单链表之头部插入节点

单链表之头部插入节点
单链表之头部插入节点

单链表的创建、插入和删除

单链表的创建、插入和删除 (数据结构) ——SVS #include #include #include typedef int ElemType; typedef int Status; typedef struct LNode { ElemType data; struct LNode *next; }LNode,*LinkList; void InitList_Link(LinkList L) //创建空链表 { L=(LinkList)malloc(sizeof(LNode)); L->next=NULL; } Status InsertList_Link(LinkList L,int i,ElemType e) //插入链表 { LinkList s,p=L; int j=0; while(p&&jnext;j++;} if(!p||j>i-1)return -1; s=(LinkList)malloc(sizeof(LNode)); s->data=e; s->next=p->next; p->next=s; return 1; }

Status DeleteList_Link(LinkList L,int i,ElemType e) //删除链表{ LinkList q,p=L;int j=0; while(p->next&&jnext;j++;} if(!(p->next)||j>i-1)return -1; q=p->next; e=q->data; p->next=q->next; free(q); return 1; } void OutPutList_Link(LinkList L) //输出链表 { printf("表中值为:"); LinkList p=L->next; while(p) { printf("%d ",p->data); p=p->next; } printf("\n"); } void CreateList_Link(LinkList L,int len) //创建链表 { int i; LinkList s,p=L; for(i=0;idata); s->next=NULL; p->next=s; p=s; } } int main() { int len; LinkList L; ElemType e; L=(LinkList)malloc(sizeof(LNode));

北京邮电大学 数据结构 实验一 带头结点的单链表构造

数据结构实验报告 实验名称:实验1——单链表的构造 学生姓名:XXXXNB 班级:XXXX 班内序号: 学号:XXXX 日期:XXXXX 1.实验要求 根据线性表的抽象数据类型的定义,完成带头结点的单链表的基本功能。 单链表的基本功能: 1、构造:使用头插法、尾插法两种方法 2、插入:要求建立的链表按照关键字从小到大有序 3、删除 4、查找 5、获取链表长度 6、销毁 7、其他:可自行定义 编写测试main()函数测试线性表的正确性。 2.程序分 编程完成单链表的一般性功能如单链表的构造:使用头插法、尾插法两种方法插入:要求建立的链表按照关键字从小到大有序,删除,查找,获取链表长度,销毁用《数据结构》中的相关思想结合C++语言基本知识编写一个单链表结构。本程序为使用方便,几乎不用特殊的命令,只需按提示输入即可,适合更多的用户使用。 2.1 存储结构 单链表的存储结构:

2.2 关键算法分析 1.头插法 自然语言描述:a.在堆中建立新结点 b.将a[i]写入到新结点的数据域 c.修改新结点的指针域 d.修改头结点的指针域,将新结点加入链表中 //在构建之初为了链表的美观性构造,进行了排序 代码描述: //头插法构造函数 template LinkList::LinkList(T a[], int n) { for (int i = n - 1; i >= 1; i--)//冒泡排序,对数组进行从小到大排序{ for (int j = 0; j < i; j++) { if (a[j]>a[j + 1]) { T t = a[j + 1]; a[j + 1] = a[j]; a[j] = t; } }

头插法建立单链表

#include #include typedefstruct node { int data; struct node *next; }lnode,*linklist; \*定义头结点的函数*\ linklistInitlist_l(); \*定义头插法的函数*\ linklistCreatelist_f(linklistl,int n); \*定义输出链表数据的函数*\ voidPrintlist(linklist); \*主函数*\ int main(void) { inti,s,n; linklist l; l=Initlist_l(); printf("Please input number of datas:\n"); scanf("%d",&n); Createlist_f(l,n); Printlist(l); return 0; } linklistInitlist_l() { linklist l; l=(linklist)malloc(sizeof(lnode)); l->next=0; return l; } linklistCreatelist_f(linklistl,int n) { int i; linklist p; for(i=0;idata); p->next=l->next; l->next=p; }

return l; } voidPrintlist(linklist l) { linklist p; p=l->next; while(p) { printf("%d\t",p->data); p=p->next; } printf("\n"); }

