First detection of Lyman continuum escape from a local starburst galaxy

First detection of Lyman continuum escape from a local starburst galaxy
First detection of Lyman continuum escape from a local starburst galaxy

a r X i v :a s t r o -p h /0601608v 2 27 J a n 2006

Astronomy &Astrophysics manuscript no.3788c

ESO 2008February 5,2008

First detection of Lyman continuum photon escape from a local

starburst galaxy

Observations of the luminous blue compact galaxy Haro 11with the Far

Ultraviolet Spectroscopic Explorer (FUSE).I.?

Nils Bergvall 1,E.Zackrisson 2,B-G Andersson 3,D.Arnberg 4,J.Masegosa 5,and G¨o ran ¨Ostlin

61

Dept.of Astronomy and Space Physics,Box 515,S-75120Uppsala,Sweden

e-mail:nils.bergvall@astro.uu.se

2

Dept.of Astronomy and Space Physics,Box 515,S-75120Uppsala,Sweden e-mail:erik.zackrisson@astro.uu.se

3

Department of Physics and Astronomy,Johns Hopkins University,3400North Charles Street,Baltimore,MD 21218,USA e-mail:bg@https://www.360docs.net/doc/8117383953.html,

4Dept.of Astronomy and Space Physics,Box 515,S-75120Uppsala,Sweden 5

Instituto de Astro?sica de Andalucia,Granada,Spain e-mail:pepa@iaa.es

6

Stockholm Observatory,SCFAB,SE-10691Stockholm,Sweden e-mail:ostlin@astro.su.se

Received 7July 2005/Accepted 2November 2005

ABSTRACT

Context.The dominating reionization source in the young universe has not yet been identi?ed.Possible candidates include metal poor dwarf galaxies with starburst properties.

Aims.We selected an extreme starburst dwarf,the Blue Compact Galaxy Haro 11,with the aim of determining the Lyman continuum escape fraction from UV spectroscopy.

Methods.Spectra of Haro 11were obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE).A weak signal shortwards of the Lyman break is identi?ed as Lyman continuum (LyC)emission escaping from the ongoing starburst.From pro?le ?tting to weak metal lines we derive column densities of the low ionization species.Adopting a metallicity typical of the H II regions of Haro 11,these data correspond to a hydrogen column density of ~1019cm ?2.This relatively high value indicates that most of the LyC photons escape through transparent holes in the interstellar medium.We then use spectral evolutionary models to constrain the escape fraction of the produced LyC photons.

Results.Assuming a normal Salpeter initial mass function we obtain a Lyman continuum escape fraction of f esc ~4–10%.We argue that in a hierarchical galaxy formation scenario,the upper limit we derive for the escape rate allows for a substantial contribution to cosmic reionization by starburst dwarf galaxies at high redshifts.

Key words.Galaxies:evolution -formation -starburst -dwarfs,Ultraviolet:galaxies,Cosmology:di ?use radiation

1.Introduction

According to WMAP data,the epoch of reionization started at a redshift of z ≈20(Kogut et al.2003).Observations of the high opacity in the Lyman continuum (hereafter LyC)emis-sion of galaxies (Becker et al.,2001,Fan et al.2002)and the results from the recent studies of the intergalactic medium

2Nils Bergvall et al.:First detection of Lyman continuum photon escape from a local starburst galaxy

it has been proposed that miniquasars fed by intermediate-mass black holes may have been important(Madau et al.2004).

At lower redshifts,observations of a sample of Lyman-break galaxies at z~3.4(Steidel et al.2001)seem to show that galaxies could account for a signi?cant fraction of the photon ?ux required for reionization.The observations indicate a con-tribution of LyC photons a factor of~5higher than for quasars at the same epoch.These results have however not been con-?rmed by other similar studies.On the contrary,it has been argued(Fern′a ndez-Soto et al.2003)that a maximum of4% of the LyC?ux could escape from luminous galaxies at red-shifts1.9

Our information about the galaxy luminosity/mass function at the epoch of reionization is very meager,and it is not at all clear what mass scale would dominate the LyC photon produc-tion rate.In a galaxy formation scenario where mergers are of major importance one would expect starburst dwarf galaxies to be frequent among the?rst generation of galaxies.Indeed the number density of so called Luminous Compact Blue Galaxies (LCBGs)appears to increase with redshift(Lilly et al.1998; Mall′e n-Ornelas et al.1999).It is therefore important to inves-tigate if this type of galaxy could have been an important ion-ization source at high redshift.Dwarf galaxies are however too faint to be observed at high redshifts.We are therefore depen-dent on theoretical models and observations of nearby galaxies that can be used as templates of the?rst generation of dwarf galaxies.Recent models do not give much hope for Lyman escape from galaxies of masses larger than107solar masses (Kitayama et al.2004)but these predictions have to be tested observationally.

We have searched for local dwarfs with properties similar to young dwarf galaxies,that could be used as test objects.A few such studies have already been carried out but only pro-vided upper limits to the escape fraction(e.g.,Giallongo et al. 1997;Devriendt et al.1998;Shull et al.1999).However,pre-dicted equivalent widths of the Balmer emission lines in star-bursts are in some cases larger than observed(e.g.Bergvall 1985,Bresolin et al.,1999,Mas-Hesse&Kunth1999,Moy et al.2001,Stasinska et al.2001).Several possible explana-tions to this were discussed by Mas-Hesse&Kunth(1999). One possibility is that the most massive stars remain hidden in their parental clouds until most of the fuel has been consumed. This would mimic a truncation of the IMF at high masses. Mas-Hesse and Kunth also discussed the possibility that a large fraction of the ionizing photons are absorbed by dust in the H II regions.To obtain agreement with the observations,a large amount of the photons,~60%would have to be absorbed.This possibility has recently been investigated by Hirashita et al.(2003)where the escape fraction of the LyC photons from the H II region itself is estimated from model comparisons.Based on input data from a sample of star forming galaxies they?nd that,in the mean about40%of the photons are trapped,which is less than what would be needed according to Mas-Hesse and Kunth.But the scatter is high so in some cases this certainly would be a possibility.Hirashita et al.seem to?nd that the escape fraction is higher is galaxies with properties similar to Haro11(e.g.the BCG ESO338-IG04).Therefore an alterna-tive,or complementary,explanation for the low?ux of the re-combination lines,may be that a signi?cant fraction of the LyC photons is in fact escaping from the galaxy.This is the possi-bility that we study in this paper.

H II regions in nearby galaxies appear to leak40–50%of the LyC photons produced by the hot stars into the di?use interstellar medium(Ferguson et al.1996;Oey et al.1997). Although it cannot be completely excluded that the gas may be ionized by single O stars located in situ,a comparison of the observed emission line strengths with theoretical mod-els(Iglesias-P′a ramo&Mu?n oz-Tu?n′o n2002;Wood&Mathis 2004)give support to the leakage interpretation.An even more extreme case of a density bounded H II region around a mas-sive star cluster was reported by Leitherer et al.(1996).They estimate that about75%of the LyC radiation is leaking into the di?use ambient medium.Depending on the distribution of the gas,the location where these photons are absorbed may be very di?erent from case to case.In some situations the di?use ionized gas may be much more extended than the H II region producing the photons and will be ignored by the observer who consequently will underestimate the star formation rate.

The other alternative for the discrepancy between theory and observations of the Balmer emission line strengths is that the dust is unevenly distributed across the starburst region so that the younger regions are more reddened than the older ones (Calzetti et al.1994).This could reduce the equivalent width of Hαwith up to a factor of≈2.The only way to really dis-tinguish between a global leakage into to intergalactic medium and the other two alternatives is to search for leaking photons shortward of the Lyman limit.

In previous studies of starburst dwarfs(Bergvall1985, Bergvall&¨Ostlin2002,¨Ostlin et al.1999,2001)we have focused on a few luminous(–19>M B>–21)metal poor blue compact galaxies(BCGs).They have properties similar to the LBGs at intermediate redshifts(e.g.Guzman et al.2003).Here we report on such a study using FUSE,the Far Ultraviolet Spectroscopic Explorer.

