高中数学100个热点问题(三):第95炼 统计初步

高中数学100个热点问题(三):第95炼 统计初步
高中数学100个热点问题(三):第95炼 统计初步

第95炼 高中涉及的统计学知识

一、基础知识:

(一)随机抽样:

1、抽签法:把总体中的N 个个体编号,把号码写在号签上,将号签放在一个容器中搅拌均匀后,每次从中抽取一个号签,连续抽取n 次,就得到容量为n 的样本

2、系统抽样:也称为等间隔抽样,大致分为以下几个步骤:

(1)先将总体的N 个个体编号

(2)确定分段间隔k ,设样本容量为n ,若N n 为整数,则N k n = (3)在第一段中用简单随机抽样确定第一个个体编号l ,则后面每段所确定的个体编号与前一段确定的个体编号差距为k ,例如:第2段所确定的个体编号为l k +,第m 段所确定的个体编号为()1l m k +-,直至完成样本

注:(1)若N n

不是整数,则先用简单随机抽样剔除若干个个体,使得剩下的个体数能被n 整除,再进行系统抽样。例如501名学生所抽取的样本容量为10,则先随机抽去1个,剩下的500个个体参加系统抽样

(2)利用系统抽样所抽出的个体编号排成等差数列,其公差为k

3、分层抽样:也称为按比例抽样,是指在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本。

分层抽样后样本中各层的比例与总体中各个层次的比例相等,这条结论会经常用到

(二)频率分布直方图:

1、频数与频率

(1)频数:指一组数据中个别数据重复出现的次数或一组数据在某个确定的范围内出现的数据的个数.

(2)频率:是频数与数据组中所含数据的个数的比,即频率=频数/总数

(3)各试验结果的频率之和等于1

2、频率分布直方图:若要统计每个小组数据在样本容量所占比例大小,则可通过频率分布表(表格形式)和频率分布直方图(图像形式)直观的列出

(1)极差:一组数据中最大值与最小值的差

(2)组距:将一组数据平均分成若干组(通常5-12组),则组内数据的极差称为组距,所

以有组距=极差/组数

(3)统计每组的频数,计算出每组的频率,便可根据频率作出频率分布直方图

(4)在频率分布直方图中:横轴按组距分段,纵轴为“频率/组距”

(5)频率分布直方图的特点:

② 因为各试验结果的频率之和等于1,所以可得在频率分布直方图中,各个矩形的面积和为1 (三)茎叶图:通常可用于统计和比较两组数据,其中茎是指中间的一列数,通常体现数据中除了末位数前面的其他数位,叶通常代表每个数据的末位数。并按末位数之前的数位进行分类排列,相同的数据需在茎叶图中体现多次

(四)统计数据中的数字特征:

1、众数:一组数据中出现次数最多的数值,叫做众数

2、中位数:将一组数据从小到大排列,位于中间位置的数称为中位数,其中若数据的总数为奇数个,则为中间的数;若数据的总数为偶数个,则为中间两个数的平均值。

,,n x ,则有:n x +

+ ,

,n x ,其平均数为(n x x ++-越小,说明数据越集中5、标准差:也代表数据分布的分散程度,为方差的算术平方根

二、典型例题

例1:某校高中部有三个年级,其中高三有学生1000人,现采用分层抽样法抽取一个容量为185的样本,已知在高一年级抽取了75人,高二年级抽取了60人,则高中部共有学生_______人.

欢迎关注微信公众号(QQ 群):兰老师高中数学研究会557619246:分层抽样即按比例抽样,由高一年级和高二年级的人数可得高三人数为185756050--=人,所以抽样比为501=100020,从而总人数为1185370020

÷=人 答案:3700

例2:某企业三月中旬生产,A .B .C 三种产品共3000件,根据分层抽样的结果;企业统计 员制作了如下的统计表格:

由于不小心,表格中A .C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 的产品数量是 件.