C语言链表专题复习

链表专题复习 数组作为存放同类数据的集合,给我们在程序设计时带来很多的方便,增加了灵活性。但数组也同样存在一些弊病。如数组的大小在定义时要事先规定,不能在程序中进行调整,这样一来,在程序设计中针对不同问题有时需要3 0个元素大小的数组,有时需要5 0个数组元素的大小,难于统一。我们只能够根据可能的最大需求来定义数组,常常会造成一定存储空间的浪费。 我们希望构造动态的数组,随时可以调整数组的大小,以满足不同问题的需要。链表就是我们需要的动态数组。它是在程序的执行过程中根据需要有数据存储就向系统要求申请存储空间,决不构成对存储区的浪费。 链表是一种复杂的数据结构,其数据之间的相互关系使链表分成三种:单链表、循环链表、双向链表,下面只介绍单向链表。 7.4.1 单链表 图7 - 3是单链表的结构。 单链表有一个头节点h e a d,指向链表在内存的首地址。链表中的每一个节点的数据类型为结构体类型,节点有两个成员:整型成员(实际需要保存的数据)和指向下一个结构体类型节点的指针即下一个节点的地址(事实上,此单链表是用于存放整型数据的动态数组)。链表按此结构对各节点的访问需从链表的头找起,后续节点的地址由当前节点给出。无论在表中访问那一个节点,都需要从链表的头开始,顺序向后查找。链表的尾节点由于无后续节点,其指针域为空,写作为N U L L。 图7 - 3还给出这样一层含义,链表中的各节点在内存的存储地址不是连续的,其各节点的地址是在需要时向系统申请分配的,系统根据内存的当前情况,既可以连续分配地址,也可以跳跃式分配地址。 看一下链表节点的数据结构定义: struct node { int num; struct node *p; } ; 在链表节点的定义中,除一个整型的成员外,成员p是指向与节点类型完全相同的指针。 在链表节点的数据结构中,非常特殊的一点就是结构体内的指针域的数据类型使用了未定义成功的数据类型。这是在C中唯一规定可以先使用后定义的数据结构。 ?单链表的创建过程有以下几步: 1 ) 定义链表的数据结构。 2 ) 创建一个空表。 3 ) 利用m a l l o c ( )函数向系统申请分配一个节点。

数据结构--单链表的插入和删除

单链表的插入和删除实验日志 指导教师刘锐实验时间2010 年10 月11 日 学院数理专业数学与应用数学 班级学号姓名实验室S331-A 实验题目:单链表的插入和删除 实验目的:了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。 实验要求:建立一个数据域定义为字符串的单链表,在链表中不允许有重复的字符串;根据输入的字符串,先找到相应的结点,后删除之。 实验主要步骤: 1、分析、理解程序(相关程序见附录) 。 2、调试程序,并设计输入字符串数据(如:aa, bb , cc , dd, ee,#),测试程序的如下功能: 不允许重复字符串的插入;根据输入的字符串,找到相应的结点并删除。 3、修改程序: (1)增加插入结点的功能。 (2)将建立链表的方法改为头插入法。 实验结果: 1、不允许重复字符串的插入功能结果如下:

3、删除和插入结点的功能如下:

心得体会: 通过这次实验我学会了单链表的建立和删除,基本了解了线性表的逻辑结构和链式存储结构,掌握了单链表的基本算法,使我受益匪浅。在调试程序的过程中,遇见了一系列的问题,后来在同学的帮助下,修改了几个语句后,终于把它给调试出来了。有时候一个标点符号的问题就可能导致程序无法运行。所以在分析调试程序的时候一定要仔细。 附加程序代码: 1、调试之后的程序如下(其中蓝色字体部分为修改过的): #include"stdio.h" #include"string.h" #include"stdlib.h" #include"ctype.h" typedef struct node //定义结点 { char data[10]; //结点的数据域为字符串 struct node *next; //结点的指针域 }ListNode; typedef ListNode * LinkList; // 自定义LinkList单链表类型 LinkList CreatListR1(); //函数,用尾插入法建立带头结点的单链表ListNode *LocateNode(); //函数,按值查找结点

