Plastic flow in a composite a comparison of nonlocal continuum and discrete dislocation predictions

Plastic flow in a composite a comparison of nonlocal continuum and discrete dislocation predictions
Plastic flow in a composite a comparison of nonlocal continuum and discrete dislocation predictions

Plastic ˉow in a composite:a comparison of nonlocal continuum and discrete dislocation predictions

J.L.Bassani a ,A.Needleman b,*,E.Van der Giessen c

a Department of Mechanical Engineering and Applied Mechanics,University of Pennsylvania,Philadelphia,PA 19104,USA

b Division of Engineering,Brown University,Providence,RI 02912,USA

c Koiter Institute Delft,Delft University of Technology,Mekelweg 2,2628CD Delft,Netherlands

Received 13June 1999;in revised form 7March 2000

Abstract

A two-dimensional model composite with elastic reinforcements in a crystalline matrix subject to macroscopic shear is considered using both discrete dislocation plasticity and a nonlocal continuum crystal plasticity theory.Only single slip is permitted in the matrix material.The discrete dislocation results are used as numerical experiments,and we explore the extent to which the nonlocal crystal plasticity theory can reproduce their behavior.In the nonlocal theory,the hardening rate depends on a particular strain gradient that provides a measure of plastic (or elastic)incompatibility.This nonlocal formulation preserves the classical structure of the incremental boundary value problem.Two composite morphologies are considered;one gives rise to relatively high composite hardening and a dependence of the stress±strain response on size while the other exhibits nearly ideally plastic composite response and size independence.The pre-dictions of the nonlocal plasticity model are confronted with the results of the discrete dislocation calculations for the overall composite stress±strain response and the phase averages of stress.Material parameters are found with which the nonlocal continuum plasticity formulation predicts trends that are in good accord with the discrete dislocation plasticity simulations.ó2001Elsevier Science Ltd.All rights reserved.

Keywords:Plastic ˉow;Discrete dislocation

1.Introduction

There is a considerable body of experimental evidence (Ebeling and Ashby,1966;Brown and Ham,1971;De Guzman et al.,1993;Fleck et al.,1994;Ma and Clarke,1995;St o lken and Evans,1998),which shows that inhomogeneous plastic ˉow in crystalline solids is inherently size dependent over a scale that ranges from a fraction of a micron to a hundred microns or so ±with the smaller being harder.Already many years ago,the connection between size dependence and gradients of plastic deformation was made through the notion of incompatibility,which is characterized by a certain spatial gradient of the plastic (or elastic)distortion (Bilby et al.,1955;Kr o

ner and Seeger,1959;Nye,1953).This notion can be related to the

more International Journal of Solids and Structures 38(2001)

833±https://www.360docs.net/doc/8213372586.html,/locate/ijsolstr

*Corresponding author.Tel.:+1-401-863-2863;fax:+1-401-863-1157.E-mail address:needle@https://www.360docs.net/doc/8213372586.html, (A.Needleman).

0020-7683/01/$-see front matter ó2001Elsevier Science Ltd.All rights reserved.PII:S 0020-7683(00)00059-7

834J.L.Bassani et al./International Journal of Solids and Structures38(2001)833±853

physical concept of a dislocation density tensor and to the geometrically necessary dislocations.What remains to be determined is how to incorporate that incompatibility measure into a continuum description of plasticˉow.In Acharya and Bassani(1996,2000),the incompatibility measure is incorporated directly into the hardening description.Arsenlis and Parks(1999)have developed another nonlocal plasticity theory in which a factor relating the density of geometrically necessary dislocations to plastic strain gradients is introduced,while Fleck and Hutchinson(1993)used incompatibility to motivate a nonlocal continuum formulation involving higher order stresses.Gurtin(2000)has proposed an approach in which the gradient of plastic deformation is used to introduce microstresses.The precise implementation has a major e ect on the nature of the resulting boundary value problem.The correctness of these approaches will ultimately be decided through a comparison of their predictions with experiment.However,detailed comparisons be-tween the predictions of continuum plasticity with a direct dislocation based description of plasticˉow will be useful in assessing the various nonlocal formulations.

As a speci?c example,plasticˉow of a model metal±matrix composite,with the reinforcements em-bedded in an individual grain is considered.Attention is focused on two commonly observed characteristics of the behavior of metal±matrix composites which are not amenable to explanation based on conventional, size-independent plasticity theory(e.g.Nan and Clarke,1996):(i)the stress±strain behavior is size de-pendent for reinforcement sizes in the micron range;and(ii)the matrix stress±strain behavior that needs to be assumed in calculations to get good agreement with experiment typically di ers from the observed stress±strain behavior of the unreinforced material.Discrete dislocation plasticity predictions are consistent with these observations(Cleveringa et al.,1997,1998).Size-dependent response emerges from the devel-opment of a structure of geometrically necessary dislocations(Ashby,1970)and smaller reinforcement sizes,in the range of tenths of microns to tens of microns,lead to harder overall response,which is con-sistent with the experimental observations(Ebeling and Ashby,1966;Brown and Ham,1971).Whether or not geometrically necessary dislocations are present for a given loading history depends on the composite morphology(Cleveringa et al.,1997).Also,the response of the composite matrix can be di erent from that of the homogeneous material because of the di erent dislocation structures that develop.

In this study,we compare the predictions of the nonlocal plasticity theory of Acharya and Bassani(1996, 2000)with the discrete dislocation predictions of Cleveringa et al.(1997,1998)for a two-dimensional model,composite material with periodic rectangular reinforcements.The composite is subject to plane strain simple shear with the crystal axes such that the matrix deforms in single slip.The theory of Acharya and Bassani(1996,2000)is based on the hypothesis that the incompatibility directly inˉuences the hard-ening behavior of a single crystal.In their`simple theory',a particular strain gradient,which is taken to be a measure of elastic(or plastic)incompatibility,enters theˉow rule only through the instantaneous hard-ening rate.Consequently,the classical structure of incremental boundary value problems(Hill,1958)is preserved so that higher-order stresses and additional boundary conditions are not required.As a result, standard?nite-element formulations based upon purely local constitutive response,such as the single crystal formulation in Peirce et al.(1983),are readily extended to incorporate this simple theory.Still,a material length scale enters the hardening relation on dimensional grounds.For a particular constitutive relation,the relative magnitudes of this material scale and the microstructural length scales,e.g.particle size,determine the response for a particular composite morphology.

In the discrete dislocation formulation(Van der Giessen and Needleman,1995;Cleveringa et al.,1997), the dislocations are modeled as line defects in a linear elastic solid.Attention is restricted to small strains, and the stress,strain and displacement?elds are written as superpositions of?elds due to the discrete dislocations,which are singular inside the body,and complementary(image)?elds that enforce the boundary conditions.This leads to a linear elastic boundary value problem for the smooth complementary ?elds which is solved by the?nite-element method.Thus,the long range interactions between dislocations are accounted for through the continuum elasticity?elds.Drag during dislocation motion,interactions with obstacles,and dislocation nucleation and annihilation are also accounted for.These are not represented by

the elasticity description of dislocations and are incorporated into the formulation through a set of con-stitutive rules which are based on those proposed by Kubin et al.(1992).Results are presented for two of the three composite morphologies investigated by Cleveringa et al.(1997).In one of the morphologies,slip cannot propagate across the unit cell because it is blocked by the elastic reinforcement.In this case,the composite exhibits strong strain hardening and the overall stress±strain response is strongly size dependent.In the other morphology,there is a channel of material,where slip can propagate unimpeded across the cell.For this composite morphology,deformation is focused in a slip band,and the discrete dislocation calculations give rise to a slightly softening stress±strain response that is not size dependent.The challenge for the nonlocal plasticity calculations is to predict,for matrix plastic ˉow properties being speci?ed for one reinforcement size and morphology,both the size and morphology dependence of the overall composite response.

2.Problem formulation

The calculations are carried out within the context of a small displacement gradient formulation.Cartesian tensor notation is used throughout.With geometry changes neglected,the principle of virtual work is written as

V r ij d ij d V S

T i d u i d S Y 1 where r ij are the stress tensor components,u i are the displacement ?eld components,V and S are the volume and surface area of the body,respectively,and

T i r ij m j Y

2 ij 12u i Y j à u j Y i á 3

with m i being the components of the surface normal and Y i denoting partial di erentiation with respect to x i .A two-dimensional model composite material containing elastic rectangular particles in a plastically deforming matrix is analyzed.The particles are arranged in a doubly periodic hexagonal array as shown in Fig.1.Each unit cell is of width 2w and height 2c (w a c 3p )and contains two particles of size 2w f ?2c f ,one being located at the center of the cell.Two morphologies are considered,which have the same area fraction,f 0X 2,of reinforcing particles:material (i)contains square particle (c f w f ,c f 0X 416c ),thus leaving a channel of unreinforced material,while material (iii)has particles with an aspect ratio of 2(c f 2w f ,c f 0X 588c )so that all slip planes are blocked by particles;the identi?cation of the composite morphologies follows that in Cleveringa et al.(1997,1998).The unit cell is subjected to plane strain and simple shear.The shearing direction is the x 1-direction so that the boundary conditions are expressed by

u 1 t ?c C Y u 2 t 0along x 2 ?c Y 4 where C t is the applied shear at time t .Periodic boundary conditions are imposed along the lateral sides x 1 ?w .Although these boundary conditions constrain the rotation of the particles at the cell vertices (Fig.1),the resulting boundary value problem is computationally more convenient than one using the most general periodic conditions consistent with the overall simple shear.For small strains,the dependence of the response on composite morphology will not be a ected by the additional constraint.The average shear stress s ave needed to sustain the deformation is computed from the shear stress r 12,either along the top or the bottom face of the cell:

J.L.Bassani et al./International Journal of Solids and Structures 38(2001)833±853835

s ave 12w w àw r 12 x 1Y ?c d x 1X 5 Predictions of the discrete dislocation and the nonlocal crystal plasticity formulations are compared for the overall composite response and for the average ?elds that develop within each phase.The elastic properties are the same in both types of analyses,and identical to those used in Cleveringa et al.(1997,1998).Each phase is taken to be elastically isotropic,with shear modulus l 26X 3GPa and Poisson's ratio m 0X 33for the matrix.The corresponding values for the reinforcement are 192X 3GPa and 0X 17,respec-tively.These values are representative for silicon carbide particles in an aluminum matrix.

