三元体系Li+, K+(Mg2+)SO2-4-H2O 25 ℃相关系和溶液性质的研究

三元体系Li+, K+(Mg2+)SO2-4-H2O 25 ℃相关系和溶液性质的研究
三元体系Li+, K+(Mg2+)SO2-4-H2O 25 ℃相关系和溶液性质的研究

三元合金相图习题

三元合金相图 一、填空 1. 三元相图等温截面的三相区都是___________________形。 2. 图1是A-B-C三元系成分三角形的一部分,其中X合金的成分是_____________________。 图1 3. 图2是三元系某变温截面的一部分,其中水平线代表________________反应,反应式为______________________ 。 图2 4.图3是某三元系变温截面的一部分,合金凝固时,L+M+C将发生_________________反应。

图3 5. 三元相图的成分用__________________________表示。 6. 四相平衡共晶反应的表达式__________________________。 7. .图6是A-B-C三元共晶相图的投影图,在常温下: 合金I的组织是______________________________________ 合金II的组织是_______________________________________ 合金III的组织是______________________________________ 图4 8.三元相图有如下几类投影图 (1)_____________________________(2)________________________________(3)_______________________ ___(4)________________________________。 9. 三元系中两个不同成分合金,合成一个新合金时,则这三个合金成分点____________________________。 10. 四相平衡包共晶反应式为__________________________。 11. 三元相图垂直截面可用于分析__________________________________。 12. 三元系三条单变量线相交于__________,就代表一个__________________,并可根据单变量线箭头 _____________判断__________________。

第七章、统计热力学基础习题和答案

统计热力学基础 一、选择题 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科B 2. 在研究N、V、U有确定值的粒子体系的统计分布时,令刀n i = N,刀n i & i = U , 这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的C 3. 假定某种分子的许可能级是0、&、2 £和3 &,简并度分别为1、1、2、3四个这样的分子构成的定域体系,其总能量为3£时,体系的微观状态数为:() A. 40 B. 24 C. 20 D. 28 A 4. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式 C. 忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法A 5. 对于玻尔兹曼分布定律n i =(N/q) ? g i ? exp( - £ i/kT)的说法:(1) n i是第i能级上的粒子分布数; (2) 随着能级升高,£ i 增大,n i 总是减少的; (3) 它只适用于可区分的独立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 6. 对于分布在某一能级£ i上的粒子数n i,下列说法中正确是:() A. n i 与能级的简并度无关 B. £ i 值越小,n i 值就越大 C. n i 称为一种分布 D. 任何分布的n i 都可以用波尔兹曼分布公式求出B 7. 15?在已知温度T时,某种粒子的能级£ j = 2 £ i,简并度g i = 2g j,则「和£ i上 分布的粒子数之比为:( ) A. 0.5exp( j/2£kT) B. 2exp(- £j/2kT) C. 0.5exp( -£j/kT) D. 2exp( 2 j/k£T) C 8. I2的振动特征温度? v= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2的温度是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 9. 下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) A. S、G、F、C v B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 10. 分子运动的振动特征温度?v是物质的重要性质之一,下列正确的说法是: ( ) A. ? v越高,表示温度越高 B. ?v越高,表示分子振动能越小 C. ?越高,表示分子处于激发态的百分数越小 D. ?越高,表示分子处于基态的百分数越小 C 11. 下列几种运动中哪些运动对热力学函数G与

三元相图的绘制(氯仿、盐酸、水)

基 础 化 学 实 验 实验 三相图的绘制——O H HCl CHCl 23--体系

三元相图的绘制 本实验是综合性实验。其综合性体现在以下几个方面: 1.实验内容以及相关知识的综合 本实验涉及到多个基本概念,例如相律、相图、溶解度曲线、连接线、等边三角形坐标等,尤其是在一般的实验中(比如分析化学实验、无机化学实验等)作图都是用的直角坐标体系,几乎没有用过三角坐标体系,因此该实验中的等边三角形作图法就具有独特的作用。这类相图的绘制不仅在相平衡的理论课中有重要意义,而且对化学实验室和化工厂中经常用到的萃取分离中具有重要的指导作用。 2.运用实验方法和操作的综合 本实验中涉及到多种基本实验操作和实验仪器(如电子天平、滴定管等)的使用。本实验中滴定终点的判断,不同于分析化学中的大多数滴定。本实验的滴定终点,是在本来可以互溶的澄清透明的单相液体体系中逐渐滴加试剂,使其互溶度逐渐减小而变成两相,即“由清变浑”来判断终点。准确地掌握滴定的终点,有助于学生掌握多种操作,例如取样的准确、滴定的准确、终点的判断准确等。 一.实验目的 1. 掌握相律,掌握用三角形坐标表示三组分体系相图。 2. 掌握用溶解度法绘制三组分相图的基本原理和实验方法。 二.实验原理 三组分体系K = 3,根据相律: f = K–φ+2 = 5–ф 式中ф为相数。恒定温度和压力时: f = 3–φ 当:φ= 1 则: f = 2 因此,恒温恒压下可以用平面图形来表示体系的状态与组成之间的关系,称为三元相图。一般用等边三角形的方法表示三元相图。 对共轭溶液的三组分体系,即三组分中二对液体AB及AC完全互溶,而另一对BC则不溶或部分互溶的相图,如图5-1所示。图中EK1K2K3DL3L2L1F是互溶度曲线;K1L1,K2L2是连结线。互溶度曲线下面是两相区,上面是一相区。 共轭溶液的三元相图(A:醋酸;B:水;C:氯仿) 三.实验准备