单链表的初始化,建立,插入,查找,删除

单链表的初始化,建立,插入,查找,删除。 #include <stdio.h> #include <stdlib.h> typedef int ElemType; //定义结点类型 typedef struct Node { ElemType data; //单链表中的数据域

struct Node *next; //单链表的指针域 }Node,*LinkedList; //单链表的初始化 LinkedList LinkedListInit() { Node *L; L = (Node

*)malloc(sizeof(Node)); //申请结点空间 if(L == NULL) //判断是否有足够的内存空间 printf("申请内存空间失败\n"); L->next = NULL; //将next设置为NULL,初始长度为0的单链表return L; }

//单链表的建立1,头插法建立单链表 LinkedList LinkedListCreatH() { Node *L; L = (Node *)malloc(sizeof(Node)); //申请头结点空间 L->next = NULL; //初始化一个空链表

ElemType x; //x为链表数据域中的数据 while(scanf("%d",&x) != EOF) { Node *p; p = (Node *)malloc(sizeof(Node)); //申请新的结点 p->data = x; //结点数据域赋值

单链表的基本操作

上机实验报告 学院:计算机与信息技术学院 专业:计算机科学与技术(师范)课程名称:数据结构 实验题目:单链表建立及操作 班级序号:师范1班 学号:201421012731 学生姓名:邓雪 指导教师:杨红颖 完成时间:2015年12月25号

一、实验目的: (1)动态地建立单链表; (2)掌握线性表的基本操作:求长度、插入、删除、查找在链式存储结构上的实现; (3)熟悉单链表的应用,明确单链表和顺序表的不同。 二、实验环境: Windows 8.1 Microsoft Visual c++ 6.0 三、实验内容及要求: 建立单链表,实现如下功能: 1、建立单链表并输出(头插法建立单链表); 2、求表长; 3、按位置查找 4、按值查找结点; 5、后插结点; 6、前插结点 7、删除结点; 四、概要设计: 1、通过循环,由键盘输入一串数据。创建并初始化一个单链表。 2、编写实现相关功能函数,完成子函数模块。 3、调用子函数,实现菜单调用功能,完成顺序表的相关操作。

五、代码: #include #include typedef char datatype; typedef struct node { datatype data; struct node *next; }linklist; linklist *head,*p; //头插法建立单链表 linklist *Creatlistf() { char ch; linklist *head,*s; head=NULL; ch=getchar(); printf("请输入顺序表元素(数据以$结束):\n"); while(ch!='$') { s=(linklist *)malloc(sizeof(linklist)); s->data=ch; s->next=head; head=s; ch=getchar(); } return head; } //求单链表的长度 void get_length(struct node *head) { struct node *p=head->next; int length=0;

C语言链表的建立、插入和删除

数组作为存放同类数据的集合,给我们在程序设计时带来很多的方便,增加了灵活性。但数组也同样存在一些弊病。如数组的大小在定义时要事先规定,不能在程序中进行调整,这样一来,在程序设计中针对不同问题有时需要3 0个大小的数组,有时需要5 0个数组的大小,难于统一。我们只能够根据可能的最大需求来定义数组,常常会造成一定存储空间的浪费。我们希望构造动态的数组,随时可以调整数组的大小,以满足不同问题的需要。链表就是我们需要的动态数组。它是在程序的执行过程中根据需要有数据存储就向系统要求申请存储空间,决不构成对存储区的浪费。 链表是一种复杂的数据结构,其数据之间的相互关系使链表分成三种:单链表、循环链表、双向链表,下面将逐一介绍。 7.4.1 单链表 图7 - 3是单链表的结构。 单链表有一个头节点h e a d,指向链表在内存的首地址。链表中的每一个节点的数据类型为结构体类型,节点有两个成员:整型成员(实际需要保存的数据)和指向下一个结构体类型节点的指针即下一个节点的地址(事实上,此单链表是用于存放整型数据的动态数组)。链表按此结构对各节点的访问需从链表的头找起,后续节点的地址由当前节点给出。无论在表中访问那一个节点,都需要从链表的头开始,顺序向后查找。链表的尾节点由于无后续节点,其指针域为空,写作为N U L L。 图7 - 3还给出这样一层含义,链表中的各节点在内存的存储地址不是连续的,其各节点的地址是在需要时向系统申请分配的,系统根据内存的当前情况,既可以连续分配地址,也可以跳跃式分配地址。 看一下链表节点的数据结构定义: struct node { int num; struct node *p; } ; 在链表节点的定义中,除一个整型的成员外,成员p是指向与节点类型完全相同的指针。在链表节点的数据结构中,非常特殊的一点就是结构体内的指针域的数据类型使用了未定义成功的数据类型。这是在C中唯一规定可以先使用后定义的数据结构。 ?单链表的创建过程有以下几步: 1 ) 定义链表的数据结构。 2 ) 创建一个空表。 3 ) 利用m a l l o c ( )函数向系统申请分配一个节点。 4 ) 将新节点的指针成员赋值为空。若是空表,将新节点连接到表头;若是非空表,将新 节点接到表尾。 5 ) 判断一下是否有后续节点要接入链表,若有转到3 ),否则结束。 ?单链表的输出过程有以下几步 1) 找到表头。

