运用动态规划模型解决最短路径问题 3

运用动态规划模型解决最短路径问题 3
运用动态规划模型解决最短路径问题 3

运用动态规划模型解决物流配送中的最短

路径问题

摘要:随着现代社会的高速发展,物流配送成为了连接各个生产基地的枢纽,运输的成本问题也成为了企业发展的关键。运费不但与运量有关,而且与运输行走的线路相关。传统的运输问题没有考虑交通网络,在已知运价的条件下仅求出最优调运方案,没有求出最优行走路径。文中提出“网络上的物流配送问题“,在未知运价,运量确定的情况下,将运输过程在每阶段中选取最优策略,最后找到整个过程的总体最优目标,节省企业开支。

关键词:动态规划,数学模型,物流配送,最优路径

1 引言

物流配送是现代化物流系统的一个重要环节。它是指按用户的订货要求, 在配送中心进行分货、配货, 并将配好的货物及时送交收货人的活动。在物流配送业务中, 合理选择配送径路, 对加快配送速度、提高服务质量、降低配送成本及增加经济效益都有较大影响。物流配送最短径路是指物品由供给地向需求地的移动过程中, 所经过的距离最短(或运输的时间最少, 或运输费用最低) , 因此, 选定最短径路是提高物品时空价值的重要环节。[1]

经典的Dijkstra 算法和Floyd 算法思路清楚,方法简便,但随着配送点数的增加,计算的复杂性以配送点数的平方增加,并具有一定的主观性。我国学者用模糊偏好解试图改善经典方法[]5,取得了较好的效果。遗憾的是,模糊偏好解本身就不完全是客观的。文献[]6详细分析了经典方法的利弊之后,提出将邻接矩阵上三角和下三角复制从而使每条边成为双通路径,既适用于有向图也适用于无向图, 但复杂性增加了。为了避免上述方法存在的不足,本文以动态规划为理论,选择合理的最优值函数,用于解决物流配送最短路径问题。

动态规划是解决多阶段决策过程最优化问题的一种数学方法。1951年美国数学家Bellman(贝尔曼)等人根据一类多阶段决策问题的特性,提出了解决这类问题的“最优性原理”,并研究了许多实际问题,从而创建了最优化问题的一种新方法——动态规划。

动态规划在工程技术、管理、经济、工业生产、军事及现代控制工程等方面都有广泛的应用,而且由于动态规划方法有其独特之处,在解决某些实际问题时,显得更加方便有效。由于决策过程的时间参数有离散的和连续的情况,故决

策过程分为离散决策过程和连续决策过程。[2]这种技术采用自底向上的方式递推求值,将待求解的问题分解成若干个子问题,先求解子问题,并把子问题的解存储起来以便以后用来计算所需要求的解。简言之,动态规划的基本思想就是把全局的问题化为局部的问题,为了全局最优必须局部最优。

多阶段决策问题是根据问题本身的特点,将其求解的过程划分为若干个相互独立又相互联系的阶段,在每个阶段都需要做出决策,并且在每个阶段的确定后再转移到下一个阶段,在每一个阶段选取其最有决策,从而实现整个过程总体决策最优的目的。[2,4]适合用动态规划方法求解的问题是一类特殊的多阶段决策问题,具有“无后效性”的多阶段决策问题,一般具有以下特点:

(1)可以划分为若干个阶段,问题的求解过程就是对若干个阶段的一系列决

策过程。

(2)每个阶段有若干个可能状态。

(3)一个决策将你从一个阶段的一种状态带到下一个阶段的某种状态。

(4)在任一个阶段,最佳的决策序列和该阶段以前的决策无关。

(5)各阶段状态之间的转换有明确定义的费用,而且在选择最佳决策时有递

推关系(即动态转移方程)。[3]

2 动态规划模型

在现实生活的生产运输中,往往出发地与目的地之间有多种路线可供选择,不同的路线所花费的时间与费用也不同,时间与费用决定着企业的发展,这就需要选择最短的路径来提高效率。为了解决这个问题,将动态规划的理论与方法运用于生产运输中,节约了时间,为:企业的发展提供了契机。建立这个规划模型的具体步骤如下:

○1划分阶段:把所给问题的过程,恰当的划分为若干个相互联系的部分,以便于求解,其中每个部分叫阶段。通常用k表示阶段变量

○2确定状态变量及其取值范围:状态表示在任一阶段所处的,它既是该阶段的起点,又是前一阶段的终点。通常一个阶段有若干个阶段。描述状态的变量称为状态变量。参数

s表示第k阶段的状态变量。该阶段所有可能状态的全体称为

k

s。状态变量要能描述决策过程演变的状态,又要满足无后效状态集合,记为

k

性的要求,而且维数要尽可能地少。

3确定决策变量及其取值范围:在某一阶段,当状态给定后,往往可以作出不同的决定,从而确定下一阶段的状态,这种决定称为决策。描述决策的变量称为决策变量,用()k k u s 表示第k 阶段当状态为k s 时的决策变量,它是状态变量k s 的函数。决策变量的取值范围称为决策集合,通常用()k k D s 表示第k 阶段状态为k s 时的允许决策集合。显然有()()k k k k u D s s ∈。

○4建立状态转移方程:状态转移方程描述由一个状态到另一个状态的演变过程。因为某一阶段的状态变量及决策变量取定后,下一阶段的状态就随之而定。用()1,k k k T s u s +=表示k 阶段与k+1阶段状态的变换规律

5指标函数和最优指标函数值:阶段指标(又称阶段效益)是衡量该阶段决策效果的数量指标,它是整个系统效益的一部分,是阶段状态和阶段决策的函数。用(),k k k d s u 表示在第k 阶段由状态k s 和执行决策()k k u s 所得的效益。

