectively.Thephasee?quilibriumdiagramofrefrigeranthydratesandquadruplepointsareobtained.Decompositionheatofrefrigeranthydratesiscalculated.ItisfoundthatthedecompositionheatoftypeⅡrefrigeranthydratesishigherthanthatoftypeⅠ. Keywords一gashydrate;refrigerant;phaseequilibrium;thermodynamicmodel 基金项目:国家自然科学基金(51176154)资助项目三(TheprojectwassupportedbytheNationalNaturalScienceFoundationofChina(No.51176154).)一一收稿日期:2016年3月15日 一一随着经济的快速发展,电力系统的供需矛盾日趋严重,白天用电高峰期电力资源紧缺,夜晚用电低谷期电力资源过剩,电力资源得不到有效利用三电力供需矛盾的问题为蓄冷空调技术提供了广阔的发展前景,蓄冷工质的研究对蓄冷空调技术的发展至关重要,常用的蓄冷工质如冰二共晶盐和水等,它们的缺点分别是蓄冷效率低二蓄冷密度低和热交换效率低[1-2]三研究发现,制冷剂气体水合物在冰点以上发生相变(5 12?),具有较大的蓄冷能力(蓄冷密度与冰相近)三自从被提出应用于蓄冷空调技术以来,制冷剂气体水合物作为一种理想的蓄冷工质而受到广泛的关注和研究[3]三气体水合物是一种笼型包合物,由水分子(主体分子)与其他气体分子(客体分子)组成三水分子由于氢键作用在高压二低温条件下形成大小不同的多面体空穴,气体分子如甲烷二乙烷及其他碳氢化合物作为客体分子填充在空穴之中,形成一种稳定的水合物结构[4-5]三根据水分子的空间分布特征以及客体水合物分子的大小可以把目前已发现的气体水合物晶体结构分为三类,即Ⅰ型二Ⅱ型和H型[6]三 相平衡热力学是制冷剂气体水合物研究的一个重要领域,热力学研究的主要目标是获得水合物的相平衡数据及其稳定存在的条件范围,故相平衡热力学的研究有助于制冷剂气体水合物应用于基于水合物蓄冷的蓄冷空调技术三图1所示为制冷剂气体水合物相平衡示意图[7],图中R,W和H分别表示制冷剂二水二水合物三种物质,G,L和S分别表示气二液二固三种相态,三平衡线的交点Q1 33 万方数据

相关文档
最新文档