钢材的许用应力

钢材的许用应力
钢材的许用应力

钢材的许用应力

《火力发电厂汽水管道设计技术规定》第2.0.5条规定:

钢材的许用应力,根据钢材的有关特性取下列三项的最小值。

σb 20/3,σt S/1.5或σS t (0.2%)/1.5, σD t/1.5;

σb 20—钢材在20℃时的抗拉强度最小值(MPa);

σS t—钢材在设计温度下的屈服极限最小值(MPa);

σS t (0.2%)—钢材在设计温度下残余变形为0.2%时的屈服极限最小值(MPa);

σD t—钢材在设计温度下的105小时持久强度平均值(MPa);

钢材的许用应力数据表见附表3和附表4。

附表3、常用美国钢材的许用应力表(k.s.i)MPa

附表4、常用德国钢材的许用应力表 MPa

各种许用应力与抗拉强度、屈服强度的关系

各种许用应力与抗拉强度、屈服强度的关系 我们在设计的时候常取许用剪切应力,在不同的情况下安全系数不同,许用剪切应力就不一样。校核各种许用应力常常与许用拉应力有联系,而许用材料的屈服强度(刚度)与各种应力关系如下: <一> 许用(拉伸)应力 钢材的许用拉应力[δ]与抗拉强度极限、屈服强度极限的关系: 1.对于塑性材料[δ]= δs /n 2.对于脆性材料[δ]= δb /n δb ---抗拉强度极限 δs ---屈服强度极限 n---安全系数 轧、锻件n=1.2-2.2 起重机械n=1.7 人力钢丝绳n=4.5 土建工程n=1.5 载人用的钢丝n=9 螺纹连接n=1.2-1.7 铸件n=1.6-2.5 一般钢材n=1.6-2.5 注:脆性材料:如淬硬的工具钢、陶瓷等。 塑性材料:如低碳钢、非淬硬中炭钢、退火球墨铸铁、铜和铝等。 <二> 剪切 许用剪应力与许用拉应力的关系: 1.对于塑性材料[τ]=0.6-0.8[δ] 2.对于脆性材料[τ]=0.8-1.0[δ] <三> 挤压 许用挤压应力与许用拉应力的关系 1.对于塑性材料[δj]=1.5- 2.5[δ]

2.对于脆性材料[δj]=0.9-1.5[δ] 注:[δj]=1.7-2[δ](部分教科书常用) <四> 扭转 许用扭转应力与许用拉应力的关系: 1.对于塑性材料[δn]=0.5-0.6[δ] 2.对于脆性材料[δn]=0.8-1.0[δ] 轴的扭转变形用每米长的扭转角来衡量。对于一般传动可取[φ]=0.5°--1°/m;对于精密件,可取[φ]=0.25°-0.5°/m;对于要求不严格的轴,可取[φ]大于1°/m计算。 <五> 弯曲 许用弯曲应力与许用拉应力的关系: 1.对于薄壁型钢一般采取用轴向拉伸应力的许用值 2.对于实心型钢可以略高一点,具体数值可参见有关规范。

钢铁材料的许用应力

表1 普通碳钢及优质碳钢构件基本许用应力/MPa 材 料类型材料 标号 截面尺寸 /mm 热处 理 材料性能拉压弯曲扭转剪切 抗拉强度σb 屈服强度σs /MPa ⅠⅡⅢⅠⅡⅢⅠⅡⅢⅠⅡⅢ σlσlσlστnτnτnτττ 普通碳钢Q215 100 热 扎 σb335~410 σs185~215 145 125 90 175 95 90 60 100 90 60 Q235 σb375~460 σs205~235 160 140 100 190 160 120 105 σσ110 100 70 Q275 σb490~610 σs235~275 175 150 110 210 170 130 115 140 105 120 110 80 优质碳钢20 ≤100 正 火 σb410 σs245 175 145 105 210 165 125 115 105 70 120 105 75 25 σb450 σs275 195 160 115 230 175 135 125 115 75 135 120 80 35 σb530 σs315 210 180 125 250 200 150 135 120 80 145 120 85 调质σb550~750 σs320~370 210 185 130 250 205 155 135 125 85 145 120 85 45 正火σb600 σs355 230 200 145 270 220 170 150 135 90 160 140 95 调质σb630~800 σs370~430 250 215 150 300 235 180 160 150 100 175 150 100 50 ≤25 正火σb630 σs375 250 215 150 300 235 180 160 150 100 175 150 100 ≤100 调质σb>700 σs>400 265 235 165 310 260 195 170 155 105 180 160 110