欢迎关注微信公众号(QQ 群):兰老师高中数学研究会557619246:由B 产品可得抽样比为1301130010

=,所以若A 产品的样本容量比C 产品的样本容量多10,则A 产品的数量比C 产品的数量多11010010

÷=,且,A C 产品数量和为300013001700-=,从而可解得C 产品的数量为800

答案:800

例3:某棉纺厂为了了解一批棉花的质量,从中随机抽测了100根棉花纤维的长度(棉花纤维所得数据均在区间[]5,40中,其频率分布直方图如图所示,则在抽测的100根中___________根棉花纤维的长度小于15mm .

欢迎关注微信公众号(QQ 群):兰老师高中数学研究会557619246:由频率直方图的横纵轴可得:组距为5mm ,所以小于15mm 的频率为()0.010.0150.1+?=,所以小于15mm 共有1000.1=10?根

答案:10

例4:某班甲、乙两位同学升入高中以来的5次数学考试成绩的茎叶图如图,则乙同学这5次数学成绩的中位数是 ;已知两位同学这5次成绩的平均数都是84,成绩比较稳

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

高中数学数列压轴题练习(江苏)详解

高中数学数列压轴题练习(江苏)及详解 1.已知数列是公差为正数的等差数列,其前n项和为,且? , (Ⅰ)求数列的通项公式; (Ⅱ)数列满足, ①求数列的通项公式; ②是否存在正整数m,,使得,,成等差数列?若存在,求出m,n的值;若不存在,请说明理由. 解:(I)设数列的公差为d,则 由?,,得, 计算得出或(舍去). ; (Ⅱ)①,, , , 即,,, ,

累加得:, 也符合上式. 故,. ②假设存在正整数m、,使得,,成等差数列, 则 又,,, ,即, 化简得: 当,即时,,(舍去); 当,即时,,符合题意. 存在正整数,,使得,,成等差数列. 解析 (Ⅰ)直接由已知列关于首项和公差的方程组,求解方程组得首项和公差,代入等差数列的通项公式得答案; (Ⅱ)①把数列的通项公式代入,然后裂项,累加后即可求得数列的通项公式;

②假设存在正整数m、,使得,,成等差数列,则 .由此列关于m的方程,求计算得出答案. 2.在数列中,已知, (1)求证:数列为等比数列; (2)记,且数列的前n项和为,若为数列中的最小项,求的取值范围. 解:(1)证明:, 又, ,, 故, 是以3为首项,公比为3的等比数列 (2)由(1)知道,, 若为数列中的最小项,则对有 恒成立, 即对恒成立 当时,有; 当时,有?; 当时,恒成立,

对恒成立. 令,则 对恒成立, 在时为单调递增数列. ,即 综上, 解析 (1)由,整理得:.由, ,可以知道是以3为首项,公比为3的等比数列; (2)由(1)求得数列通项公式及前n项和为,由为数列中的最小项,则对有恒成立,分类分别求得 当时和当的取值范围, 当时,,利用做差法,根据函数的单调性,即可求得的取值范围. 3.在数列中,已知,,,设 为的前n项和. (1)求证:数列是等差数列; (2)求;

高中数学100个热点问题(三): 排列组合中的常见模型

第80炼 排列组合的常见模型 一、基础知识: (一)处理排列组合问题的常用思路: 1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。 例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法? 解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求, 只需将剩下的元素全排列即可,所以排法总数为44496N A =?=种 2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。 例如:在10件产品中,有7件合格品,3件次品。从这10件产品中任意抽出3件,至少有一件次品的情况有多少种 解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简 单。3310785N C C =-=(种) 3、先取再排(先分组再排列):排列数m n A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列。但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。 例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。 解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生,共有2143C C 种可能,然后将选出的三个人进行排列:33A 。所以共有213433108C C A =种方案 (二)排列组合的常见模型 1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。 例如:5个人排队,其中甲乙相邻,共有多少种不同的排法