第五章 三元合金相图(习题)

第五章 三元合金相图 1 根据Fe -C -Si 的3.5%Si 变温截面图(5-1),写出含0.8%C 的Fe-C-Si 三元合金在平衡冷却时的相变过程和1100℃时的平衡组织。 图5-1 2 图5-2为Cu-Zn-Al 合金室温下的等温截面和2%Al 的垂直截面图,回答下列问题: 1) 在图中标出X 合金(Cu-30%Zn-10%Al )的成分点。 2) 计算Cu-20%Zn-8%Al 和 Cu-25%Zn-6%Al 合金中室温下各相的百分含量,其中α相成分点为Cu-22.5%Zn-3.45%Al ,γ相成分点为 Cu-18%Zn-11.5%Al 。 3) 分析图中Y 合金的凝固过程。 Y

% 图5-2 3 如图5-3是A-B-C 三元系合金凝固时各相区,界面的投影图,A 、B 、C 分别形成固溶体α、β、γ。 1) 写出P p '',P E '1和P E '2单变量线的三相平衡反应式。 2) 写出图中的四相平衡反应式。 3) 说明O 合金凝固平衡凝固所发生的相变。

图5-3 图5-4 4 图5-4为Fe-W-C三元系的液相面投影图。写出e1→1085℃,P1→1335℃,P2→1380℃单变量线的三相平衡反应和1700℃,1200℃,1085℃的四相平衡反应式。I,II,III三个合金结晶过程及室温组织,选择一个合金成分其组织只有三元共晶。 5 如图5-5为Fe-Cr-C系含13%Cr的变温截面 1)大致估计2Cr13不锈钢的淬火加热温度(不锈钢含碳量0.2%, 含Cr量13%) 2)指出Cr13模具钢平衡凝固时的凝固过程和室温下的平衡组织(Cr13钢含碳量2%)3)写出(1)区的三相反应及795 时的四相平衡反应式。 图5-5 图5-6 6 如图5-6所示,固态有限溶解的三元共晶相图的浓度三角形上的投影图,试分析IV区及VI区中合金之凝固过程。写出这个三元相图中四相反应式。

第七章、统计热力学基础习题和答案

统计热力学基础 题 择 一、选 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科B 2.在研究N、V、U 有确定值的粒子体系的统计分布时,令∑n i = N,∑n iεi = U, 3.这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的 C 4.假定某种分子的许可能级是0、ε、2ε和3ε,简并度分别为1、1、2、3 四个这样的分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:( ) A. 40 B. 24 C. 20 D. 28 A 5. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律 6.时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式 C. 忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法 A 7.对于玻尔兹曼分布定律n i =(N/q) ·g i·exp( -εi/kT)的说法:(1) n i 是第i 能级上的 粒子分布数; (2) 随着能级升高,εi 增大,n i 总是减少的; (3) 它只适用于可区分的独 8.立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 9.对于分布在某一能级εi 上的粒子数n i ,下列说法中正确是:( ) 10.A. n i 与能级的简并度无关 B. εi 值越小,n i 值就越大 C. n i 称为一种分布 D.任何分布的n i 都可以用波尔兹曼分布公式求出 B 11. 15.在已知温度T 时,某种粒子的能级εj = 2εi,简并度g i = 2g j,则εj 和εi 上分布的粒子数之比为:( ) A. 0.5exp( j/2εk T) B. 2exp(- εj/2kT) C. 0.5exp( -εj/kT) D. 2exp( 2 j/kεT) C 12. I2 的振动特征温度Θv= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2 的温度 13.是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 14.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) A. S、G、F、C v B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 15. 分子运动的振动特征温度Θv 是物质的重要性质之一,下列正确的说法是: ( ) A.Θv 越高,表示温度越高 B.Θv 越高,表示分子振动能越小 C. Θv 越高,表示分子处于激发态的百分数越小 D. Θv 越高,表示分子处于基态的百分数越小 C 16.下列几种运动中哪些运动对热力学函数G 与A 贡献是不同的:( ) A. 转动运动 B. 电子运动 C. 振动运动 D. 平动运动 D 17.三维平动子的平动能为εt = 7h 2 /(4mV2/ 3 ),能级的简并度为:( )

三组分体系相图绘制.doc

实验八三组分体系等温相图的绘制 一、目的要求 1. 熟悉相律,掌握用三角形坐标表示三组分体系相图。 2. 掌握用溶解度法绘制相图的基本原理。 二、实验原理 对于三组分体系,当处于恒温恒压条件时,根据相律,其自由度f*为:f*=3-Φ式中,Φ为体系的相数。体系最大条件自由度f*max=3-1=2,因此,浓度变量最多只有两个,可用平面图表示体系状态和组成间的关系,通常是用等边三角形坐标表示,称之为三元相图。如图2-8-1所示。 等边三角形的三个顶点分别表示纯物A、B、C,三条边AB、BC、CA 分别表示A和B、B和C、C和A所组成的二组分体系的组成,三角形内任何一点都表示三组分体系的组成。图2-8-1中, P点的组成表示如下:经P点作平行于三角形三边的直线,并交三边于a、b、c三点。若将三边均分成100等份,则P点的A、B、C组成分别为:A%=Pa=Cb,B%=Pb=Ac,C%=Pc=Ba。