1.1.The target galaxy

The target galaxy of our choice is Haro11(=ESO350-IG38)at α2000=00h36m52.5s,δ2000=-33?49′49′′.From the emission-line spectrum we derive a heliocentric radial velocity of v0=6180 km s?1,corresponding to a distance of86Mpc,assuming a Hubble constant of72km s?1Mpc?1.We have previously stud-ied this galaxy over a wide frequency range,from UV to radio (Bergvall&Olofsson1986,Bergvall et al.2000,2002,¨Ostlin et al.,1999,2001).It has unique properties that makes it one of

Nils Bergvall et al.:First detection of Lyman continuum photon escape from a local starburst galaxy 3

the most relevant local objects for our purpose.The chemical abundances are low,the oxygen abundance being ~20%solar

(relative to the revised solar oxygen abundance by Asplund et al.2004b).

An estimate of the typical hydrogen mass of a BCG can be obtained from the correlation between gas mass and major diameter (Gordon &Gottesman 1981).Haro 11has a major diameter of 11kpc at μB =25mag arcsec ?2indicating that the H I mass should be approximately 2×109M ⊙.Despite sev-eral e ?orts at VLA,Nancay and Parkes (all unpublished)we have not been able to detect H I in this galaxy.We estimate the upper limit to M (H I)~108M ⊙.The extraordinary strong [C II]λ158μline,observed with ISO (Bergvall et al.2000),shows that a large part of the H I gas is located in photodis-sociation regions (PDRs).We have estimated the contribution from H 2and H II gas to between 108and 109M ⊙each.This would leave a remarkably small fraction of the total gas mass in atomic form.A possible explanation is that the bulk of the gas in the halo that normally is in neutral state has become ionized by the starburst.Our H αobservations show that the main body is indeed surrounded by an extended halo of ionized gas.The conditions for LyC photon escape thus appear to be unusually favourable.It is interesting to note that the nearby BCG Pox 186,sometimes called ’ultracompact’,is also H I quiet (Begum &Chengalur 2005).

HST GHRS UV spectroscopic observations of Haro 11were carried out by Kunth et al.(2003)who found a quite com-plex absorption system with velocity components of Ly αin ab-sorption on both sides of the emission line.Thus it appears that there are both out?ows and infall of gas in the centre direction.From the absorption lines Kunth et al.estimate column densi-ties and ?nd values as high as log n H ~20cm ?2.The aperture used is small however (2′′circular diameter)and covers only the very central part of the galaxy.Our optical spectroscopy (¨Ostlin et al.2005)reveals velocity gradients of both gas and stars as large as 200km s ?1across two of the bright conden-sations in the very centre,indicating an extremely high mass density in this region.

2.Observations and reductions

2.1.IUE observations

In 1984we observed the galaxy in low dispersion mode with the SWP UV spectrograph of the IUE spacecraft.The aperture used was 10′′x20′′.A low resolution spectrum is shown in Fig.1.Below we will use the slope of the spectrum as an input to the derivation of the dust extinction.

We will also use the IUE spectrum to determine the C /O abundance ratio,based on the C III]λ1908,and O III]λ1663lines.The strongest line,also representing the dominating ion-ization stage is C III]λ1908while the O III]line is nosier.Thus the error in the determination will be signi?cant but it still will be useful as a check of the C /O ratio determined from the FUSE absorption lines (see sect.3.1).The atomic collision strengths are determined from the electron temperature derived

by Bergvall &¨Ostlin (2002)T ≈13400K.From the relative

line intensities we then obtain N(C +)/N(O ++)~0.3±0.1.The

1200140016001800

2

4

6

Haro11 IUE

Fig.1.Spectrum of Haro 11obtained with the IUE space-craft in the low resolution SWP mode.The aperture used was 10′′×20′′.Bad pixels have been ?agged with crosses.

error is dominated by the photon statistics and has been esti-mated from the noise in the region around the line.Assuming ionization correction factors ICF(C /C +)~1.4(Stasi′n ska 1990)

and ICF(O /O ++)~1.5(Bergvall &¨Ostlin 2002),we then ?nally

obtain N(C)/N(O)=0.46+0.15

?0.10.

2.2.FUSE observations

The data were obtained on Oct 12,2001,using the FUSE low resolution mode LWRS with an aperture of 30′′x30′′.The total integration time on target was 16ks.12ks of the observations were carried out during orbital night.The data were reduced using CalFUSE v3.0,with default processing parameter for all spectral segments.As the background level in FUSE data is quite low and hence cannot be reliably measured in detail for short observations,the standard FUSE background correction is based on a set of template ?les which are scaled to averages over the whole detector in any given observation.These tem-plate ?les consist of coadded data from many,long observa-tions of blank sky acquired throughout the mission.The FUSE detectors consist of microchannel plates with electronic pixels whose exact locations depend on the electrical ?eld structure and read-out electronics of the detector (Sahnow et al.,2000).Arti?cial count enhancements occur at the edges of the detec-tor due to non-uniformities in the ?eld and have a very steep dependence on the distance from the edge.The exact mapping of the detector to location in the electronic detector-image de-pends on several factors including the total brightness of the de-tector illumination.Because of the steepness of this edge e ?ect,minor mismatches in the target and background images can cause signi?cant errors in the background subtraction (Sahnow,2005,private communication).As the SiC spectrum falls very close to the lower edge of detector 1B,any relative change in the strength of this edge e ?ect compared to the rest of the back-ground will cause problems in the background correction,par-ticularly for weak sources such as Haro 11.To compensate for

4Nils Bergvall et al.:First detection of Lyman continuum photon escape from a local starburst galaxy

this e ?ect,we reset the areas and relative weighting used to determine the scaling of the background template in the reduc-tion of the SiC1B data.Without any further modi?cations the derived SiC1B spectrum then agrees well with the SiC2A spec-trum.The regions of the lowest signal in both the SiC1B and the LiF1A segments were however signi?cantly below the zero level,indicating that the proper background on the whole was fainter than the subtracted template background.After extrac-tion,calibration and combination of the individual segments,a constant was therefore added to the background to compensate for this.As we are more strongly constrained by low signal-to-noise than spectral resolution,we are not signi?cantly af-fected by the slight di ?erence in dispersion solution between segments,and the consequent lowering of resolution caused by this coaddition.

3.Results

Fig.

3shows the full spectrum with a few of the strongest absorption and emission lines indicated.Strong geocoronal Lyman emission lines are seen on top of the absorption spec-trum.The narrow spike at 1168.7?is a scattered HeI solar emission line.From the absorption lines we can de?ne two velocity systems,one originating in the Milky Way and the other in Haro 11.Fig.2shows the H I 21-cm line spectrum in the direction of Haro 11(l =328?,b =-83?),obtained from the Leiden /Dwingeloo survey (Burton &Hartmann 1994).Our analysis shows that the spectrum in the velocity range -450km s ?1–400km s ?1can be approximated with two components with small negative velocities relative to the LSR as shown in Table 1.

Fig.2.The 21-m line in the direction of Haro 11obtained from the Leiden /Dwingeloo survey (Burton &Hartmann 1994).V LS R is the radial velocity relative to the local standard of rest and T A is the antenna temperature.

The spectral features identi?ed to belong to the Milky Way ISM are indicated with hatched vertical lines in Fig.3.These absorption lines have a linewidth of FWHM ~30km s ?1in

Table https://www.360docs.net/doc/8117383953.html,ponents of the local H I spectrum in the direction of Haro 11.The columns show the central velocity relative to the local standard of rest,peak antenna temperature,full width at half maximum and the derived column density.

V(centre)T(peak)FWHM N km s ?1

K

km s ?1

cm ?2

agreement with the FWHM given in Table 1.The narrowness of the lines is important since it ensures that we can ?nd the proper level of the Lyman continuum of Haro 11between the positions of the galactic Lyman absorption lines.The spectrum of Haro 11is rich in spectral features and dominated by absorp-tion lines from O and B stars.Possible detections of molecular hydrogen lines in the Lyman series have also been indicated.The heliocentric systemic velocity of Haro 11,as de?ned from the optical H II emission (unpublished)and the stellar CaII triplet absorption lines,weighted from the UV mapping of the

galaxy (¨Ostlin et al.2005),is v =6180km s ?1.This velocity

agrees with the position of the P V λ1118?(λobs =1141?)line.The P V line originates from hot dwarf stars on the main sequence.If these stars are metal-rich and massive they tend to show P Cygni pro?les while at lower metallicities,as in our case,the feature is mainly photospheric and narrow and can be used as a systemic velocity ?xpoint.Thus we have two inde-pendent derivations of the systemic velocity of the stellar pop-ulation seen in the far-UV spectral region.Strong deviations from this value would indicate in-or out?ows of gas.