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

(完整)高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 解:(1)极值的求法与极值的性质 (2)由导数求最值 (3)单调区间 零点 驻点 拐点————草图 2. 已知).(3232)(23R a x ax x x f ∈--= (1)当4 1||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 解:(1)单调区间 零点 驻点 拐点————草图 (2)草图——讨论 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ). (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2 g x f x '=. (1)证明:当22t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明:3()2 f x ≥. 解:g(x)=2e^(2x)-te^x+1 令a=e^x 则g(x)=2a^2-ta+1 (a>0) (3)f(x)=(e^x-t)^2+(x-t)^2+1 讨论太难 分界线即1-t^2/8=0 做不出来问问别人,我也没做出来 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 解:讨论点x=1/e 1/e

高中数学压轴题试卷整合

2017届北京市海淀区高三下学期期中考试数学理卷 18.已知函数2()24(1)ln(1)f x x ax a x =-+-+,其中实数3a <. (Ⅰ)判断1x =是否为函数()f x 的极值点,并说明理由; (Ⅱ)若()0f x ≤在区间[]0,1上恒成立,求a 的取值范围. 19.已知椭圆G :2 212 x y +=,与x 轴不重合的直线l 经过左焦点1F ,且与椭圆G 相交于A ,B 两点,弦AB 的中点为M ,直线OM 与椭圆G 相交于C ,D 两点. (Ⅰ)若直线l 的斜率为1,求直线OM 的斜率; (Ⅱ)是否存在直线l ,使得2||||||AM CM DM =?成立?若存在,求出直线l 的方程;若不存在,请说明理由. 西城区高三统一测试 18.(本小题满分13分) 已知函数21()e 2 x f x x =-.设l 为曲线()y f x =在点00(,())P x f x 处的切线,其中0[1,1]x ∈-. (Ⅰ)求直线l 的方程(用0x 表示); (Ⅱ)设O 为原点,直线1x =分别与直线l 和x 轴交于,A B 两点,求△AOB 的面积的最小值. 19.(本小题满分14分) 如图,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,F 为椭圆C 的右焦点.(,0)A a -,||3AF =. (Ⅰ)求椭圆C 的方程; (Ⅱ)设O 为原点,P 为椭圆上一点,AP 的中点为M .直线OM 与直线4x =交于点D ,过O 且平行于AP 的直线与直线4x =交于点E .求证:ODF OEF ∠=∠.

2017年南通市高考数学全真模拟试卷一 13.已知角,αβ满足tan 7tan 13 αβ=,若2sin()3αβ+=,则sin()αβ-的值为. 14.将圆的六个等分点分成相同的两组,它们每组三个点构成的两个正三角形除去内部的六条线段后可以形成一个正六角星.如图所示的正六角星的中心为点O ,其中,x y 分别为点O 到两个顶点的向量.若将点O 到正六角星12个顶点的向量都写成ax by +的形式,则a b +的最大值为. 18.已知椭圆:C 22 31mx my +=(0)m > 的长轴长为,O 为坐标原点. (1)求椭圆C 的方程和离心率. (2)设点(3,0)A ,动点B 在y 轴上,动点P 在椭圆C 上,且点P 在y 轴的右侧.若BA BP =,求四边形OPAB 面积的最小值. 19.已知函数32()f x ax bx cx b a =-++=(0)a >. (1)设0c =. ①若a b =,曲线()y f x =在0x x =处的切线过点(1,0),求0x 的值; ②若a b >,求()f x 在区间[0,1]上的最大值. (2)设()f x 在1x x =,2x x =两处取得极值,求证:11()f x x =,22()f x x =不同时成立. 13.1 5 -14.5 18.(1)由题意知椭圆:C 22 111 3x y m m +=, 所以21a m =,213b m =,