指标函数(又称目标函数)是衡量所实现过程优劣的一种数量指标,它表示系统执行某一策略所产生的效益,它是定义在过程(可以是全过程,也可以是后部子过程)上的数量函数,用,k n f 表示:

(),,111,,,,,,1,2,k n k n k k k k n f f s u s u s k n +++==

当初始状态给定时,过程的策略就确定了,因而指标函数也就确定,故指标函数是初始状态和策略的函数,即:

[],,,(),k n k n k k k f f s P s =

指标函数,k n f 的最优值,称为最优指标函数值,记为()k k f s ,它表示从第k 阶段由状态k s 出发到过程结束时所获得的最优指标函数值。在最短路线问题中,,k n f 表示从第k 阶段的点k s 至终点G 的距离,()k k f s 表示由点k s 到G 的最短距离,用

(),k k k d s u 表示在第k 阶段由点k s 到点()1k k k u s s +=的距离。

最后得到动态规划的一般模型为:

()()

)()()({}

()111,,0,,1,1,k k k k k

k k k k k k u D s k k f s opt d s u f u s f s k n n +∈++?=+???==-?

()k k f s 为从状态k s 出发到终点的最优效益,

“opt ”是optimization (最优化)的缩写[]

2

3 实例分析

为进一步说明该方法的有效性和实用性,先将该方法运用于某物流配送网络中:

设某物流配送网络图由9个配送点组成,点0A 为配送中心,9A 为终点,试求自

9A 到图中任何配送点的最短距离。图中相邻两点的连线上标有两点间的距离[]1

首先根据网络图以及上面的建模方法我们可以将运输过程划分成三个阶段,分别为:第一阶段0A ,第二阶段1357,,,A A A A ,第三阶段2468,,,A A A A ,显然两点之间直线路径小于折线路径 阶段变量用k 表示;

状态变量k A 表示k 阶段初可能的位置; 决策)(k k f A 表示k 阶段初可能选择的路线; 由后向前逐步推移计算最优路径:

当k=3时,由2468,,,A A A A 到9A 只有一条路线,故()32f A =16,()34f A =8,()38f A =4,()36f A =14

当k=2时,出发点有1357,,,A A A A 三个,若从1A 出发,只有一个选择,至2A ,所以()21f A =27

从3A 出发,有两个选择,至24,A A ,所以())()()()(232322323434,516min min 18108,d A A f A f A d A A f A ??++?????===????++????

???

从5A 出发,有两个选择,至46,A A ,所以())()()()(254342525636,168min min 19154,d A A f A f A d A A f A ??++????

?===?

???++???????

从7A 出发,有两个选择,至68,A A ,所以())()()()(2763627278

38,114min min 151214,d A A f A f A d A A f A ??++????

?===????++???????

最短路线是769A A A →→

当k=1时,出发点有0A 一个,若从0A 出发,至1A ,所以()10f A =31 若从0A 出发,至3A ,所以()10f A =25 若从0A 出发,至5A ,所以()10f A =27 若从0A 出发,至7A ,所以()10f A =24

由上面计算得到最优路径()10f A =24,最优路径为0769A A A A →→→

由本实例我们可以总结出动态规划的优越性所在: (1)求解过程,结果清晰明了; (2)能得到一组解,有利于分析结果; (3)易于确定全局最优解;

4 结论

用动态规划解决多阶段决策问题可以提高效率,而且思路清晰简便,同时易于实现,虽然使用动态规划方法也有一定的限制,如状态变量必须满足无后效性,不考虑路况,天气等不确定因素对行程的影响,并且只适用一些维数相对较低的问题等。但是可以看到,动态规划的应用是很广的,已成功解决了许多实际问题,具有一定的实用性。本文将动态规划思想运用到求解物流配送中的最短路径问题中,其优点在于思路清晰,方法简便,理论可靠,在实际运用中取得了良好的效果。但是本文只考虑了一个起点的应用实例,在实际中有可能存在多个起点的情况,因此我们可以考虑将其进行改进,使之更好的运用在实际中,为企业的发展提供更多的帮助。

Using the dynamic programming model is

used to solve the shortest path problem

logistics distribution

Wangjiajun

Abstract: with the rapid development of modern society, the logistics distribution became connected each production base hub, transportation cost problem has become the key to the development of the enterprise.Freight volume, and not only from about transportation and walking routes related. Traditional transport problems did not consider the traffic network, under the condition of the known freight rate only find out optimal scheduling solutions, not asked the optimal walk path.This paper put forward "Internet logistics distribution problem", volume in unknown rate, the case, will determine the transportation process is divided into several stages, in each phase of the selection of the optimum strategy, finally found the whole process of the overall optimum target, save enterprise spending.

Keywords: dynamic planning, mathematical model, the logistics distribution, optimal path

[参考文献]

[1]蒋琦玮,陈治亚物流配送最短径路的动态规划方法研究[J].系统工程,2007,25(4):27-29

[2]戴朝寿,孙世良数学建模简明教程[M].高等教育出版社,2007.7

[3]孙晓燕,李自良,彭雄凤,傅亚力,梁志强利用动态规划法求解运输问题的最短路径.机械设计与制造,2010,2

[4]陈理荣数学建模导论,1999

[5 ]韩世莲,李旭宏,刘新旺.物流运输网络模糊最短路径的偏好解[J ].交通运输学报,2005,5(2):122~126.

[6 ]周程,物流配送路径优化策略研究[J ].武汉理工大学学报,2005,29(5):797~800.

01背包问题动态规划详解

动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4 4,5 5,6 c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为 4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是4.所以。 总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.) 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?

