经济数学-偏微分方程在金融中的应用

经济数学-偏微分方程在金融中的应用
经济数学-偏微分方程在金融中的应用

偏微分方程概述

如果一个微分方程中出现多元函数的偏导数,或是说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,则这类方程称为偏微分方程,该类方程反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式.偏微分方程这门学科开创于 1946 年,19 世纪随着数学物理问题研究的繁荣,偏微分方程得到了迅速发展,以物理、力学等各门科学中的实际问题为背景的偏微分方程已经成为应用数学的一个核心内容很多重要的物理、力学等学科的基本方程本身就是偏微分方程,而其他很多学科领域中在建立数学模型时都可以用偏微分方程来描述,或者用偏微分方法来研究.在科技和经济发展中,很多重要的实际课题都需要求解偏微分方程,为相应的工程设计提供必要的数据,保证工程安全可靠且高效地完成任务。

在很多的实际课题中,有不少课题(特别是国防课题)是不能或很难用工程试验的方法来进行研究的(一方面是危险系数大,另一方面是耗费大),因此就需要尽可能地减少试验的次数或在试验前给出比较准确的预计。随着电子计算机的出现及计算技术的发展,电子计算机成为解决这些实际课题的重要工具。但是有效地利用电子计算机,必须具备如下先决条件:

针对所考虑的实际问题建立合理的数学模型,而这些能精确描述问题的模型大都是通过偏微分方程给出的。对相应的偏微分方程模型进行定性的研究。根据所进行的定性研究,寻求或选择有效的求解方法。编制高效率的程序或建立相应的应用软件,利用电子计算机对实际问题进行模拟。

因此,总体上来说,上述这些先决条件都属于偏微分方程应用的研究范围,这些问题解决的好坏直接影响到使用电子计算机所得结果的精确性及耗费的大小。如果解决得好,就会对整个问题的解决起到事半功倍的效果。

到目前为止,偏微分方程已经在解决有关人口问题、传染病动力学、高速飞行、石油开发及城市交通等方面的实际课题中做出了重大的贡献。

金融一直以来被人们认为是文科专业,但是随着数学的引入,(当然也包括偏微分方程),赋予这一学科极大地生机和活力。下面期权定价理论中偏微分方程的应用为例,简单阐述偏微。

偏微分方程在经融中的应用.

微分方程期权定价理论是微观金融学的重要内容之一,70 年代以前诞生的期权定价公式都不同程度地依赖于标的资产未来价格的概率分布和投资者的风险偏好,而概率分布和投资者的风险偏好是无法观测和正确估计的,从而限制了它在实际中的使用,现代期权定价技术重大突破之一是源于 Black-Scholes(1973)开创的 Black-Scholes 模型该模型假设:

(1)无风险债券的利率 r 为常数,并对所有到期日都相同;

(2)标的资产的价格 S 服从对数正态分布即 dS=Sdt+S dz ,其波动率2σ为常数;

(3)在期权的有效期内无红利支付;

(4) 套期保值无交易成本;

(5)无套利机会;标的资产可以连续交易,可以细分,允许卖空.构造投资组合:在 t 时刻,一单位期权的价格 v ,一标的资产的价格 S ,则通过卖空一单位期权可以购买

S

V ??单位的标的资产故,这一资产组合价值为:S S V V ??-=π。 依上述假设,经过一个无限小的时间段 t ,这一投资组合的价值变化为:

dS S V dV ??-=πd ,而由机过程伊藤定理有,dt r

S V S S )21(d 2222??+??-=σπ,其中2σ是标的资产价格的方差,此时投资组合π式确定性资产,据无

套利假设,该组合的收益变化应该等于其自身的无风险收益变化,即:

d π=πrdt ,整理得:0r 5.0222

2=-??πσV S S 将S S V V ??-=π代入0r -r

r 5.02222=??+??+??V V S V S S S V σ该式即为 Black-Scholes 微分方程.

3 用偏微分方程分析期权定价理论

假设 C (S,t) 表示欧式买入期权价格,则由Black-Scholes 方程,C(S,t)满足:

0r -t

r 5.0t 2222=??+??+??C C S S C S C σ据实际意义,当标的资产价格 S=0 时,期权无价值,故可假设初始条件 C(0,t)=0;标的资产 S →∞, C (S ,t)~S ;期权到期时,即 t=T ,可设定边界条 C(S,t)=max(S-E,0)

(E 为施权价),即得欧式期权买入定价模型方程:

2),则上述偏微分方程化为热方程:

0r -t

r 5.0t 2222=??+??+??C C S S C S C σ C (S ,t)=0 t=0;

C(S,t)~S S →∞

C(S,t)=max(S-E,0) t=T

这是关于 C (S,t) 的偏微分方程,做如下变

2

2/1,*στ-==T t e E S x ,C=EV(x,τ),

),(e τβταX u V X +=(),)1(4

11-k 21-2+-==k βα),( 则上述偏微分方程化为热方程:

X

u 22t u ??=??(-∞0) ,e max()0,(u )1(5.0)1(5.0)x k X k e x -+-=其中2

2/1k σr = 由热方程初值问题解的理论知上述方程有基本解:

dS e x S x 04)(u ),(u 2?∞+∞---=ττ=dS e e x x k x k τπττ4S)--(x )1(5.015.02e )(21

),(u ?∞

+∞--+-=)(=

-+++)d (e 1)1(25.0)1(5.0N k k τ)d (e 2)1-(25.0)1(5.0N k k τ++

代回原变量得:C(S,t)=SN(d1)-Ee r(T-t)N(d2), 其中ρρ

d e N ?∞+-=x 2,

t

T t T E S --++=σσ))(5.0r ()/ln(d 21, t T t T t T E S -=--+=σσσ-d ))(5.0-r ()/ln(d 122。 这里 S 为一标的资产当前价格,E 为施权价,C(S,t)表示欧式买入期权价格,2σ 是标的资产价格的波动常数,r 是瞬时无风险利率,τ为期权到期时间,N 为标准正态分布函数,其均值为 0,标准差为

1. 上述参数已知,即可代入公式求出期权价格 C (S ,t )。

我们知道,弦振动方程,传导方程和拉普拉斯是最经典的三个偏微分方程的模型。当我们把偏微分方程运用于金融中时,主要是利用金融知识列出基本的方程,再进行求解。因为前人已经做了很多工