千题百炼——高中数学100个热点问题(三):第75炼-几何问题的转换

第75炼 几何问题的转换 一、基础知识: 在圆锥曲线问题中,经常会遇到几何条件与代数条件的相互转化,合理的进行几何条件的转化往往可以起到“四两拨千斤”的作用,极大的简化运算的复杂程度,在本节中,将列举常见的一些几何条件的转化。 1、在几何问题的转化中,向量是一个重要的桥梁:一方面,几何图形中的线段变为有向线段后可以承载向量;另一方面,向量在坐标系中能够坐标化,从而将几何图形的要素转化为坐标的运算,与方程和变量找到联系 2、常见几何问题的转化: (1)角度问题: ① 若与直线倾斜角有关,则可以考虑转化为斜率k ② 若需要判断角是锐角还是钝角,则可将此角作为向量的夹角,从而利用向量数量积的符号进行判定 (2)点与圆的位置关系 ① 可以利用圆的定义,转化为点到圆心距离与半径的联系,但需要解出圆的方程,在有些题目中计算量较大 ② 若给出圆的一条直径,则可根据该点与直径端点连线的夹角进行判定:若点在圆内,ACB ∠为钝角 (再转为向量:0CA CB ?<;若点在圆上,则ACB ∠为直角(0CA CB ?=);若点在圆外,则ACB ∠为锐角(0CA CB ?>) (3)三点共线问题 ① 通过斜率:任取两点求出斜率,若斜率相等,则三点共线 ② 通过向量:任取两点确定向量,若向量共线,则三点共线 (4)直线的平行垂直关系:可转化为对应向量的平行与垂直问题,从而转为坐标运算: ()()1122,,,a x y b x y ==,则,a b 共线1221x y x y ?=;a b ⊥12120x x y y ?+= (5)平行(共线)线段的比例问题:可转化为向量的数乘关系 (6)平行(共线)线段的乘积问题:可将线段变为向量,从而转化为向量数量积问题(注意向量的方向是同向还是反向)

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数,为的导数.证明: (1)在区间 存在唯一极大值点; (2)有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ???时,单调递减,而()00,02g g π?? ''>< ??? , 可得在1,2π?? - ?? ?有唯一零点,设为. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,. 所以在()1,α-单调递增,在,2πα?? ???单调递减,故在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当时, ,故()f x 在单调递减,又,从而是()f x 在的唯 一零点. ()sin ln(1)f x x x =-+()f x '()f x ()f x '(1,)2 π-()f x ()g'x ()g'x α()0g'x <()g x ()g x (1,)-+∞(1,0)x ∈-()0f 'x <(1,0)-(0)=0f 0x =(1,0]-

(ii )当0,2x π?? ∈ ??? 时,由(1)知,在单调递增,在单调递减,而 ,02f π??'< ???,所以存在,2πβα?? ∈ ???,使得,且当时, ;当,2x πβ??∈ ???时,.故在单调递增,在,2πβ?? ???单调递 减.又,1ln 1022f ππ???? =-+> ? ???? ?,所以当时,. 从而()f x 在0,2π?? ??? 没有零点. (iii )当,2x ππ??∈ ???时,()0f x '<,所以()f x 在,2ππ?? ???单调递减.而 ()0,02f f ππ??>< ??? ,所以()f x 在,2ππ?? ??? 有唯一零点. (iv )当时,()l n 11x +>,所以<0,从而()f x 在没有零点. 综上, ()f x 有且仅有2个零点. 【变式训练1】【2020·天津南开中学月考】已知函数3()sin (),2 f x ax x a R =-∈且 在,0,2π?? ????上的最大值为32π-, (1)求函数f (x )的解析式; (2)判断函数f (x )在(0,π)内的零点个数,并加以证明 【解析】(1)由已知得()(sin cos )f x a x x x =+对于任意的x∈(0, 2 π), 有sin cos 0x x x +>,当a=0时,f(x)=? 3 2 ,不合题意; 当a<0时,x∈(0, 2π),f′(x)<0,从而f(x)在(0, 2 π )单调递减, 又函数3 ()sin 2f x ax x =- (a∈R)在[0, 2 π]上图象是连续不断的, 故函数在[0, 2 π ]上的最大值为f(0),不合题意; ()f 'x (0,)α,2απ?? ???(0)=0f '()0f 'β=(0,)x β∈()0f 'x >()0f 'x <()f x (0,)β(0)=0f 0,2x ?π?∈ ???()0f x >(,)x ∈π+∞()f x (,)π+∞