2.1.Discrete dislocation plasticity

In a discrete dislocation plasticity description,dislocations are represented as line defects in a linear elastic continuum (Nabarro,1967;Hirth and Lothe,1968).The formulation used here falls within the framework of Van der Giessen and Needleman (1995),which is fully three dimensional.Applications to date have been restricted to two dimensional boundary value problems,for both single slip,(Cleveringa et al.,1997),and multiple slip (Cleveringa et al.,1999).Only a brief summary is given here in the context of two dimensions and single slip;further details and a description of the general framework may be found in these references.The computation of the deformation history is carried out in an incremental manner.Each time step D t involves three main computational stages:(i)determining the forces on the dislocations,i.e.the Peach±Koehler force;(ii)determining the rate of change of the dislocation structure,which involves the motion of dislocations,the generation of new dislocations,their mutual annihilation,and their pinning at obstacles;and (iii)determining the stress and strain state for the current dislocation arrangement.In this study,only edge dislocations on a single slip system are considered,with the slip plane normal being in the x 2-direction and with the glide direction being in the x 1-direction.All dislocations have the same Burgers vector magnitude b (the value b 2X 5?10à10m is used in the calculations here).Under these circumstances,the Peach±Koehler force on the k th dislocation,f k ,is simply

f k r k 12b X 6

836J.L.Bassani et al./International Journal of Solids and Structures 38(2001)833±853

The magnitude of the glide velocity v k of dislocation k is taken to be linearly related to the Peach±Koehler force through the drag relation

f k Bv k Y 7 where B is the dra

g coe cient,wit

h B 10à4Pa s taken as a representative value for aluminium(Kubin et al.,1992).The change in the x1-position of dislocation k is v k D t and annihilation of two dislocations with opposite Burgers vector occurs when they are within a material dependent,critical annihilation dis-tance L e,which is taken to be L e 6b.

An initial distribution of dislocation sources and obstacles is speci?ed on each slip plane.Obstacles to dislocation motion are modeled as?xed points on a slip plane.Such obstacles account for the e ects of dislocations on other,secondary,slip systems in blocking slip on the primary slip plane,or,possibly,for the e ects of small precipitates.Pinned dislocations can only pass the obstacles when their Peach±Koehler force exceeds an obstacle dependent value s obs b.All obstacles are taken to have the same strength s obs 5X7?10à3l,with l denoting the elastic shear modulus.

No dislocations are present initially.New dislocations are generated by simulating Frank±Read sources. In two dimensions,a Frank±Read source is simulated by point sources on the slip plane which generate a dislocation dipole when the magnitude of the Peach±Koehler force at the source exceeds the critical value s nuc b during a period of time t nuc.The distance L nuc between the dislocations is speci?ed as

L nuc

l

2p 1àm

b

s nuc

Y 8

where m is Poisson's ratio.At this distance,the shear stress of one dislocation acting on the other is balanced by the slip plane shear stress.The magnitude of s nuc is randomly chosen from a Gaussian distribution with mean strength"s nuc 1X9?10à3l and standard deviation0X2"s nuc.With m 0X33,this mean nucleation strength corresponds to a mean nucleation distance of L nuc 125b.The nucleation time for all sources is taken as t nuc 2X6?106B a l.

The displacement and stress?elds are written as the superposition of two?elds,

u i ~u i u i Y r ij ~r ij r ij X 9 The ~ displacement?eld is the superposition of the?elds of the individual dislocations in an in?nite medium of the homogeneous matrix material and the ?elds represent the image?elds that correct for the actual boundary conditions and for the presence of the particles.The ?elds are smooth and are solved for by the?nite-element method.Both the stress±strain response and the evolution of the dislocation structure are outcomes of the boundary value solution in the discrete dislocation formulation.

2.2.Nonlocal crystal plasticity

The nonlocal continuum plasticity formulation adopted in this work is based on the simple theory proposed by Acharya and Bassani(1996,2000)where a particular strain gradient,which is taken to be a measure of elastic(or plastic)incompatibility,enters theˉow rule only through the instantaneous hard-ening rate.Consequently,this simple theory preserves the classical structure of incremental boundary value problems(Hill,1958)and does not require higher-order stresses or additional boundary conditions as,for example,in the formulations in Fleck and Hutchinson(1997)and Shu and Fleck(1999).

The physical motivation for the nonlocal theory of crystal plasticity used here,which also motivated the work of Fleck et al.(1994),is based on the notion of lattice incompatibility(see Acharya and Bassani (2000)for a detailed discussion).The basic idea is that the elastic distortion of the lattice is not,in gen-eral,compatible with a regular deformation,i.e.one that is derivable from a continuously di erentia-ble displacement?eld.On the other hand,that elastic distortion is capable of representing so-called J.L.Bassani et al./International Journal of Solids and Structures38(2001)833±853837

geometrically-necessary dislocations (Nye,1953).In the formulation of Acharya and Bassani (1996,2000),the hypothesis is that this incompatibility enters the constitutive relation only through its inˉuence on the hardening.Since the lattice incompatibility is characterized by a gradient of the elastic (or plastic)defor-mation ?eld,a material length scale enters the theory on dimensional grounds.In the setting of small strain kinematics,the total displacement gradient is written as the sum of elastic and plastic parts:

u i Y j u e ij u p ij Y 10

where the symmetric parts form the corresponding components of total,elastic,and plastic strains, ij , e ij and p ij ,respectively.The plastic part of the displacement gradient is taken to arise solely from slips c b on all systems b 1Y N according to u p ij b

c b m b i n b j Y 11 where the unit vectors m b i an

d n b

i ,respectively,denote the slip direction and slip-plane normal for system b .The key idea in developing the nonlocal theory is based on the observation that,even though the total displacement gradient (and total strain)is required to be compatible with a regular deformation,i.e.a continuously di erentiable,single-valued displacement ?eld,neither the elastic nor plastic parts are indi-vidually compatible in general.The signi?cance of the incompatibility measure is seen by considering the line integral w i x j x 0j v ij d y j 12 with v ij x k denoting a second-order tensor ?eld and x 0i an arbitrarily chosen ?xed point.Application of the classical Stokes theorem for simply connected domains gives that if Eq.(12)is path independent,

e jkl v il Y k 0Y 13 where e jkl is the alternating symbol.Then,v ij w i Y j and v ij is said to be compatible with w i .Relation (13)holds i

f v ij is taken to be the total displacement gradient u i Y j (Acharya and Bassani,2000).Accordingly,from Eqs.(13)and (11),a natural measure of incompatibility is Nye (1953)dislocation density:a ij e jkl u p il Y k e jkl

b

c b Y k m b i n b l X 14 A nonvanishing tensor a ij implies the existence of geometrically necessary dislocations.This measure can be use

d to comput

e the excess o

f dislocations of one sign,i.e.the net Burgers vector b i ,in any region bounded by a closed curve C :b i s C u p ij d x j S

e ljk u p ik Y j r l d S Y 15 where r i is the unit normal to a surface S whose boundary is the curve C .Note that since u i Y j is compatible,i

f u e ij is substituted for u p ij ,from Eq.(10)the value of b i will only change sign.In the simple nonlocal crystal plasticity model used here for the continuum calculations,the measure of incompatibility is taken to inˉuence only the instantaneous hardenin

g rates for individual slip systems (Acharya and Bassani,1996,2000).The ˉow rule is otherwise unchanged,irrespective whether it is rate independent as in Hill (1966)or rate dependent as in the viscoplastic rule of Peirce et al.(1983)and used for the ?nite element calculations presented subsequently.

838J.L.Bassani et al./International Journal of Solids and Structures 38(2001)833±853

With s j cr taken to be the measure of hardness of slip system j ,the rate of hardening under multiple-slip deformations is given by the usual expression (Hill,1966): s

j cr b

h jb c b Y 16 where h jb denotes the instantaneous slip-system hardening matrix which,in general,depends upon the history of slip.In the nonlocal theory (Acharya and Bassani,1996,2000),h jb is taken to depend both on the slips c j and on a ij ,the measure of incompatible lattice deformations (see also Luo,1998).For multiple slip deformations with h jb f c m g Y a ij ,there are outstanding issues about how to apportion the e ects of incompatibility on each slip system or,more precisely,to each component of h jb .Given that the present study only involves single slip and two-dimensional deformation,the remaining discussion of hardening will be limited to when those two conditions hold.In this case,it is immediately clear that the gradient of slip in the direction normal to a slip plane,c Y k n k ,does not contribute to the right-hand side of Eq.(14).Therefore,for single slip in two dimensions with c x 1Y x 2 and m e 1,the only nonzero component of a ij is

a 13 c Y 1X 17

Hence,in this case,with s cr h c and incorporating the e ect of incompatibility,the slip-system hardening-rate,h d s a d c ,is taken to depend only on c and c Y 1.Consistent with the experimentally veri?ed notion that hardening is increased in the presence of gra-dients associated with incompatibility,in single slip a simple modi?cation of the slip system strain hard-ening rule used in Cleveringa et al.(1997)is adopted:

h c Y c Y 1 h 0c c 0

à1 N à114 2c Y 1c 0 25p Y 18 where is the intrinsic length scale (which is typically on the order of microns)and p is a parameter,which is typically positive and less than unity.A similar hardening function with c Y 1replaced by the appropriate measures of incompatibility has been used by Luo (1998)in studies of torsion and biaxial stretching of ?lms for isotropic materials.The viscoplastic ˉow rule for single slip,which is used in the ?nite element calculations presented below,is taken to be a power law: c c 0s s cr s s cr

1a m à1Y 19 where c 0is a reference strain rate,m is the strain-rate hardening exponent,s cr is the slip system hardness,and s r 12is the slip-system resolved shear https://www.360docs.net/doc/8213372586.html,ing

e ij L à1ijkl r kl 20

together with the rate form of Eqs.(10)and (11),restricting the attention to single slip,and inverting gives r ij L ijkl kl 4à c 2

m k n l m l n k 5 21 with c given by Eq.(19).The constitutive equation (21)has the same form as in a local theory,but with the nonlocal (gradient)e ect entering the expression (19)for c through s cr which evolves through a dependence on both c and c Y 1via Eqs.(16)and (18).