作,我们以此可以将列出的金融方程化为典型的偏微分方程,从而利用已经研究过的问题进行求解。在这个过程中根据金融知识列出基本方程和将这些方程简化成我们已熟知的模型是两大关键步骤。

数学在经济学中的应用

数学在经济学中的应用 经济学院经济系张馨月 进入大学,我选择了经济学这门学科。经过一个学期的学习,我对经济系的课程有了一个基本的了解。数学是经济系乃至经济学院的学生必修的一门课程,非常的重要。为什么数学在经济学中的作用如此重要呢?今天,我就浅论一下这个问题,谈谈数学在经济学中的应用。 要谈这个问题,首先要明确经济学是什么。经济学是研究如何配置和使用相对稀缺的资源,来满足最大化需求的社会科学,即研究社会活动中的个人、企业、政府如何进行选择,以及这些选择如何决定社会资源使用方式的一门科学。经济学是一门社会科学,但是它却与哲学、文学等社会科学有着大相径庭的区别。经济学研究的是经济问题。虽然现实里的经济问题错综复杂,使经济学的分析增加了难度,具有了一些不确定性。但是,经济学的目标是朝着物理学的方式发展的,它本质上追求精确。对于这样一门追求精确的学问,数学的作用自然非比寻常。经济学使用到了数学、统计工具,这个传统从很早的威廉.配第就有了,到魁奈的《经济表》,到边际学派的边际分析,到萨缪尔森的《经济分析基础》,到再博弈论等等,数学在经济学中的地位越来越明显。 我认为,数学在经济学中的作用主要有两方面。一是在其工具性上,数学作为经济研究的基础工具,其作用自然不可小觑;二是在其思想性方面,数学是一门严谨的学问,其严谨的思想在追求精确和理性的经济学中占据重要的地位。数学在理论上的概括和科学的实际发展中,一般给人们的印象是,与其他学科相比,数学的特点可归结为更高度的抽象性、更严密的逻辑性和更广泛的应用性。因此,说数学是一切科学的根本基础,是科学的皇后,是十分自然的。 先谈谈第一方面。首先,数学概念是抽象的典范,几乎它的所有基本概念在现实世界中是找不到的,例如,点、线、面;自然数、实数和虚数等等;它们是抽象的,又是深刻的,极其奇妙地、精确地刻画自然事物的某种基本特征。其次,数学是严密逻辑推理的象征,其方法论的核心是演绎法,即从不证自明的公理出发进行演绎推理;其实质含义是,若公理为真,则可保证其演绎的结论为真;从逻辑上看,演绎法是清晰、合理和完美的,由数学推出的显然是毋庸置疑的正确结论。最后,由上面两点,数学应用的广泛性是不言自明的。自然,在经济研究中,少不了数学这样一个工具。经济学是研究在约束的条件下的最优化选择,即在资源稀缺的条件下,如何达到收益的最大化。于是,在研究中就存在成本、收益等等的概念和运算。同时,由于经济活动的多样性,研究中存在许多变化的因素,导致了经济研究的错综复杂。而数学其用处就在于为许多复杂的思想和现象提供了简洁而明了的解释,为许多错综的数据提供了计算模型,从而使经济研究简洁条理。 但数学的有用性不仅仅体现在其工具性上,更在其思想性上。改革开放以来,西方经济学作为市场经济运行描述的基本理论,对我们经济学学习和研究的作用越来越重要。从学习和研究的角度看,似乎可以明显感觉到,西方经济学的理论体系、思维方式和推理方式的深刻特点之一表现在其数学性方面,也正是这一特征使人们常常把经济学看成是最接近自然科学的社会科学学科。西方经济学从亚当·斯密《国富论》起的二百多年来,已形成了一个庞大而较严密的理论体系。在整个社会科学中,经济学的理论形式、研究方法是公认为最接近自然

经济数学 偏微分方程在金融中的运用

偏微分方程概述 如果一个微分方程中出现多元函数的偏导数,或是说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数, 则这类方程称为偏微分方程,该类方程反映有关的未知变量关于时 间的导数和关于空间变量的导数之间制约关系的等式.偏微分方程这 门学科开创于 1946 年,19 世纪随着数学物理问题研究的繁荣,偏 微分方程得到了迅速发展,以物理、力学等各门科学中的实际问题为背景的偏微分方程已经成为应用数学的一个核心内容很多重要的物理、力学等学科的基本方程本身就是偏微分方程,而其他很多学科领域中在建立数学模型时都可以用偏微分方程来描述,或者用偏微分方法来研究.在科技和经济发展中,很多重要的实际课题都需要 求解偏微分方程,为相应的工程设计提供必要的数据,保证工程安全可靠且高效地完成任务。 在很多的实际课题中,有不少课题(特别是国防课题)是不能或很难用工程试验的方法来进行研究的(一方面是危险系数大,另一方 面是耗费大),因此就需要尽可能地减少试验的次数或在试验前给出 比较准确的预计。随着电子计算机的出现及计算技术的发展,电子 计算机成为解决这些实际课题的重要工具。但是有效地利用电子计 算机,必须具备如下先决条件: 针对所考虑的实际问题建立合理的数学模型,而这些能精确描述问题的模型大都是通过偏微分方程给出的。对相应的偏微分方程 模型进行定性的研究。根据所进行的定性研究,寻求或选择有效的 求解方法。编制高效率的程序或建立相应的应用软件,利用电子计 算机对实际问题进行模拟。 因此,总体上来说,上述这些先决条件都属于偏微分方程应用 的研究范围,这些问题解决的好坏直接影响到使用电子计算机所得 结果的精确性及耗费的大小。如果解决得好,就会对整个问题的解 决起到事半功倍的效果。 到目前为止,偏微分方程已经在解决有关人口问题、传染病动 力学、高速飞行、石油开发及城市交通等方面的实际课题中做出了 重大的贡献。 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