高中数学解题的21个典型方法与技巧

高中数学解题的21个典型方法与技巧 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2222a ab b a b ±+=± ②()2 222222a b c ab bc ca a b c +++++=++ ③()()()22222212a b c ab bc ca a b b c c a ??+++++=+++++? ? ④222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设②列③解④写 6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ②配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路?????→方程思想与方法列欲求值字母的方程或方程组 ②求取值范围的思路 ??????→不等式思想与方法欲求范围字母的不等式或不等式组 8m 化成完全平方式。

2020年高考数学压轴题系列训练含答案及解析详解4

第 1 页 共 16 页 第 1 页 共 2020年高考数学压轴题系列训练含答案及解析详解4 1.(本小题满分14分) 已知f(x)= 2 22 +-x a x (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)= x 1 的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范 围;若不存在,请说明理由. 本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨 论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分. 解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 2 22) 2() 2(2+---x ax x , ∵f(x)在[-1,1]上是增函数, ∴f '(x)≥0对x ∈[-1,1]恒成立, 即x 2-ax -2≤0对x ∈[-1,1]恒成立. ① 设?(x)=x 2-ax -2, 方法一: ?(1)=1-a -2≤0,

— 2 — ① ? ?-1≤a ≤1, ?(-1)=1+a -2≤0. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. 方法二: 2a ≥0, 2 a <0, ①? 或 ?(-1)=1+a -2≤0 ?(1)=1-a -2≤0 ? 0≤a ≤1 或 -1≤a ≤0 ? -1≤a ≤1. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. (Ⅱ)由 2 22 +-x a x =x 1,得x 2-ax -2=0, ∵△=a 2 +8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根, x 1+x 2=a ,

高中数学解题方法系列:概率的热点题型及其解法

高中数学解题方法系列:概率的热点题型及其解法 概率主要涉及等可能事件,互斥事件,对立事件,独立事件的概率的求法,对于这部分,我们还应当重视与传统内容的有机结合,在以后的高考中,可能出现概率与数列、函数、不等式等有关内容的结合的综合题,下面就谈一谈概率与数列、函数、不等式等有关知识的交汇处命题的解题策略。 题型一:等可能事件概率、互斥事件概率、相互独立事件概率的综合。 例1:甲、乙两人各射击一次,击中目标的概率分别是 32和4 3.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响. (Ⅰ)求甲射击4次,至少1次未击中目标的概率; (Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率; (Ⅲ)假设某人连续2次未击中... 目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少? 解:(1)设“甲射击4次,至少1次未击中目标”为事件A,则其对立事件A 为“4次均击中目标”,则()()4 26511381P A P A ??=-=-= ???(2)设“甲恰好击中目标2次且乙恰好击中目标3次”为事件B,则 ()223 23442131133448P B C C ??????=?????= ? ? ???????(3)设“乙恰好射击5次后,被中止射击”为事件C,由于乙恰好射击5次后被中止射击,故必然是最后两次未击中目标,第三次击中目标,第一次及第二次至多有一次未击中目标。 故()22123313145444441024 P C C ??????=+????=?? ? ?????????例2:某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的. (Ⅰ)求3个景区都有部门选择的概率; (Ⅱ)求恰有2个景区有部门选择的概率. 解:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等. (I)3个景区都有部门选择可能出现的结果数为!32 4?C (从4个部门中任选2个作为1组, 另外2个部门各作为1组,共3组,共有624=C 种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A 1,那么事件A 1的概率为 P(A 1)=.943!3424=?C (II)解法一:分别记“恰有2个景区有部门选择”和“4个部门都选择同一个景区”为事件A 2