J.L.Bassani et al./International Journal of Solids and Structures 38(2001)833±853839

Relation (21)is substituted into Eq.(1),and this forms the basis for the ?nite-element discretization.In order to increase the stable time step,the forward gradient method of Peirce et al.(1983)is used.Calcu-lation of the gradient c Y 1for use in the hardening expression (18)is the only change required in a computer program for the usual local crystal plasticity formulation.In this paper,the discretization is based on rectangular elements consisting of four ``crossed''linear displacement triangles.The values of c are stored at the centroids of each triangular element.The gradient c Y 1is computed in the following fashion:?rst,for each rectangle,the values of c are extrapolated from the four triangle centroids to the nodal points of the rectangular element using bilinear shape functions.Then,the value of c associated with a node is taken to be the average value of each rectangle connected to that node.With the rectangular element de?ned by x à6x 6x and y à6y 6y ,we set c Y 1 c àc à a x àx à ,where c is the average of the two nodes having x -coordinate x and c àis the average of the two nodes having x -coordinate x à.The value of c Y 1is taken to be the same for each triangle making up the rectangle.

https://www.360docs.net/doc/8213372586.html,parison of discrete dislocation and nonlocal continuum plasticity predictions

The two-dimensional,discrete dislocation simulations of Cleveringa et al.(1997,1998)are regarded as numerical experiments for the behavior of rectangular elastic particles embedded in a plastically deforming,single crystal https://www.360docs.net/doc/8213372586.html,plete details of the parameters entering the calculations,as well as further ref-erences,are given in Cleveringa et al.(1997,1998).It su ces to give a brief summary of the key results,before discussing the ?t of these results with the nonlocal continuum model.

3.1.Discrete dislocation simulations

Curves of average shear stress,de?ned in Eq.(5),versus imposed shear strain C from the discrete dis-location simulations in Cleveringa et al.(1997)are shown in Fig.2for the two composite morphologies,material (i)and (iii),with a cell size c L 1l m.There is essentially no overall hardening for material (i),and in fact there is some degree of softening accompanying the strain localization.In contrast,material (iii)displays signi?cant hardening and,as shown in Fig.3for c 0X 5Y 1and 2l m (taken from Cleveringa et

al.,

840J.L.Bassani et al./International Journal of Solids and Structures 38(2001)833±853

1998),also displays signi?cant cell size dependence.Furthermore,Cleveringa et al.(1997)demonstrated that these di erences cannot be captured by a local continuum model with the same single-crystal matrix material for both composite morphologies.For the cell size they investigated,the level of matrix hardening required in a purely local model to reproduce the dislocation results for material (iii)is signi?cantly higher than the hardening required for material (i).The overall behavior of material (i)is,in fact,close to that of the matrix material itself since there are unblocked channels of slip for that composite morphology with c 1l m as seen in the dislocation dis-tribution of Fig.4a at C 0X 58(from Cleveringa et al.,1997).Such a region of localized dislocation activity is termed coarse slip.Other recent calculations for material (i)(not reproduced here for brevity)also display little dependence on the absolute cell size,at least for cell sizes that are large compared to the spacing of the slip planes which is taken to be 100Burgers vectors or 25nm in those calculations.Material (iii)is signi?cantly harder because every path of slip across the cell (lines parallel to the x 1-direction)is blocked by a particle as seen in Fig.4b,which is the dislocation distribution at C 0X 01with c 1l m (from Cleveringa et al.,1997).This di erence in slip distribution has an important implication with respect to lattice incompatibility or,equivalently,geometrically necessary dislocations.As discussed with reference to Eq.(17),slip gradients in the direction normal to the slip plane,which are certainly high in the neighborhood of the coarse slip bands of material (i),do not cause incompatibility.Blocked slip,in contrast,not only impedes coarse slip,but it also enhances gradients in the slip plane (in the x 1-direction).Therefore,blocked slip also enhances lattice incompatibility,in particular,through c Y 1which is the only contribution to Nye's dislocation density tensor here.

3.2.Nonlocal crystal plasticity results

The discrete dislocation simulations are compared with the predictions of the nonlocal plasticity theory.The matrix parameters entering Eqs.(18)and (19)are taken to be s 0a l 1X 33?10à3,h 0a l 2X 47?10à3or 2X 47?10à4,c 0 0X 002,N 1or 0X 3, 1Y 5Y 10or 20l m,p 0X 5and strain-rate sensitivity parameters c 0 0X 002s à1and m 0X 005.The single-crystal matrix parameters entering the nonlocal continuum model were chosen in an attempt to give composite shear stress versus shear strain curves similar to the discrete dislocation simulations for both composite morphologies at a size scale of c 1l m.The process of selecting matrix properties in Eq.(18)is based on a few observations,the ?rst two of which concern parameters that enter the local part of the matrix description:(a)h 0should be low enough to give minimal hardening for material (i);(b)at that

fairly

J.L.Bassani et al./International Journal of Solids and Structures 38(2001)833±853841

low value of h 0and for an overall shear strain C 60X 01(as in the discrete dislocation calculations),the e ect of the power-law exponent N was not expected to be too signi?cant;and (c)the e ect of incompatibility on hardening as measured in two-dimensional single slip in terms of c Y 1in Eq.(18)depends strongly on the nonlocal parameters and p .The e ects of cell size are explored by varying the nondimensional ratio c a with all other material parameters held ?xed (p 0X 5).Numerical results for the average shear stress s ave versus applied shear strain C are plotted in Figs.5±8for the two composite morphologies and various material parameters and cell sizes,c ,normalized by the material length scale ,where c a 3I corresponds to purely local behavior ( 0).Unless speci?ed otherwise,a mesh consisting of 680quadrilateral elements was used for the calculations.From comparisons of these plots with the discrete dislocation results for the overall behavior,a set of matrix material pa-rameters can be chosen that give reasonable agreement with the results of the discreet dislocation simu-lations.For brevity,only results for two nominal hardening rates,h 0a l ,and two power-law exponents,N ,are presented that together roughly bracket the discrete dislocation results.The ?rst of these results are for material (iii).Fig.5a and b are s ave versus C curves for N 1and for h 0a l 2X 47?10à4and h 0a l 2X 47?10à3,respectively,at various normalized cell sizes c a .The corresponding results for N 0X 3are plotted in Fig.6a and b.The purely local results,c a 3I ,for material (iii)plotted in Figs.5±8display quite similar trends for both levels of matrix hardening and for both hardening exponents.In particular,comparing Fig.5a and b shows that at C 0X 01,the shear stress given by the local theory with N 1and with h 0a l 2X 47?10à3

is

Fig.4.Predicted dislocation distributions in (a)material (i)and (b)material (iii).

842J.L.Bassani et al./International Journal of Solids and Structures 38(2001)833±853

only a few percent higher than for the corresponding calculation with h 0a l 2X 47?10à4;the di erence in stress level for the two local theory calculations in Fig.6,where N 0X 3,is even smaller.On the other hand,with nonlocal hardening behavior and c a on the order of 0X 1to 1,there is con-siderably more overall hardening and greater size-scale e ects for the higher value of h 0(Figs.5b and 6b)as well as for the higher value of N (Fig.5a and b).This e ect of h 0and N on nonlocal behavior is a con-sequence of the assumed multiplicative inˉuence of incompatibility on hardening as prescribed in Eq.(18).(For an additive contribution to the hardening rate from incompatibility,which is also plausible,the pa-rameters entering the purely local contribution would be expected to have less e ect on nonlocal

behavior.)J.L.Bassani et al./International Journal of Solids and Structures 38(2001)833±853843