钢管许用应力

钢管许用应力 钢管壁厚表示方法有管子表号、钢管壁厚尺寸和管子重量三种方法 Sch10s、Sch40s、Sch80s四个等级; 2)以钢管壁厚尺寸表示? 中国、ISO、日本部分钢管标准采用 3)是以管子重量表示管壁厚度,它将管子壁厚分为三种: A.标准重量管,以STD表示 B.加厚管,以XS表示 C.特厚管,以XXS表示。 对于DN≤250mn的管子,Sch40相当于STD,DN<200mm的管子,Sch80相当于XS。补充: 1、以管子表号(Sch.)表示壁厚系列 这是1938年美国国家怔准协会ANSIB36.10(焊接和无缝钢管)标准所规定的。 管子表号(Sch.)是设计压力与设计温度下材料的许用应力的比值乘以1000,并经圆 整后的数值。即 ????? Sch .=P/[ó]t×1000??? (1-2-1) 式中? P—设计压力,MPa;?? ????????? [ó]t—设计温度下材料的许用应力,MPa。 无缝钢管与焊接钢管的管子表号可查资料确定。 ANSI B36.10和JIS标准中的管子表号为;Sch10、20、30、40、60、80、100、120、140、160。 ANSI B36.19中的不锈钢管管子表号为:5S、10S、40S、80S。 ??? 管表号(Sch.)并不是壁厚,是壁厚系列。实际的壁厚,同一管径,在不同的管子表

号中其厚度各异。不同管子表号的管壁厚度,在美国和日本是应用计算承受内压薄壁管厚度 的Barlow公式计算并考虑了腐蚀裕量和螺纹深度及壁厚负偏差-12.5%之后确定的,如公式 (1-2-2)和(1-2-3)所示。??? tB=D0P/2[ó]t??????? (1-2-2)??????????????? t=[D0/2(1-0.125)×P/[ó]t]+2.54??? (1-2-3) 式中? tB 、t——分别表示理论和计算壁厚,mm D0————管外径,mm P——设计压力,MPa [ó]t——在设计温度下材料的许用压力,MPa 计算壁厚径圆整后才是实际的壁厚。 如果已知钢管的管子表号,可根据式(1-2-1)计算出该钢管所能适应的设计压力,即 ????? P=Sch..× [ó]t/1000??????????????? (1-2-4) 例如,Sch40,碳素钢20无缝钢管,当设计温度为350oC时给钢管所能适应 设计压力为: P=40×92/1000①=3.68 MPa 中国石化总公司标准SHJ405规定了无缝钢管的壁厚系列并Sch.5S②,? Sch.10, Sch.10s,Sch.20,Sch.20s,Sch.30,Sch.40,Sch。40s,Sch.60,Sch.80,Sch.100, Sch.120,Sch.140,Sch。160,如表1-2-9所示。 2、以管子重量表示管壁厚度的壁厚系列 美国MSS和ANSI规定的以管子重量表示壁厚方法,将管子壁厚分为;种: ??? (1)标准重量管以STD表示;

钢铁材料许用应力

表1 普通碳钢及优质碳钢构件基本许用应力 /MPa 材 料类型材料 标号 截面尺寸 /mm 热处 理 材料性能拉压弯曲扭转剪切 抗拉强度σ b 屈服强度σs /MPa ⅠⅡⅢⅠⅡⅢⅠⅡⅢⅠⅡⅢ σlσlσlσσστnτnτnτττ 普通碳钢Q215 100 热 扎 σb335~410 σs185~215 145 125 90 175 140 105 95 90 60 100 90 60 Q235 σb375~460 σs205~235 160 140 100 190 160 120 105 95 65 110 100 70 Q275 σb490~610 σs235~275 175 150 110 210 170 130 115 105 70 120 110 80 优质碳钢20 ≤100 正 火 σb410 σs245 175 145 105 210 165 125 115 105 70 120 105 75 25 σb450 σs275 195 160 115 230 175 135 125 115 75 135 120 80 35 σb530 σs315 210 180 125 250 200 150 135 120 80 145 120 85 调质σb550~750 σs320~370 210 185 130 250 205 155 135 125 85 145 120 85 45 正火σb600 σs355 230 200 145 270 220 170 150 135 90 160 140 95 调质σb630~800 σs370~430 250 215 150 300 235 180 160 150 100 175 150 100 50 ≤25 正火σb630 σs375 250 215 150 300 235 180 160 150 100 175 150 100 ≤100 调质σb>700 σs>400 265 235 165 310 260 195 170 155 105 180 160 110