高等数学在经济中的应用

高等数学在经济中的应用 专业:制药工程 姓名:XXX 指导老师:XXX 摘要:高等数学在经济研究中起着基础性作用,只有学好高等数学才能更好的理解剖析经济现象掌握经济知识。本文主要用数学分析、常微分方程、高等代数 概率与数理统计等课程的相关知识来说明高等数学在经济中的应用。 关键词:高等数学;经济;应用 Application of Advanced Mathematics in Economy Abstract:Advanced mathematics is basis of economic research.0nly learning advanced mathematics,call we get a better understanding and analyzing economic phenomenon and master economic knowledge.This paper mainly illustrates the application of advanced mathematics in the economy by using the related knowledge of mathematical analysis,ordinary differential equation,higher algebra,probability and mathematical statistics course. Key words:advanced mathematics;economy;application 0 引言 数学在经济中扮演着越来越重要的角色,经济学的许多研究方法都依赖于数学思维,许多重要的结论也来源于数学的推导,而且提高经济学理论的科学性与分析水平的重要工具也是数学。因此,研究数学方法与经济学的内在联系,研究

在经济数学中的应用

Mathematica在经济数学中的应用 一、求函数的极限 1.求 2.求 3.求 二、导数和微分 在Mathematica 中,计算函数的微分或是非常方便的,命令为D[f,x],表示 1.求函数sinx的导数 2.求函数exsinx的2阶导数 3.假设a是常数可以对sinax求导 4.如果对二元函数f(x,y)=x^2*y+y^2求对x,y 求一阶和二阶偏导 Mathematica可以求函数式未知的函数微分,通常结果使用数学上的表示法例如: 对链导法则同样可用 如果要得到函数在某一点的导数值可以把这点代入导数如: 2.全微分

在Mathematica中,D[f,x]给出f的偏导数,其中假定f中的其他变量与x 无关。当f为单变量时,D[f,x]计算f对x的导数。函数Dt[f,x]给出f的全微 可以看出第一种情况y与x没有关系,第二种情况y是x的函数。再看下列求多项式x^2+xy^3+yz的全微分并假定z保持不变是常数。 如果y是x的函数,那么,y被看成是常数 三、定积分、不定积分和数值积分 1.不定积分 在Mathematica中计算不定积分命令为Integerate[f,x],当然也可使用工具栏直接输入不定积分式,来求函数的不定积分。当然并不是所有的不定积分都能求出来。例如若求 Mathematica就无能为力。 但对于一些手工计算相当复杂的不定积分,MatheMatica还是能轻易求得,例如求 积分变量的形式也可以是一函数,例如 输入命令也可求得正确结果。对于在函数中出现的除积分变量外的函数,统统当作常数处理,请看下面例子。 2.定积分 定积分的求解主要命令也是用Integrate只是要在命令中加入积分限Integrate[f,{x,min,max}] 或者使用式具栏输入也可以。例如求 显然这条命令也可以求广义积分例如:求 求无穷积也可以例如 如果广义积发散也能给出结果,例如 如果无法判定敛散性,就用给出一个提示,例如 如果广义积分敛散性与某个符号的取值有关,它也能给出在不同情况下的积分结果例如

高数在经济学中的应用演示版.doc

《高等数学》知识在经济学中的应用举例 由于现代化生产发展的需要,经济学中定量分析有了长足的进步,数学的一些分支如数 学分析、线性代数、概率统计、微分方程等等已进入经济学,出现了数理统计学、经济计量学、经济控制论等新分支,这些新分支通常成为数量经济学。数量经济学的目的在于探索客观经济过程的数量规律,以便用来知道客观经济实践。应用数量经济学研究客观经济现象的关键就是要把所考察的对象描述成能够用数学方法来解答的数学经济模型。这里我们简单介绍一下一元微积分与多元微积分在经济中的一些简单应用。 一、复利与贴现问题 1、复利公式 货币所有者(债权人)因贷出货币而从借款人(债务人)手中所得之报酬称为利息。利 息以“期”,即单位时间(一般以一年或一月为期)进行结算。在这一期内利息总额与贷款额(又称本金)之比,成为利息率,简称利率,通常利率用百分数表示。 如果在贷款的全部期限内,煤气结算利息,都只用初始本金按规定利率计算,这种计息方法叫单利。在结算利息时,如果将前一期之利息于前一期之末并入前一期原有本金,并以此和为下一期计算利息的新本金,这就是所谓的复利。通俗说法就是“利滚利”。 下面推出按福利计息方法的复利公式。 现有本金A 0,年利率r=p%,若以复利计息,t 年末A 0将增值到A t ,试计算A t 。 若以年为一期计算利息: 一年末的本利和为A 1=A 0(1+r ) 二年末的本利和为A 2=A 0(1+r )+A 0(1+r )r= A 0(1+r )2 类推,t 年末的本利和为A t = A 0(1+r )t (1) 若把一年均分成m 期计算利息,这时,每期利率可以认为是 r m ,容易推得 0(1) mt t r A A m =+ (2) 公式(1)和(2)是按离散情况——计息的“期”是确定的时间间隔,因而计息次数有限——推得的计算A t 的复利公式。 若计息的“期”的时间间隔无限缩短,从而计息次数m →∞,这时,由于 000lim (1)lim[(1)]m mt rt rt r m m r r A A A e m m →∞→∞+=+= 所以,若以连续复利计算利息,其复利公式是 0rt t A A e =