单链表的建立及其基本操作的实现(完整程序)

#include "stdio.h"/*单链表方式的实现*/ #include "malloc.h" typedef char ElemType ; typedef struct LNode/*定义链表结点类型*/ { ElemType data ; struct LNode *next; }LNode,*LinkList;/*注意与前面定义方式的异同*/ /*建立链表,输入元素,头插法建立带头结点的单链表(逆序),输入0结束*/ LinkList CreateList_L(LinkList head) { ElemType temp; LinkList p; printf("请输入结点值(输入0结束)"); fflush(stdin); scanf("%c",&temp); while(temp!='0') { if(('A'<=temp&&temp<='Z')||('a'<=temp&&temp<='z')) { p=(LinkList)malloc(sizeof(LNode));/*生成新的结点*/ p->data=temp; p->next=head->next; head->next=p;/*在链表头部插入结点,即头插法*/ } printf("请输入结点值(输入0结束):"); fflush(stdin); scanf("%c",&temp); } return head; } /*顺序输出链表的内容*/ void ListPint_L(LinkList head) { LinkList p; int i=0; p=head->next; while(p!=NULL) { i++; printf("单链表第%d个元素是:",i);

单链表基本操作实验

实验2 链表的操作 实验容: 1)基础题:编写链表基本操作函数,链表带有头结点 (1)CreatList_h()//用头插法建立链表 (2)CreateList_t()//用尾插法建立链表 (3)InsertList()向链表的指定位置插入元素 (4)DeleteList()删除链表中指定元素值 (5)FindList()查找链表中的元素 (6)OutputList()输出链表中元素 2)提高题: (1)将一个头节点指针为heada的单链表A分解成两个单链表A和B,其头结点指针分别为heada和headb,使得A表中含有原单链表A中序号为奇数的元素,B表中含有原链表A中序号为偶数的元素,且保持原来的相对顺序。 (2)将一个单链表就地逆置。 即原表(a1,a2,。。。。。。 an),逆置后新表(an,an-1,。。。。。。。a1) /* 程序功能 :单链表基本功能操作 编程者 :天啸 日期 :2016-04-14 版本号 :3.0 */ #include #include typedef struct List { int data; struct List *next; }List; void CreatList_h(List *L) //头插法 { int i = 0; int n = 0; int goal; List *p; printf("请输入数据的个数:\n"); scanf("%d",&n); L -> next = NULL; for(i=0;i

{ printf("请输入第%d个数:\n",i+1); scanf("%d",&goal); p = (struct List*)malloc(sizeof(struct List)); p -> data = goal; p -> next = L->next; //将L指向的地址赋值给p; L -> next = p; } } void CreateList_t(List *L) //尾插法 { int i; int n; int goal; List *p; List *q=L; printf("请输入数据的个数:\n"); scanf("%d",&n); for (i=0;i data = goal; q -> next = p; q = p; } q -> next = NULL; } void InsList(List *L,int i,int e) //插入 { List *s; List *p = L; int j = 0; while (p&&jnext; ++j; } s = (struct List*)malloc(sizeof(struct List)); s -> data = e; //插入L中