2 苯-醋酸-水是属于具有一对共轭溶液的三液体体系,即三组分中二对液体A和B,A和C完全互溶,而另一对液体B和C只能有限度的混溶,其相图如图2-8-2所示。 图2-8-1 等边三角形法表示三元相图图2-8-2 共轭溶液的三元相图图2-8-2中,E、K2、K1、P、L1、L2、F点构成溶解度曲线,K1L1和K2L2是连结线。溶解度曲线内是两相区,即一层是苯在水中的饱和溶液,另一层是水在苯中的饱和溶液。曲线外是单相区。因此,利用体系在相变化时出现的清浊现象,可以判断体系中各组分间互溶度的大小。一般来说,溶液由清变浑时,肉眼较易分辨。所以本实验是用向均相的苯-醋酸体系中滴加水使之变成二相混合物的方法,确定二相间的相互溶解度。 三、仪器试剂 具塞锥形瓶(100mL,2只、25mL,4只);酸式滴定管(20mL,1支);碱式滴定管(50mL,1支);移液管(1mL,1支、2mL,1支);刻度移液管(10mL,1支、20mL,1支);锥形瓶(150mL,2只)。

09应化统计热力学试题

2010-2011第二学期09应化《统计热力学》考试试题 一、选择题(共60分,每小题2分) 1.下列各体系中,何者属独立子体系? A. 绝对零度的晶体 B. 理想液体混合物 C. 纯气体 D. 理想气体的混合物 2.实际气体是 A. 定域的独立子体系 B. 离域的独立子体系 C. 离域的非独立子体系 D. 定域的非独立子体系 3.玻尔兹曼统计一般不适用于 A. 独立子体系 B. 单个粒子 C. 理想气体 D. 理想晶体 4.对于服从玻尔兹曼分布定律的体系,其分布规律为: A. 能量最低的单个量子态上的粒子数最多。 B. 第一激发能级上的粒子数最多。 C. 能量最低能级上的粒子数最多。 D. 视具体的条件而定 5.分子的平动、转动和振动的能级间隔的大小顺序是: A. 振动能>转动能>平动能 B. 振动能>平动能>转动能 C. 平动能>振动能>转动能 D. 转动能>平动能>振动能 6.玻尔兹曼分布 A. 是最概然分布,但不是平衡分布 B. 是平衡分布,但不是最概然分布 C. 既是最概然分布,又是平衡分布 D. 不是最概然分布,也不是平衡分布 7.双原子分了以平衡位置为能量零点,其振动的零点能为: A. kT B. 1/2kT C. h υ D. 1/2h υ 8.三维平动子的平动能,则简并度 g 为: A. 1 B. 3 C. 6 D. 9 9.在分子运动的各配分函数中与压力有关的是 A. 平动配分函数 B. 振动配分函数 C. 转动配分函数 D. 电子运动配分函数 10.能量零点的不同选择,对下列中均有影响的是 A. U.H.S.G B. U.S.Cv. A C. U.H.S.Cv D. U.H.A.G 11.热力学函数与配分函数的关系式对于定域子体系和离域子体系都相同的是: A. U.A.S B. U.H.Cv C. U.H.S D. H.G.Cv

三元系相图绘制

实验三组分相图的绘制 一实验目的 绘制苯一醋酸一水体系的互溶度相图。为了绘制相图就需通过实验获得平衡时,各相间的组成及二相的连结线。即先使体系达到平衡,然后把各相分离,再用化学分析法或物理方法测定达成平衡时各相的成分。但体系达到平衡的时间,可以相差很大。对于互溶的液体,一般平衡达到的时间很快;对于溶解度较大,但不生成化合物的水盐体系,也容易达到平衡;对于一些难溶的盐,则需要相当长的时间,如几个昼夜。由于结晶过程往往要比溶解过程快得多,所以通常把样品置于较高的温度下,使其较多溶解,然后把它移放在温度较低的恒温槽中,令其结晶,加速达到平衡。另外摇动、搅拌、加大相界面也能加快各相间扩散速度,加速达到平衡。由于在不同温度时的溶解度不同,所以体系所处的温度应该保持不变。 二实验原理 水和苯的互溶度极小,而醋酸却与水和苯互溶,在水和苯组成的二相混合物中加入醋酸,能增大水和苯之间的互溶度,醋酸增多,互溶度增大。当加入醋酸到达某一定数量时,水和苯能完全互溶。这时原来二相组成的混合体系由浑变清。在温度恒定的条件下,使二相体系变成均相所需要的醋酸量,决定于原来混合物中水和苯的比例。同样,把水加到苯和醋酸组成的均相混合物中时,当水达到一定的数量,原来均相体系要分成水相和苯相的二相混合物,体系由清变浑。使体系变成二相所加水的量,由苯和醋酸混合物的起始成分决定。因此利用体系在相变化时的浑浊和清亮现象的出现,可以判断体系中各组分间互溶度的大小。一般由清变到浑,肉眼较易分辨。所以本实验采用由均相样品加人第三物质而变成二相的方法,测定二相间的相互溶解度。 当二相共存并且达到平衡时,将二相分离,测得二相的成分,然后用直线连接这二点,即得连结线。 一般用等边三角形的方法表示三元相图(图1)。等边三角形的三个顶点各代表纯组分;三角形三条边AB、BC、CA分别代表A和B、B和C、C和A所组成的二组分的组成;而三角形内任何一点表示三组分的组成。 例如图1-1中的P点,其组成可表示如下:经P点作平行于三角形三边的直线,并交三边于a、b、c三点。若将三边均分成100等分,则P点的A、B、C组成分别为: A%=Cb,B%=Ac,C%=Ba 对共轭溶液的三组分体系,即三组分中二对液体AB及AC完全互溶,而另一对BC则不溶或部分互溶的相图,如图1-2所示。图中EK1K2K3DL3L2L1F是互溶度曲线,K1L1、K2L2等是连结线。互溶度曲线下面是两相区,上面是一相区。 图1-1等边三角形法表示三元相图图1-2共轭溶液的三元相图