数学在金融中的应用

数学在金融数学中的三个重要应用 金融数学是将数学应用于投资组合选择理论和期权定价理论的产物。随着经济形势的快速发展,金融行业的产品和衍生产品不断优化和创新,新的金融产品和服务也在逐步增加。金融市场的运作,金融衍生产品的设计和定价以及风险的分析和管理变得非常重要,金融数学的研究与开发越来越重要。因此,分析数学在金融领域的具体应用具有现实意义。 金融数学,也称为分析金融,数学金融和数学金融,是数学和金融的一个跨学科学科,始于1980年代末和90年代初。金融数学主要使用金融(包括银行,投资,债券,基金)的现代数学理论和方法(如随机分析,随机最优控制,投资组合分析,非线性分析,多元统计分析,数学编程,现代计算方法等)。,股票,期货,期权和其他金融工具和市场)分析了一些理论和实践。核心问题是不确定条件下最优投资策略的选择理论和资产定价理论。1 ]。 从广义上讲,金融数学是一门将数学理论和方法应用于金融和经济运作的新学科。从狭义的角度讲,金融领域的数学问题主要是在不确定条件下的股票选择和资产定价理论的资产组合分析相结合,这是最优套利,而均衡理论是三个最重要的基本概念。 将数学应用于金融领域是基于一些金融或经济假设,并使用抽象数学方法来构建有关金融机制运作方式的数学模型。金融数学主要包括数学的基本概念和方法,相关的自然科学方法等。它们以各种形式的进入理论应用。数学的用途是表达,推理和证明金融的基本原理。从金融数学的本质来看,金融数学是金融的重要分支。因此,金融数学完全基于金融理论的背景和基础。通过正规金融学术培训从事金融数学的人们将在这种情况下拥有更多优势。金融作为身份发展经济学的一个子学科,尽管具有足够的经济独立性特征,但仍然需要以经济原理和与之相关的经济技术为背景。同时,金融数学也需要金融知识,税收理论和会计原理作为知识的背景[2 ]。 金融数学的理论基础还包括数学建模和统计理论,第一步是数学或统计建模,这是从复杂的金融环境中分别找出相关因素和独立因素的关键因素,然后从一系列假设出发推导各种关系,最后得出结论,作结论说明。建模活动不仅非常有用,而且非常重要,因为在财务中,一个小错误会导致错误,错误的结论或错误说明的结论可能会导致财务灾难。此外,在金融数学研究中,计算机技术的应用也具有非常突出的地位。 3.1。差分博弈法 在现代金融理论中,金融领域的另一重要应用是利用微分博弈法分析了期权定价和投资决策中的数学应用,这方面的应用取得了显著成就。由于金融市场的整体规律不符合稳态假说,证券的异常波动将导致异常波动过程中的异常变化,而这种变化将不服从布朗议案。在这一点上,我们需要使用随机动态模型来研究和分析证券投资的整体决策。这种方法不仅在理论上或在实践上都有很大的偏差。通过对布朗分布的金融领域中的非几何学使用微分方法的金融问题和对策具

数学在经济中的应用2

数学在经济中的应用 数学是科学之王。数字化时代的任何学科显然都已经离不开数学。离开数学的,比如诗歌,比如京戏,如果还摈弃数学的精细,还敢藐视数字化的传媒,则必定为时代所抛弃。 唯独中国的经济学,在最需要数学扶助的时候,却在以大无畏的精神藐视着数学。不管是宏观经济学、微观经济学,还是我们曾奉为经典的政治经济学,都以极端自负的姿态不屑于带数学这个纯自然科学的小兄弟玩儿,最多在需要点缀的时候,捎上它的一点儿“概算”,就算对这小兄弟够重视的了——科学之王?在我们的经济学里公民都算不上! 中国经济,不管宏观还是微观都出了问题,这是人们无法否认的。制度上的原因人们尽可以仁者见仁智者见智。“似乎”是在制度之外,笔者却发现了一个数学上的原因。那就是中国经济学在不经意之时捎带着用一下的数学“概算”。这一“概算”,就“概算”出了中国经济的大毛病。 先看宏观经济中“概算”搞出来的漏子。 鼓励生育的人口政策可以认定是一项经济政策,其经济上的动机是建立在发展生产“人多力量大”的数学概算基础上的。其数学含义是:多一亿人口的物质财富生产≥多一亿人口的物质财富消耗。时髦的口号是:人少好吃饭,人多好干活。劳动力的物质财富生产扣除劳动力的物质财富消耗的剩余,就是鼓励人口政策的经济目的。这样的概算在今天看起来粗鄙得近于野蛮——即便科学技术高度发展对财富生产方式的改变令闭塞社会的管理者始料不及这一点可以理解,有限土地人口承载力、不可再生资源的消耗极限、社会管理成本的高比例付出、财富产出的边际收益递减等等基本数学因数都不能纳入国民经济规划视野的话,数学在经济学中的位置则肯定不如贵族豪门里的粗使丫头。 计划经济曾是我们社会为人类探索的一条大胆的经济发展模式。它失败了。但它的对手却在令人眼花缭乱的市场经济里把计划用到了极致。难道计划对于市场,对于经济真的是那么无能为力,那么荒唐吗?我们的对手都会告诉我们:不是!计划是智慧生命的生存方式。计划是对生存方式的算计和筹划。日本人对自己海岸线以内的海底资源珍藏不用是算计,美国人的“星球大战”是筹划;世界商业巨头数亿美元的广告营销投入是精心算计,跨国公司的中国攻略是跨世纪的大筹划……市场经济里几乎每一个智慧生命的每一个动作都自然地演绎着精致的数学逻辑。 算计和筹划都离不开数学。我们的计划经济却抛弃了数学,因而它实际上根本谈不上是计划,所以它失败了。翻看一下我们那时的年度计划、十年规划,我们会看到,我们的计划体制里没有数学的位置,连初等数学的运用都是随心所欲地选取几个为我所用的要素的简单累加——我们的5年计划在计算总产值、GDP的同时,几乎从不计算投入与消耗;我们在劳 1

数学统计方法在经济学中的应用

数学统计方法在经济学中的应用 数学统计方法在经济学中的应用开题报告/html/lunwenzhidao/kaitibaogao/ 数学这门理论性学科具有高度的抽象性,它作为一种应用性工具被广泛的运用于工程学、机械学、经济学等众多领域。通过在经济学中的大量实践应用可知,经济问题的中的定性分析与定量分析都可以运用数学方法来进行统计。对于现代企业来讲,任何一项运行决策的制定、实施、评价都离要使用数学统计方法对决策的经济效益中的各项指标进行评估,例如企业生产过程中所涉及到原材料的使用,产品销售过程中的价格控制,经济效益评估时的利润计算等。当代经济学家认为,经济领域一些现实的问题的解决,都要通过先将经济学中的变量提取出来,从而建立经济模型,再通过数学方法进行统计与运算,结合经济原则和理论,对决策进行预测与评估。 一、数学统计方法应用于现代经济中的意义 数学统计方法应本文由毕业论文网收集整理用于经济学中,尤其是应用于现代企业的各项经济指标预测与评估中,对企业的决策的成功与失败,决策的调整与改革都有着重要的影响。因此,将数学统计方法应用于经济学中,有着很强烈的现实意义。 1.经济学问题的解决离不开数学统计方法的运用 经济学问题的分析与解决需要精确、客观、科学,而数学统计方法的最重要特点就在于它分析过程的严谨精密,分析结果的清晰准确。数学方法应用于经济学领域中,最早可以追溯到古经济学中代数式的