The strongest absorption lines,like those of the Lyman se-ries,are dark but not saturated as is normally the case for star-burst dwarfs (e.g.Heckman et al.2001).This in itself is an indi-cation that the optical depth in the LyC is lower than normal for this type of galaxies.Many of the absorption lines originating in Haro 11are broad and show P Cygni pro?les,e.g.the O VI λλ1032,1038(redshifted to λ1053,1058?)lines.Most of these lines are probably formed in the photospheres or in the winds of O and B stars but there may also be a contribution from more global out?ows.After a rough correction for the stellar con-tribution (see next section),some of the strongest absorption features show asymmetries,indicating high-velocity out?ows.This aspect will be brie?y discussed below and more in detail in a forthcoming paper,focused on the absorption line spectrum.

In Fig.4we display the short wavelength part of the spec-trum.This spectral region is covered by two detector segments,1B and 2A,producing two independent spectra SiC1B and SiC2A.Wavelengths below 917?are only covered by seg-ment 1B.This is also the detector segment with the small-est e ?ective area of the two.Thus,in this region the signal is noisier than at longer wavelengths.What is particularly inter-esting from Fig.4is that below the Lyman limit of Haro 11there clearly seems to be a weak but signi?cant signal in the Lyman continuum .Shortwards of the Lyman limit of the local rest frame the signal diminishes gradually,as expected from the increasing density of the Lyman absorption lines of the lo-cal ISM.The emission is seen in the 2-dimensional display of

Nils Bergvall et al.:First detection of Lyman continuum photon escape from a local starburst galaxy

5

Fig.3.FUSE spectrum of Haro11.The major absorption features have been indicated with solid lines (Haro 11optical rest frame)and hatched lines (local frame).The spectrum also shows strong geocoronal Lyman emission lines and scattered solar HeI at λ1169?.The data have been rebinned with a boxcar of size 0.26?.the spectral region as a faint narrow noisy structure in both SiC channels.We therefore feel con?dent that the LyC excess is not due to calibration problems.The level of the signal how-ever is not so well determined,mainly because of uncertainties in the calibration,a low signal and possibly in?uences of auro-ral emission lines and emission and absorption lines from the Milky Way which we will now discuss.

Haro 11is at a galactic latitude of -83deg.and thus interstellar absorption is not a serious problem.From Schlegel at al.(1998)we obtain A B =0.049m corresponding to A Ly ?limit ~0.18m (Mathis 1990).The Lyman emission lines from the terrestrial airglow are indicated in Fig.5.For com-parison we show in Fig.6both the spectrum based on night-and-day data and the spectrum based on night data only.We can clearly identify the geocoronal Lyman emission lines.Shortwards of the Lyman lines,at much lower intensities,C I lines may weakly in?uence the counts (Feldman et al.2001).In

the following discussion we will use the 900?rest frame ?ux density of Haro 11as a reference of the LyC level.This choice allows comparisons with previous studies of other galaxies (e.g.Leitherer et al.1995,Deharveng et al.2001,Inoue et al.2002).In the local frame this part of the spectrum has been red-shifted to λ=920?.To beat down the noise in the spectrum we determine the LyC level over the line-free regions in the inter-val 920-925?,since the LyC signal is not expected to vary signi?cantly over such a short interval.After correcting for galactic extinction,we obtain f 900=1.1±0.1×10?17Wm ?2??1.The uncertainty due to the complexity in the determination of the background is probably signi?cantly larger than the formal error.In the worst case it could amount to of the order of ~50%of the signal.

6Nils Bergvall et al.:First detection of Lyman continuum photon escape from a local starburst

galaxy

https://www.360docs.net/doc/8117383953.html,parison between night and day data.The lower panel shows the 1σnoise level,corrected to the binsize used in the

plot.

Fig.4.Part of spectrum showing the Lyman continuum signal.The Lyman limit in the local frame (hatched lines)and in the frame of Haro 11(solid lines)have been indicated.

3.1.Spatial distribution of the absorbers.

We mentioned in the introduction that Haro 11appears to be devoid of neutral hydrogen.This could indicate that the LyC photons are leaking out from a truncated Str¨o mgren sphere,i.e.that the emission is ’density bounded’.The hydrogen

ion-

Fig.5.Airglow lines and the rest frame Lyman series.

ization cross section at the Lyman limit is ≈8×10?18cm 2.This means that the LyC is essentially black at column den-sities of a few times 1017cm ?2,if the neutral gas is di ?usely distributed.As discussed in sect.1.1we have derived an upper limit of the mass of neutral hydrogen in Haro 11of 108M ⊙.

Nils Bergvall et al.:First

We can use this number to estimate the

sity of neutral hydrogen under the assumption the same spatial distribution as the stars in

lar scalelength is h V~2.5kpc(Bergvall&¨gives an H I column density in the direction

N(H I)=5×1019cm?2which can be regarded as considerably larger than the limiting column leakage.In this simple model H I would become 4-5scalelengths(i.e.~10kpc)from the centre, galaxy component starts to dominate.But we neutral gas is clumped so we will adapt the

to the homogeneous model-the’picket-fence’is assumed that the LyC radiation is leaking out in the ambient gas.In principle we can carry

to the Lyman lines in absorption to derive the H sities.These lines are however not very useful mixed contribution from OB star photospheres, and line emission from the H II regions.We can mate of the in?uence of stellar features from tra of young stellar populations by Robert et al. models are based on observed stellar spectra metallicities.The metal-poor models are valid 15Myr.We interpolated the model spectra to a agreement with what we obtained from the

an oxygen abundance of~18%solar(based on

abundance derived by Asplund et al.2004b).

a Salpeter initial mass function(IMF)and a constant star for-mation rate(SFR).Fig.7shows the best?t to these models, a burst of the highest age in the library,14Myr.The optical spectra of the central burst show strong W-R features and,as we mention above,P Cygni pro?les are seen in the FUSE spec-trum.These do not?t to the model spectrum shown in?g.7.

A better?t can be obtained if we assume an increasing SFR with the UV emission dominated by massive stars of an age of a few Myr.Modi?cations of the standard IMF can further im-prove the?t.There may also be a signi?cant contribution to the P Cygni component from the supernova generated superwind. However,these issues are not of main importance here.

The in?uence of young stars in the spectrum is strong.The presence of O VI and its P Cygni pro?le indicates the presence of O supergiants(e.g.Gonz′a lez Delgado et al.1997).Thus the burst must be active or stopped not more than3-4Myrs ago. For a continuous SFR we do not expect the spectrum to change much over the expected maximum duration of a typical burst,~108yr and therefore the comparison in Fig.7should be qual-itatively correct.The model spectrum has only partly been cor-rected for interstellar absorption but the in?uence on the Lyβline is marginal so the line pro?le should be entirely dominated by the stellar photospheric contribution.This is con?rmed also from a comparison with predicted Lyβabsorption line strengths in models of O star spectra(Gonz′a lez Delgado et al.1997). Thus it is obvious that these features have a strong in?uence and thus the Lyman lines cannot be used to derive the column density without a more careful correction for the in?uence of the stellar features.However,if we can derive column densities of low ionization stages of heavy elements with known abun-dances relative to hydrogen we can obtain a stricter constraint on the H I column density since the atoms and ions in these hydrogen.