下面是实际程序: #include int c[10][100]; int knapsack(int m,int n) { int i,j,w[10],p[10]; for(i=1;ic[i-1][j]) c[i][j]=p[i]+c[i-1][j-w[i]]; else c[i][j]=c[i-1][j]; }

用动态规划法实现有向图的最短路径问题。

动态规划法实现有向图的最短路径实验 实验题目: 设计一个求解有向图,单源最短路径的算法 实验目的: 1)了解,并掌握分支限界算法思想 2)会编写常见算法。 实验要求: 1.编写实验代码 2.分析算法时间和空间复杂度 实验主要步骤: 1 算法代码 package suanfa; publicclass ShortPath{ privatestatic Integer M = Integer.MAX_VALUE; publicstaticvoid main(String[]args){ int[][]c={{M,4,2,3,M,M,M,M,M,M}, {M,M,M,M,9,8,M,M,M,M}, {M,M,M,M,6,7,8,M,M,M}, {M,M,M,M,M,4,7,M,M,M}, {M,M,M,M,M,M,M,5,6,M}, {M,M,M,M,M,M,M,8,6,M}, {M,M,M,M,M,M,M,6,5,M}, {M,M,M,M,M,M,M,M,M,7}, {M,M,M,M,M,M,M,M,M,3}, {M,M,M,M,M,M,M,M,M,M}}; shortPath(10,c); } publicstaticvoid shortPath(int n,int[][]c){ int[] cost=newint[n];//cost[i]存储i到n-1的子问题的最短路径值 int[] path=newint[n];//path[i]存储状态,使cij+cost[i]最小的j值 //对数组cost[n]和path[n]进行初始化 for(int i=0;i=0;i--){

最短路径规划实验报告

电子科技大学计算机学院标准实验报告 (实验)课程名称最短路径规划 电子科技大学教务处制表

实验报告 学生姓名:李彦博学号:2902107035 指导教师:陈昆 一、实验项目名称:最短路径规划 二、实验学时:32学时 三、实验原理:Dijkstra算法思想。 四、实验目的:实现最短路径的寻找。 五、实验内容: 1、图的基本概念及实现。 一、图的定义和术语 图是一种数据结构。 ADT Graph{ 数据对象V :V是据有相同特性的数据元素的集合,称为顶点集。 数据关系R : R={VR} VR={|v,w∈V且P(v,w), 表示从v到w的弧,P(v,w)定义了弧的意义或信息} 图中的数据元素通常称为顶点,V是顶点的有穷非空集合;VR是两个顶点之间的关系的集合,若顶点间是以有向的弧连接的,则该图称为有向图,若是以无向的边连接的则称为无向图。弧或边有权值的称为网,无权值的称为图。 二、图的存储结构 邻接表、邻接多重表、十字链表和数组。这里我们只介绍数组表示法。 图的数组表示法: 用两个数组分别存储数据元素(顶点)的信息和数据元素之间的关系(边或弧)的信息。其形式描述如下: //---------图的数组(邻接矩阵)存储表示---------- #define INFINITY INT_MAX //最大值 #define MAX_VERTEX_NUM 20 //最大顶点个数 Typedef enum{DG,DN,UDG,UDN} GraphKind; //有向图,有向网,无向图,无向网Typedef struct ArcCell{ VRType adj; //顶点关系类型,对无权图,有1或0表示是否相邻; //对带权图,则为权值类型。 InfoType *info; //弧相关信息的指针

动态规划之01背包问题(最易理解的讲解)

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。 01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] } f[i,j]表示在前i件物品中选择若干件放在承重为j 的背包中,可以取得的最大价值。 Pi表示第i件物品的价值。 决策:为了背包中物品总价值最大化,第i件物品应该放入背包中吗? 题目描述: 有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最 首先要明确这张表是从右到左,至底向上生成的。 为了叙述方便,用e10单元格表示e行10列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为10的背包,那么这个背包的最大价值是6,因为e物品的重量是4,背包装的了,把e装进去后价值为6。然后是e9单元格表示背包承重9,只有物品e, e装进去后,背包价值为6,接着是e8, e7单元格,一直到e3单元格表示背包承重3,但物品e承重4,装不了,所以e3=0, 对于d10单元格,表示只有物品e,d时,承重为10的背包,所能装入的最大价值,是10,因为物品e,d这个背包都能装进去。对于承重为9的背包,d9=10,是怎么得出的呢? 根据01背包的状态转换方程,需要考察两个值, 一个是f[i-1,j],对于这个例子来说就是e9的值6,另一个是f[i-1,j-Wi]+Pi; 在这里, f[i-1,j]表示我有一个承重为9的背包,当只有物品e可选时,这个背包能装入的最大价值 f[i-1,j-Wi]表示我有一个承重为4的背包(等于当前背包承重减去物品d的重量),当只有物品e可选时,这个背包能装入的最大价值 f[i-1,j-Wi]就是指单元格e4值为6,Pi指的是d物品的价值,即4 由于f[i-1,j-Wi]+Pi = 6 + 4 = 10 大于f[i-1,j] = 6,所以物品d应该放入承重为9的背包,所以d9=10.