Furthermore,with p P 0,this nonlocal factor leads to a slight upturn in the overall s ave versus C curves,since the term in square brackets in Eq.(18)increases with increasing c Y 1as c itself increases.This e ect is most clearly seen for N 1;for N 0X 3the e ect is reduced by the softening in the local term in Eq.(18).A smaller value of p would also lessen the upturn.The tendency for the upturn in the overall s ave versus C curves at larger strains,particularly for N 1,can be o set with a simple modi?cation to the way in which the slip gradient enters the hardening rate.One such modi?cation that was adopted by Luo (1998)in studies of torsion of thin wires and biaxial stretching of thin ?lms replaces the term c Y 1a c 0àá2in Eq.(18)by c 2Y 1a c 2 c 20àáwhich reduces the

gradient-hardening

844J.L.Bassani et al./International Journal of Solids and Structures 38(2001)833±853

e ect at larger strains and,depending on the magnitude o

f c 0,can increase the gradient e ects at smaller strains.A ?ner mesh consistin

g of 6120elements was used to study the accuracy of the solutions utilizing 680elements as in Figs.5and 6.Fig.7shows that there is little di erence in the composite stress±strain response predicted by the two meshes for material (iii)wit

h N 0X 3,h 0a l 2X 47?10à4,and c a 0X 2.In general,there is good agreement between predictions based on the two mesh resolutions.It is worth noting that the convergence was generally better for smaller values of c a because one e ect of nonlocality is to smooth out gradients.For material (i)in the range C 60X 01,we found even less dependence on N ,compared to material (iii),given the low level of overall hardening predicted by the discrete dislocation simulations.Consequently,for brevity only the s ave versus C results for N 0X 3are presented in Fig.8a and b for h 0a l 2X 47?10à4and h 0a l 2X 47?10à3,respectively.For both hardening levels,the curves for the homogeneous matrix ma-terial are indistinguishable from the local results (c a 3I )for material (i).With e ects of incompatibility on hardening included for the range of c a considered,the initial matrix hardening rate h 0a l 2X 47?10à4gives overall hardening for material (i),which is only slightly higher than that for the pure matrix,whereas h 0a l 2X 47?10à3leads to considerably higher hardening at the smaller size scales (smaller values of c a ),which is not consistent with the discrete dislocation results.The lower matrix hardening rate,h 0a l 2X 47?10à4,leads to trends that are more in accord with the discrete dislocation predictions.From Figs.5and 6for material (iii),we note that the average stress at C 0X 01with purely local matrix behavior (c a 3I )is about s ave a l 2X 4?10à3,while the corresponding discrete dislocation result from Fig.6predicts s ave a l 2X 8?10à3,which is about 17%higher.At the lower level of hardening (h 0a l 2X 47?10à4),for N 1(Fig.5a)this d

i erence is made up by the nonlocal material with c a 0X 2( 5l m);for N 0X 3(Fig.6a),c a 0X 05( 20l m)raises the average stress to about the same level.Of course,if only the behavior of material (iii)is to be reproduced by the continuum model,one could choose other combinations of h 0,N ,and that qualitatively agree with the discrete dislocation results of Fig.2for c 1l m.On the other hand,if the behavior of material (i),which displays little e ect of the reinforcement on the composite stress±strain response,is also to be accurately modeled,then a relatively low value of h 0

is

J.L.Bassani et al./International Journal of Solids and Structures 38(2001)833±853845

required.Therefore,either of the two aforementioned sets of parameters N and at the lower hardening level (h 0a l 2X 47?10à4)can reasonably reproduce the trends of both material (i)and material (iii)for c 1l m.Again we note that the parameter set which includes N 0X 3displays less tendency for an upturn in the s ave versus C curves.One can see from Figs.5and 6,that as the cell size for material (iii)decreases with the area fraction of inclusions kept ?xed,i.e.as c a decreases,that the overall hardening rate tends to increase.This is also seen in the discrete dislocation results of Fig.3.Cleveringa et al.(1998)considered a power-law ?t to results like those in Fig.

3:

846J.L.Bassani et al./International Journal of Solids and Structures 38(2001)833±853

d s av

e d C G c àb X 22 From over 10simulations for di erent cell sizes and for di erent initial densities and distributions o

f dislocation sources and obstacles,they found that at an overall shear strain of C 0X 01,the best ?t gives b %1a 3.In the continuum model,this relationship depends both on N and h 0a l .For N 0X 3,from the ?nite element results of Fig.6at C 0X 01,b %0X 3for h 0a l 2X 47?10à3and b %0X 2for h 0a l 2X 47?10à4.Next,contours of the strain and strain-gradient ?elds are presented to provide a better understandin

g of the e ects of nonlocal hardening.For material (iii),contours of plastic slip,c c d t ,where c is given by Eq.(19),for N 1,

h 0a l 2X 47?10à4are plotted in Fig.9for overall shear strain C 0X 01;Fig.9a is the nonlocal result with c a 0X 2and Fig.9b is the local result (c a 3I ).The corresponding contours of the plastic slip gradient c Y 1are plotted in Fig.10a and b.In general,the e ects of nonlocal hardening associated with incompatible lattice deformations cause a reduction in the gradient c Y 1which,in this two-dimensional,single-slip problem,is the unique measure of incompatibility.In other words,the resulting slip (plastic strain)?elds for the nonlocal model tend to be smoother than for the purely local behavior.Similar contour plots for material (i)are presented in Figs.11and 12for the same set of material pa-rameters and for c a 0X 2.Since c Y 2is the only signi?cant gradient of slip arising in that composite morphology,which neither gives rise to incompatibility nor,therefore,to gradient hardening,there is little d

i erence between the local and nonlocal ?elds.The coarse slip band which develops in the continuous channel of matrix material is clearly seen in Fig.

11.

J.L.Bassani et al./International Journal of Solids and Structures 38(2001)833±853847

Cleveringa et al.(1997)observed that discrete dislocation plasticity gave rise to a greater proportion of the shear stress being carried by the reinforcement than predicted by local,size-independent plasticity theory.To check the predictions of the nonlocal theory,we have computed phase averages of the shear stress for material (iii)at C %0X 01with h 0a l 2X 47?10à4and N 1.The proportion of the stress carried by the reinforcement decreases as c a increases;h r 12i r a s ave 3X 21,3.20,3.08and 3.00for c a 0X 1,0.2,1.0and I (the local theory),respectively,where h r 12i r is the average shear stress in the reinforcement phase.With h 0a l 2X 47?10à4,N 0X 3and c a 0X 05,h r 12i r a s ave 2X 96at C 0X 01.The discrete dislocation results in Cleveringa et al.(1997)have h r 12i r a s ave 3X 06at C 0X 0058,whereas their local continuum slip calculation,which requires a much higher matrix hardening of h 0a l 4X 94?10à3in order to match the composite stress±strain behavior with the local theory,only gives h r 12i r a s ave 2X 36.In contrast,the non-local theory used here,with a lightly hardening matrix,gives a good agreement with the composite phase average shear-stress https://www.360docs.net/doc/8213372586.html,parison of the phase average shear stresses provides a basis for identifying material parameters that supplements the comparison of overall stress±strain behavior.How-ever,in addition,the discrete dislocation results show local stress concentrations in the reinforcement that arise from dislocations piled up against the reinforcement sides.These local stress concentrations do not occur in the nonlocal plasticity calculations,although the elevation in the average stress in the reinforce-ment is reasonably well reproduced.Finally,it is interesting to consider the nonlocal response when the full gradient of slip,rather than the incompatibility measure,raises the level of hardening.As a simple example for comparison purposes,consider the term c 2Y 1 c 2Y 2q in place of c Y 1in Eq.(18)and otherwise the same description of the matrix material as de?ned in Section 2.2.With h 0a l 2X 47?10à4,for N 0X 3,and c a 0X 2,the e ect of c Y 2

is

848J.L.Bassani et al./International Journal of Solids and Structures 38(2001)833±853

signi?cant for material (i),whereas it is relatively small for material (iii),as seen in Fig.13.Since there is little e ect of the addition of c Y 2to the hardening for material (iii),the corresponding slip and slip-gradient contours are similar to those in Figs.9a and 10a.On the other hand,for material (i)there are signi?cant di erences.Fig.14is a contour plot of c ,where Fig.14a corresponds to the physically-based hardening model (18),and Fig.14b corresponds to the a hardening model with c 2Y 1 c 2Y 2q replacing c Y 1in Eq.(18).Clearly,whereas the nonlocal hardening model,which uses the gradient associated with incompatibility,reasonably distinguishes between materials (i)and (iii),the model incorporating the full gradient does not.

4.Concluding remarks

Predictions of the nonlocal plasticity theory of Acharya and Bassani (1996,2000)for the response of a model composite material have been compared with the results of discrete dislocation simulations.Two composite morphologies have been considered:for one,the discrete dislocation simulations exhibit sig-ni?cant strain hardening,with the overall stress±strain response being strongly size-dependent;for the other,which has a channel of material that allows slip to propagate relatively unimpeded across the cell,the discrete dislocation response is approximately ideally plastic (slightly softening),with no signi?cant size dependence.Material parameters are found for which the nonlocal plasticity calculations are in reasonable agreement with the discrete dislocation predictions.It is worth emphasizing that the plastic ˉow properties of the nonlocal theory are ?t to the discrete dislocation results for one composite morphology and size;the nonlocal theory then predicts the dependence of the response on morphology and

size.

J.L.Bassani et al./International Journal of Solids and Structures 38(2001)833±853849

850J.L.Bassani et al./International Journal of Solids and Structures38(2001)833±853

For the two-dimensional,single-slip problem considered here,the implication of incompatible lattice deformations in the nonlocal plasticity theory is particularly straightforward.The relevant measure is the gradient of slip in the direction along the slip plane,i.e.in the direction of slip itself.Gradients of slip normal to the slip plane do not give rise to incompatible lattice deformations.Consequently,the response depends sensitively on whether the particular composite morphology leads to slip patterns that involve such gradients.A local theory (Cleveringa et al.,1997)or a model incorporating the full gradient does not predict the dependence of the composite behavior on the reinforcement morphology seen in the discrete dislocation simulations.The comparisons here have shown that,with appropriately chosen material parameters,the simple nonlocal theory of Acharya and Bassani (1996,2000)can reproduce several trends seen in the discrete dislocation simulations of Cleveringa et al.(1997,1998).The structure of the boundary value problems within this theory is the same as for conventional size independent plasticity theories.Hence,it is easy to implement in a standard ?nite element code.Furthermore,on computers of similar speed,the computing time for the nonlocal plasticity calculations is a few minutes,while it is many hours for the discrete dis-location simulations in Cleveringa et al.(1997).In particular,the time steps that can be taken in the nonlocal theory are,for a given time integration algorithm,essentially the same as for the conventional plasticity theory whereas much smaller time steps are required for the discrete dislocation simulations.Thus,the computational advantage of nonlocal plasticity theory will increase for lower strain rates and larger strains.Many issues remain in the development of an appropriate framework for a nonlocal theory of size dependent plasticity.For example,in the theory of Acharya and Bassani (1996,2000),under multiple slip,the issue of how to apportion lattice incompatibility to individual slip systems is unresolved.For

the J.L.Bassani et al./International Journal of Solids and Structures 38(2001)833±853851

852J.L.Bassani et al./International Journal of Solids and Structures38(2001)833±853

theories involving higher-order stresses as in Fleck and Hutchinson(1997)and Shu and Fleck(1999),there is the issue of appropriately specifying higher order boundary conditions.Gurtin's(2000)theory has similar issues.In addition,subgrain dislocation structures are observed,e.g.in Hughes and Hansen(1993),that emerge under nominally uniform macroscopic deformations.Ortiz et al.(1999)have formulated a theory that is quite di erent from the nonlocal plasticity theories of Acharya and Bassani(1996,2000),Arsenlis and Parks(1999),Fleck and Hutchinson(1997),Shu and Fleck(1999)and Gurtin's(2000),but that also gives rise to increasing strength with decreasing size.There is,as yet,no uni?ed nonlocal plasticity framework for describing both the e ects of subgrain dislocation structures that can emerge under nom-inally uniform deformations and the e ects of geometrically necessary dislocations that are associated with strain gradients.