We will use a few rather well de?ned and isolated low ion-ization lines,C IIλ1036,O Iλ1039,SiIIλ1021,ArIλ1048, FeIIλ1097andλ1125.We cannot exclude the fact that there may be a weak contribution to some of these lines from the stellar photospheres but the bulk of the absorption should orig-inate in the ISM.The ionization potentials of these lines are slightly higher than1Ryd.It is known from studies of the local interstellar medium that elements with ionization potentials be-low that of hydrogen and the ionization potential of the second ionization stage above,exist predominantly in the singly ion-ized stage where hydrogen is neutral.It is therefore possible to use also these lines to obtain good estimates of N(HI)un-der certain conditions.The lines of the neutral atoms O and Ar can directly be used to derive column densities if the atoms are e?ectively shielded from ionizing photons by the neutral hy-drogen.In regions where H I is partially ionized,argon may be more fully ionized as a consequence of it high cross section to photon absorption.If so,we would underestimate the column density based on Ar I.This seems to be con?rmed from the results in Table2.Oxygen behaves di?erently since the ioniza-tion fraction is coupled to that of hydrogen via resonant charge-exchange reactions(Jenkins et al.2000).

The optical depth of a speci?c species is given by:

τ(λ)=

πe2

τ(v)dv(2)

8Nils Bergvall et al.:First detection of

whereλ,the wavelength of the line,is given in?

the velocity in km s?1.

We derived the column densities using the Owens obtained from the French FUSE team.The line

responds to the optically derived radial velocity.

virial velocity of BCGs of this luminosity is<100

width of the absorption lines are much larger than

probably due to out?ows from the starburst and to a

tent also to infall of neutral gas.We have to adopt the

line pro?les to this condition and the programme we veniently allows one to?t lines belonging to several components simultaneously.Our approach was to

ber of situations in which we assumed the cloud

consist of between3and9di?erent velocity

cases covering the whole width of the lines.In the

the number of components were low this was

the software by increasing the Doppler broadening

b.The b parameter was allowed to vary between30

kms?1.FUSE has a resolution of~20kms?1and

worry that there could be a signi?cant number of saturated components with low b parameters in the

From FUSE curve-of-growth of neutral and low

sorption line systems in the Magellanic bridge one parameters in the range15-20kms?1(Sembach et

Lehner2002).The H2lines give smaller b values,

stronger con?nement and lower turbulence of these clouds.We do not expect the conditions in Haro11to be more quiet than in the Magellanic bridge and therefore we should be safe with a lower value of the b parameter of the low ionization lines of30 kms?1.In the example we discuss below,however,we allow the parameter to vary freely,utilizing the full resolution of FUSE.

In one setup of parameters we?xed the relative velocity di?er-ences between the di?erent components to the same value,so that the full width of the lines was covered.We also tested?ts where both the velocity di?erences and the line widths were al-lowed to vary freely.In all cases we assumed a gas temperature of300K.The absorption lines from all atoms and ions under study were included simultaneously in the?ts.The optimum ?ts were found to contain between5-7components.Ideally one would expect the relative strengths of the components to be the same for each element.As the components get weaker and noiser however,the results become more and more uncer-tain.Thus while the central3-4components show a good agree-ment,the fainter components may deviate signi?cantly from one species to the other.The goodness of?t(lowest totalχ2 residual/numbers of degrees of freedom)showed small varia-tions between?ts to di?erent numbers of subcomponents.As an example,one of best results for the carbon line is shown in Fig.8.

From Table2we obtain an oxygen to carbon ratio of N(C)/N(O)~0.5.This agrees with the value derived from the IUE spectra(see sect.2.1).Thus we feel con?dent that the pro-cedure we applied above gives reliable results.From the?ts we derived the column densities listed in Table2.We have previously obtained the oxygen abundance of H II regions in Haro11,log(N(O)/N(H))+12=7.9.We will assume that this is an upper limit of the oxygen abundance in the neutral region. Applying the conversion to hydrogen column densities from this number we obtain a lower limit to the hydrogen column density,logN(H I)=19.6.We have no corresponding determi-nation of the remaining elements but if we assume the rela-tive abundances to be the same as the solar(Asplund et al., 2004a)we obtain a lower limit to logN(H I)of between19.6 and20.3with the lower value for the strong carbon line.These relative high values are not consistent with a di?use distribu-tion of H I since it would prohibit leakage.We conclude that the photons must be leaking out through transparent windows in the gaseous halo in a”picket-fence fashion”.This would also mean that the estimated column densities are slightly too low, due to the dilution.A possible scenario explaining why we ob-serve a leakage is that the merging process has allowed young star clusters to separate from high density gaseous regions on a time scale shorter than the lifetime of the burst,i.e.in a short moment of strong gravitational disturbances.

In the following analysis we will assume that the picket-fence model is the best approximation of the situation.

3.2.Extinction corrections

In the next section we will derive an estimate of the LyC escape fraction based on both the observed Hα?ux and the continuum ?uxes at900and960?rest wavelength of Haro11,f900and f960.The?uxes were integrated over spectral regions of widths 5and2?respectively.As mentioned above,the900?contin-

Nils Bergvall et al.:First detection of Lyman continuum photon escape from a local starburst galaxy9

uum wavelength was chosen to allow a direct comparison with previous studies of Lyman leakage.The960?wavelength was chosen for spectral evolutionary model comparisons since it represents a spectral region reasonably close to the Lyman limit but una?ected by Lyman absorption line wings and other strong lines.The observed data need to be corrected for galactic and internal dust extinction.The galactic extinction in the di-rection of Haro11is A B=0.049(Schlegel et al.1998).The900 and960?rest wavelengths are redshifted to~920and980?in the observed spectrum.At these wavelength A B=0.049 corresponds to A920=0.177and A980=0.175(Mathis1990).We will now discuss the internal extinction corrections.

In the picket-fence approximation,as is further detailed in the next section,we will assume that the LyC photons are es-caping through dust free windows.The only goal for the re-maining part of this section is thus to obtain a value of the ex-tinction correction to the960?region,A960.From the Hα/Hβratio of the central4′′x4′′,corrected for underlying absorption (Bergvall and¨Ostlin2002),we obtain,assuming the Calzetti et al.(1994)extinction law,an internal extinction in B of A B=1.08m±0.07m.The FUSE aperture is30′′×30′′,i.e much larger than the aperture of the optical spectroscopy.The?ux inside the4′′×4′′aperture is only about10%of the total?ux so an estimate of the global extinction based on these data is quite uncertain.If we assume that the dust column density is proportional to the B band?ux we use the small aperture data to derive total extinction in B to be A B=0.66m±0.08m.The er-ror does not include the uncertainty of the model of the dust distribution.

We can also estimate the extinction from the observed slope of the UV continuum in Haro11,using a method developed by Calzetti et al.(1994,1995)and Meurer et al.(1995).Calzetti et al.(1994)investigated39starburst and blue compact galax-ies to study the interstellar extinction in the UV.The observed spectral distribution in this region may be approximated by a power law F(λ)∝λβ.They found that the optical depth obtained from the Hα/Hβratio correlated with the slopeβand derived a value ofβin a dust free environment,β0=-1.7.They also found that the optical depth calculated from the Hα/Hβratio was a factor of2larger than that derived from the continuum under-lying the emission lines.This was interpreted as a consequence of a systematically higher extinction in young star forming re-gions as compared to older regions.

Later,Meurer et al.(1995)found a correlation betweenβand the ratio between the far infrared?ux and the UV?ux at 2200?.This correlation agreed very nicely with a foreground dust screen model following the Calzetti et al.extinction law, if the galaxies had a similar intrinsic UV continuum distribu-tion.The observed slope can therefore be used to derive an esti-mate of the extinction by comparing to the”standard”dust free slope.The value derived by Meurer et al.β0=-2.5±0.5,is bluer than what Calzetti et al.found.This is probably due to the fact that the Meurer et al.sample contained more low–luminosity starburst dwarfs that were completely dominated by the young population while the more massive galaxies in the Calzetti et al.sample had a slightly larger contribution from older stars. The extinction of Haro11therefore depends on which value we choose.Haro11is involved in a very intense global starburst and is metal poor.On the other hand it is quite luminous and most likely has quite a complex star formation history so we expect a mixture of stellar populations of di?erent ages.This puts Haro11somewhere in between the Meurer et al.sample and the Calzetti et al.sample.We will therefore assume that its dust free UV continuum is represented by the weighted mean of the Meurer et al.value and the Calzetti et al.value.Both have a similar observed scatter around the mean so the value we will adopt isβ0=-2.1±0.2.