第五章 三元合金相图

第五章 三元合金相图 (一)名词解释 成分三角形、直线法则、重心法则、二元共晶线、三元共晶线、水平截面图、垂直截面图; (二)回答问题 1.图①为A-B-C 三元固态完全不溶共晶相图投影图: 1) 分析合金1 . 2. 3三元合金的平截面图,填写 2.图②为A-B-C 三元固态有限溶解的 3. 杠杆定律与重心法则有什么关系?在 4. 三元合金的匀晶转变和共晶转变与二元合金的匀晶转变和共晶转变有何区E 1 图① 衡结晶过程,写出反应式及室温组织。 2) 求合金3室温组织中各组织组成物及相组成相对重量。 3) 画出M-N 及B-H 变温出各相区,并指出各种三元合金成分特点。 共晶相图投影图,分析1、2、3、4、5、 6合金的平衡结晶过程,写出反应式及 室温组织。 E 1 C 图② 三元相图的分析中怎样用杠杆定律和重心法则 别?

5. 三元相图的垂直截面与二元相图有何不同:?为什么二元相图中可应用杠杆定律而三元相图的垂直截面中却不能? 6. 图 ③、④、⑤ 为A-B-C三元合金相图在T E 温度时的四相平衡转变水平截面图 形:(1)说明在T E 温度时各发生何种类型的四相平衡转变?并写出反应式。(2) 在稍大于或略低于T E 温度时各发生何种类型的二元反应?写出反应式。 7. 在成分三角形分别标出含A20%, B40%的ABC 三元合金以及含A55%, B20%的ABC 三元合金的成分点。 8. 分析三元匀晶相图中成分为O 的合金的平衡凝固过程。 9. 在Pb-Sn-Sb 三元系成分三角形内画出下列合金的位置。 1)20%Pb-60%Sb; 2)30%Pb-30%Sn 10..温度为189时,Sb-10%Pb-40%Sn 合金的平衡组织中包含C D δγβ、、三个相。这三个相的成分分别为: Sn Pb Sn Pb Sn Pb %15%65%40%3%50%5??????δγβ、、。 求该合金在上述温度下所含三个平衡相所占的分数。 11.二元与三元固溶体转变与共晶转变的自由度有无区别?如何解释 12.为什么三元相图的一般垂直截面的两相区内,杠杆定律不适用,举例说明之。 13.在三元相图中,是否只有单析溶解度曲面或双析溶解度曲面投影内的合金,才有一个次生相或两个次生相析出? 14.在三元相图中,液相面投影图十分重要,是否根据它就可以判断该合金系凝固过程中所有的相平衡关系? 15.在实际应用中一般不直接使用完整的三元相图,而是使用其等温截面图或变温截面图。那么,这两种图各有什么特点和作用?

统计热力学基本方法

第五章 统计热力学基本方法 在第四章我们论证了最概然分布的微观状态数lnt m 可以代替平衡系统的总微观状态数ln Ω,而最概然分布的微观状态数又可以用粒子配分函数来表示。在此基础上,为了达到从粒子的微观性质计算系统的宏观热力学性质之目的,本章还需重点解决以下两个问题:(1)导出系统的热力学量与分子配分函数之间的定量关系;(2)解决分子配分函数的计算问题。 §5.1 热力学量与配分函数的关系 本节的主要目的是推导出系统的热力学函数与表征分子微观性质的分子配分函数间的定量关系。在此之前先证明β = - 1/(kT ) 一 求待定乘子β 对独立可别粒子系统: ln Ω = ln t m = ln (N !∏i i i ! g i N N ) = ln N ! +i i i ln g N ∑ - ∑i i !ln N 将Stirling 近似公式代入、展开得 ln Ω = N ln N +i i i ln g N ∑ - ∑i i i ln N N 代入Boltzmann 关系式 (4—6)得 S = k (N ln N +i i i ln g N ∑ - ∑i i i ln N N ) 按Boltzmann 分布律公式 N i = q N g i exp (βεi ) ,代入上式的ln N i 中,利用粒子数与能量守恒关系得 独立可别粒子系统: S = k (N ln q -βU ) (5—1a) 独立不可别粒子系统: S = k (N ln q -βU - ln N ! ) (5—1b) 上式表明S 是(U ,N ,β)的函数,而β是U ,N ,V 的函数,当N 一定时,根据复合函数的偏微分法则 N V N U N N V U S U S U S ,,,,??? ? ??????? ????+??? ????=??? ????βββ 对(5—1a,b )式微分结果均为 N V U S ,??? ????N V N V U U q N k k ,,ln ??? ??????? ?????-???? ????+-=βββ (5—2) 又 q = )ex p(g i i i βε ∑ 所以 N V q ,ln ???? ????β = N V q q ,1???? ????β= )ex p(g 1i i i i βεε∑q =N U (5—3) 代入(5—2)式得 N V U S ,? ?? ????= - k β 对照热力学中的特征偏微商关系 T U S N V 1,= ? ?? ???? 便可以得到 kT 1-=β