Acknowledgements

J.L.B.is pleased to acknowledge the hospitality of the Division of Engineering,Brown University during a sabbatical leave in1997.A.N.is grateful for support from the Materials Research Science and Engi-neering Center on On Micro-and Nano-Mechanics of Materials at Brown University(NSF Grant DMR-9632524).

References

Acharya,A.,Bassani,J.L.,1996.On non-localˉow theories that preserve the classical structure of incremental boundary value problems.In:Pineau,A.,Zaoui,A.(Eds.),Proceedings of the IUTAM Symposium on Micromechanics of Plasticity and Damage of Multiphase Materials.Kluwer Academic Publishers,Dordrecht,pp.3±10.

Acharya,A.,Bassani,J.L.,https://www.360docs.net/doc/8213372586.html,ttice incompatibility and a gradient theory of crystal plasticity.J.Mech.Phys.Solids48,1565±1595.

Arsenlis,A.,Parks,D.M.,1999.Crystallographic aspects of geometrically-necessary and statistically stored dislocation density.Acta Mat.47,1597±1611.

Bilby,B.A.,Bullough,R.,Smith,E.,1955.Continuous distributions of dislocations:a new application of the methods of non-Riemannian geometry.Proc.Roy.Soc.London A231,263±273.

Brown,L.M.,Ham,R.K.,1971.Dislocation-particle interactions.in:Strengthening Methods in Crystals,Elsevier,Amsterdam, pp.12±135.

Cleveringa,H.H.M.,Van der Giessen,E.,Needleman,A.,https://www.360docs.net/doc/8213372586.html,parison of discrete dislocation and continuum plasticity predictions for a composite material.Acta Mater.45,3163±3179.

Cleveringa,H.H.M.,Van der Giessen,E.,Needleman,A.,1998.Discrete dislocation simulations and size dependent hardening in single slip.J.Physique IV,83±92.

Cleveringa,H.H.M.,Van der Giessen,E.,Needleman,A.,1999.A discrete dislocation analysis of bending.Int.J.Plast.15,837±868. DeGuzman,M.S.,Neubauer,G.,Flinn,P.,Nix,W.D.,1993.The role of indentation depth on the measured hardness of materials.

Mater.Res.Symp.Proc.308,613±618.

Ebeling,R.,Ashby,M.F.,1966.Dispersion hardening of copper single crystals.Phil.Mag.13,805±834.

Fleck,N.A.,Hutchinson,J.W.,1993.A phenomenological theory for strain gradient e ects in plasticity.J.Mech.Phys.Solids41, 1825±1857.

Fleck,N.A.,Hutchinson,J.W.,1997.Strain gradient plasticity.Adv.Appl.Mech.33,295±361.

Fleck,N.A.,Muller,G.M.,Ashby,F.,Hutchinson,J.W.,1994.Strain gradient plasticity:theory and experiment.Acta Metall.Mater.

42,475±487.

Gurtin,M.,2000.On plasticity of crystals:free energy,microforces,plastic strain gradients,J.Mech.Phys.Solids48,989±1036. Hill,R.,1958.A general theory of uniqueness and stability in elastic-plastic solids.J.Mech.Phys.Solids6,236±249.

Hill,R.,1966.Generalized constitutive relations for incremental deformation of metal crystals by multislip.J.Mech.Phys.Solids14, 95±102.

Hirth,J.P.,Lothe,J.,1968.Theory of Dislocations.McGraw Hill,New York.

Hughes,D.A.,Hansen,N.,1993.Microstructural evolution in nickel during rolling from intermediate to large strains.Metall.Trans.

A24,2021±2037.

BP神经网络实验——【机器学习与算法分析 精品资源池】

实验算法BP神经网络实验 【实验名称】 BP神经网络实验 【实验要求】 掌握BP神经网络模型应用过程,根据模型要求进行数据预处理,建模,评价与应用; 【背景描述】 神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。BP神经网络是一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广泛的神经网络。其基本组成单元是感知器神经元。 【知识准备】 了解BP神经网络模型的使用场景,数据标准。掌握Python/TensorFlow数据处理一般方法。了解keras神经网络模型搭建,训练以及应用方法 【实验设备】 Windows或Linux操作系统的计算机。部署TensorFlow,Python。本实验提供centos6.8环境。 【实验说明】 采用UCI机器学习库中的wine数据集作为算法数据,把数据集随机划分为训练集和测试集,分别对模型进行训练和测试。 【实验环境】 Pyrhon3.X,实验在命令行python中进行,或者把代码写在py脚本,由于本次为实验,以学习模型为主,所以在命令行中逐步执行代码,以便更加清晰地了解整个建模流程。 【实验步骤】 第一步:启动python: 1

命令行中键入python。 第二步:导入用到的包,并读取数据: (1).导入所需第三方包 import pandas as pd import numpy as np from keras.models import Sequential from https://www.360docs.net/doc/8213372586.html,yers import Dense import keras (2).导入数据源,数据源地址:/opt/algorithm/BPNet/wine.txt df_wine = pd.read_csv("/opt/algorithm/BPNet/wine.txt", header=None).sample(frac=1) (3).查看数据 df_wine.head() 1

有限元网格划分心得

有限元网格划分的基本原则 划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。为建立正确、合理的有限元模型,这里介绍划分网格时应考虑的一些基本原则。 1网格数量 网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。 图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。所以应注意增加网格的经济性。实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。 图1位移精度和计算时间随网格数量的变化 在决定网格数量时应考虑分析数据的类型。在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,如果计算的模态阶次较高,则应选择较多的网格。在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。 2网格疏密 网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。这样,整个结构便表现出疏密不同的网格划分形式。 图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。小圆孔附近存在应力集中,采用了比较密的网格。板的四周应力梯度较小,网格分得较稀。其中图b中网格疏密相差更大,它比图a中的网格少48个,但计算出的孔缘最大应力相差1%,而计算时间却减小了36%。由此可见,采用疏密不同的网格划分,既可以保持相当的计算精度,又可使网格数量减小。因此,网格数量应增加到结构的关键部位,在次要部位增加网格是不必要的,也是不经济的。

数据挖掘常用资源及工具

资源Github,kaggle Python工具库:Numpy,Pandas,Matplotlib,Scikit-Learn,tensorflow Numpy支持大量维度数组与矩阵运算,也针对数组提供大量的数学函数库 Numpy : 1.aaa = Numpy.genfromtxt(“文件路径”,delimiter = “,”,dtype = str)delimiter以指定字符分割,dtype 指定类型该函数能读取文件所以内容 aaa.dtype 返回aaa的类型 2.aaa = numpy.array([5,6,7,8]) 创建一个一维数组里面的东西都是同一个类型的 bbb = numpy.array([[1,2,3,4,5],[6,7,8,9,0],[11,22,33,44,55]]) 创建一个二维数组aaa.shape 返回数组的维度print(bbb[:,2]) 输出第二列 3.bbb = aaa.astype(int) 类型转换 4.aaa.min() 返回最小值 5.常见函数 aaa = numpy.arange(20) bbb = aaa.reshape(4,5)

numpy.arange(20) 生成0到19 aaa.reshape(4,5) 把数组转换成矩阵aaa.reshape(4,-1)自动计算列用-1 aaa.ravel()把矩阵转化成数组 bbb.ndim 返回bbb的维度 bbb.size 返回里面有多少元素 aaa = numpy.zeros((5,5)) 初始化一个全为0 的矩阵需要传进一个元组的格式默认是float aaa = numpy.ones((3,3,3),dtype = numpy.int) 需要指定dtype 为numpy.int aaa = np 随机函数aaa = numpy.random.random((3,3)) 生成三行三列 linspace 等差数列创建函数linspace(起始值,终止值,数量) 矩阵乘法: aaa = numpy.array([[1,2],[3,4]]) bbb = numpy.array([[5,6],[7,8]]) print(aaa*bbb) *是对应位置相乘 print(aaa.dot(bbb)) .dot是矩阵乘法行乘以列 print(numpy.dot(aaa,bbb)) 同上 6.矩阵常见操作