应用,时至今日,数学与经济学相结合,衍生出了数理经济学、经济计量学以及产权经济学等数门专业化理论,经济学中的数学统计方法已经无处不在。将数学方法运用于经济问题的解决中,一般要经历“经济—数学——经济”的模式,既从需要解决的现实经济问题入手,建立数学模型进行,运用数学方法对数学模型进行分析,求得数学结果,再结合经济理论与经济学原理对结果进行评估,得出结论,用于指导经济活动的进行。 2.现代企业经济决策的制定离不开数学统计方法 数学在经济学中的大量运用,使人们对经济活动评估的要求由定性分析发展到定量分析,特别在现代企业在制定决策时,它们都希望通过数学方法来精确的分析决策对企业发展产生的意义。数学方法在现代企业经济决策中的运用,是为了提高经济决策的可靠性与科学性,避免企业财力、物力的损失,通过数学方法对决策执行后的结果进行预测,使企业的发展处于自身可以控制的情况下。一个简单的数学方法就可以将经济决策中的各项因子之间的关系简单的明了的表现出来,各个经济变量之间的关系也能一目了然,经济决策的制定是否可靠的结论就可以得出。作文/zuowen/ 3.数学统计方法是经济理论分析最重要工具之一 数学统计方法是经济学理论分析的最重要工具之一,从最早的代数运用,再到数理经济学中,各种深奥的数学问题中的大量的运用的运用,现代统计经济学中,繁杂数据的中指标的得出,再代现代数学与现代经济理论相结合,产生的特有的专门运用数学方法来解释经济

经济数学在生活中的应用

经济数学在生活中的应用 数学是科学之王。数字化时代的任何学科显然都已经离不开数学。离开数学的,比如诗歌,比如京戏,如果还摈弃数学的精细,还敢藐视数字化的传媒,则必定为时代所抛弃。唯独中国的经济学,在最需要数学扶助的时候,却在以大无畏的精神藐视着数学。不管是宏观经济学、微观经济学,还是我们曾奉为经典的政治经济学,都以极端自负的姿态不屑于带数学这个纯自然科学的小兄弟玩儿,最多在需要点缀的时候,捎上它的一点儿“概算”,就算对这小兄弟够重视的了——科学之王?在我们的经济学里公民都算不上! 中国经济,不管宏观还是微观都出了问题,这是人们无法否认的。制度上的原因人们尽可以仁者见仁智者见智。“似乎”是在制度之外,笔者却发现了一个数学上的原因。那就是中国经济学在不经意之时捎带着用一下的数学“概算”。这一“概算”,就“概算”出了中国经济的大毛病。 先看宏观经济中“概算”搞出来的漏子。 算计和筹划都离不开数学。我们的计划经济却抛弃了数学,因而它实际上根本谈不上是计划,所以它失败了。翻看一下我们那时的年度计划、十年规划,我们会看到,我们的计划体制里没有数学的位置,连初等数学的运用都是随心所欲地选取几个为我所用的要素的简单累加——我们的5年计划在计算总产值、GDP的同时,几乎从不计算投入与消耗;我们在劳动者的报酬中强制提留福利事业费,连劳动者维持生命需要几分钱的油、盐、酱、醋都计算的分文不余,却从不计算每一位劳动者在离开这个世界之前能否住上一天公有制配给的房子,也几乎不去计算老龄化社会,对养老金需求的增幅;我们的市政建设没有工程师或规划师去计算基础管道设施的铺设是一次性开沟铺设最经济,还是分八、九次开膛破肚更有利,却有人计算出八、九次开膛破肚的GDP值要大于一次性马到功成;我们的证券市场设计,能够设计出一个让体制内企业家取之不尽的再生金矿,却计算不出融资额、股票市值与上市公司实际财富产出值之间的倍数关系。 再看一看微观经济中人们又是如何应用数学。 W=C+V+M 这个简单的商品价值构成公式相信越是老一辈的革命者越是记忆犹新。然而不管是30年的纯计划经济,还是20多年的开放搞活经济,我们却从没有正确应用过这个公式。 和发达国家数千美元/月的劳动力成本相比,我国社会劳动力成本低廉确凿无疑。然而差距到了60倍到100倍,这能是两类劳动者的真实价差吗?难怪市场经济国家要抗拒我们的廉价商品为不正当倾销!静下心来计算一下两个社会里劳动者报酬的内涵,我们自己就会赧颜羞涩: ——市场经济社会,劳动力价值构成=劳动者衣+劳动者食+劳动者住+劳动者行+医疗福利+精神生活+知识更新+后代抚养+…=完整的具有社会属性的人。 ——我国现今社会,以最下层却又最广大的600元月薪的打工者为例,其价格构成=劳动者衣+劳动者食+劳动者行+1/3劳动者住=价值残缺的生物的人。 我们的劳动力价值在物质极度匮乏的时期在价值回报上无以体现,成本低廉是因为没有足够的物质财富可以和劳动力价值作等价交换。随着国民财富的高幅度增长,劳动力价值的回报早已有了充足的物质条件,这时的劳动力价值应该依靠数学得以回归。 我们的劳动力价值被严重低估了!这是劳动力供应远远大于需求造成的价格与价值的严重背离。而劳动力的超供应,源于我们失当的人口政策。当时的人口政策是数学计算的失误,今天的劳动力价值计算,显然不应该再让数学失落。 我们的劳动力价值是不完整的。这一方面是说我们的劳动薪酬体系对劳动力价值体现的不完整,另一方面是说由于在薪酬上被割去了一大部分体现劳动者社会属性的价值,我们的劳动