最短路径规划

习题课内容 同学主导 ? 例2-09(信计101两个同学:常现杰陈少华) 211两个同学付乾乾? 例2-11(信计101两个同学:付乾乾桂大龙) ? 例2-12(信计102两个同学:蔡中华陈恒)214两个同学邓金勇?例2-14(信计102两个同学:邓金勇邓小龙) ?看得见的数学 有趣的小实验 系统最短路径规划专题

系统最短路径规划专题 1有趣的小试验、有趣的小试验An interesting experiment 2、物理可视化原理Visualization Principle 3、最短路径可视化仪及应用 Visualization instrument for system shortest path programming 4、社会评价Social evaluation 5、发明与机遇并存案例、发遇 Case studies for Invention and Chance

系统最短路径规划专题 1、有趣的小试验 测试板放入溶液 取出测试板得到薄膜轨迹系统全局最短路径

系统最短路径规划专题 1有趣的小试验、有趣的小试验An interesting experiment 2、物理可视化原理Visualization Principle 3、最短路径可视化仪及应用 Visualization instrument for system shortest path programming 4、社会评价Social evaluation 5、发明与机遇并存案例、发遇 Case studies for Invention and Chance

解0-1背包问题的动态规划算法

关于求解0/1背包问题的动态规划算法 摘要:本文通过研究动态规划原理,提出了根据该原理解决0/1背包问题的方法与算法实现, 并对算法的正确性作了验证.观察程序运行结果,发现基于动态规划的算法能够得到正确的决策方案且比穷举法有效. 关键字:动态规划;0/1背包;约束条件;序偶;决策序列;支配规则 1、引 言 科学研究与工程实践中,常常会遇到许多优化问题,而有这么一类问题,它们的活动过程可以分为若干个阶段,但整个过程受到某一条件的限制。这若干个阶段的不同决策的组合就构成一个完整的决策。0/1背包问题就是一个典型的在资源有限的条件下,追求总的收益最大的资源有效分配的优化问题。 对于0/1背包问题,我们可以这样描述:设有一确定容量为C 的包及两个向量C ’=(S 1,S 2,……,S n )和P=(P 1,P 2,……,P N ),再设X 为一整数集合,即X=1,2,3,……,N ,X 为SI 、PI 的下标集,T 为X 的子集,那么问题就是找出满足约束条件∑S i 〈=C ,使∑PI 获得最大的子集T 。在实际运用中,S 的元素可以是N 个经营项目各自所消耗的资源,C 可以是所能提供的资源总量,P 的元素可是人们从各项项目中得到的利润。 0/1背包问题是工程问题的典型概括,怎么样高效求出最优决策,是人们关心的问题。 2、求解问题的动态规划原理与算法 2.1动态规划原理的描述 求解问题的动态规划有向前处理法向后处理法两种,这里使用向前处理法求解0/1背包问题。对于0/1背包问题,可以通过作出变量X 1,X 2,……,X N 的一个决策序列来得到它的解。而对于变量X 的决策就是决定它是取0值还是取1值。假定决策这些X 的次序为X n ,X N-1,……,X 0。在对X 0做出决策之后,问题处于下列两种状态之一:包的剩余容量是M ,没任何效益;剩余容量是M-w ,效益值增长了P 。显然,之后对X n-1,Xn-2,……,X 1的决策相对于决策X 所产生的问题状态应该是最优的,否则X n ,……,X 1就不可能是最优决策序列。如果设F j (X )是KNAP (1,j ,X )最优解的值,那么F n (M )就可表示为 F N (M )=max(f n (M),f n-1(M-w n )+p n )} (1) 对于任意的f i (X),这里i>0,则有 f i (X)=max{f i-1(X),f i-1(X-w i )+p i } (2) 为了能由前向后推而最后求解出F N (M ),需从F 0(X )开始。对于所有的X>=0,有F 0(X )=0,当X<0时,有F 0(X )等于负无穷。根据(2),可求出0〈X 〈W 1和X 〉=W 1情况下F 1(X )的值。接着由(2)不断求出F 2,F 3,……,F N 在X 相应取值范围内的值。 2.2 0/1背包问题算法的抽象描述 (1)初始化各个元素的重量W[i]、效益值P[i]、包的最大容量M ; (2)初始化S0; (3)生成S i ;

算法分析与程序设计动态规划及回溯法解背包问题

动态规划法、回溯法解0-1背包问题 2012级计科庞佳奇 一、问题描述与分析 1.动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会 有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。 不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。 多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化问题的方法为动态规划方法。任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适用动态规划的问题必须满足最优化原理和无后效性。1.最优化原理(最优子结构性质)最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。2.无后效性将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。3.子问题的重叠性动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。其中的关键在于解决冗余,这是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它的空间复杂度要大于其它的算法。 01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2……Wn,与之相对应的价值为P1,P2……Pn。求出获得最大价值的方案。 2.回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目 标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。 在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