最新上海高中数学三角函数大题压轴题练习

三角函数大题压轴题练习 1.已知函数()cos(2)2sin()sin()344 f x x x x π ππ =- +-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122 ππ -上的值域 解:(1) ()cos(2)2sin()sin()344 f x x x x πππ =-+-+ 1cos 22(sin cos )(sin cos )2x x x x x x = ++-+ 221cos 22sin cos 2x x x x = ++- 1cos 22cos 222 x x x = +- s i n (2) 6 x π =- 2T 2 π π= =周期∴ 由2(),()6 2 23 k x k k Z x k Z π π ππ π- =+ ∈= +∈得 ∴函数图象的对称轴方程为 ()3 x k k Z π π=+ ∈ (2) 5[,],2[,]122636 x x ππ πππ ∈- ∴-∈- 因为()sin(2)6 f x x π =- 在区间[,]123ππ- 上单调递增,在区间[,]32 ππ 上单调 递减, 所以 当3 x π= 时,()f x 取最大值 1 又 1()()12 222f f π π- =- <=,当12 x π =-时,()f x 取最小值2- 所以 函数 ()f x 在区间[,]122 ππ - 上的值域为[ 2.已知函数2 π()sin sin 2f x x x x ωωω?? =+ ?? ? (0ω>)的最小正周期为π. (Ⅰ)求ω的值;

(Ⅱ)求函数()f x 在区间2π03 ?????? ,上的取值范围. 解:(Ⅰ)1cos 2()22x f x x ωω-= +112cos 222 x x ωω=-+ π1sin 262x ω? ?=-+ ?? ?. 因为函数()f x 的最小正周期为π,且0ω>, 所以 2π π2ω =,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262 f x x ??=- + ?? ?. 因为2π03 x ≤≤, 所以ππ7π2666 x --≤≤, 所以1πsin 2126x ??- - ?? ?≤≤, 因此π130sin 2622x ? ?- + ?? ?≤≤,即()f x 的取值范围为302?????? ,. 3. 已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角. (Ⅰ)求角A 的大小; (Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. 解:(Ⅰ) 由题意得3sin cos 1,m n A A =-= 1 2sin()1,sin().662 A A ππ-=-= 由A 为锐角得 ,6 6 3 A A π π π - = = (Ⅱ) 由(Ⅰ)知1 cos ,2 A = 所以2 2 1 3()cos 22sin 12sin 2sin 2(sin ).2 2 f x x x x s x =+=-+=--+ 因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值3 2 . 当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332??-???? ,

高考数学压轴题秒杀

第五章压轴题秒杀 很多朋友留言说想掌握秒杀的最后一层。关于秒杀法的最难掌握的一层,便是对于高考数学压轴题的把握。压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多很多很多人。 不过,压轴题并不是那般神秘难解,相反,出题人很怕很怕全省没多少做出来的,明白么?他很怕。那种思想,在群里面我也说过,在这里就不多啰嗦了。 想领悟、把握压轴题的思路,给大家推荐几道题目。 全是数学压轴题,且是理科(09的除山东的外我都没做过,所以不在推荐范围内)。 08全国一,08全国二,07江西,08山东,07全国一 一年过去了,很多题目都忘了,但这几道题,做过之后,虽然一年过去了,可脉络依然清晰。都是一些可以秒杀的典型压轴题,望冲击清华北大的同学细细研究。 记住,压轴题是出题人在微笑着和你对话。 具体的题目的“精”,以及怎么发挥和压榨一道经典题目的最大价值,会在以后的视频里面讲解的很清楚。 不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高)\ 1:通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。尤其推荐我押题的第一道数列解答题。) 2.:裂项相消(各种形式的都要会)、迭加、迭乘、错位相减求和(这几个是最基本和简单的数列考察方式,一般会在第二问考) 3:数学归纳法、不等式缩放 基本所有题目都是这几个的组合了,要做到每一类在脑中都至少有一道经典题想对应才行哦。 开始解答题了哦,先来一道最简单的。貌似北京的大多挺简单的。 这道题意义在什么呢?对于这道题在高考中出现的可能性我不做解释,只能说不大。意义在于,提醒大家四个字,必须必须必须谨记的四个字:分类讨论!!!!!!! 下面07年山东高考的这道导数题,对分类讨论的考察尤为经典,很具参考性,类似的题目在08、09、10年高考题中见了很多。 (22)(本小题满分14分) 设函数f(x)=x2+b ln(x+1),其中b≠0. (Ⅰ)当b> 时,判断函数f(x)在定义域上的单调性; (Ⅱ)求函数f(x)的极值点; (Ⅲ)证明对任意的正整数n,不等式ln( )都成立. 这道题我觉得重点在于前两问,最后一问..有点鸡肋了~ 这道题,太明显了对吧?