三元相图的绘制详解

三元相图的绘制 本实验是综合性实验。其综合性体现在以下几个方面: 1.实验内容以及相关知识的综合 本实验涉及到多个基本概念,例如相律、相图、溶解度曲线、连接线、等边三角形坐标等,尤其是在一般的实验中(比如分析化学实验、无机化学实验等)作图都是用的直角坐标体系,几乎没有用过三角坐标体系,因此该实验中的等边三角形作图法就具有独特的作用。这类相图的绘制不仅在相平衡的理论课中有重要意义,而且对化学实验室和化工厂中经常用到的萃取分离中具有重要的指导作用。 2.运用实验方法和操作的综合 本实验中涉及到多种基本实验操作和实验仪器(如电子天平、滴定管等)的使用。本实验中滴定终点的判断,不同于分析化学中的大多数滴定。本实验的滴定终点,是在本来可以互溶的澄清透明的单相液体体系中逐渐滴加试剂,使其互溶度逐渐减小而变成两相,即“由清变浑”来判断终点。准确地掌握滴定的终点,有助于学生掌握多种操作,例如取样的准确、滴定的准确、终点的判断准确等。 一.实验目的 1. 掌握相律,掌握用三角形坐标表示三组分体系相图。 2. 掌握用溶解度法绘制三组分相图的基本原理和实验方法。 二.实验原理 三组分体系K = 3,根据相律: f = K–φ+2 = 5–ф 式中ф为相数。恒定温度和压力时: f = 3–φ 当φ= 1,则f = 2 因此,恒温恒压下可以用平面图形来表示体系的状态与组成之间的关系,称为三元相图。一般用等边三角形的方法表示三元相图。 在萃取时,具有一对共轭溶液的三组分相图对确定合理的萃取条件极为重要。在定温定压下,三组分体系的状态和组分之间的关系通常可用等边三角形坐标表示,如图1所示:

图1 图2 等边三角形三顶点分别表示三个纯物质A,B,C。AB,BC,CA,三边表示A和B,B和C,C和A所组成的二组分体系的组成。三角形内任一点则表示三组分体系的组成。如点P 的组成为:A%=Cb B%=Ac C%=Ba 具有一对共轭溶液的三组分体系的相图如图2所示。该三液系中,A和B,及A和C 完全互溶,而B和C部分互溶。曲线DEFHIJKL为溶解度曲线。EI和DJ是连接线。溶解度曲线内(ABDEFHIJKLCA)为单相区,曲线外为两相区。物系点落在两相区内,即分为两相。 图3(A醋,B水,C氯仿)绘制溶解度曲线的方法有许多种,本实验采用的方法是:将将完全互溶的两组分(如氯仿和醋酸)按照一定的比例配制成均相溶液(图中N点),再向清亮溶液中滴加另一组分(如水),则系统点沿BN线移动,到K点时系统由清变浑。再往体系里加入醋酸,系统点则沿AK上升至N’点而变清亮。再加入水,系统点又沿BN’由N’点移至J点而再次变浑,再滴加醋酸使之变清……如此往复,最后连接K、J、I……即可得到互溶度曲线,如图3所示。 三. 实验准备 1. 仪器:具塞磨口锥形瓶,酸式滴定管,碱式滴定管,移液管,分析天平。 2. 药品:冰醋酸,氯仿,NaOH溶液(0.2mol·mol–3),酚酞指示剂。

第六章统计热力学初步练习题

第六章统计热力学初步练习题 一、判断题: 1.当系统的U,V,N一定时,由于粒子可以处于不同的能级上,因而分布数不同,所以系统的总微态数Ω不能确定。 2.当系统的U,V,N一定时,由于各粒子都分布在确定的能级上,且不随时间变化,因而系统的总微态数Ω一定。 3.当系统的U,V,N一定时,系统宏观上处于热力学平衡态,这时从微观上看系统只能处于最概然分布的那些微观状态上。 4.玻尔兹曼分布就是最概然分布,也是平衡分布。 5.分子能量零点的选择不同,各能级的能量值也不同。 6.分子能量零点的选择不同,各能级的玻尔兹曼因子也不同。 7.分子能量零点的选择不同,分子在各能级上的分布数也不同。 8.分子能量零点的选择不同,分子的配分函数值也不同。 9.分子能量零点的选择不同,玻尔兹曼公式也不同。 10.分子能量零点的选择不同,U,H,A,G四个热力学函数的数值因此而改变,但四个函数值变化的差值是相同的。 11.分子能量零点的选择不同,所有热力学函数的值都要改变。 12.对于单原子理想气体在室温下的一般物理化学过程,若要通过配分函数来求过程热力学函数的变化值,只须知道q t这一配分函数值就行了。 13.根据统计热力学的方法可以计算出U、V、N确定的系统熵的绝对值。 14.在计算系统的熵时,用ln W B(W B最可几分布微观状态数)代替1nΩ,因此可以认为W B与Ω大小差不多。 15.在低温下可以用q r = T/σΘr来计算双原子分子的转动配分函数。 二、单选题: 1.下面有关统计热力学的描述,正确的是: (A) 统计热力学研究的是大量分子的微观平衡体系; (B) 统计热力学研究的是大量分子的宏观平衡体系; (C) 统计热力学是热力学的理论基础; (D) 统计热力学和热力学是相互独立互不相关的两门学科。 2.在统计热力学中,物系的分类常按其组成的粒子能否被辨别来进行,按此原则,下列 说法正确的是: (A) 晶体属离域物系而气体属定域物系;(B) 气体和晶体皆属离域物系; (C) 气体和晶体皆属定域物系;(D) 气体属离域物系而晶体属定域物系。 3.在研究N、V、U有确定值的粒子体系的统计分布时,令∑n i = N,∑n iεi = U,这是因为 所研究的体系是: (A) 体系是封闭的,粒子是独立的;(B) 体系是孤立的,粒子是相依的; (C) 体系是孤立的,粒子是独立的;(D) 体系是封闭的,粒子是相依的。