14224考研数学三经济学应用考点分析190402

考研数学三经济学应用考点分析 对于全国硕士研究生数学三的考试来说,经济学应用是一个高频考点,在历年的数学三真题中经常出现,如:2001年第一(1)题,2004年第18题,2007年第5题,2009年第12题,2010年第11题,2013年第18题,2014年第9题,2015年第17题,这些经济学应用问题主要涉及到两个重要概念,一个是边际概念,一个是弹性概念,下面文都网校的数学蔡老师对这两个概念及2016年的相关真题做些分析说明,供各位考研的同学和朋友参考。 一、边际概念和弹性概念 1、边际概念:边际指经济变量的变化率(导数)。若经济变量()y f x =,则称()f x '为边际函数;如:边际成本()C x '、边际收入()R x '和边际利润()L x '(x 为产量),分别表示增加一个单位产量时所增加的成本、收入和利润,其中(),(),()C x R x L x 分别为企业生产某种产品的成本、收入和利润。 2、弹性概念:弹性指一个经济变量变动1%时会使另一个经济变量变动百分之几。 变量y 对x 的弹性为y x y x y y E x y x x ∧??==???,令0x ?→,得()y x x dy x E y x y dx y '=?=.需求弹性:Q p p dQ E Q dp =-?,p 为产品价格,()Q p 为市场需求量。收入弹性:R p p dR E R dp = ?,()R p 为收入(()R pQ p =).二、真题分析设某商品的最大需求量为1200件,该商品的需求函数()Q Q p =,需求弹性为(0)120p p ηη=>-,p 为单价(万元)。(Ⅰ)求需求函数的表达式; (Ⅱ)求100p =万元时的边际收益,并说明其经济意义. 注:这是2016年考研数学(三)第(16)题(本题满分10分)

数学在金融中的应用研究

数学在金融中的应用研究 数学作为现代科学的重要基础之一,自古以来就扮演着推动全领域发展的重要角色,其重要性不言而喻。金融领域作为统领世界资本要素流动的主要领域,在经济全球化发展的时代,赢得了社会各界的广泛关注。基于这一基础,浅析数学在金融中的应用,从金融数学的概念定义出发,解析了期权定价模型,证券投资组合模型和资产估价模型三种经典的金融问题,并解释了数学在其中扮演的强大作用。 标签:金融数学;期权定价模型;证券投资组合模型;资产估价模型 1 引言 数学是一门极为广博的学科,其应用遍及各个学科,作为一种工具性科目,往往占据了部分理论的核心位置。数学在金融领域中扎根已久,衍生出金融数学这一种具有交叉特色的,将复杂的数学理论和方法引入金融领域的一门新兴科目,具有重要的应用前景。本文基于这一背景,浅析数学在金融中的应用。 2 概念定义 数学在金融中的应用主要体现为金融数学这一新兴学科,本门科目的重中之重是数学上常见的随机分析、最优控制和组合分析、线性规划等等,其核心问题是不确定条件下的最优投资策略的选择理论和资产的定价理论等等,多年以来,在实际金融市场中,为金融工具创新和金融运作的稳定产生着直接的影响和推动性,得到了广泛应用。 数学在金融中的应用,主要与诸如心理投资学等等的纯理论分析相背离,具有鲜明的量化特征,或者说,其所着力于解决的问题主要是在多种不确定条件下选择多组合证券,分析证券组合的最优策略,进行组合投资资产定价问题。这一类问题的共同特征,就是需要基于大量计算过程,完善市场选择的敏感性和有效性。在此之中,必须要引述出金融活动的三大重要概念。 其一,套利行为。套利,即在两个及以上的细分市场中,用有利的价格买进金融资产,并在合理的时机进行卖出以赚取其中差值的金融活动行为。买入和卖出的过程往往是在不同的细分市场或者不同的金融产品之间发生的,这需要一系列精准的数学工具的利用,来把握套利行为的时机。其二,最优理论。最优理论的主要核心是收益最优化,这是金融活动的主要出发点之一,在此之中,对金融资产进行合理定价具有重要意义,利用数学工具进行复杂的多层次定价,包含债券和证券组合等等。其三,均衡理论。诸多金融学家通过数学工具对金融方面的供需平衡进行综合分析。毫无疑问,金融行业的最核心部分是货币流通过程,这其中所显示出的显性和隐性资金流,需要依靠于大量的数学关系来加以完整衡量。同时,金融问题由于具有很大程度的不确定性,对一系列数学层面的随机控制机理有着深厚的关系。另外,对金融经济中存在的风险和投入进行估算也具有

数学在经济生活中的应用

数学在经济生活中的应用 例1 设:生产x个产品的边际成本C=100+2x,其固定成本为C(0)=1000元,产品单价规定为500元。假设生产出的产品能完全销售,问生产量为多少时利润最大?并求最大利润 解:总成本函数为 C(x)=∫x0(100+2t)dt+C(0)=100x+x 2+1000 总收益函数为R(x)=500x 总利润L(x)=R(x)-C(x)=400x-x2-1000,L’=400-2x,令L’=0,得x=200,因为L’’(200)<0。所以,生产量为200单位时,利润最大。最大利润为L(200)=400×200-2002-1000=390009(元) 例2 某企业每月生产Q(吨)产品的总成本C(千元)是产量Q的函数,C(Q)=Q 2-10Q+20。如果每吨产品销售价格2万元,求每月生产10吨、15吨、20吨时的边际利润。 解:每月生产Q吨产品的总收入函数为: R(Q)=20Q L(Q)=R(Q)-C(Q)=20Q-(Q2-1Q+20) =-Q2+30Q-20 L’(Q)=(-Q2+30Q-20)’=-2Q+30 则每月生产10吨、15吨、20吨的边际利润分别为 L’(10)=-2×10+30=10(千元/吨); L’(15)=-2×15+30=0(千元/吨); L’(20)=-2×20+30=-10(千元/吨); 以上结果表明:当月产量为10吨时,再增产1吨,利润将增加1万元;当月产量为15吨时,再增产1吨,利润则不会增加;当月产量为20吨时,再增产1吨,利润反而减少1万元。 例3 设生产某产品的固定成本为60000元,变动成本为每件20元,价格函数p=60-Q1000 (Q为销售量),假设供销平衡,问产量为多少时,利润最大?最大利润是多少? 解:产品的总成本函数 收益函数R(Q)=pQ=(60-Q1000)Q=60Q- 则利润函数L(Q)=R(Q)-C(Q)=-- L’(Q)=-1500Q+40,令L’(Q)=0得 ∵L’’(Q)=-1500<0∴Q=2000时L最大,L(2000)=340000元 所以生产20000个产品时利润最大,最大利润为340000元。