The UV slope in Haro11,obtained from our IUE obser-vations,covering the wavelength interval1250?–1980?is β=-1.4±0.1.(In the picket-fence model it is incorrect to use the slope without correcting for the contribution from the unobscured part,but this would make a negligible di?er-ence here.)As an additional check of this value we can use the observed?ux ratio F FIR/F UV of Haro11and apply the model most favoured by Meurer et al.to calculate the pre-dicted value ofβ.F FIR is derived from IRAS data and the ap-proximation from Lonsdale&Helou(1985).This results in F FIR=1.26·10?14(2.58F60+F100)W m?2=2.74·10?13W m?2. The?ux at2200?was obtained from an extrapolation of the?t to the shorter wavelength region.This gives us F FIR/F UV=5.9. From this value we obtainβ=-1.6±0.1,agreeing nicely with the former value we derived.β=-1.4corresponds to an extinction in B of A B=0.83,which is quite close to the value we obtain from the Hα/Hβratio(A B=0.66).We will assume a value of A B=0.7±0.2.

The?nal value of the internal extinction was obtained in two steps.First we adopted the Calzetti et al.extinction law,rel-evant in the wavelength region1250?–8000?,to determine the reddening correction at1250?.Then we used the recent determination of the extinction curve in the SMC by Cartledge et al.(2005)to go from there to960?,the region we will use to sample the stellar continuum.We thus?nally adopt an internal extinction A960=2.9m±0.3.

We will now,with the use of spectral evolutionary models, derive an estimate of the upper and lower?ux escape limits.

3.3.Estimate of the escape fraction

https://www.360docs.net/doc/8117383953.html,parison with spectral evolutionary models Under the assumption of a simple geometry for the distribution of stars,gas and dust,limits on the global LyC escape fraction from Haro11may be inferred from the observed LyC?ux. In principle,the LyC leakage could be caused either by holes in the gas(e.g.supernova chimneys),by a total gas mass too low to form a complete Str¨o mgren sphere,or by a combination thereof.Since the high column densities of neutral hydrogen derived in Sect.3.1disfavour a truncated Str¨o mgren sphere for Haro11,we will here estimate the escape fraction assuming that the escape is exclusively due to an isotropic distribution of holes,which are assumed to be devoid of gas(neutral and ionized)as well as dust.

Following Deharveng et al.(2001),we de?ne the total LyC escape fraction f esc as

f esc=

L900,obs

10Nils Bergvall et al.:First detection of Lyman continuum photon escape from a local starburst galaxy

where L 900,obs represents the observed (escaping)luminosity (W ??1)at a wavelength corresponding to 900?in the rest system of the galaxy,and L 900,?represents the corresponding luminosity produced by the stellar component before attenua-tion by gas.Under the approximations adopted here,L 900,?is given by the sum of two components:L 900,?=L 900,obs +L 900,abs ,

(4)

where L 900,abs represents the luminosity lost through gas ab-sorption inside the galaxy.L 900,abs is in turn related to the num-ber of LyC photons absorbed by gas N LyC ,abs through L 900,abs =N LyC ,abs ×10?k 1,

(5)

where k 1is a model-dependent parameter.Under the assump-tion of case B combination,the number of absorbed LyC pho-tons can then be related to the extinction-corrected H αlumi-nosity L H αthrough N LyC ,abs =

λH β

αe ?H β

L H α,(6)

where j H α/j H βis the intrinsic H α/H βline ratio,αB is the Case

B recombination coe ?cient and αe ?

H βis the e ?ective recombina-tion coe ?cient for the H βline.These three parameters depend on the temperature of the nebula and,to lesser extent,on the density.By assuming an electron density of 100cm ?3and ?t-ting a cubic spline to the j H α/j H β,αB and αe ?

H βvalues given by Osterbrock (1989),we

estimate that for the electron tempera-ture of Haro 11(T ≈13400K;Bergvall &¨Ostlin 2002):N LyC ,abs ≈8.56×1011L H α.

(7)

Combination of the equations above,with the relation L =4πD 2f between luminosity L ,H α?ux f H α,?ux density f λand distance D ,gives:f esc =

f 900,obs

L 900,abs

),(9)

we use the Zackrisson et al.(2001,hereafter Z01)spectral evo-lutionary model.With this model,a grid of burst-like spectral evolutionary sequences is generated,de?ned by the model pa-rameter values speci?ed in in Table 3.In the case of a stan-dard Salpeter IMF (dN /dM ∝M ?α;α=2.35with upper mass limit M up =120M ⊙)the range of k 1values allowed by this grid of star formation scenarios becomes k 1=13.23–13.24.When the full range of IMF variations considered (α=1.35–3.35and M up =20–120M ⊙)is used,this constraint relaxes to k 1=12.70–13.58.

When these values of k 1are combined with the previously discussed measurements of f 900,obs =1.06±0.09×10?17W m ?2??1and f H α=4.5±0.5×10?15W m ?2,limits on f esc may be

inferred,resulting in 0.04≤f esc ≤0.10for the standard IMF

and 0.01≤f esc ≤0.11for the more generous range of IMF scenarios.

These f esc estimates rely heavily on the conversion from L H αto L 900,abs ,and are only valid under the assumption that the H αline is dominated by photoionization by stars,i.e.that ion-ization contribution from shocks or an active galactic nucleus are negligible.We have also assumed the dust to be exclusively located outside the Str¨o mgren sphere,so that no LyC photons are lost due to internal dust extinction.Potential far-UV opac-ity sources outside Haro 11,other than dust in the Milky Way,have furthermore been neglected.

A consistency test may be carried out by comparing the ob-served slope of the spectrum across the Lyman limit,to the cor-responding slope predicted by models.To do this,we measure the continuum ?ux density at a rest wavelength of 960?,where the spectrum should be completely una ?ected by gaseous ab-sorption.After correction for Galactic extinction,the observed ?ux density at this wavelength is f 960,obs =7.4±0.4×10?17W m ?2??1.In sect.3.2the correction factor for internal ex-tinction was estimated to be y 960=14+5

?3.Given the assumption that the holes in the nebula are completely devoid of both gas and dust,and hence that the dust correction applies only to the parts of the nebula where there is no LyC leakage,the escape fraction may then be estimated from:f esc =

k 2f 900,obs

f 900,?

.(11)

Although the exact value of k 2is not known for Haro 11,a lower limit on f esc can be imposed from the minimum k 2pre-dicted by the plausible range of star formation scenarios.From the model grid de?ned in Table 3,we infer min(k 2)=1.78for the standard IMF and min(k 2)=1.42otherwise.This trans-lates into f esc ≥0.025+0.012?0.010and f esc ≥0.019+0.009

?0.003,respectively,which is completely consistent with the LyC escape fraction derived from the H α?ux.

To further test the robustness of these results,two other spectral evolutionary models –Starburst99v.4(Leitherer et

al.1999)and P ′EGASE.2(Fioc &Rocca-V olmerange 1999)–

have been used to assess the model-sensitivity of the k 1and k 2parameters.We ?nd,that when identical input parameters are used in all codes,very similar results are produced,indicating that our limits on f esc do not critically depend on the use of any speci?c model.

4.Discussion

As we mentioned in the introduction it has been argued that star-forming galaxies may yield the required LyC emissivities to reionize the universe at z >5-6.This approach has the advan-tage over assuming AGNs as sources in that it explains the early pollution of heavy elements observed in the IGM at these red-shifts (e.g.Cowie et al.1995).Moreover,analysis of the optical

Nils Bergvall et al.:First detection of Lyman continuum photon escape from a local starburst galaxy11

Table3.The grid of Z01evolutionary sequences.The grid con-sists of all possible combinations of the parameter values listed below.Each evolutionary sequence runs from ages of0to100 Myr in short time steps.

IMF:dN/dM∝M?α

M up:The upper mass limit of the IMF

SFH=Star formation history.

c=Constant star formation rate during the subsequent

number of Myr.

e=Exponentially declining star formation rate,

SFR(t)∝exp(?t/τ),with an e-folding decay rate(τ)

equal to the subsequent number of Myr.