第8章-三元相图-笔记及课后习题详解(已整理-袁圆-201487)(DOC)

第8章三元相图 8.1 复习笔记 一、三元相图的基础 三元相图的基本特点:完整的三元相图是三维的立体模型;三元系中的最大平衡相数为四。三元相图中的四相平衡区是恒温水平面;三元系中三相平衡时存在一个自由度,所以三相平衡转变是变温过程,反应在相图上,三相平衡区必将占有一定空间。 1.三元相图成分表示方法 (1)等边成分三角形 图8-1 用等边成分三角形表示三元合金的成分 三角形内的任一点S都代表三元系的某一成分点。 (2)等边成分三角形中的特殊线 ①等含量规则:平行于三角形任一边的直线上所有合金中有一组元含量相同,此组元为所对顶角上的元素。 ②等比例规则:通过三角形定点的任何一直线上的所有合金,其直线两边的组元含量之比为定值。 ③背向规则:从任一组元合金中不断取出某一组元,那么合金浓度三角形位置将沿背离此元素的方向发展,这样满足此元素含量不断减少,而其他元素含量的比例不变。 ④直线定律:在一确定的温度下,当某三元合金处于两相平衡时,合金的成分点和两平衡相的成分点必定位于成分三角形中的同一条直线上。 (3)成分的其他表示方法: ①等腰成分三角形:两组元多,一组元少。 ②直角成分坐标:一组元多,两组元少。 ③局部图形表示法:一定成分范围内的合金。 2.三元相图的空间模型

图8-2 三元匀晶相图及合金的凝固(a)相图(b)冷却曲线 3.三元相图的截面图和投影图 (1)等温截面 定义:等温截面图又称水平截面图,它是以某一恒定温度所作的水平面与三元相图立体模型相截的图形在成分三角形上的投影。 作用:①表示在某温度下三元系中各种合金所存在的相态; ②表示平衡相的成分,并可以应用杠杆定律计算平衡相的相对含量。 图8-3 三元合金相图的水平截面图 (2)垂直截面 定义:固定一个成分变量并保留温度变量的截面,必定与浓度三角形垂直,所以称为垂直截面,或称为变温截面。 常用的垂直截面有两种: ①通过浓度三角形的顶角,使其他两组元的含量比固定不变; ②固定一个组元的成分,其他两组元的成分可相对变动。 图8-4 三元相图的垂直截面图

统计热力学复习题

二.统计热力学部分 1.热力学函数与配分函数的关系对于定位体系和非定位体系都相同的是: a. G、F、S b. U、H、S c. U、H、C v d. G、H、C v 2. NH3分子的平动、转动、振动自由度分别为 a. 3 、3 、6 b. 3 、2 、7 c. 3 、2、6 d. 3 、3 、7 3.一个体积为V、质量为m的离域子体系其最低平动能级和其相邻能级间隔为 4.三维平动子基态能级的简并度为;第一激发态能级的简并度为; 平动能为14h2 /8mV2/3能级的简并度为; 5 关于配分函数,下列那一点是不正确的 a.粒子的配分函数是一个粒子所有可能状态的玻兹曼因子之和; b.并不是所有配分函数都无量纲; c.粒子的配分函只有在独立子体系中才有意义; d.只有平动配分函数才与体系的压力有关。 6在定位体系与非定位体系,热力学函数有区别的是。 7 CO 和N2质量m相同,转动惯量相同,但其摩尔转动熵不同,原因是; 分子的摩尔转动熵较大。 8.双原子分子Cl2的振动特征温度θv = 801.3K, 不考虑电子运动和核运动的贡献, (1)求Cl2在323K时的C v,m ; (2)当Cl2分子的平动、转动和振动运动全部展开时,其C v,m为何值;(3)说明以上两值产生差别的原因。 18.非理想气体是: a.独立的不可别粒子体系; b.相依粒子体系; c.独立的可别粒子体系; d.定域的可别粒子体系 19.某体系有1mol NO分子,每个分子有两种可能的排列方式,即NO 和ON,也可将体系视为NO 和ON 的混合物,在0K下,该体系的熵值为 a. 0 b. k ln 2 c R ln 2 d.. 2 k ln 2 20. 在298.15K, p0下,摩尔平动熵最大的气体为 a. H2 b. CH4 c NO d.. CO2 21 对于宏观热力学体系,能级愈高,此能级量子态所具有的分子数;体系温度愈高,高能级所具有的分子数 22.设双原子分子AB为理想气体,计算在1000K时处在v = 2, J = 5 和v = 1, J = 2能级的分子数的比。已知,θv = 3700K;θr =12.1K. 23.CH4分子的平动自由度为;转动自由度为;振动自由度为 24.分子配分函数q的物理含义是对 进行加和。当体系温度T→0K时,体系的中分子(N个)处于状态。当体系温度T→+∞时,体系的分子的分配为。 a. 晶体属于定位体系; b. 气体属于非定位体系 c. 理想气体、绝对零度的晶体属于独立子体系; d. 实际气体、液体属于相依粒子体系。 26.关于宏观状态和微观状态的描述不正确的是 a. 宏观状态由体系宏观状态来描述; b. 微观状态指某一瞬间的状态; c. 微观状态在经典力学中用相空间来描述,在量子力学中用波函数来描述; d. 微观状态数不是状态函数。 27.关于分布的描述不正确的是 a.指N个粒子在许可能级上的一种分配; b. 指N个粒子在量子态上的一种分配;