运用动态规划模型解决最短路径问题

运用动态规划模型解决物流配送中的最短路径问题 王嘉俊 (盐城师范学院数学科学学院09(1)班) 摘要:随着现代社会的高速发展,物流配送成为了连接各个生产基地的枢纽,运输的成本问题也成为了企业发展的关键。运费不但与运量有关,而且与运输行走的线路相关。传统的运输问题没有考虑交通网络,在已知运价的条件下仅求出最优调运方案,没有求出最优行走路径。文中提出“网络上的物流配送问题“,在未知运价,运量确定的情况下,将运输过程在每阶段中选取最优策略,最后找到整个过程的总体最优目标,节省企业开支。 关键词:动态规划,数学模型,物流配送,最优路径 1 引言 物流配送是现代化物流系统的一个重要环节。它是指按用户的订货要求, 在配送中心进行分货、配货, 并将配好的货物及时送交收货人的活动。在物流配送业务中, 合理选择配送径路, 对加快配送速度、提高服务质量、降低配送成本及增加经济效益都有较大影响。物流配送最短径路是指物品由供给地向需求地的移动过程中, 所经过的距离最短(或运输的时间最少, 或运输费用最低) , 因此, 选定最短径路是提高物品时空价值的重要环节。[1] 经典的Dijkstra 算法和Floyd 算法思路清楚,方法简便,但随着配送点数的增加,计算的复杂性以配送点数的平方增加,并具有一定的主观性。我国学者用模糊偏好解试图改善经典方法[]5,取得了较好的效果。遗憾的是,模糊偏好解本身就不完全是客观的。文献[]6详细分析了经典方法的利弊之后,提出将邻接矩阵上三角和下三角复制从而使每条边成为双通路径,既适用于有向图也适用于无向图, 但复杂性增加了。为了避免上述方法存在的不足,本文以动态规划为理论,选择合理的最优值函数,用于解决物流配送最短路径问题。 动态规划是解决多阶段决策过程最优化问题的一种数学方法。1951年美国数学家Bellman(贝尔曼)等人根据一类多阶段决策问题的特性,提出了解决这类问题的“最优性原理”,并研究了许多实际问题,从而创建了最优化问题的一种新方法——动态规划。 动态规划在工程技术、管理、经济、工业生产、军事及现代控制工程等方面都有广泛的应用,而且由于动态规划方法有其独特之处,在解决某些实际问题时,显得更加方便有效。由于决策过程的时间参数有离散的和连续的情况,故决

最短路径问题的0-1规划模型,lingo直接求解

解:对于无向图的最短路问题,可以这样理解,从点到点和点到点的边看成有向弧,其他各条边均看成有不同方向的双弧,因此,可以按照前面介绍有向图的最短路问题来编程序,但按照这种方法编写LINGO程序相当于边(弧)增加了一倍.这里选择邻接矩阵和赋权矩阵的方法编写LINGO程序. MODEL: 1] sets: 2] cities/1..11/; 3] roads(cities, cities): p, w, x; 4] endsets 5] data: 6] p = 0 1 1 1 0 0 0 0 0 0 0 7] 0 0 1 0 1 0 0 0 0 0 0 8] 0 1 0 1 1 1 1 0 0 0 0 9] 0 0 1 0 0 0 1 0 0 0 0 10] 0 1 1 0 0 1 0 1 1 0 0 11] 0 0 1 0 1 0 1 0 1 0 0 12] 0 0 1 1 0 1 0 0 1 1 0 13] 0 0 0 0 1 0 0 0 1 0 1 14] 0 0 0 0 1 1 1 1 0 1 1 15] 0 0 0 0 0 0 1 0 1 0 1 16] 0 0 0 0 0 0 0 0 0 0 0; 17] w = 0 2 8 1 0 0 0 0 0 0 0 18] 2 0 6 0 1 0 0 0 0 0 0 19] 8 6 0 7 5 1 2 0 0 0 0 20] 1 0 7 0 0 0 9 0 0 0 0 21] 0 1 5 0 0 3 0 2 9 0 0 22] 0 0 1 0 3 0 4 0 6 0 0 23] 0 0 2 9 0 4 0 0 3 1 0 24] 0 0 0 0 2 0 0 0 7 0 9 25] 0 0 0 0 9 6 3 7 0 1 2 26] 0 0 0 0 0 0 1 0 1 0 4 27] 0 0 0 0 0 0 0 9 2 4 0; 28] enddata 29]n=@size(cities); 30]min=@sum(roads:w*x); 31]@for(cities(i) | i #ne# 1 #and# i #ne# n: 32] @sum(cities(j): p(i,j)*x(i,j)) 33] =@sum(cities(j): p(j,i)*x(j,i))); 34]@sum(cities(j): p(1,j)*x(1,j))=1; END 在上述程序中,第6]行到第16]行给出了图的邻接矩阵,到和到的边按单向计算,其余边双向计算.第17]行到第27]行给出了图的赋权矩阵, 注意:由于有了邻接矩阵,两点无道路连接时,权值可以定义为0. 其它的处理方法基本上与有向图相同. 用LINGO软件求解,得到(仅保留非零变量)

01背包问题动态规划详解及C++代码

0/1背包问题动态规划详解及C++代码 1. 问题描述 给定一个载重量为C的背包 有n个物品 其重量为wi 价值为vi 1<=i<=n 要求:把物品装入背包 并使包内物品价值最大2. 问题分析 在0/1背包问题中 物体或者被装入背包 或者不被装入背包 只有两种选择。循环变量i j意义 前i个物品能够装入载重量为j的背包中 数组c意义 c[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值 若w[i]>j 第i个物品不装入背包 否则 若w[i]<=j且第i个物品装入背包后的价值>c[i-1][j] 则记录当前最大价值 替换为第i个物品装入背包后的价值 其c++代码如下 #include using namespace std; void KANPSACK_DP(int c[50][50], int w[50], int v[50], int n, int C) { for(int i = 0; i <= C; i ++) { c[0][i] = 0; } for(int i = 1; i <= n; i ++) { c[i][0] = 0; for(int j = 1; j <= C; j ++) { if(w[i] <= j) { if(v[i] + c[i - 1][j - w[i]] > c[i - 1][j]) c[i][j] = v[i] + c[i - 1][j - w[i]]; else c[i][j] = c[i - 1][j]; } else c[i][j] = c[i - 1][j]; } } } void OUTPUT_SACK(int c[50][50], int x[50], int w[50], int n, int C) { for(int k = n; k >= 2; k --) { if(c[k][C] == c[k-1][C]) x[k] = 0; else { x[k] = 1; C = C - w[k];