数据结构循环链表插入和删除源代码代码

typedef struct LNode//结点类型 { int data;//数值域 struct LNode *next;//指针域 }CrLNode,*CrLinklist; #include"Base.h" #include"construct.h" #include"circulate_operation.c" int main() { CrLinklist L; int i,choice,n,e; printf("请输入链表元素个数:"); scanf("%d",&n); L=Initlist_L(n); printf("请选择执行语句,选择输入1,执行插入操作或选择输入2,执行删除操作:"); scanf("%d",&choice); switch(choice) { case 1: { printf("请输入插入元素的位置:"); scanf("%d",&i); if(i<=0||i>n) printf("您输入的值不合法"); else printf("请输入插入元素的值:"); scanf("%d",&e); L=ListInsert_L(L,i,e); printf("插入后的链表为:"); printlist_L(L); };break; case 2: { printf("请输入删除元素的位置:"); scanf("%d",&i); if(i<=0||i>n) printf("您输入的值不合法"); else L=ListDelete_L(L,i); printf("删除后的链表为");

printlist_L(L); };break; } } CrLinklist Initlist_L(int n)//创建带头结点的单链表 { CrLinklist L; CrLinklist P; int i; L=(CrLinklist)malloc(sizeof(CrLNode)); L->next=L;/* 先建立一个带头结点的单链表*/ printf("请输入%d个数据\n",n); for(i=n;i>0;--i) { P=(CrLinklist)malloc(sizeof(CrLNode)); /* 生成新结点*/ scanf("%d",&P->data); /* 输入元素值*/ P->next=L->next; /* 插入到表头*/ L->next=P; } return L; } CrLinklist ListInsert_L(CrLinklist L,int i,int e)//单链表的插入 { CrLinklist P,S; int j; P=L; j=0; while(P&&jnext; ++j; }//寻找第i-1个节点 if(!P||j>i-1) return ERROR; S=(CrLinklist)malloc(sizeof(CrLNode));//生成新节点 S->data=e; S->next=P->next;//插入到S中 P->next=S; return L; } CrLinklist ListDelete_L(CrLinklist L,int i)//单链表的删除 { CrLinklist P,S;

第三章 单链表 题目和答案

第2章自测卷答案 一、填空 1.顺序表中逻辑上相邻的元素的物理位置相互相邻。单链表中逻辑上相邻的元素的物理位置不 相邻。 2.在单链表中,除了首元结点外,任一结点的存储位置由其直接前驱结点值域指示。 3.在n个结点的单链表中要删除已知结点*p,需找到它的地址。 二、判断正误(在正确的说法后面打勾,反之打叉) 1. 链表的每个结点中都恰好包含一个指针。X 2. 链表的物理存储结构具有同链表一样的顺序。X 3. 链表的删除算法很简单,因为当删除链中某个结点后,计算机会自动地将后续的各个单元向前移动。X 4. 线性表的每个结点只能是一个简单类型,而链表的每个结点可以是一个复杂类型。Y 5. 顺序表结构适宜于进行顺序存取,而链表适宜于进行随机存取。Y 6. 顺序存储方式的优点是存储密度大,且插入、删除运算效率高。X 7. 线性表在物理存储空间中也一定是连续的。X 8. 线性表在顺序存储时,逻辑上相邻的元素未必在存储的物理位置次序上相邻。X 9. 顺序存储方式只能用于存储线性结构。X 10. 线性表的逻辑顺序与存储顺序总是一致的。X 三、单项选择题 (A)1. 链接存储的存储结构所占存储空间: (A)分两部分,一部分存放结点值,另一部分存放表示结点间关系的指针 (B)只有一部分,存放结点值 (C)只有一部分,存储表示结点间关系的指针 (D)分两部分,一部分存放结点值,另一部分存放结点所占单元数 (B)2. 链表是一种采用存储结构存储的线性表; (A)顺序(B)链式(C)星式(D)网状 (D)3. 线性表若采用链式存储结构时,要求内存中可用存储单元的地址: (A)必须是连续的(B)部分地址必须是连续的 (C)一定是不连续的(D)连续或不连续都可以 (B)4.线性表L在情况下适用于使用链式结构实现。 (A)需经常修改L中的结点值(B)需不断对L进行删除插入 (C)L中含有大量的结点(D)L中结点结构复杂 (C)5.单链表的存储密度 (A)大于1;(B)等于1;(C)小于1;(D)不能确定 (A)6、在单链表的一个结点中有个指针。