统计热力学基础练习题一答案

物理化学试卷 答案 一、选择题 ( 共10题 20分 ) 1. 2 分 (1546) [答] (D) 2. 2 分 (1369) [答] (B) 3. 2 分 (1551) [答] (B) 4. 2 分 (1476) [答] (C) Θv = hc v /k = 308.5 K 5. 2 分 (1513) [答] A (2分) 因对CO, σ=1 对N 2, σ=2 6. 2 分 (1433) [答] B )/e x p ()/e x p ()/e x p ( ,e 1,e 00,e 11,e 01kT g g kT g kT g N N εεε?-=--= (1分) =0.184 (1分) 7. 2 分 (1680) [答] A (2分) 8. 2 分 (1548) [答] (A) S r,m = R [ln T /σΘ r +1] σ (CO) = 1;σ (N 2) = 2 则S m (CO) > S m (N 2) 9. 2 分 (1304) [答] (D) *. 2 分 (1540) [答] (D) 二、填空题 ( 共10题 20分 ) 11. 2 分 (1368) [答] N i = (N /q )×g i exp(-εi /kT ) (1分) 近独立粒子体系,且为处于热力学平衡态的孤立体系 (1分) 12. 2 分 (0093) [答] ΔH +g ΔZ +1 2ΔU 2=Q -W 轴 (1分) 稳流过程中的敞开体系 (1分) 13. 2 分 (1676) [答] N 1/N 0=g r,1exp(-εr,1/kT )/g r,0exp(-εr,0/kT )=3exp(-0.1) (1分) K 152/K 3001.02/1.0r =?==T Θ (1分) 14. 2 分 (1681) [答] m,v v v v (298.15K)ln[1exp(/)][/]/[exp(/)1]S R ΘT RΘT ΘT =---+-$ (1分) =11 mol K J 0014.0--?? (1分)

三元相图的绘制详解

三元相图得绘制 本实验就就是综合性实验。其综合性体现在以下几个方面: 1、实验内容以及相关知识得综合 本实验涉及到多个基本概念,例如相律、相图、溶解度曲线、连接线、等边三角形坐标等,尤其就就是在一般得实验中(比如分析化学实验、无机化学实验等)作图都就就是用得直角坐标体系,几乎没有用过三角坐标体系,因此该实验中得等边三角形作图法就具有独特得作用。这类相图得绘制不仅在相平衡得理论课中有重要意义,而且对化学实验室与化工厂中经常用到得萃取分离中具有重要得指导作用。 2、运用实验方法与操作得综合 本实验中涉及到多种基本实验操作与实验仪器(如电子天平、滴定管等)得使用。本实验中滴定终点得判断,不同于分析化学中得大多数滴定。本实验得滴定终点,就就是在本来可以互溶得澄清透明得单相液体体系中逐渐滴加试剂,使其互溶度逐渐减小而变成两相,即“由清变浑”来判断终点。准确地掌握滴定得终点,有助于学生掌握多种操作,例如取样得准确、滴定得准确、终点得判断准确等。 一、实验目得 1、掌握相律,掌握用三角形坐标表示三组分体系相图。 2、掌握用溶解度法绘制三组分相图得基本原理与实验方法。 二、实验原理 三组分体系K= 3,根据相律: f =K–φ+2=5–ф 式中ф为相数。恒定温度与压力时: f= 3–φ 当φ= 1,则f = 2 因此,恒温恒压下可以用平面图形来表示体系得状态与组成之间得关系,称为三元相图。一般用等边三角形得方法表示三元相图。 在萃取时,具有一对共轭溶液得三组分相图对确定合理得萃取条件极为重要。在定温定压下,三组分体系得状态与组分之间得关系通常可用等边三角形坐标表示,如图1所示:

图1图2 等边三角形三顶点分别表示三个纯物质A,B,C。AB,BC,CA,三边表示A与B,B与C,C 与A所组成得二组分体系得组成。三角形内任一点则表示三组分体系得组成。如点P得组成为:A%=Cb B%=Ac C%=Ba 具有一对共轭溶液得三组分体系得相图如图2所示。该三液系中,A与B,及A与C完全互溶,而B与C部分互溶。曲线DEFHIJKL为溶解度曲线。EI与DJ就就是连接线。溶解度曲线内(ABDEFHIJKLCA)为单相区,曲线外为两相区。物系点落在两相区内,即分为两相。 图3(A醋,B水,C氯仿) 绘制溶解度曲线得方法有许多种,本实验采用得方法就就是:将将完全互溶得两组分(如氯仿与醋酸)按照一定得比例配制成均相溶液(图中N点),再向清亮溶液中滴加另一组分(如水),则系统点沿BN线移动,到K点时系统由清变浑。再往体系里加入醋酸,系统点则沿AK上升至N’点而变清亮。再加入水,系统点又沿BN’由N’点移至J点而再次变浑,再滴加醋酸使之变清……如此往复,最后连接K、J、I……即可得到互溶度曲线,如图3所示。 三、实验准备 1、仪器:具塞磨口锥形瓶,酸式滴定管,碱式滴定管,移液管,分析天平。 2、药品:冰醋酸,氯仿,NaOH溶液(0、2mol·mol–3),酚酞指示剂。 四、操作要点(各实验步骤中得操作关键点) 1、因所测得体系中含有水得成分,所以玻璃器皿均需干燥。