动态规划算法实现多段图的最短路径问题算法设计与分析实验报告

动态规划算法实现多段图的最短路径问题算法设计与分析实验报告

算法设计与分析实验报告 实验名称 动态规划算法实现多段图的最短路径问题 评分 实验日期 年 月 日 指导教师 姓名 专业班级 学号 一.实验要求 1. 理解最优子结构的问题。 有一类问题的活动过程可以分成若干个阶段,而且在任一阶段后的行为依赖于该阶段的状态,与该阶段之前的过程如何达到这种状态的方式无关。这类问题的解决是多阶段的决策过程。在50年代,贝尔曼(Richard Bellman )等人提出了解决这类问题的“最优化原理”,从而创建了最优化问题的一种新的算法设计方法-动态规划。 对于一个多阶段过程问题,是否可以分段实现最优决策,依赖于该问题是否有最优子结构性质,能否采用动态规划的方法,还要看该问题的子问题是否具有重叠性质。 最优子结构性质:原问题的最优解包含了其子问题的最优解。 子问题重叠性质:每次产生的子问题并不总是新问题,有些子问题被反复计算多次。问题的最优子结构性质和子问题重叠性质是采用动态规划算法的两个基本要素。 2.理解分段决策Bellman 方程。 每一点最优都是上一点最优加上这段长度。即当前最优只与上一步有关。 U s 初始值,u j 第j 段的最优值。 ? ????+==≠}.{min , 0ij i j i j s w u u u

3.一般方法 1)找出最优解的性质,并刻画其结构特征;2)递归地定义最优值(写出动态规划方程);3)以自底向上的方式计算出最优值; 4)根据计算最优值时得到的信息,构造一个 最优解。 步骤1-3是动态规划算法的基本步骤。在只需要求出最优值的情形,步骤4可以省略,步骤3中记录的信息也较少;若需要求出问题的一个最优解,则必须执行步骤4,步骤3中记录的信息必须足够多以便构造最优解。 二.实验内容 1.编程实现多段图的最短路径问题的动态规 划算法。 2.图的数据结构采用邻接表。 3.要求用文件装入5个多段图数据,编写从文件到邻接表的函数。 4.验证算法的时间复杂性。 三.程序算法 多段图算法: Procedure FGRAPH(E,k,n,P) //输入是按段的顺序给结点编号的,有n个结点的k段图。E是边集,c(i,j)是边的成本。P(1:k)是最小成本路径。// real COST(n),integer(n-1),P(k),r,j,k,n COST(n)<-0 for j<-n-1 to 1 by -1 do //计算COST(j)// 设r是一个这样的结点,(j,r) E且使c(j,

动态规划-最短路径问题

最短路径问题 下图给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路长度。 现在,我们想从城市a到达城市E。怎样走才能使得路径最短,最短路径的长度是多少?设DiS[x]为城市x到城市E的最短路径长度(x表示任意一个城市); map[i,j]表示i,j两个城市间的距离,若map[i,j]=0,则两个城市不通; 我们可以使用回溯法来计算DiS[x]: var S:未访问的城市集合; function search(who{x}):integer; {求城市who与城市E的最短距离} begin if Who=E Then Search←0 {找到目标城市} Else begin min←maxint;{初始化最短路径为最大} for i 取遍所有城市 Do if(map[Who,i]>0{有路})and(i S{未访问}) then begin S←S-[i];{置访问标志} j←map[Who,i]+ search(i); {累加城市E至城市Who的路径长度} S←S+[i]; {回溯后,恢复城市i未访问状态} if j<min Then min←j; {如果最短则记下} end;{then} search←min;{返回最短路径长度} End;{else} End;{search} begin S←除E外的所有城市; Dis[a]←search(a);{计算最短路径长度} 输出Dis[a]; end.{main} 这个程序的效率如何呢?我们可以看到,每次除了已经访问过的城市外,其他城市都要访问,所以时间复杂度为O(n!),这是一个“指数级”的算法。那么,还有没有效率更高的解题方法呢?

实验项目三 用蛮力法、动态规划法和贪心法求解背包问题

实验项目三 用蛮力法、动态规划法和贪心法求解0/1 背包问题 实验目的 1、学会背包的数据结构的设计,针对不同的问题涉及到的对象的数据结构的设计也不同; 2、对0-1背包问题的算法设计策略对比与分析。 实验内容: 0/1背包问题是给定n 个重量为{w 1, w 2, … ,wn }、价值为{v 1, v 2, … ,vn }的物品和一个容量为C 的背包,求这些物品中的一个最有价值的子集,并且要能够装到背包中。 在0/1背包问题中,物品i 或者被装入背包,或者不被装入背包,设xi 表示物品i 装入背包的情况,则当xi =0时,表示物品i 没有被装入背包,xi =1时,表示物品i 被装入背包。根据问题的要求,有如下约束条件和目标函数: 于是,问题归结为寻找一个满足约束条件式1,并使目标函数式2达到最大的解向量X =(x 1, x 2, …, xn )。 背包的数据结构的设计: typedef struct object { int n;//物品的编号 int w;//物品的重量 int v;//物品的价值 }wup; wup wp[N];//物品的数组,N 为物品的个数 int c;//背包的总重量 1、蛮力法 蛮力法是一种简单直接的解决问题的方法,常常直接基于问题的描述和所涉及的概念定义。蛮力法的关键是依次处理所有的元素。 用蛮力法解决0/1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包容量的子集),计算每个子集的总价值,然后在他们中找到价值最大的子集。 所以蛮力法解0/1背包问题的关键是如何求n 个物品集合的所有子集,n 个物品的子集有2的n 次方个,用一个2的n 次方行n 列的数组保存生成的子集,以下是生成子集的算法: ?????≤≤∈≤∑=)1(}1,0{1n i x C x w i n i i i (式1) ∑=n i i i x v 1max (式2)