材料的许用应力和安全系数

由脆性材料制成的构件,在拉力作用下,当变形很小时就会突然断裂,脆性材料断裂时的应力即强度极限σb;塑性材料制成的构件,在拉断之前已出现塑性变形,在不考虑塑性变形力学设计方法的情况下,考虑到构件不能保持原有的形状和尺寸,故认为它已不能正常工作,塑性材料到达屈服时的应力即屈服极限σs。脆性材料的强度极限σb、塑性材料屈服极限σs称为构件失效的极限应力。为保证构件具有足够的强度,构件在外力作用下的最大工作应力必须小于材料的极限应力。在强度计算中,把材料的极限应力除以一个大于1的系数n(称为安全系数),作为构件工作时所允许的最大应力,称为材料的许用应力,以[σ]表示。对于脆性材料,许用应力 (5-8) 对于塑性材料,许用应力 (5-9)其中、分别为脆性材料、塑性材料对应的安全系数。 安全系数的确定除了要考虑载荷变化,构件加工精度不同,计算差异,工作环境的变化等因素外,还要考虑材料的性能差异(塑性材料或脆性材料)及材质的均匀性,以及构件在设备中的重要性,损坏后造成后果的严重程度。 安全系数的选取,必须体现既安全又经济的设计思想,通常由国家有关部门制订,公布在有关的规范中供设计时参考,一般在静载下,对塑性材料可取;脆性材料均匀性差,且断裂突然发生,有更大的危险性,所以取,甚至取到5~9。 为了保证构件在外力作用下安全可靠地工作,必须使构件的最大工作应力小于材料的许用应力,即 (5-10)上式就是杆件受轴向拉伸或压缩时的强度条件。根据这一强度条件,可以进行杆件如下三方面的计算。 1.强度校核已知杆件的尺寸、所受载荷和材料的许用应力,直接应用(5-10)式,验算杆件是否满足强度条件。 2.截面设计已知杆件所受载荷和材料的许用应力,将公式(5-10)改成,由强度条件确定杆件所需的横截面面积。

钢管许用应力

钢管许用应力 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

钢管许用应力 钢管壁厚表示方法有管子表号、钢管壁厚尺寸和管子重量三种方法 Sch10s、Sch40s、Sch80s四个等级; 2)以钢管壁厚尺寸表示中国、ISO、日本部分钢管标准采用 3)是以管子重量表示管壁厚度,它将管子壁厚分为三种: A.标准重量管,以STD表示 B.加厚管,以XS表示 C.特厚管,以XXS表示。 对于DN≤250mn的管子,Sch40相当于STD,DN<200mm的管子,Sch80相当于XS。 补充: 1、以管子表号(Sch.)表示壁厚系列 这是1938年美国国家怔准协会(焊接和无缝钢管)标准所规定的。 管子表号(Sch.)是设计压力与设计温度下材料的许用应力的比值乘以1000,并经圆 整后的数值。即 Sch .=P/[ó]t×1000 (1-2-1) 式中 P—设计压力,MPa; [ó]t—设计温度下材料的许用应力,MPa。 无缝钢管与焊接钢管的管子表号可查资料确定。 ANSI 和JIS标准中的管子表号为;Sch10、20、30、40、60、80、100、120、140、160。 ANSI 中的不锈钢管管子表号为:5S、10S、40S、80S。

管表号(Sch.)并不是壁厚,是壁厚系列。实际的壁厚,同一管径,在不同的管子表 号中其厚度各异。不同管子表号的管壁厚度,在美国和日本是应用计算承受内压薄壁管厚度 的Barlow公式计算并考虑了腐蚀裕量和螺纹深度及壁厚负偏差-12.5%之后确定的,如公式 (1-2-2)和(1-2-3)所示。 tB=D0P/2[ó]t (1-2-2) t=[D0/2()×P/[ó]t]+ (1-2-3) 式中 tB 、t——分别表示理论和计算壁厚,mm D0————管外径,mm P——设计压力,MPa [ó]t——在设计温度下材料的许用压力,MPa 计算壁厚径圆整后才是实际的壁厚。 如果已知钢管的管子表号,可根据式(1-2-1)计算出该钢管所能适应的设计压力,即 P=Sch..× [ó]t/1000 (1-2-4) 例如,Sch40,碳素钢20无缝钢管,当设计温度为350oC时给钢管所能适应 设计压力为: P=40×92/1000①= MPa 中国石化总公司标准SHJ405规定了无缝钢管的壁厚系列并Sch.5S②, Sch.10, Sch.10s,Sch.20,Sch.20s,Sch.30,Sch.40,Sch。40s,Sch.60,Sch.80,Sch.100,