微积分在经济学中的应用分析.doc

微积分在经济学中的应用分析 李博 西南大学数学与统计学院,重庆 400715 摘要:本文从经济学与数学的紧密联系出发,分析了数学,尤其是微积分在经济学研究中的地位和作用。 关键词:微积分;经济学;边际分析 Calculus’s Applied Analysis in Economics Li bo School of Mathematics and Statistics, Southwest University, Chongqing 400715, China Abstract: Based on the close relationship between economics and maths,this paper analyzes the role and function of maths especially calculus in economics. Key words: calculus; Economics; marginal analysis 1.数学与经济学的紧密联系 经济学与数学之间有天然的联系, 经济学从诞生之日起便与数学结下了不解之缘。 经济学应用数学有客观基础。经济学研究的对象是人与人之间的“物的交换”,是有量化规则的。经济学基本范畴如需求、供给、价格等是量化的概念。经济学所揭示的规律性往往需要数量的说明。特别是经济学的出发点是“理性经纪人”。由于经纪人在行为上是理性的,经纪人能够根据自己的市场处境判断自身利益,且在若干不同的选择场合时,总是倾向于选择能给自己带来最大利益的那一种。所以,数学中所有关于求极值和最优化的理论,都适用于分析各种各样的最优经济效果问题,而很多求极值的数学理论和概念,也只能在最优经济效果中找到原型。 数学方法本身所提供的可能性。多变量微积分的理论特别适用于研究以复杂

浅论数学建模在经济学中的应用

浅论数学建模在经济学中的应用 摘要:当代西方经济认为,经济学的基本方法是分析 经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论进行决策和预测。 关键词:经济学数学模型应用 在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统(根据厂家各种资源、产品工艺流程、生产成本及客户需求等数据进行数学经济建模)与客户进行商业谈判。 一、数学经济模型及其重要性 数学经济模型可以按变量的性质分成两类,即概率型和确定型。概率型的模型处理具有随机性情况的模型,确定型的模型则能基于一定的假设和法则,精确地对一种特定情况的结果做出判断。由于数学分支很多,加之相互交叉渗透,又派生出许多分支,所以一个给定的经济问题有时能用一种以上的数学方法去对它进行描述和解释。具体建立什么类型的模型,既要视问题而定,又要因人而异。要看自己比较熟悉精通哪门学科,充分发挥自己的特长。 数学并不能直接处理经济领域的客观情况。为了能用数学解决经济领域中的问题,就必须建立数学模型。数学建模是为了解决经济领域中的问题而作的一个抽象的、简化的结构的数学刻划。或者说,数学经济建模就是为了经济目的,用字母、数字及其他数学符号建立起

来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构的刻划。而现代世界发展史证实其经济发展速度与数学经济建模的密切关系。数学经济建模促进经济学的发展;带来了现实的生产效率。在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统与客户进行商业谈判。 二、构建经济数学模型的一般步骤 1.了解熟悉实际问题,以及与问题有关的背景知识。 2.通过假设把所要研究的实际问题简化、抽象,明确模型中诸多的影响因素,用数量和参数来表示这些因素。运用数学知识和技巧来描述问题中变量参数之问的关系。一般情况下用数学表达式来表示,构架出一个初步的数学模型。然后,再通过不断地调整假设使建立的模型尽可能地接近实际,从而得到比较满意的结论。 3.使用已知数据,观测数据或者实际问题的有关背景知识对所建模型中的参数给出估计值。 4.运行所得到的模型。把模型的结果与实际观测进行分析比较。如果模型结果与实际情况基本一致,表明模型是符合实际问题的。我们可以将它用于对实际问题进一步的分析或者预测;如果模型的结果与实际观测不一致,不能将所得的模型应用于所研究的实际问题。此时需要回头检查模型的组建是否有问题。问题的假使是否恰当,是否忽略了不应该忽略的因

数学在经济生活中的应用

数学在经济生活中的应用例1 设:生产x个产品的边际成本C=100+2x,其固定成本为C(0)=1000元,产品单价规定为500元。假设生产出的产品能完全销售,问生产量为多少时利润最大?并求最大利润 解:总成本函数为 C(x)=∫x0(100+2t)dt+C(0)=100x+x 2+1000 总收益函数为R(x)=500x 总利润L(x)=R(x)-C(x)=400x-x2-1000,L’=400-2x,令L’=0,得x=200,因为L’’(200)<0。所以,生产量为200单位时,利润最大。最大利润为L(200)=400×200-2002-1000=390009(元) 例2 某企业每月生产Q(吨)产品的总成本C(千元)是产量Q的函数,C(Q)=Q2-10Q+20。如果每吨产品销售价格2万元,求每月生产10吨、15吨、20吨时的边际利润。 解:每月生产Q吨产品的总收入函数为: R(Q)=20Q L(Q)=R(Q)-C(Q)=20Q-(Q2-1Q+20) =-Q2+30Q-20 L’(Q)=(-Q2+30Q-20)’=-2Q+30 则每月生产10吨、15吨、20吨的边际利润分别为 L’(10)=-2×10+30=10(千元/吨); L’(15)=-2×15+30=0(千元/吨); L’(20)=-2×20+30=-10(千元/吨); 以上结果表明:当月产量为10吨时,再增产1吨,利润将增加1万元;当月产量为15吨时,再增产1吨,利润则不会增加;当月产量为20吨时,再增产1吨,利润反而减少1万元。 例3 设生产某产品的固定成本为60000元,变动成本为每件20元,价格函数p=60-Q1000(Q为销售量),假设供销平衡,问产量为多少时,利润最大?最大利润是多少? 解:产品的总成本函数C(Q)=60000+20Q 收益函数R(Q)=pQ=(60-Q1000)Q=60Q-Q21000 则利润函数L(Q)=R(Q)-C(Q)=-Q21000+40Q-60000 L’(Q)=-1500Q+40,令L’(Q)=0得Q=20000 ∵L’’(Q)=-1500<0∴Q=2000时L最大,L(2000)=340000元 所以生产20000个产品时利润最大,最大利润为340000元。 例4 X银行提供每年支付一次,复利为年利率8%的银行帐户,Y银行提供每年支付四次,复利为年利率8%的帐户,它们之间有何差异呢? 解两种情况中8%都是年利率,一年支付一次,复利8%表示在每年末都要加上当前余额的8%,这相当于当前余额乘以1.08.如果存入100元,则余额A为 一年后:A=100(1.08),两年后:A=100(1.08)2,…,t年后:A=100(1.08)t.