Z?:The metallicity of the stellar population

depth at the H I and HeII Lyαcontinuum breaks in di?erent en-vironments at z<4indicates that the major ionization source in dense regions is QSOs while in void regions the radiation ap-pears to be softer,giving room for a substantial contribution from starburst galaxies.

Several semi-analytical methods have been used to model the reionization epoch.Due to the strong inhomogeneities of the radiation?eld in the early stages of the reionization,the computations are however quite demanding and complex(see Razoumov et al.2002for a summary of the technical prob-lems)and realistic simulations have not been possible until recently.In2003,Sokasian et al.(2003)used a fast code ca-pable of exploring the impact of low-mass starburst galaxies in high spatial resolution.They focused on the evolution of the interaction between the IGM and starforming galaxies of normal properties,e.g.similar to Haro11,in the redshift in-terval z~20to z~6.One of the results was that the previ-ous estimates of the required photon?ux rate needed to com-plete the reionization was overestimated by63%if assumed that only galaxies with masses>109h?1M⊙would account for the reionization.By including sources with masses down to~4×107h?1M⊙the impact of the large population of dwarf starburst galaxies could be realistically assessed.The calcula-tions demonstrated that the soft ionization sources of type star-burst dwarfs give the required photon?ux provided that the es-cape fraction is f esc≥0.20.This number is twice the upper limit of f esc,gas that we derived for Haro11.The estimate is how-ever based on a normal stellar population.At redshifts z>10 pop III stars could dominate the population(e.g.Choudhury& Ferrara2005).In these stars the emissivity in the UV might be larger than in pop II by a factor of2(Tumlinson&Shull2000; Bromm et al.2001).Thus,although f esc would not change,the number of produced photons per unit mass would increase sig-ni?cantly.Thus it seems feasible that,at least at z 10,dwarf starbursts of the mass of Haro11and lower could provide a substantial contribution to the early phase of the reionization process.5.Conclusions

We report on the discovery of a weak signal in the Lyman con-tinuum of the luminous starburst galaxy Haro11.It is the?rst time Lyman continuum leakage is found in a galaxy in the local https://www.360docs.net/doc/8117383953.html,ing the derived column densities of low ion-ization species we estimate the column density of neutral hy-drogen to be~1019cm?2,which is too high to allow Lyman continuum photon escape if the gas is di?usely distributed. We conclude that the Lyman continuum radiation is escaping through transparent windows of the ISM.Assuming a Salpeter IMF,we estimate a total escape fraction of0.04

Acknowledgements.This work has been done using the pro?le?tting procedure Owens.f developed by M.Lemoine and the FUSE French Team.We are indebted to Carmelle Robert for help with the access to the LavalSB synthetic spectral library.We are pleased to thank our referee,Daniel Kunth,for many valuable comments and suggestions to improvements of the manuscript.Kjell Olofsson is thanked for his observational contribution to the IUE data.This work was supported by the Swedish Science COuncil and the Swedish Space Board. References

Asplund,M.,Grevesse,N.,Sauval,A.J.,2004a,in”Cosmic abun-dances as records of stellar evolution and nucleosynthesis”,ed.:

F.N.Bash&T.G Barnes.ASP conf.series,in press. Asplund,M.,Grevesse,N.,Sauval, A.J.,Allende Prieto, C., Kiselman,D.,2004b,A&A417,751

Becker,R.H.,et al.,2001,AJ122,2850

Begum,Ayesha,Chengalur,Jayaram N.,2005,MNRAS362,609 Bergvall,N.,1985,A&A146,269

Bergvall,N.,Olofsson,K.,1986,A&AS,64,469

Bergvall,N.,Masegosa,J.,¨Ostlin G.,Cernicharo,J.,2000,A&A359, 41

Bergvall,N.,¨Ostlin,G.,2002,A&A390,891

Bresolin,F.,Kennicutt,R.C.,Garnett,D.R.,1999,ApJ510,104 Bromm,V olker,Kudritzki,Rolf P.,Loeb,Abraham,2001,ApJ552, 464

Burton,W.B.,Hartmann,Dap,1994,Ap&SS217,189

Calzetti,D.,Kinney,A.L.,Storchi-Bergmann,T.,1994,ApJ429,582 Calzetti,D.,Bohlin,R.C.,Kinney,Anne L.,Storchi-Bergmann,T., Heckman,Timothy M.,1995,ApJ443,136

Cartledge,S.I.B.,Clayton,G.C.,Gordon,K.D.,Rachford, B.L., Draine,B.T,Martin,P.G,Mathis,J.S.,Misselt,K.A.,So?a,U.J., Whittet,D.C.B.,Wol?,M.J.,2005,AJ630,355

Choudhury,T.Roy,Ferrara,A.,2005,MNRAS361,577

Cowie,L.,Songaila,A.,Kim,T.,Hu,E.M.,1995,AJ109,1522 Deharveng,J.-M.,Buat,V.,Le Brun,V.,et al.,2001,A&A375,805 Devriendt,Julien E.G.,Sethi,Shiv K.,Guiderdoni,Bruno,Nath, Biman B.,1998,MNRAS298,708

Fan,X.,et al.,2001,AJ122,2833

12Nils Bergvall et al.:First detection of Lyman continuum photon escape from a local starburst galaxy

Fan,X.,et al.,2002,AJ123,1247White,Richard L.,Becker,Robert

H.,Pentericci,Laura,Rix,Hans-Walter,2002,AJ123,1247 Feldman,Paul D.,Sahnow,David J.,Kruk,Je?rey W.,Murphy, Edward M.,Moos,H.Warren,2001,JGR106,8119 Ferguson,Annette M.N.,Wyse,Rosemary F.G.,Gallagher,J.S.,III, Hunter,Deidre A.,1996,AJ111,2265

Fernandez-Soto,A.,Lanzetta,K.M.,Chen,H.-W.,2003,MNRAS 342,1215

Fioc,M.,Rocca-V olmerange,B.,1999,astro-ph/9912179 Giallongo,E.,Fontana,A.,Madau,P.,1997,MNRAS289,629 Gonzalez Delgado,Rosa M.,Leitherer,Claus,Heckman,Timothy, 1997,ApJ489,601

Gordon,D.,Gottesman,S.T.,1981,AJ86,161

Guzm′a n,R.,¨Ostlin,G.,Kunth,D.,Bershady,M.A.,Koo,D.C., Pahre,M.A.,2003,ApJ586,L45

Heckman,T.M.,Sembach,K.R.,Meurer,G.R,Leitherer, C., Calzetti,D.,Martin,C.L.,2001,ApJ,558,56

Hirashita,H.,Buat,V.,Inoue,A.K.,2003,A&A410,83 Hurwitz,M.,Jelinsky,P.,Dixon,W.V.D.,1997,ApJ481,L31 Iglesias-P′a ramo,J.,Mu?n oz-Tu?n′o n,C.,2002,MNRAS336,33 Inoue,A.K.,Iwata,I.,Deharveng,J.-M.,Buat,V.,Burgarella,D., 2005,A&A435,471

Jenkins,E.B.,Oegerle,W.R.,Gry,C.,Vallerga,J.,Sembach,K.R., Shelton,R.L.,Ferlet,R.,Vidal-Madjar,A.,York,D.G.,Linsky, J.L.,Roth,K.C.,Dupree,A.K.,Edelstein,J.,2000,ApJ538, L81

Kitayama,T.,Yoshida,N.,Susa,H.,Umemura,M.,2004,ApJ613, 631

Kogut,A.,Spergel,D.N.,Barnes,C.,Bennett,C.L.,Halpern,M., Hinshaw,G.,Jarosik,N.,Limon,M.,Meyer,S.S.,Page,L., Tucker,G.S.,Wollack,E.,Wright,E.L.,2003,ApJS148,161 Kunth,Daniel,Mas-Hesse,J.M.,Terlevich, E.,Terlevich,R., Lequeux,J.,Fall,S.Michael,1998,A&A334,11

Lehner,N.,2002,ApJ578,126

Leitherer,C.,Ferguson,H.C.,Heckman,T.M.,Lowenthal,J.D.,1995, ApJ454,L19

Leitherer,C.,Vacca,W.D.,Conti,P.S.,Filippenko,A.V.,Robert,C.