_基于ANSYS的有限元法网格划分浅析

文章编号:1003-0794(2005)01-0038-02 基于ANSYS的有限元法网格划分浅析 杨小兰,刘极峰,陈 旋 (南京工程学院,南京210013) 摘要:为提高有限元数值的计算精度和对复杂结构力学分析的准确性,针对不同分析类型采用了不同的网格划分方法,结合实例阐述了ANSYS有限元网格划分的方法和技巧,指出了采用ANSYS有限元软件在网格划分时应注意的技术问题。 关键词:ANSYS;有限元;网格;计算精度 中图号:O241 82;TP391 7文献标识码:A 1 引言 ANSYS有限元分析程序是著名的C AE供应商美国ANSYS公司的产品,主要用于结构、热、流体和电磁四大物理场独立或耦合分析的CAE应用,功能强大,应用广泛,是一个便于学习和使用的优秀有限元分析程序。在ANSYS得到广泛应用的同时,许多技术人员对ANSYS程序的了解和认识还不够系统全面,在工作和研究中存在许多隐患和障碍,尤为突出的是有限元网格划分技术。本文结合工程实例,就如何合理地进行网格划分作一浅析。 2 网格划分对有限元法求解的影响 有限元法的基本思想是把复杂的形体拆分为若干个形状简单的单元,利用单元节点变量对单元内部变量进行插值来实现对总体结构的分析,将连续体进行离散化即称网格划分,离散而成的有限元集合将替代原来的弹性连续体,所有的计算分析都将在这个模型上进行。因此,网格划分将关系到有限元分析的规模、速度和精度以及计算的成败。实验表明:随着网格数量的增加,计算精确度逐渐提高,计算时间增加不多;但当网格数量增加到一定程度后,再继续增加网格数量,计算精确度提高甚微,而计算时间却大大增加。在进行网格划分时,应注意网格划分的有效性和合理性。 3 网格划分的有效性和合理性 (1)根据分析数据的类型选择合理的网格划分数量 在决定网格数量时应考虑分析数据的类型。在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。如果需要计算应力,则在精度要求相同的情况下取相对较多的网格。同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格。如果计算的模态阶次较高,则应选择较多的网格。在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,可划分较少的网格。 (2)根据分析数据的分布特点选择合理的网格疏密度 在决定网格疏密度时应考虑计算数据的分布特点,在计算固有特性时,因为固有频率和振型主要取决于结构质量分布和刚度分布,采用均匀网格可使结构刚度矩阵和质量矩阵的元素不致相差很大,可减小数值计算误差。同样,在结构温度场计算中也趋于采用均匀的网格形式。在计算数据变化梯度较大的部位时,为了更好地反映数据变化规律,需要采用比较密集的网格,而在计算数据变化梯度较小的部位,为了减小模型规模,则应划分相对稀疏的网格,这样整个结构就表现出疏密不同的网格划分形式。 以齿轮轮齿的有限元分析模型为例,由于分析的目的是求出齿轮啮合传动过程中齿根部分的弯曲应力,因此,分析计算时并不需要对整个齿轮进行计算,可根据圣文男原理将整个区域缩小到直接参与啮合的轮齿。虽然实际上参与啮合的齿数总大于1,但考虑到真正起作用的是单齿,通常只取一个轮齿作为分析对象,这样作可以大大节省计算机内存。考虑到轮齿应力在齿根过渡圆角和靠近齿面处变化较大,网格可划分得密一些。在进行疏密不同网格划分操作时可采用ANSYS提供的网格细化工具调整网格的疏密,也可采用分块建模法设置网格疏密度。 图1所示即为采用分块建模法进行网格划分。图1(a)为内燃机中重要运动零件连杆的有限元应力分析图,由于连杆结构对称于其摆动的中间平面,其厚度方向的尺寸远小于长度方向的尺寸,且载荷沿厚度方向近似均匀分布,故可按平面应力分析处 38 煤 矿 机 械 2005年第1期

题库深度学习面试题型介绍及解析--第7期

1.简述激活函数的作用 使用激活函数的目的是为了向网络中加入非线性因素;加强网络的表示能力,解决线性模型无法解决的问题 2.那为什么要使用非线性激活函数? 为什么加入非线性因素能够加强网络的表示能力?——神经网络的万能近似定理 ?神经网络的万能近似定理认为主要神经网络具有至少一个非线性隐藏层,那么只要给予网络足够数量的隐藏单元,它就可以以任意的精度来近似任何从一个有限维空间到另一个有限维空间的函数。 ?如果不使用非线性激活函数,那么每一层输出都是上层输入的线性组合;此时无论网络有多少层,其整体也将是线性的,这会导致失去万能近似的性质 ?但仅部分层是纯线性是可以接受的,这有助于减少网络中的参数。3.如何解决训练样本少的问题? 1.利用预训练模型进行迁移微调(fine-tuning),预训练模型通常在特征上拥有很好的语义表达。此时,只需将模型在小数据集上进行微调就能取得不错的效果。CV 有 ImageNet,NLP 有 BERT 等。 2.数据集进行下采样操作,使得符合数据同分布。

3.数据集增强、正则或者半监督学习等方式来解决小样本数据集的训练问题。 4.如何提升模型的稳定性? 1.正则化(L2, L1, dropout):模型方差大,很可能来自于过拟合。正则化能有效的降低模型的复杂度,增加对更多分布的适应性。 2.前停止训练:提前停止是指模型在验证集上取得不错的性能时停止训练。这种方式本质和正则化是一个道理,能减少方差的同时增加的偏差。目的为了平衡训练集和未知数据之间在模型的表现差异。 3.扩充训练集:正则化通过控制模型复杂度,来增加更多样本的适应性。 4.特征选择:过高的特征维度会使模型过拟合,减少特征维度和正则一样可能会处理好方差问题,但是同时会增大偏差。 5.你有哪些改善模型的思路? 1.数据角度 增强数据集。无论是有监督还是无监督学习,数据永远是最重要的驱动力。更多的类型数据对良好的模型能带来更好的稳定性和对未知数据的可预见性。对模型来说,“看到过的总比没看到的更具有判别的信心”。 2.模型角度

VFP常用函数大全整理

VFP常用函数大全整理 一.字符及字符串处理函数:字符及字符串处理函数的处理对象均为字符型数据,但其返回值类型各异. 1.取子串函数: 格式:substr(c,n1,n2) 功能:取字符串C第n1个字符起的n2个字符.返回值类型是字符型. 例:取姓名字符串中的姓. store \"王小风\" to xm ?substr(xm,1,2) 结果为:王 2.删除空格函数:以下3个函数可以删除字符串中的多余空格,3个函数的返回值均为字符型. trim(字符串):删除字符串的尾部空格 alltrim(字符串):删除字符串的前后空格 ltrim(字符串):删除字符串的前面的空格 例:去掉第一个字符串的尾空格后与第二个字符串连接 store \"abcd \" to x store \"efg\" to y ?trim(x)+y abcdefg 3.空格函数: 格式:space(n) 说明:该函数的功能是产生指定个数的空格字符串(n用于指定空格个数). 例:定义一个变量dh,其初值为8个空格 store space(8) to dh 4.取左子串函数: 格式:left(c,n) 功能:取字符串C左边n个字符. 5.取右子串函数: 格式:right(c,n) 功能:取字符串c右边的n个字符 例:a=\"我是中国人\" ?right(a,4) 国人 ?left(a,2) 我 6.empty(c):用于测试字符串C是否为空格. 7.求子串位置函数: 格式:At(字符串1,字符串2) 功能:返回字符串1在字符串2的位置 例:?At(\"教授\",\"副教授\") 2

8.大小写转换函数: 格式: lower(字符串) upper(字符串) 功能:lower()将字符串中的字母一律变小写;upper()将字符串中的字母一律变大写 例: bl=\"FoxBASE\" ?lower(bl)+space(2)+upper(bl) foxbase FOXBASE 9.求字符串长度函数: 格式:len(字符串) 功能:求指定字符串的长度 例:a=\"中国人\" ?len(a) 6 二.数学运算函数: 1.取整函数: 格式:int(数值) 功能:取指定数值的整数部分. 例:取整并显示结果 ?int(25.69) 25 2.四舍五入函数: 格式:round(数值表达式,小数位数) 功能:根据给出的四舍五入小数位数,对数值表达式的计算结果做四舍五入处理 例:对下面给出的数四舍五入并显示其结果 ?round(3.14159,4),round(2048.9962,0),round(2048.9962,-3) 3.1416 2049 2000 3.求平方根函数: 格式:sqrt(数值) 功能:求指定数值的算术平方根 例:?sqrt(100) 10 4.最大值、最小值函数: 格式: Max(数值表达式1,数值表达式2) Min(数值表达式1,数值表达式2) 功能:返回两个数值表达式中的最大值和最小值 例:

CATIA有限元高级划分网格教程

CATIA有限元高级网格划分教程 盛选禹李明志 1.1进入高级网格划分工作台 (1)打开例题中的文件Sample01.CATPart。 (2)点击主菜单中的【开始】→【分析与模拟】→【Advanced Meshing Tools】(高级网格划分工具),就进入【Advanced Meshing Tools】(高级网格划分工具)工作台,如图1-1所示。进入工作台后,生成一个新的分析文件,并且显示一个【New Analysis Case】(新分析算题)对话框,如图1-2所示。 图1-1【开始】→【分析与模拟】→【Advanced Meshing Tools】(高级网格划分工具)(3)在【New Analysis Case】(新分析算题)对话框内选择【Static Analysis】(静力分析)选项。如果以后打开该对话框的时候均希望是计算静力分析,可以把对话框内的【Keep as default starting analysis case】(在开始时保持为默认选项)勾选。这样,下次进入本工作台时,将自动选择静力分析。 (4)点击【新分析算题】对话框内的【确定】按钮,关闭对话框。 1.2定义曲面网格划分参数 本节说明如何定义一个曲面零件的网格类型和全局参数。 (1)点击【Meshing Method】(网格划分方法)工具栏内的【高级曲面划分】按钮

,如图1-3所示。需要在【Meshing Method】(网格划分方法)工具栏内点击中间按钮的下拉箭头才能够显示出【高级曲 面划分】按钮。 图1-2【New Analysis Case】(新分析算题)对话框图1-3【高级曲面划分】按钮