0-1背包问题动态规划详解及代码

0/1 背包问题动态规划详解及C代码 动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 问题描述: 给定N中物品和一个背包。物品i的重量是W i,其价值位V i,背包的容量为C。问应该如何选择装入背包的物品,使得转入背包的物品的总价值为最大?? 在选择物品的时候,对每种物品i只有两种选择,即装入背包或不装入背包。不能讲物品i 装入多次,也不能只装入物品的一部分。因此,该问题被称为0-1背包问题。 问题分析:令V(i,j)表示在前i(1<=i<=n)个物品中能够装入容量为就j(1<=j<=C)的背包中的物品的最大价值,则可以得到如下的动态规划函数: (1) V(i,0)=V(0,j)=0 (2) V(i,j)=V(i-1,j) jw i (1)式表明:如果第i个物品的重量大于背包的容量,则装人前i个物品得到的最大价值和装入前i-1个物品得到的最大价是相同的,即物品i不能装入背包;第(2)个式子表明:如果第i个物品的重量小于背包的容量,则会有一下两种情况:(a)如果把第i个物品装入背包,则背包物品的价值等于第i-1个物品装入容量位j-w i的背包中的价值加上第i个物品的价值v i; (b)如果第i个物品没有装入背包,则背包中物品价值就等于把前i-1个物品装入容量为j的背包中所取得的价值。显然,取二者中价值最大的作为把前i个物品装入容量为j的背包中的最优解。 比如01背包问题。 因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。测试数据: 10,3 3,4 4,5 5,6

例:动态规划解最短路径问题:

● 例:动态规划解最短路径问题: 步骤(1)、(2)已实现。 最优子结构:从起点到终点的最短路径包含了该路径 上各点到终点的最短路径。 递归公式:设v 为图中一个顶点,v 1, v 2,…, v m 为v 的 直接后继,cost(v)表示v 到终点的最短路径 长度,c[u, w]表示边上的权,t 为终点, 则cost 满足如下递归公式: ??? ????≠∞=≠+=≤≤无后继且有后继且v t v , t v , 0v t v , )}cost(v ] v {c[v,min cost(v)i i m i 1 步骤(3) 计算最优值(求最短路径长度):

设有向网G含n个顶点,用邻接矩阵c[1..n, 1..n]表示,起点为s,终点为t 。 有关信息的保存: 数组cost[1..n]: 存储子问题的解。 (cost[i]表示从顶点i到终点t的最短路径长 度。) 数组succ[1..n]: 存储最短路径的有关信息。 (succ[i]表示顶点i到终点t的最短路径上顶 点i的直接后继。) 原问题的最优值为cost[s]。 (1) 自底向上的迭代算法 关键:根据递归公式确定迭代顺序(即子问题的求解顺序)。 原则:计算cost[i]时,顶点i的所有后继的cost值应先计算。 计算顺序:按图G的逆拓扑排序顺序。 算法SHORTEST_ROUTE_LEN1 输入:有向网G的顶点数n, 邻接矩阵c[1..n, 1..n], 起点s和终点t , 1<=s, t<=n。

输出:G的从起点s到终点t的最短路径长度cost[s]和最短路径有关信息的数组succ[1..n]。 //对图G拓扑排序,结果存于数组a[1..n] 中。 toposort(c, n, a) j=n while a[j]< >t j=j-1 //找出j使得a[j]=t 。 for i=j+1 to n cost[a[j]]=∞//排除无关的顶 点。 cost[t]=0 //从终点开始迭代。 while a[j]< >s j=j-1; k=a[j]; i0=0 ; min=∞ for i=1 to n if c[k, i]+cost[i]

GIS环境下的最短路径规划算法

GIS 环境下的最短路径规划算法 ―――此处最短路理解为路径长度最小的路径 02计算机1班刘继忠 学号:2002374117 1.整体算法说明: 将图的信息用一个邻接矩阵来表达,通过对邻接矩阵的操作来查找最短路进,最短路径的查找采用迪杰斯特拉算法,根据用户给出的必经结点序列、起点、终点进行分段查找。 2.各函数功能及函数调用说明。 1).void Welcome() 程序初始化界面,介绍程序的功能、特点及相关提示 2) void CreatGraph(MGraph *G,char buf[]) 把图用邻接矩阵的形式表示,并进行 初始化。 3).int ShortestPath(MGraph *G,int jump,int end,int avoid[],int P[MAXSIZE][MAXSIZE],int Dist[],int ShPath[])根据用户给出的起点、终点、必经结点、避开结点进行最短路径的分段查找。 4).void Print(int jump,int end,int Dist[],int ShPath[]) 输出找到的最短路径所经的 结点和路径长度。 函数调用图: 3.各函数传入参数及返回值说明: 1).void Welcome() 无传入和返回值 2) void CreatGraph(MGraph *G,char buf[ ]) MGraph *G为主函数中定义的指向存放图的信息的指针变量。 char buf[ ]为主函数中定义的用来存放在图的相关信息录入时的界面信息的数组,以便以后调用查看各结点的信息。