(完整word版)高中数学压轴题系列——导数专题——双变量问题(2).docx

高中数学压轴题系列——导数专题——双变量问题( 2) 1.(2010?辽宁)已知函数 f (x ) =( a+1)lnx+ax 2 +1 (1)讨论函数 f (x )的单调性; (2)设 a <﹣ 1.如果对任意 x 1,x 2∈( 0,+∞),| f ( x 1)﹣ f ( x 2)| ≥ 4| x 1﹣ x 2 | ,求 a 的取值范围. 解:(Ⅰ )f (x )的定义域为( 0,+∞) . . 当 a ≥0 时, f ′(x )> 0,故 f ( x )在( 0,+∞)单调递增; 当 a ≤﹣ 1 时, f ′( x )< 0,故 f ( x )在( 0, +∞)单调递减; 当﹣ 1< a <0 时,令 f ′( x ) =0,解得 . 则当 时, f'( x )> 0; 时, f' ( x )< 0. 故 f (x )在 单调递增,在 单调递减. (Ⅱ)不妨假设 x 1≥ 2,而 <﹣ ,由( Ⅰ)知在( 0, ∞)单调递减, x a 1 + 从而 ? x 1, 2∈( , ∞), | f ( 1)﹣ ( 2) ≥ 4| x 1﹣ 2 | x 0 + x f x | x 等价于 ? x 1, 2∈( , ∞), f ( 2 ) 2 ≥ ( 1 ) 1 ① x 0 + x +4x f x +4x 令 g ( x )=f ( x ) +4x ,则 ①等价于 g (x )在( 0,+∞)单调递减,即 . 从而 故 a 的取值范围为(﹣∞,﹣ 2] .( 12 分) 2.( 2018?呼和浩特一模)已知函数 f (x ) =lnx , g ( x ) = ﹣ bx (b 为常数). (Ⅰ)当 b=4 时,讨论函数 h (x )=f (x )+g (x )的单调性; (Ⅱ) b ≥2 时,如果对于 ? x 1,x 2∈( 1, 2] ,且 x 1≠ x 2,都有 | f (x 1)﹣ f ( x 2)| <| g (x 1)﹣ g (x 2) | 成立,求实数 b 的取值范围. 解:( 1)h ( x )=lnx+ x 2﹣bx 的定义域为( 0,+∞),当 b=4 时, h ( x )=lnx+ x 2 ﹣4x , h'(x )= +x ﹣4= , 令 h'(x ) =0,解得 x 1 ﹣ , 2 ,当 ∈( ﹣ , 2+ )时, ′( )< , =2 x =2+ x2 h x 0 当 x ∈( 0, 2﹣ ),或( 2+ ,+∞)时, h ′(x )> 0, 所以, h (x )在∈( 0, 2﹣ ),或( 2+ ,+∞)单调递增;在( 2﹣ , 2+ )单调递减; (Ⅱ)因为 f ( x )=lnx 在区间( 1,2] 上单调递增,

高考数学压轴题系列训(共六套)(含答案及解析详解)