人工智能实践:Tensorflow笔记 北京大学 7 第七讲卷积网络基础 (7.3.1) 助教的Tenso

Tensorflow笔记:第七讲 卷积神经网络 本节目标:学会使用CNN实现对手写数字的识别。 7.1 √全连接NN:每个神经元与前后相邻层的每一个神经元都有连接关系,输入是特征,输出为预测的结果。 参数个数:∑(前层×后层+后层) 一张分辨率仅仅是28x28的黑白图像,就有近40万个待优化的参数。现实生活中高分辨率的彩色图像,像素点更多,且为红绿蓝三通道信息。 待优化的参数过多,容易导致模型过拟合。为避免这种现象,实际应用中一般不会将原始图片直接喂入全连接网络。 √在实际应用中,会先对原始图像进行特征提取,把提取到的特征喂给全连接网络,再让全连接网络计算出分类评估值。

例:先将此图进行多次特征提取,再把提取后的计算机可读特征喂给全连接网络。 √卷积Convolutional 卷积是一种有效提取图片特征的方法。一般用一个正方形卷积核,遍历图片上的每一个像素点。图片与卷积核重合区域内相对应的每一个像素值乘卷积核内相对应点的权重,然后求和,再加上偏置后,最后得到输出图片中的一个像素值。 例:上面是5x5x1的灰度图片,1表示单通道,5x5表示分辨率,共有5行5列个灰度值。若用一个3x3x1的卷积核对此5x5x1的灰度图片进行卷积,偏置项

b=1,则求卷积的计算是:(-1)x1+0x0+1x2+(-1)x5+0x4+1x2+(-1)x3+0x4+1x5+1=1(注意不要忘记加偏置1)。 输出图片边长=(输入图片边长–卷积核长+1)/步长,此图为:(5 – 3 + 1)/ 1 = 3,输出图片是3x3的分辨率,用了1个卷积核,输出深度是1,最后输出的是3x3x1的图片。 √全零填充Padding 有时会在输入图片周围进行全零填充,这样可以保证输出图片的尺寸和输入图片一致。 例:在前面5x5x1的图片周围进行全零填充,可使输出图片仍保持5x5x1的维度。这个全零填充的过程叫做padding。 输出数据体的尺寸=(W?F+2P)/S+1 W:输入数据体尺寸,F:卷积层中神经元感知域,S:步长,P:零填充的数量。 例:输入是7×7,滤波器是3×3,步长为1,填充为0,那么就能得到一个5×5的输出。如果步长为2,输出就是3×3。 如果输入量是32x32x3,核是5x5x3,不用全零填充,输出是(32-5+1)/1=28,如果要让输出量保持在32x32x3,可以对该层加一个大小为2的零填充。可以根据需求计算出需要填充几层零。32=(32-5+2P)/1 +1,计算出P=2,即需填充2

常用函数 类参考

全局函数1、common.func.php 公用函数 获得当前的脚本网址 function GetCurUrl() 返回格林威治标准时间 function MyDate($format='Y-m-d H:i:s',$timest=0) 把全角数字转为半角 function GetAlabNum($fnum) 把含HTML的内容转为纯text function Html2Text($str,$r=0) 把文本转HTML function Text2Html($txt) 输出Ajax头 function AjaxHead() 中文截取2,单字节截取模式 function cn_substr($str,$slen,$startdd=0) 把标准时间转为Unix时间戳 function GetMkTime($dtime) 获得一个0000-00-00 00:00:00 标准格式的时间 function GetDateTimeMk($mktime) 获得一个0000-00-00 标准格式的日期 function GetDateMk($mktime) 获得用户IP function GetIP() 获取拼音以gbk编码为准 function GetPinyin($str,$ishead=0,$isclose=1)

dedecms通用消息提示框 function ShowMsg($msg,$gourl,$onlymsg=0,$limittime=0) 保存一个cookie function PutCookie($key,$value,$kptime=0,$pa="/") 删除一个cookie function DropCookie($key) 获取cookie function GetCookie($key) 获取验证码 function GetCkVdValue() 过滤前台用户输入的文本内容 // $rptype = 0 表示仅替换html标记 // $rptype = 1 表示替换html标记同时去除连续空白字符// $rptype = 2 表示替换html标记同时去除所有空白字符// $rptype = -1 表示仅替换html危险的标记 function HtmlReplace($str,$rptype=0) 获得某文档的所有tag function GetTags($aid) 过滤用于搜索的字符串 function FilterSearch($keyword) 处理禁用HTML但允许换行的内容 function TrimMsg($msg) 获取单篇文档信息 function GetOneArchive($aid)

有限元网格划分

有限元网格划分 摘要:总结近十年有限元网格划分技术发展状况。首先,研究和分析有限元网格划分的基本原则;其次,对当前典型网格划分方法进行科学地分类,结合实例,系统地分析各种网格划分方法的机理、特点及其适用范围,如映射法、基于栅格法、节点连元法、拓扑分解法、几何分解法和扫描法等;再次,阐述当前网格划分的研究热点,综述六面体网格和曲面网格划分技术;最后,展望有限元网格划分的发展趋势。 关键词:有限元网格划分;映射法;节点连元法;拓扑分解法;几何分解法;扫描法;六面体网格 1 引言 有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。 2 有限元网格划分的基本原则 有限元方法的基本思想是将结构离散化,即对连续体进行离散化,利用简化几何单元来近似逼近连续体,然后根据变形协调条件综合求解。所以有限元网格的划分一方面要考虑对各物体几何形状的准确描述,另一方面也要考虑变形梯度的准确描述。为正确、合理地建立有限元模型,这里介绍划分网格时应考虑的一些基本原则。 2.1 网格数量 网格数量直接影响计算精度和计算时耗,网格数量增加会提高计

算精度,但同时计算时耗也会增加。当网格数量较少时增加网格,计算精度可明显提高,但计算时耗不会有明显增加;当网格数量增加到一定程度后,再继续增加网格时精度提高就很小,而计算时耗却大幅度增加。所以在确定网格数量时应权衡这两个因素综合考虑。 2.2 网格密度 为了适应应力等计算数据的分布特点,在结构不同部位需要采用大小不同的网格。在孔的附近有集中应力,因此网格需要加密;周边应力梯度相对较小,网格划分较稀。由此反映了疏密不同的网格划分原则:在计算数据变化梯度较大的部位,为了较好地反映数据变化规律,需要采用比较密集的网格;而在计算数据变化梯度较小的部位,为减小模型规模,网格则应相对稀疏。 2.3 单元阶次 单元阶次与有限元的计算精度有着密切的关联,单元一般具有线性、二次和三次等形式,其中二次和三次形式的单元称为高阶单元。高阶单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且高次插值函数可更高精度地逼近复杂场函数,所以增加单元阶次可提高计算精度。但增加单元阶次的同时网格的节点数也会随之增加,在网格数量相同的情况下由高阶单元组成的模型规模相对较大,因此在使用时应权衡考虑计算精度和时耗。 2.4 单元形状 网格单元形状的好坏对计算精度有着很大的影响,单元形状太差的网格甚至会中止计算。单元形状评价一般有以下几个指标: (1)单元的边长比、面积比或体积比以正三角形、正四面体、正六面体为参考基准。 (2)扭曲度:单元面内的扭转和面外的翘曲程度。 (3)节点编号:节点编号对于求解过程中总刚矩阵的带宽和波前因数有较大的影响,从而影响计算时耗和存储容量的大小 2.5 单元协调性 单元协调是指单元上的力和力矩能够通过节点传递给相邻单元。为保证单元协调,必须满足的条件是: (1)一个单元的节点必须同时也是相邻点,而不应是内点或边界

人工智能实践:Tensorflow笔记 北京大学 4 第四讲神经网络优化 (4.6.1) 助教的Tenso

Tensorflow笔记:第四讲 神经网络优化 4.1 √神经元模型:用数学公式表示为:f(∑i x i w i+b),f为激活函数。神经网络是以神经元为基本单元构成的。 √激活函数:引入非线性激活因素,提高模型的表达力。 常用的激活函数有relu、sigmoid、tanh等。 ①激活函数relu: 在Tensorflow中,用tf.nn.relu()表示 r elu()数学表达式 relu()数学图形 ②激活函数sigmoid:在Tensorflow中,用tf.nn.sigmoid()表示 sigmoid ()数学表达式 sigmoid()数学图形 ③激活函数tanh:在Tensorflow中,用tf.nn.tanh()表示 tanh()数学表达式 tanh()数学图形 √神经网络的复杂度:可用神经网络的层数和神经网络中待优化参数个数表示 √神经网路的层数:一般不计入输入层,层数 = n个隐藏层 + 1个输出层

√神经网路待优化的参数:神经网络中所有参数w 的个数 + 所有参数b 的个数 例如: 输入层 隐藏层 输出层 在该神经网络中,包含1个输入层、1个隐藏层和1个输出层,该神经网络的层数为2层。 在该神经网络中,参数的个数是所有参数w 的个数加上所有参数b 的总数,第一层参数用三行四列的二阶张量表示(即12个线上的权重w )再加上4个偏置b ;第二层参数是四行两列的二阶张量()即8个线上的权重w )再加上2个偏置b 。总参数 = 3*4+4 + 4*2+2 = 26。 √损失函数(loss ):用来表示预测值(y )与已知答案(y_)的差距。在训练神经网络时,通过不断改变神经网络中所有参数,使损失函数不断减小,从而训练出更高准确率的神经网络模型。 √常用的损失函数有均方误差、自定义和交叉熵等。 √均方误差mse :n 个样本的预测值y 与已知答案y_之差的平方和,再求平均值。 MSE(y_, y) = ?i=1n (y?y_) 2n 在Tensorflow 中用loss_mse = tf.reduce_mean(tf.square(y_ - y)) 例如: 预测酸奶日销量y ,x1和x2是影响日销量的两个因素。 应提前采集的数据有:一段时间内,每日的x1因素、x2因素和销量y_。采集的数据尽量多。 在本例中用销量预测产量,最优的产量应该等于销量。由于目前没有数据集,所以拟造了一套数据集。利用Tensorflow 中函数随机生成 x1、 x2,制造标准答案y_ = x1 + x2,为了更真实,求和后还加了正负0.05的随机噪声。 我们把这套自制的数据集喂入神经网络,构建一个一层的神经网络,拟合预测酸奶日销量的函数。