单链表原地逆置(头插法)

原地逆置单链表(头插法) /* 原地逆置头插法伪算法 本函数使用的是带头节点的链表 1.将p指针指向有效数据的第二个节点 2.将p指针始终插入到phead后面,第一个有效节点前面,即插入到它俩中间位置,不论第一个有效节点是否被更改,这样就可以完全逆置单链表 3.p和q指针后移,直至移动到最后一个节点,完成插入操作 */ #include #include #include typedefstruct node { int data; struct node * next; }NODE,*PNODE; PNODE create_list(); //创建单链表函数声明 void traverse_list(PNODE phead); //输出单链表函数声明 PNODE reverse_list(PNODE phead); //逆置单链表函数声明 int main(void) { PNODE phead; phead = create_list(); traverse_list(phead); phead = reverse_list(phead); traverse_list(phead); return 0; }

PNODE create_list() { intval; PNODE phead,ptail,s; phead = (PNODE)malloc(sizeof(NODE)); if(phead == NULL) { printf("分配失败,程序终止\n"); exit(-1); } ptail=phead; printf("请输入每个节点的值,以-1结束\n"); scanf("%d",&val); while(val!=-1) { s=(PNODE)malloc(sizeof(NODE)); //新建一个节点 if(s == NULL) { printf("分配失败,程序终止\n"); exit(-1); } s->data = val; //s->next = NULL; ptail->next = s; //链接到节点后面 ptail = ptail->next; //使ptail永远指向最后一个节点 scanf("%d",&val); } ptail->next = NULL; printf("创建成功!\n"); returnphead; } voidtraverse_list(PNODE phead) { PNODE p; if(phead == NULL) { printf("链表为空,请创建链表!\n"); } else { p = phead->next;

数据结构___头插法和尾插法建立链表(各分有无头结点)

实验一链表的建立及基本操作方法实现 一、【实验目的】 、理解和掌握单链表的类型定义方法和结点生成方法。 、掌握利用头插法和尾插法建立单链表和显示单链表元素的算法。 、掌握单链表的查找(按序号)算法。 、掌握单链表的插入、删除算法。 二、【实验内容】 、利用头插法和尾插法建立一个无头结点单链表,并从屏幕显示单链表元素列表。 、利用头插法和尾插法建立一个有头结点单链表,并从屏幕显示单链表元素列表。 、将测试数据结果用截图的方式粘贴在程序代码后面。 重点和难点: 尾插法和头插法建立单链表的区别。 建立带头结点和无头结点单链表的区别。 带头结点和无头结点单链表元素显示方法的区别 三、【算法思想】 ) 利用头插法和尾插法建立一个无头结点单链表 链表无头结点,则在创建链表时,初始化链表指针。 当用头插法插入元素时,首先要判断头指针是否为空,若为空,则直接将新结点赋给,新结点指向空,即>,若表中已经有元素了,则将新结点的指向首结点,然后将新结点赋给即(>)。当用尾插法插入元素时,首先设置一个尾指针以便随时指向最后一个结点,初始化和头指针一样即。插入元素时,首先判断链表是否为空,若为空,则直接将新结点赋给即,若不为空,将最后一个元素的指向新结点即>,然后跳出这个语句,将新结点指向空,并且将指向新结点即>。 ) 利用头插法和尾插法建立一个有头结点单链表 链表有头结点,则在创建链表时,初始化链表指针> 。与无头结点区别在于,判断链表为空是根据>是否为空。 用头插法插入元素时,要判断链表是否为空,若为空则将新结点指向空,作为表尾,若不为空,则直接插入,将新结点指向头结点的指向,再将头结点指向新结点即>>>。 用尾插法插入元素时,首先也要设置一个尾指针以便随时指向最后一个结点,初始化,与无头结点区别就只是插入第一个元素时有区别。插入元素时,不需要判断链表是否为空,直接进行插入,代码>>。 )带头结点和无头结点单链表元素显示方法的区别: 区别在于,显示时带头结点是从头结点开始即>,而无头结点链表是直接从开始即。 四、【源程序代码】 ) 利用头插法和尾插法建立一个无头结点单链表 <>