材料的许用应力和安全系数

第四节 许用应力·安全系数·强度条件 由脆性材料制成的构件,在拉力作用下,当变形很小时就会突然断裂,脆性材料断裂时的应力即强度极限σb ;塑性材料制成的构件,在拉断之前已出现塑性变形,在不考虑塑性变形力学设计方法的情况下,考虑到构件不能保持原有的形状和尺寸,故认为它已不能正常工作,塑性材料到达屈服时的应力即屈服极限σs 。脆性材料的强度极限σb 、塑性材料屈服极限σs 称为构件失效的极限应力。为保证构件具有足够的强度,构件在外力作用下的最大工作应力必须小于材料的极限应力。在强度计算中,把材料的极限应力除以一个大于1的系数n (称为安全系数),作为构件工作时所允许的最大应力,称为材料的许用应力,以[σ]表示。对于脆性材料,许用应力 (5-8) 对于塑性材料,许用应力 (5-9) 其中、分别为脆性材料、塑性材料对应的安全系数。 安全系数的确定除了要考虑载荷变化,构件加工精度不同,计算差异,工作环境的变化等因素外,还要考虑材料的性能差异(塑性材料或脆性材料)及材质的均匀性,以及构件在设备中的重要性,损坏后造成后果的严重程度。 安全系数的选取,必须体现既安全又经济的设计思想,通常由国家有关部门制订,公布在有关的规范中供设计时参考,一般在静载下,对塑性材料可取;脆性材料均匀性差,且断裂突然发生,有更大的危险性,所以取,甚至取到5~9。 为了保证构件在外力作用下安全可靠地工作,必须使构件的最大工作应力小于材料的许用应力,即 (5-10) 上式就是杆件受轴向拉伸或压缩时的强度条件。根据这一强度条件,可以进行杆件如下三方面的计算。 1.强度校核 已知杆件的尺寸、所受载荷和材料的许用应力,直接应用(5-10)式,验算杆件是否满足强度条件。 2.截面设计 已知杆件所受载荷和材料的许用应力,将公式(5-10)改成,由强度条件确定杆件所需的横截面面积。 3.许用载荷的确定 已知杆件的横截面尺寸和材料的许用应力,由强度条件确定杆件所能承受的最大轴力,最后通过静力学平衡方程算出杆件所能承担的最大许可载荷。 例5-4 一结构包括钢杆1和铜杆2,如图5-21a 所示,A 、B 、C 处为铰链连接。在b b n σσ= ][s s n σσ= ][b n s n 0.2~5.1=s n 0.5~0.2=b n ][max max σσ≤=A N ][σN A ≥ ][max σA N ≤

钢材的许用应力

附件1 相关技术措施 1 钢板 1.1 碳素钢和低合金钢钢板 1.1.1 钢板的标准、使用状态及许用应力按表1的规定。 1.1.2 壳体用钢板(不包括多层容器的层板)应按表2的规定逐张进行超声检测,钢板超声检测方法和质量等级按JB/T 4730.3的规定。 1.1.3 受压元件用钢板,其使用温度下限按表3的规定,表3中Q245R和Q345R钢板在下述使用条件下应在正火状态下使用。 a) 用于多层容器内筒的Q245R和Q345R; b) 用于壳体的厚度大于36mm的Q245R和Q345R; c) 用于其他受压元件(法兰、管板、平盖等)的厚度大于50mm 的Q245R和Q345R。 1.2 高合金钢钢板 钢板的标准、厚度范围及许用应力按表4的规定。 2 钢管 2.1 碳素钢和低合金钢钢管 2.1.1 钢管的标准、使用状态及许用应力按表5的规定。对壁厚大于30mm的钢管和使用温度低于-20℃的钢管,表中的正火不允许用终轧温度符合正火温度的热轧来代替。 2.1.2 GB 9948中各钢号钢管的使用规定如下: a)换热管应选用冷拔或冷轧钢管,钢管的尺寸精度应选用高

级精度; b)外径不小于70mm,且壁厚不小于6.5mm的10和20钢管,应分别进行-20℃和0℃的冲击试验,3个纵向标准试样的冲击功平均值应不小于31J。10和20钢管的使用温度下限分别为-20℃和0℃。 2.1.3 GB6479中各钢号钢管的使用规定如下: a) 钢中含硫量应不大于0.020%; b) 换热管应选用冷拔或冷轧钢管,钢管尺寸精度应选用高级精度; c) 外径不小于70mm,且壁厚不小于6.5mm的20和16Mn钢管,应分别进行0℃和-20℃的冲击试验,3个纵向标准试样的冲击功平均值应分别不小于31J和34J。20和16Mn钢管的使用温度下限分别为0℃和-20℃。 2.1.4 使用温度低于-20℃的钢管,其钢号、使用状态和冲击试验温度(即钢管的使用温度下限)按表6的规定。表中16Mn 钢的化学成分应符合P≤0.025%、S≤0.012%的规定,外径不小于70mm,且壁厚不小于6.5mm的钢管进行-40℃的冲击试验,3个纵向标准试样的冲击功平均值应不小于34J。 09MnD和09MnNiD钢管的相关规定见4.2.2和4.2.3。 2.2 高合金钢钢管 钢管的标准、壁厚范围及许用应力按表7的规定。钢管的交货状态应按表7中相应钢管标准的规定。表7中GB13296和GB/T 14976钢号中的统一数字代号系按GB/T20878的规定。

相关文档
最新文档