有限元网格划分和收敛性

一、基本有限元网格概念 1.单元概述?几何体划分网格之前需要确定单元类型.单元类型的选择应该根据分析类型、形状特征、计算数据特点、精度要求和计算的硬件条件等因素综合考虑。为适应特殊的分析对象和边界条件,一些问题需要采用多种单元进行组合建模。? 2.单元分类选择单元首先需要明确单元的类型,在结构有限元分析中主要有以下一些单元类型:平面应力单元、平面应变单元、轴对称实体单元、空间实体单元、板单元、壳单元、轴对称壳单元、杆单元、梁单元、弹簧单元、间隙单元、质量单元、摩擦单元、刚体单元和约束单元等。根据不同的分类方法,上述单元可以分成以下不同的形式。?3。按照维度进行单元分类 根据单元的维数特征,单元可以分为一维单元、二维单元和三维单元。?一维单元的网格为一条直线或者曲线。直线表示由两个节点确定的线性单元。曲线代表由两个以上的节点确定的高次单元,或者由具有确定形状的线性单元。杆单元、梁单元和轴对称壳单元属于一维单元,如图1~图3所示。 ?二维单元的网 格是一个平面或者曲面,它没有厚度方向的尺寸.这类单元包括平面单元、轴对称实体单元、板单元、壳单元和复合材料壳单元等,如图4所示。二维单元的形状通常具有三角形和四边形两种,在使用自动网格剖分时,这类单元要求的几何形状是表面模型或者实体模型的边界面。采用薄壳单元通常具有相当好的计算效率。

??三维单元的网格具有空间三个方向的尺寸,其形状具有四面体、五面体和六面体,这类单元包括空间实体单元和厚壳单元,如图5所示.在自动网格划分时,它要求的是几何模型是实体模型(厚壳单元是曲面也可以)。 ? 4.按照插值函数进行单元分类 根据单元插值函数多项式的最高阶数多少,单元可以分为线性单元、二次单元、三次单元和更高次的单元。 线性单元具有线性形式的插值函数,其网格通常只具有角节点而无边节点,网格边界为直线或者平面.这类单元的优点是节点数量少,在精度要求不高或者结果数据梯度不太大的情况下,采用线性单元可以得到较小的模型规模.但是由于单元位移函数是线性的,单元内的位移呈线性变化,而应力是常数,因此会造成单元间的应力不连续,单元边界上存在着应力突变,如图6所示。

比较PageRank算法和HITS算法的优缺点

题目:请比较PageRank算法和HITS算法的优缺点,除此之外,请再介绍2种用于搜索引擎检索结果的排序算法,并举例说明。 答: 1998年,Sergey Brin和Lawrence Page[1]提出了PageRank算法。该算法基于“从许多优质的网页链接过来的网页,必定还是优质网页”的回归关系,来判定网页的重要性。该算法认为从网页A导向网页B的链接可以看作是页面A对页面B的支持投票,根据这个投票数来判断页面的重要性。当然,不仅仅只看投票数,还要对投票的页面进行重要性分析,越是重要的页面所投票的评价也就越高。根据这样的分析,得到了高评价的重要页面会被给予较高的PageRank值,在检索结果内的名次也会提高。PageRank是基于对“使用复杂的算法而得到的链接构造”的分析,从而得出的各网页本身的特性。 HITS 算法是由康奈尔大学( Cornell University ) 的JonKleinberg 博士于1998 年首先提出。Kleinberg认为既然搜索是开始于用户的检索提问,那么每个页面的重要性也就依赖于用户的检索提问。他将用户检索提问分为如下三种:特指主题检索提问(specific queries,也称窄主题检索提问)、泛指主题检索提问(Broad-topic queries,也称宽主题检索提问)和相似网页检索提问(Similar-page queries)。HITS 算法专注于改善泛指主题检索的结果。 Kleinberg将网页(或网站)分为两类,即hubs和authorities,而且每个页面也有两个级别,即hubs(中心级别)和authorities(权威级别)。Authorities 是具有较高价值的网页,依赖于指向它的页面;hubs为指向较多authorities的网页,依赖于它指向的页面。HITS算法的目标就是通过迭代计算得到针对某个检索提问的排名最高的authority的网页。 通常HITS算法是作用在一定范围的,例如一个以程序开发为主题的网页,指向另一个以程序开发为主题的网页,则另一个网页的重要性就可能比较高,但是指向另一个购物类的网页则不一定。在限定范围之后根据网页的出度和入度建立一个矩阵,通过矩阵的迭代运算和定义收敛的阈值不断对两个向量authority 和hub值进行更新直至收敛。 从上面的分析可见,PageRank算法和HITS算法都是基于链接分析的搜索引擎排序算法,并且在算法中两者都利用了特征向量作为理论基础和收敛性依据。

数据库常用函数

数据库常用函数

一、基础 1、说明:创建数据库 CREATE DATABASE database-name 2、说明:删除数据库 drop database dbname 3、说明:备份和还原 备份:exp dsscount/sa@dsscount owner=dsscount file=C:\dsscount_data_backup\dsscount.dmp log=C:\dsscount_data_backup\outputa.log 还原:imp dsscount/sa@dsscount file=C:\dsscount_data_backup\dsscount.dmp full=y ignore=y log=C:\dsscount_data_backup\dsscount.log statistics=none 4、说明:创建新表 create table tabname(col1 type1 [not null] [primary key],col2 type2 [not null],..) CREATE TABLE ceshi(id INT not null identity(1,1) PRIMARY KEY,NAME VARCHAR(50),age INT) id为主键,不为空,自增长 根据已有的表创建新表: A:create table tab_new like tab_old (使用旧表创建新表) B:create table tab_new as select col1,col2… from tab_old definition only 5、说明:删除新表 drop table tabname 6、说明:增加一个列 Alter table tabname add column col type 注:列增加后将不能删除。DB2中列加上后数据类型也不能改变,唯一能改变的是增加varchar类型的长度。 7、说明:添加主键: Alter table tabname add primary key(col) 说明:删除主键: Alter table tabname drop primary key(col) 8、说明:创建索引:create [unique] index idxname on tabname(col….) 删除索引:drop index idxname 注:索引是不可更改的,想更改必须删除重新建。 9、说明:创建视图:create view viewname as select statement 删除视图:drop view viewname 10、说明:几个简单的基本的sql语句 选择:select * from table1 where 范围 插入:insert into table1(field1,field2) values(value1,value2) 删除:delete from table1 where 范围 更新:update table1 set field1=value1 where 范围

ANSYS有限元网格划分的基本要点

ANSYS有限元网格划分的基本要点 1引言 ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。同理,平面应力和平面应变情况设计的单元求解方程也不相同。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。 2ANSYS网格划分的指导思想 ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题 ANSYS软件平台提供了网格映射划分和自由适应划分的策略。映射划分用于曲线、曲面、实体的网格划分方法,可使用三角形、四边形、四面体、五面体和六面体,通过指定单元边长、网格数量等参数对网格进行严格控制,映射划分只用于规则的几何图素,对于裁剪曲面或者空间自由曲面等复杂几何体则难以

人工智能tensorflow实验报告

一、软件下载 为了更好的达到预期的效果,本次tensorflow开源框架实验在Linux环境下进行,所需的软件及相关下载信息如下: 1.CentOS 软件介绍: CentOS 是一个基于Red Hat Linux 提供的可自由使用源代码的企业级Linux 发行版本。每个版本的CentOS都会获得十年的支持(通过安全更新方式)。新版本的CentOS 大约每两年发行一次,而每个版本的CentOS 会定期(大概每六个月)更新一次,以便支持新的硬件。这样,建立一个安全、低维护、稳定、高预测性、高重复性的Linux 环境。CentOS是Community Enterprise Operating System的缩写。CentOS 是RHEL(Red Hat Enterprise Linux)源代码再编译的产物,而且在RHEL的基础上修正了不少已知的Bug ,相对于其他Linux 发行版,其稳定性值得信赖。 软件下载: 本次实验所用的CentOS版本为CentOS7,可在CentOS官网上直接下载DVD ISO镜像文件。 下载链接: https://www.360docs.net/doc/8213372586.html,/centos/7/isos/x86_64/CentOS-7-x86_64-DVD-1611.i so. 2.Tensorflow 软件介绍: TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。TensorFlow可被用于语音识别或图像识别等多项机器深度学习领域,对2011年开发的深度学习基础架构DistBelief进行了各方面的改进,它可在小到一部智能手机、大到数千台数据中心服务器的各种设备上运行。TensorFlow将完全开源,任何人都可以用。

ANSYS有限元分析中的网格划分

ANSYS有限元分析中的网格划分 有限元分析中的网格划分好坏直接关系到模型计算的准确性。本文简述了网格划分应用的基本理论,并以ANSYS限元分析中的网格划分为实例对象,详细讲述了网格划分基本理论及其在工程中的实际应用,具有一定的指导意义。 作者: 张洪才 关键字: CAE ANSYS 网格划分有限元 1 引言 ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。同理,平面应力和平面应变情况设计的单元求解方程也不相同。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。 2 ANSYS网格划分的指导思想 ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题ANSYS软件平台提供了网格映射划分和自由适应划分的策略。映射划分用于曲线、曲面、实体的网格划分方法,可使用三角形、四边形、四面体、五面体和六面体,通过指定单元边长、网格数量等参数对网格进行严格控制,映射划分只用于规则的几何图素,对于裁剪曲面或者空间自由曲面等复杂几何体则难以控制。自由网格划分用于空间自由曲面和复杂实体,采用三角形、四边形、四面体进行划分,采用网格数量、边长及曲率来控制网格的质量。 3 ANSYS网格划分基本原则 3.1 网格数量 网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。 图1 位移精度和计算时间随网格数量的变化 图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随

相关文档
最新文档