高考数学压轴题系列训练一(含答案及解析详解) 1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点. (Ⅰ)求这三条曲线的方程; (Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由. 解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p = 24y x ∴= 抛物线方程为: ………………………………………………(1分) 由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆, 1222a MF MF =+ + ( 2 2 2222211321 a a b a c ∴=∴=+=+∴=-=+∴= 椭圆方程为:………………………………(4分) 对于双曲线,1222a MF MF '=-= 2222221321 a a b c a '∴=-'∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分) (Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H 令()11113,,,22x y A x y +?? ∴ ?? ? C ………………………………………………(7分) ()111231 23 22 DC AP x CH a x a ∴= =+=-=-+

()()( )22 2 2 2 2111212 1132344-23246222 DH DC CH x y x a a x a a a DH DE DH l x ????∴=-= -+--+??? ?=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分) 2.(14分)已知正项数列{}n a 中,16a = ,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上. (Ⅰ)求数列{}{},n n a b 的通项公式; (Ⅱ)若()()() n n a f n b ??=???, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由; (Ⅲ)对任意正整数n , 不等式 1 120111111n n n a b b b +≤?????? +++ ? ??????? ?? 成立,求正数a 的 取值范围. 解:(Ⅰ)将点(n n A a 代入21y x =+中得 ()11111115:21,21 n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-?=+=+∴=+ 直线 …………………………………………(4分) (Ⅱ)()()()521n f n n ?+?=?+??, n 为奇数, n 为偶数………………………………(5分) ()() ()()()()27274275421,4 2735 227145,2 4k k f k f k k k k k k k k k k ++=∴++=+∴=+∴+ +=+∴==当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。 ……………………(8分) (Ⅲ)由 1 120111111n n n a b b b +- ≤?????? +++ ? ??????? ??

高中数学100个热点问题(三):-排列组合中的常见模型

高中数学100个热点问题(三):-排列组合中的常见模型

第80炼 排列组合的常见模型 一、基础知识: (一)处理排列组合问题的常用思路: 1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。 例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法? 解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求,只需将剩下的元素全排列即可,所以排法总数为 44496N A =?=种 2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。 例如:在10件产品中,有7件合格品,3件次品。从这10件产品中任意抽出3件,至少有一件次品的情况有多少种 解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简单。

3310785N C C =-=(种) 3、先取再排(先分组再排列):排列数m n A 是指从 n 个元素中取出m 个元素,再将这m 个元素进行排列。但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。 例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。 解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生,共有2 143 C C 种可能,然后将选出的三个人进行排列:3 3A 。所以共有213433108C C A =种方案 (二)排列组合的常见模型 1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。 例如:5个人排队,其中甲乙相邻,共有多少种不同的排法 解:考虑第一步将甲乙视为一个整体,与其余3个元素排列,则共有4 4 A 种位置,第二步考虑甲乙

必修一函数压轴题

函数压轴题 一、函数的性质 1.已知函数)1 ()(x x e e x x f - =,若f (x 1)x 2 B .x 1+x 2=0 C .x 1

年高考数学压轴题系列训练含答案及解析详解六

年高考数学压轴题系列训练含答案及解析详解 六 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

2009年高考数学压轴题系列训练含答案及解析详解六 1.(本小题满分14分) 如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点. (1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB. 解:(1)设切点A 、B 坐标分别为))((,(),(012112 x x x x x x ≠和, ∴切线AP 的方程为:;022 0=--x y x x 切线BP 的方程为:;02211=--x y x x 解得P 点的坐标为:101 0,2 x x y x x x P P =+= 所以△APB 的重心G 的坐标为 P P G x x x x x =++= 3 10, ,3 43)(332 1021010212 010p P P G y x x x x x x x x x y y y y -=-+=++=++= 所以2 43G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方 程为: ).24(3 1 ,02)43(22+-==-+--x x y x y x 即 (2)方法1:因为).4 1,(),41,2(),41,(2 111010 200-=-+=-=x x x x x x x x 由于P 点在抛物线外,则.0||≠FP ∴||41)1)(1(||||cos 102 010010FP x x x x x x x x FA FP AFP + =--+?+== ∠

相关文档
最新文档