无返回值。 3).int ShortestPath(MGraph *G,int jump,int end,int avoid[],int P[MAXSIZE][MAXSIZE],int Dist[ ],int ShPath[ ]) MGraph *G指向存放图的信息的指针变量。 int jump起点,int end终点,int avoid[ ] 避开结点序列。 int P[MAXSIZE][MAXSIZE]用来记录各点当前找到的最短路径所经过 的结点。 int Dist[ ] 记录各结点的当前找到的最短路径的长度。 int ShPath[ ]用来存放用户需要的最短路径所经的各结点。 返回最短路径查找是否成功的信息。(return SUCCEED;return ERROR)4).void Print(int jump,int end,int Dist[],int ShPath[]) int jump起点,int end终点。 int Dist[ ] 记录各结点的当前找到的最短路径的长度。 int ShPath[ ]用来存放用户需要的最短路径所经的各结点。 无返回值。 4.用户说明: ①源程序经编译连接后运行,出现程序的初始化界面,其内容为介绍程序的 功能、特点及相关提示。如下: Welcome to shortest path searching system. Instructions Function: 1. Personal travelling route choosing. 2. Assistan helper in city's traffic design. 3. Shortes path choose in the comlicated traffic net of the city. Characteristic: It is convient,you could set vital point you must travel,and the point you must avoid. Prompt: If the condition is too secret ,maybe there will have no path available. Designer: Liu jizhong. Complate-data: 2004. 3. 21 CopyRight: Shared program,welcome to improve it. Press anykey to enter the program... ②按任意键进入图的信息录入界面根据提示即可完成图的信息的录入。

0-1背包问题动态规划详解及代码

0/1背包问题动态规划详解及C代码 动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 /*一个旅行者有一个最多能用M公斤的背包,现在有N件物品, 它们的重量分别是W1,W2,...,Wn, 它们的价值分别为P1,P2,...,Pn. 若每种物品只有一件求旅行者能获得最大总价值。 输入格式: M,N W1,P1 W2,P2 ...... 输出格式: X*/ 因为背包最大容量M未知。所以,我们的程序要从1到M一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4

4,5 5,6 c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放 4."这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放 4."假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为 4."而背包容量为5的时候,则最佳方案为自己的重量 5."背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是 4."所以。总的最佳方案是5+4为 9."这样.一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的 6."而是上一排的 9."说明这时候3号物品没有被选.选的是1,2号物品.所以得 9.") 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗? 下面是实际程序(在VC 6."0环境下通过): #include

最短路径Floyd算法动态规划问题及其程序设计样本

最短路径动态规划问题及其程序设计 林旭东 (深圳大学管理学院,广东深圳518060) [摘要]本文以最短路径问题为例,在给出佛洛伊德算法的基础上,设计了求解该算法的计算程序,这样可大大提高最短路径计算的效率。 [关键词]最短路径; 动态规划; 程序设计 1 佛洛伊德算法 已知有n个顶点的有向图,佛洛伊德算法能够求解出每一对顶点之间的最短路径。假设使用邻接矩阵d ( i, j)来对图进行存储, d ( i, j)表示υi 到υj 之间的距离,可是该距离不一定是最短距离。佛洛伊德算法的基本思想是:为求顶点υi→υj 之间的最短距离,需要进行n次试探。首先将υ0 加入路[收稿日期] - 12 - 22[作者简介]林旭东(1972 - ) ,男, 湖北武汉人,深圳大学管理学院副教授,博士后,主要研究方向:数量模型与决策分析。径,考虑路径υi →υ0 →υj 是否存在,如果存在,则比较υi →υj和υi →υ0 →υj 的路径长度,取长度短的路径作为υi →υj 的路径,记作(υi ,υj ) 。接着在路径上再增加一个顶点υ1 ,比较υi→υ1 →υj 和(υi ,υj )的路径长度, 取长度短的路径作为(υi ,υj) 。不断将顶点υ2 ,υ3 , .,υn - 1加入进行试探, 最后得到的(υi ,υj )必定为υi →υj 的最短路径。若使用数组dk ( i, j)表示加入顶点k后,最短路径长度的变化情况,使用数组pk ( i, j)表示加入顶点k后,最短路径上顶点的变化情况,这样佛洛伊德算法就会产生一组d 0 ( i, j) ,d1 ( i, j) , ., dn - 1 ( i, j)和一组p0 ( i, j) , p1 ( i, j) , ., pn - 1 ( i, j) 。 R2 = 01314 014 01286 0 01197 01263 01394 01146

动态规划之-0-1背包问题及改进

动态规划之-0-1背包问题及改进

有N件物品和一个容量为V的背包。第i件物品的重量是w[i],价值是v[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。在选择装入背包的物品时,对于每种物品i,只能选择装包或不装包,不能装入多次,也不能部分装入,因此成为0-1背包问题。 形式化描述为:给定n个物品,背包容量C >0,重量第i件物品的重量w[i]>0, 价值v[i] >0 , 1≤i≤n.要求找一n元向量(X1,X2,…,X n,), X i∈{0,1}, 使得∑(w[i] * Xi)≤C,且∑ v[i] * Xi达最大.即一个特殊的整数规划问题。 数学描述为: 求解最优值:

设最优值m(i,j)为背包容量为j、可选择物品为i,i+1,……,n时的最优值(装入包的最大价值)。所以原问题的解为m(1,C) 将原问题分解为其子结构来求解。要求原问题的解m(1,C),可从m(n,C),m(n-1,C),m(n-2,C).....来依次求解,即可装包物品分别为(物品n)、(物品n-1,n)、(物品n-2,n-1,n)、……、(物品1,物品2,……物品n-1,物品n)。最后求出的值即为最优值m(1,C)。 若求m(i,j),此时已经求出m(i+1,j),即第i+1个物品放入和不放入时这二者的最大值。 对于此时背包剩余容量j=0,1,2,3……C,分两种情况: (1)当w[i] > j,即第i个物品重量大于背包容量j时,m(i,j)=m(i+1,j) (2)当w[i] <= j,即第i个物品重量不大于背包容量j时,这时要判断物品i放入和不放入对m的影响。 若不放入物品i,则此时m(i,j)=m(i+1,j) 若放入物品i,此时背包

相关文档
最新文档