第三章 链表 基本题

第三章链表 基本题 3.2.1单项选择题 1.不带头结点的单链表head为空的判定条件是 A.head=NULL B.head->next=NULL C.head->next=head D.head!=NULL 2.带头接待点的单链表head为空的判定条件是 A.head=NULL B.head->next=NULL C.head->next=head D.head!=NULL 3.非空的循环单链表head的尾结点(由p所指向)满足 A.p->head=NULL B.p=NULL C.p->next=head D.p=head 4.在循环双链表p的所指结点之后插入s所指结点的操作是 A.p->right=s; s->left=p; p->right->lefe=s; s->right=p->right; B.p->right=s; p->right->left=s; s->lefe=p; s->right=p->right; C.s->lefe=p; s->right=p->right; p->right=s; p->right->left=s; D.s->left=p; s->right=p->right; p->right->left=s; p->right=s; 5.在一个单链表中,已知q所指结点是所指结点p的前驱结点,若在q和p之间插入结点S,则执行 A.s->next=p->next; p->next=s; B.p->next=s->next; s->next=p; C.q->next=s; s->next=p; D.p->next=s; s->next=q; 6.在一个单链表中,若p所指结点不是最后结点,在p之后插入s所指结点,则执行 A.s->next=p; p->next=s; B.s->next=p->next; p->next=s; C.s->next=p->next; p=s; D.p->next=s; s->next=p; 7.在一个单链表中,若删除p所指结点的后续结点,则执行 A.p->next=p->next->next; B.p=p->next; p->next=p->next->next; C.p->next=p->next D.p=p->next->next 8.假设双链表结点的类型如下: typedef struct linknode {int data; /*数据域*/ Struct linknode *llink; /*llink是指向前驱结点的指针域*/ Struct linknode *rlink; /*rlink是指向后续结点的指针域*/ }bnode 下面给出的算法段是要把一个所指新结点作为非空双向链表中的所指结点的前驱结点插入到该双链表中,能正确完成要求的算法段是 A.q->rling=p; q->llink=p->llink; p->llink=q;

单链表完整算法

// 包含头文件 #include #include #include // 为结点数据类型和结构体类型起别名 typedefint datatype; typedefstructLinkNode { datatype data; // 数据域 structLinkNode *next; // 指针域存放下一个结点的地址}LNode,*LinkList; LinkList L; // 单链表的头指针 // 1.用头插法创建单链表 LinkListCreateListHead(int n) { // 创建头结点 LNode *L = (LNode *)malloc(sizeof(LNode)); L->next = NULL; // 设置指针域为空

LinkList p; // p指向新结点 for(inti=n;i>0;i--) // 先插入最后一个结点,插入次序与逻辑次序相反 { // 生成新结点 p = (LNode *)malloc(sizeof(LNode)); // 从键盘输入新结点的值 printf("请输入要插入第%d结点的值:\n",i); scanf("%d", &p->data); p->next = L->next; // 让L原来的后继结点成为p的后继结点 L->next = p; // p成为L新的后继结点 } return L; // 返回单链表的头指针 } // 2.用尾插法创建单链表 LinkListCreateListTail(int n) {

// 生成头结点 L = (LNode *)malloc(sizeof(LNode)); L->next = NULL;// 设置指针域为空 // p指向新结点,q指向尾结点 LinkList p, q = L; // 依次在末尾插入n个结点 for(inti=1;i<=n;i++) { // 生成新结点p p = (LNode *)malloc(sizeof(LNode)); // 从键盘输入新结点的值 printf("请输入第%d个结点的值:\n", i); scanf("%d",&p->data); p ->next = NULL; // 新结点(也是尾结点)的指针域为空 // 把新结点链接到单链表的末尾 q->next = p;