试论经济学中数学统计方法的应用

试论经济学中数学统计方法的应用 1 经济学与数学统计方法之间的融合历程 数学统计在经济学研究中的应用已经非常普遍,两者之间的联系也越来越紧密。回顾 历史,早在17世纪,经济学与统计学之间的融合就已经表现出了必然的趋势。在当时, 英国古典经济学家威廉·配第在《政治算数》一书中第一次利用数学方法来解决经济问题,这是两者的首次融合。不过在那个时期的研究由于受到社会发展的限制,研究方法还是以 定性分析为主,并没有对统计学进行充分的运用。到了19世纪20年代以后,经济学与统 计学之间的结合得到了进一步的深入。在这一时期,德国经济学家于1854年在其发表的 论文中提出了一个结论,指出可以通过数学统计方法推导出“戈森定律”,其中还重点阐 述了统计学方法应用于经济学是非常必要且重要的[1]。之后,英国经济学家斯坦利·文 杰斯也对经济学与数学统计方法两者之间的关系进行了深入的研究,并在他1871年发表 的书籍中提出了一个新的思想,也就是采用统计学的方法建立经济数学模型[2]。此后, 经济学中数学统计方法的运用开始得到推广和发展。20世纪40年代之后,由于受到第三 次科技革命的影响,经济学与统计学在实践上和理论上都得到了突破性的发展,并且两者 之间的融合也得到了创新性的进步,进入了一个新的阶段。1955年,由美国经济学家摩根斯坦和数学家伊诺曼共同创作了《对策论与经济行为》,这本书籍的出版成为经济学与数 学开始全新合作的里程碑[3]。自此之后,无论是在微观经济学中,还是在宏观经济学中,统计方法都得到了大量的运用,其重要性变得更加凸显。由此可见,从17世纪开始经济 学与统计学出现融合的趋势,经历了长期的发展历程,目前两者之间的融合已经非常的深 入和成熟,对于推动经济学的科学化发展起到了非常重要的作用。 2 数学统计方法应用于经济学的作用分析 2.1 数学统计方法可用于解决经济学问题 严谨精密的分析过程以及清晰准确的分析结果是数学统计方法的优势所在,而经济学 问题的分析和解决中则对结果精确度和科学性要求非常高。由此可见,数学统计方法应用 于经济学中具有重要的实际意义。数学统计方法很早就开始在经济学领域中得到应用,随 着两者之间的结合和发展,现在在相关的研究领域已经出现了很多数学专业化理论,例如 经济计量学、数理经济学等,这又进一步为两者的融合和共同发展提供了理论基础[4]。 在经济学问题的解决中,数学统计方法的应用模式主要是“经济一数学—经济”,这也就 是说,首先,以现实经济问题为出发点来建立数学模型,然后,采用数学方法来分析这一 数学模型并得到结果,最后,再利用经济学原理和理论来评估所得的结果,得出相应的结论,其结论不仅可以用于指导经济活动,同时还可以用于预测经济发展方向。特别是在现 代企业经济决策中,通过数学统计方法可以对经济活动进行从定性到定量的全面分析,可 以较为科学、准确地预测决策执行后的结果,并充分利用企业的现有条件来对结果进行控 制和优化,通过这种方式可以有效提高经济决策的可靠性与科学性,避免企业财力、物力 的损失[5-6]。

数学在金融中的应用分析与研究

龙源期刊网 https://www.360docs.net/doc/8811488790.html, 数学在金融中的应用分析与研究 作者:牛飞云 来源:《卷宗》2018年第08期 摘要:本文首先分析了数学在金融领域中的应用表现,其次阐述了金融数学的理论框 架,然后总结了数学在金融中的各类应用情况,旨在通过对金融领域中数学应用的分析与研究,体现出数学在金融领域的重要作用和重要地位。 关键词:数学;金融领域;应用分析 一、数学在金融中应用表现 众所周知,数学的应用广布于各个学科,在金融领域当中,数学的应用表现主要集中在了金融数学这个新兴学科,这门科目将复杂的数学理论方法融合进金融领域,与数学专业联系非常紧密。随机分析、最优控制以及线性规划、组合分析等数学常见问题是金融数学的科目重点,不确定条件下的最优投资策略选择则以及资产定价理论等则是其核心问题,除了经济学和数学方面的研究,这门科目还包括了社会学、心理学和行为学等,在实际的金融市场当中,金融数学起到了影响和推动金融工具创新以及金融运作稳定的作用,因而得到了更广泛的应用。 二、金融数学的理论框架 利用数学手段、通过数学方法发现金融规律并将其论证是金融数学最显著的特点,一般来说金融数学主要研究的问题有四点,第一是如何投资才能在最大程度降低风险的同时让投资者获取最大效益;第二是金融市场应该怎么在环境欠缺的情况下达到最优消费;第三是利率和利率衍生物的研究;第四则是当金融市场出现失衡状况,如何才能做好金融风险的管理。对于这些问题,金融数学可以通过线性与非线性分析、随机控制、微分、规划与统计等知识方法来进行研究。 在对证券的价格研究中,大部分都会应用到非线性理论,比如说混沌学、小波、分形和探索识别等等。而在预测证券与股票价格的时候,许多人都会利用智能人工和神经网络法等先进技术方法来进行研究。在当代的金融理论里面,解决金融问题的重点研究方向都在于数学知识,对于数学理论的应用而言,最优控制理论是最直接有效的方法,随机最优控制理论是最优控制理论发展到一定阶段后才兴起的。 三、数学在金融中的应用 数学在金融中的应用相当广泛,但金融类的数学方法和常规型的经济学理论彼此影响,金融数学主要应用于分析更适合金融的类型。金融实体影响着经济利益,它可以将数学理论方法准确的表述出来,而那些无法做到这一点的方法只能被淘汰。通常情况下,大多数的数学形式都属于线性,在线性稳定的情况下才会对非线性进行处理,这已经成了现在的定式和传统。

相关文档
最新文档