and Sargent,W.L.W.,1996,ApJ465,717

Leitherer,C.,Schaerer,D.,Goldader,J.D.et al.,1999,ApJS123,3 Lilly,Simon,Schade,David,Ellis,Richard,Le Fevre,Olivier, Brinchmann,Jarle,Tresse,Laurence,Abraham,Roberto, Hammer,Francois,Crampton,David,Colless,Matthew, Glazebrook,Karl,Mallen-Ornelas,Gabriela,Broadhurst, Thomas,1998,ApJ500,75

Lonsdale,C.J.,Helou,G.,1985,”Catalogued galaxies and quasars observed in the IRAS survey”,Pasadena:JPL

Madau,Piero,Haardt,Francesco,Rees,Martin J.,1999,ApJ514,648 Madau,P.,Rees,M.J.,V olonteri,M.,Haardt,F.,Oh,S.P.,2004,ApJ 604,484

Mall′e n-Ornelas,Gabriela,Lilly,Simon J.,Crampton,David,Schade, David,1999,ApJL518,L83

Mas-Hesse,J.Miguel,Kunth,Daniel,1999,A&A349,765 Mathis,J.S.,1990,ARA&A28,37

Meiksin,Avery,White,Martin,2003,MNRAS342,1205 Mesinger,Andrei,Haiman,Zoltn,2004,ApJ611,69

Meurer,G.R.,Heckman,T.M.,Leitherer,C.,Kinney,A.,Robert,C., Garnett,D.R.,1995,AJ110,2665Matthew D.,Leitherer,Claus, Lowenthal J.,1997,AJ114,54

Miller,J.S.,Mathews,W.G.,1972,ApJ172,593

Moy,E.,Rocca-V olmerange,B.,Fioc,M.,2001,A&A,365,347 Oey,M.S.,Kennicutt,R.C.,Jr.,1997,MNRAS291,827

¨Ostlin,G.,Amram,P.,Masegosa,J,Bergvall,N.,Boulesteix,J.,1999, A&AS137,419¨Ostlin,G.,Amram,P.,Bergvall,N.Masegosa,J.,Boulesteix,J.,2001, A&A374,800

¨Ostlin et al.,2005,in preparation

Osterbrock,D.E.1989,Astrophysics of gaseous nebulae and active galactic nuclei,University Science Books

Razoumov,Alexei O.,Norman,Michael L.,Abel,Tom,Scott, Douglas,2002,ApJ572,695

Robert,Carmelle,Pellerin,Anne,Aloisi,Alessandra,Leitherer,Claus, Hoopes,Charles,Heckman,Timothy M.,2003,ApJS144,21 Savage,Blair D.,Sembach,Kenneth R.,1991,ApJ379,245 Schlegel,D.J.,Finkbeiner,D.P.,Davis,M.,1998,ApJ500,525 Seaton,M.J.,1979,MNRAS187,73

Sembach,Kenneth R.,Howk,J.Christopher,Savage,Blair D.,Shull, J.Michael,2001,AJ121,992

Shull,J.Michael,Roberts,David,Giroux,Mark L.,Penton,Steven V., Fardal,Mark A.,1999,AJ118,1450

Sokasian,A.,Abel,T.,Hernquist,L.,Springel,V.,2003,MNRAS344, 607

Stasi′n ska,G.,1990,A&AS,83,501

Stasi′n ska,G.,Schaerer,D.,Leitherer,C.,2001,A&A,370,1 Steidel,Charles C.,Pettini,Max,Adelberger,Kurt L.,2001,ApJ546, 665

Tumlinson,Jason,Shull,J.Michael,2000,ApJ528,L65

Yan,Haojing,Windhorst,Rogier A.,2004,ApJ600,L1

Wood,K.,Mathis,J.S.,2004,MNRAS353,1126

Zackrisson,E.,Bergvall,N.,Olofsson,K.,Siebert,A.,2001,A&A 375,814(Z01)

Zurita,A.,Beckman,J.E.,Rozas,M.,Ryder,S.,2002,A&A386,801

挖土安全操作规程(新编版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 挖土安全操作规程(新编版)

挖土安全操作规程(新编版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 1挖土前根据安全技术交底了解地下管线、人防及其他构筑物情况和具体位置。地下构筑物外露时,必须进行加固保护。作业过程中应避开管线和构筑物。在现场电力、通信电缆2m范围内和现场燃气、热力、给排水等管道1m范围内挖土时,必须在主管单位人员监护下采取人工开挖。 2开挖槽、坑、沟深度超过1.5m,必须根据土质和深度情况按安全技术交底放坡或加可靠支撑,遇边坡不稳、有坍塌危险征兆时,必须立即撤离现场。并及时报告施工负责人,采取安全可靠排险措施后,方可继续挖土。 3槽、坑、沟必须设置人员上下坡道或安全梯。严禁攀登固壁支撑上下,或直接从沟;坑边壁上挖洞攀登爬上或跳下。间歇时,不得在槽、坑坡脚下休息。 4挖土过程中遇有古墓、地下管道、电缆或其他不能辨认的异物和液体、气体时,应立即停止作业,并报告施工负责人,待查明处理后,

The way常见用法

The way 的用法 Ⅰ常见用法: 1)the way+ that 2)the way + in which(最为正式的用法) 3)the way + 省略(最为自然的用法) 举例:I like the way in which he talks. I like the way that he talks. I like the way he talks. Ⅱ习惯用法: 在当代美国英语中,the way用作为副词的对格,“the way+ 从句”实际上相当于一个状语从句来修饰整个句子。 1)The way =as I am talking to you just the way I’d talk to my own child. He did not do it the way his friends did. Most fruits are naturally sweet and we can eat them just the way they are—all we have to do is to clean and peel them. 2)The way= according to the way/ judging from the way The way you answer the question, you are an excellent student. The way most people look at you, you’d think trash man is a monster. 3)The way =how/ how much No one can imagine the way he missed her. 4)The way =because

实验室岗位安全操作规程

实验室岗位安全操作规程 1、在实验室工作当中存在化学灼伤、气体中毒、火灾触电、机械伤害等风险。 2、实验人员在实验室内必须穿戴工作服装,取样人员必须佩戴好相应的劳保用品与安全防护用具。 3、所有药品、标样、溶液都应有标签,绝对不要在容器内装入与标签不相符的物品。 4、不准穿拖鞋进入实验室,注意保持实验室的清洁卫生。 5、有毒、腐蚀、易燃、易爆的物品应妥善保管。贮存和使用应遵守?化学危险物品安全管理条例?。 6、实验室内严禁吸烟、饮水、进食。 7、开启易挥发液体试剂之前,先将试剂瓶放在自来水流中冷却几分钟,开启时,瓶口不要对人,最好在通风厨中进行。 8、易燃溶剂加热时,必须在水浴或沙浴中进行。 9、装过强腐蚀性、可燃性、有毒或易燃物品的器皿必须由使用者亲自洗净。 10、实验时若发现仪器设备出现故障或异常情况(如:有异味、冒烟等)时,应立即关闭电源开关,拨掉电源插头,并及时向实验室管理人员报告。 11、取下正在沸腾的溶液时,应用瓶夹摇动后取下以免溅出伤人。 12、玻璃棒、玻璃管、温度计等插入或拔出胶管时,均应垫有棉布且不可强行插入或拔出,以免折断刺伤人。

13、实验完毕,要关闭设备的电源、关好通风橱、整理好仪器设备,并打扫卫生。 14、配制药品或试验中能放出HCN、NO2、H2S、SO2、NH3及其它有毒和腐蚀性气体时,应在通风厨中进行,并带好必要的劳保用品。 15、实验室内应备有急救药品,消防器材和劳保用品。 16、化验室内应保持空气流通,环境清洁、安静。 17、易燃性气体不可与有助燃性的气体放到一个气瓶间,气瓶间内一定要有相应的防爆防倾设施。 18、样品的取样、接受、贮存和处置等要符合国家和公司的相关规定。 19、对实验产生的废液、废油、废物要分类存放并定期处置,禁止随意倾倒和储存。 20、实验室使用及存储的化学药剂或化学危险品都应备有相对应的化学品安全技术说明书(即MSDS),包括电子版和纸质版,并存放于实验室工作人员易于查找阅读的地方。同时实验室工作人员在使用化学药剂(特别是危险化学品)之前要对MSDS进行阅读学习,了解其危险特性及应急措施。 21、化学烧伤事故应急措施:当浓酸溅到眼睛或皮肤上时,应立即用大量清水冲洗,再用0.5%的碳酸氢钠溶液清洗;当强碱溅到眼睛或皮服上时,应迅速用大量清水冲洗再用2%的稀硼酸溶液清洗眼睛或用1%的醋酸溶液清洗皮肤。 当酸和碱滴溅到眼睛或皮肤上时,除经过上述处理外,还应马上送往医院进行救护。