带头结点单链表中数据就地逆置

实验3 :带头结点单链表中数据就地逆置 一、实验目的: 1. 会定义单链表的结点类型; 2. 熟悉对单链表的一些基本操作和具体的函数定义; 3. 了解和掌握单链表的调用格式。 二、实验要求: 1. 认真阅读和掌握实验内容所给的程序,并上机运行; 2. 保存程序运行结果,并结合程序进行分析; 3. 尝试自己调试修改程序并试运行。 三、实验内容: 编写算法实现带头结点单链表的就地逆置,即利用原带头结点单链表的结点空间把数据元素序列逆置。 四、实验程序: #include #include #include typedef int datatype; typedef struct snode { datatype data; struct snode*next; }slnode; sllinitiate(slnode**head); linlistsort(slnode*head); int sllinsert(slnode*head,int i,datatype x); int slldelete(slnode*head,int i,datatype x); int sllget(slnode*head,int i,datatype*x); int sllnotempty(slnode*head); linlistsurt(slnode*head); linlistinsert(slnode*head,datatype x);

converse(slnode*head); main(void) { datatype test[6]={64,6,7,89,12,24}; slnode*head,*p; int n=6,i; sllinitiate(&head); for(i=1;i<=n;i++) sllinsert(head,i,test[i-1]); linlistsort(head); linlistinsert(head,25); converse(head); p=head->next; while(p!=NULL) { printf("%d",p->data); p=p->next; } } sllinitiate(slnode**head) { if((*head=(slnode*)malloc(sizeof(slnode)))==NULL)exit(1); (*head)->next=NULL; } int sllinsert(slnode*head,int i,datatype x) { slnode*p,*q; int j;

创建链表并实现插入、删除、输出,查找等功能

创建链表并实现插入、删除、输出,查找等功能 一、实验目的及内容 1、目的:通过上级操作,进一步了解线性表的存储结构以及基本运算。 2、内容: (1)、题目要求 编写程序,创建一个链表,实现链表的插、删除、查找和输出等功能。(2)、分析算法 单链表的建立,使用动态建立链表,有头插法建表和尾插法建表。 头插法建表: input_font() { head=NULL; datatype ch; puts("请输入您的数据,想结束输入,请键入“#”"); fflush(stdin); ch=getchar(); while(ch!='#') { p=(linklist *)malloc(sizeof(linklist)); p->c=ch; p->next=head; head=p; length++; puts("恭喜,你的数据输入正确!请继续操作!"); fflush(stdin); ch=getchar(); }

尾插法建表: input_end() { head=(linklist *)malloc(sizeof(linklist)); r=head; datatype ch; puts("请输入您的数据,想结束输入,请键入“#”"); fflush(stdin); ch=getchar(); while(ch!='#') { p=(linklist *)malloc(sizeof(linklist)); p->c=ch; r->next=p; r=p; length++; puts("恭喜,你的数据输入正确!请继续操作!"); fflush(stdin); ch=getchar(); } r->next=NULL; } (3)、流程图: 函数层次:

单链表的插入和删除实验报告

. 实验一、单链表的插入和删除 一、目的 了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。 二、要求: 建立一个数据域定义为字符串的单链表,在链表中不允许有重复的字符串;根据输入的字符串,先找到相应的结点,后删除之。 三、程序源代码 #include"stdio.h" #include"string.h" #include"stdlib.h" #include"ctype.h" typedef struct node //定义结点 { char data[10]; //结点的数据域为字符串 struct node *next; //结点的指针域 }ListNode; typedef ListNode * LinkList; // 自定义LinkList单链表类型 LinkList CreatListR1(); //函数,用尾插入法建立带头结点的单链表

ListNode *LocateNode(); //函数,按值查找结点 void DeleteList(); //函数,删除指定值的结点void printlist(); //函数,打印链表中的所有值 void DeleteAll(); //函数,删除所有结点,释放内存 //==========主函数============== void main() { char ch[10],num[10]; LinkList head; head=CreatListR1(); //用尾插入法建立单链表,返回头指针printlist(head); //遍历链表输出其值 printf(" Delete node (y/n):");//输入“y”或“n”去选择是否删除结点scanf("%s",num); if(strcmp(num,"y")==0 || strcmp(num,"Y")==0){ printf("Please input Delete_data:"); scanf("%s",ch); //输入要删除的字符串 DeleteList(head,ch); printlist(head); } DeleteAll(head); //删除所有结点,释放内存 } //==========用尾插入法建立带头结点的单链表

相关文档
最新文档