三元合金相图

三元合金相图 工业上使用的各种材料大多数是多元合金。多元合金相图的测定比较复杂,所得到的相图也很少,应用较多的多元相图是三元相图。 三元合金相图由两个独立的成分变量,再加上温度变量应该用立体图形来表示;由一些空间曲面构成相图。但是实际所用的三元相图主要是它们的各种截面图或投影图。本章除了学习一些典型的立体相图以外,着重进行各种截面图或投影图分析。 §3-1 三元相图的基本知识 一.浓度的表示方法 三元合金有两个组元的浓度是可以独立变化的,成分常用三角形中的一个点来表示,称为浓度三角形。三个顶点代表三个纯组元,每个边是一个二元合金系的成分轴。 1.等边三角形 在★图9-1浓度三角形中的任意一点(例如O点)均代表一个三元合金。三个组元的含量按如下规则确定。过0点作A组元对边平行线交于AC或AB边于b、e两点,bC%或Be%分别表示合金0中的含A%;同理可以求出含B%和含C%。 三元合金0的成分: A%=Cb%= Be% B%=Ac% =Cf% C%=Ba%=Ad%(或1-A%-B%) 2.其它三角形 当三元合金中各组元含量相差较大时,可以采用其它形式的三角形,否则,合金成分点可能非常靠近一边或某一顶点。当某一个组元含量远大于其它二组元时,可以采用直角三角形,例如★图9-2直角三角形ABC。一般把含量最高的组元放在直角位置,两直角边则代表其它两组元的含量。例如01点所代表的三元合金成分 C%=Ac1% B%=Ab1% A%=1-A%-B% 当某一个组元含量远小于其它二组元时,可以采用★图9-3等腰三角形。一般把含量最高的组元放在底边位置,两腰则代表其它两组元的含量。例如x点所代表的三元合金成分C%=Ac% B%=Ab% A%=Ba% 3.成分三角形中两条特殊线浓度三角形中有两条特殊性质的直线 (1)过三角形顶点的直线,两个组元浓度之比为定值。如★图9-4b中CE线上的任意一个三元合金含A%/B%为定值。(A%/B%=BE/AE) (2)平行于三角形任意一边的直线,一个组元的浓度为定值。如★图9-4b中ab线上的三元合金含C%为定值。(=Bb%或Aa%) 附:★图9-4a利用成分三角形网格标定合金x成分 二.自由焓成分曲面及公切面法则 二元合金的自由焓-成分关系表现为一条平面曲线,三元合金的自由焓-化学成分(两个变量)关系表现为一个空间曲面,最简单情况下为下凹曲面,如★图9-5 三元系的自由焓成分曲面。 二元合金平衡相成分用公切线法则确定,且在一定温度下只有一条公切线。与此类似,三元合金平衡相成分用公切面的切点来确定,但是在一定温度下两个曲面公切面不止一个。★图9-6

统计热力学小结与习题

第9章 统计热力学初步小结与练习 核心内容:配分函数(q )及其与热力学函数(U,S …)之间的关系 主要内容:各种运动形式的q 及由q 求U,S …的计算公式 一、内容提要 1、微观粒子的运动形式和能级公式 n e r t εεεεεε++++=v 式中,ε:粒子的总能量,t ε:粒子整体的平动能,r ε:转动能,v ε:振动能, e ε:电子运动能,n ε:核运动能。 (1)三维平动子 )(8222222 2c n b n a n m h z y x t ++=ε 式中,h :普朗克常数;m :粒子的质量;a ,b ,c :容器的三个边长,n x ,n y ,n z 分别为x ,y ,z 轴方向的平动量子数,取值1,2,3……。 对立方容器 )(82 223 22z y x t n n n mV h ++= ε 基态n x = 1,n y = 1,n z = 1,简并度10,=t g ,而其他能级的简并度要具体情况具体分析,如3 2286mV h t =ε的能级,其简并度g =3。 (2)刚性转子 双原子分子)1(822+= J J I h r πε

式中,J :转动量子数,取值0,1,2……,I :转动惯量,20R I μ=, μ:分子的折合质量,2 12 1m m m m += μ,0R :分子的平衡键长,能级r ε的 简并度 g r =2J+1 (3)一维谐振子 νυεh )2 1(v += 式中,ν:分子的振动频率,υ:振动量子数,取值0,1,2……,各能级都是非简并的,g v =1 对三维谐振子,νυυυεh z y x )2 3 (v +++= 2 )2)(1(v ++=s s g , 其中s=υx + υy + υz (4)运动自由度:描述粒子的空间位置所必须的独立坐标的数目。 2、能级分布的微态数和Boltzmann 分布 (1)能级分布的微态数 能级分布:N 个粒子分布在各个能级上的粒子数,叫做能级 分布数,每一套能级分布数称为一种分布。 微态数:实现一种分布的方式数。 定域子系统能级分布微态数∏=i i n i D n g N W i !!

相关文档
最新文档