专家讲座主持词

专家讲座主持词 尊敬的各位来宾、各位同仁:_ 大家上午好!在这深秋丰收的季节里,我们感染科和葛兰素史克公司合作举办了今天的“肝病治疗新进展”讲座;在这里对大家百忙之中牺牲宝贵的休息时间来参加今天的讲座表示最由衷的感谢,对大家的到场表示最热烈的欢迎。谢谢大家! 慢性乙肝是中国目前面临的最主要传染病之一,XX年最新的流行病学调查显示:中国约有九千万乙肝病毒携带者,两千万慢性乙肝患者,这些患者是发生肝硬化,肝癌和肝衰竭的高危人群,葛兰素史克公司长期以来一直致力于为广大医务工作者搭建学术交流的平台,是最早投入研发“抗病毒治疗药物”的企业之一,该公司研制的乙肝抗病毒治疗药物“贺普丁、贺维力”,已帮助数以万计的乙肝病人逃离“乙肝”的魔爪;接受治疗的患者预后得到大大的改善、生活质量得到前所未有的提高,无数“乙肝”患者为此重新树立了生活的希望和战胜病魔的信心,他们创造出了乙肝治疗史上一个新的里程碑。 今天,我们非常荣幸地请到了“新疆医科大学”肝病科学术带头人——xxx教授!xxx教授年轻有为,气质非凡,在新疆的“肝病界”很有影响力;现任新疆医科大学感染科副主任医师,硕士研究生导师,肝病中心副主任,她1992

年毕业于新疆医学院,1998年取得硕士学位,XX年取得博士学位,XX年在法国贝藏松医疗中心研究肝病,是一附院肝病科骨干,是世界卫生组织肝癌与致癌因素研究项目中国区研究组成员。主攻方向:内科肝脏疾病。擅长领域:难治类型病毒性肝炎的抗病毒策略、不明原因肝硬化、不明原因转氨酶升高、不明原因黄疸、不明原因腹水、重症肝病,脂肪肝,肝内占位定性诊断等,为新疆地区肝病的诊治工作作出了难以磨灭的贡献。我相信,只要我们团结奋进,携手努力,就一定能够共同铸造新的辉煌! 最后,再次对xxx教授致以崇高的敬意和衷心的感谢,也衷心祝愿各位来宾、各位朋友们身体健康、家庭幸福、工作顺利、财源滚滚来!谢谢大家!

挖土安全操作规程(新版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 挖土安全操作规程(新版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

挖土安全操作规程(新版) 1挖土前根据安全技术交底了解地下管线、人防及其他构筑物情况和具体位置。地下构筑物外露时,必须进行加固保护。作业过程中应避开管线和构筑物。在现场电力、通信电缆2m范围内和现场燃气、热力、给排水等管道1m范围内挖土时,必须在主管单位人员监护下采取人工开挖。 2开挖槽、坑、沟深度超过1.5m,必须根据土质和深度情况按安全技术交底放坡或加可靠支撑,遇边坡不稳、有坍塌危险征兆时,必须立即撤离现场。并及时报告施工负责人,采取安全可靠排险措施后,方可继续挖土。 3槽、坑、沟必须设置人员上下坡道或安全梯。严禁攀登固壁支撑上下,或直接从沟;坑边壁上挖洞攀登爬上或跳下。间歇时,不得在槽、坑坡脚下休息。

4挖土过程中遇有古墓、地下管道、电缆或其他不能辨认的异物和液体、气体时,应立即停止作业,并报告施工负责人,待查明处理后,再继续挖土。 5槽、坑、沟边1m以内不得堆土、堆料、停置机具。堆土高度不得超过1.5m。槽、坑、沟与建筑物、构筑物的距离不得小于1.5m。开挖深度超过2m时,必须在周边设两道牢固护身栏杆,并立挂密目安全网。 6人工开挖土方,两人横向间距不得小于2m,纵向间距不得小于3m。严禁掏洞挖土,搜底挖槽。 7钢钎破冻土、坚硬土时,扶钎人应站在打锤人侧面用长把夹具扶钎,打锤范围内不得有其他人停留。锤顶应平整,锤头应安装牢固。钎子应直且不得有飞刺。打锤人不得戴手套。 8从槽、坑、沟中吊运送土至地面时,绳索、滑轮、钩子、箩筐等垂直运输设备、工具应完好牢固。起吊、垂直运送时,下方不得站人。 9配合机械挖土清理槽底作业时,严禁进入铲斗回转半径范围。

The way的用法及其含义(二)

The way的用法及其含义(二) 二、the way在句中的语法作用 the way在句中可以作主语、宾语或表语: 1.作主语 The way you are doing it is completely crazy.你这个干法简直发疯。 The way she puts on that accent really irritates me. 她故意操那种口音的样子实在令我恼火。The way she behaved towards him was utterly ruthless. 她对待他真是无情至极。 Words are important, but the way a person stands, folds his or her arms or moves his or her hands can also give us information about his or her feelings. 言语固然重要,但人的站姿,抱臂的方式和手势也回告诉我们他(她)的情感。 2.作宾语 I hate the way she stared at me.我讨厌她盯我看的样子。 We like the way that her hair hangs down.我们喜欢她的头发笔直地垂下来。 You could tell she was foreign by the way she was dressed. 从她的穿著就可以看出她是外国人。 She could not hide her amusement at the way he was dancing. 她见他跳舞的姿势,忍俊不禁。 3.作表语 This is the way the accident happened.这就是事故如何发生的。 Believe it or not, that's the way it is. 信不信由你, 反正事情就是这样。 That's the way I look at it, too. 我也是这么想。 That was the way minority nationalities were treated in old China. 那就是少数民族在旧中

实验室操作规范

实验室安全操作规范 一、穿着规定 1、进入实验室,必须穿戴工作服。 2、进行危害物质、挥发性有机溶机、特定化学物质或其它毒性化学物质等化学药品及生物样品操作,必须要穿戴防护具(例如防护手套、口罩、防毒面具等)。 3、进行实验中,严禁戴隐形眼镜(防止化学药剂溅入眼内而腐蚀灼伤眼睛)。 4、需将长发及松散衣服妥善固定,且实验室内不得穿拖鞋。 5、操作高温(低温)实验,必须戴防高温(低温)手套。 6、实验服严禁穿回办公区。 二、饮食规定 1、严禁在实验室内吃东西。 2、食物禁止储藏在实验室的冰箱或储藏柜内。 三、试剂存储及操作相关规定 1、未进检测室时对实验过程进行预习,掌握操作过程及原理,弄清所有检测仪器及试剂的特性。估计可能发生危险的实验,操作时注意防范。 2、实验开始前检查仪器是否完好,装置是否正确稳妥。 3、实验进行时应经常注意仪器是否漏液、漏气、碎裂,反应是否正常等。 4、操作危险性试剂时,必须严格遵守操作守则,严禁自行更改实验流程。 5、使用试剂时,要首先确认容器上标示的名称是否为需要的实验试剂。确认药品是否为危害品,有无警告标识。 6、使用挥发性有机溶剂、强酸强碱、腐蚀性试剂、有毒试剂等必须在通风橱内进行操作。 7、有机溶剂、固体化学药品、酸性和碱性化合物均需分开存放,挥发性的化学药品必需放于通风良好的试剂柜内保存。 8、避免独自一人在实验室做危险实验。 9、做危险性实验时必须经领导批准,有两人以上在场方可进行,节假日和夜间严禁做危险性实验。 10、做有危害性气体的实验时,必须在通风橱里进行。 11、进行实验操作时(蜗旋、挥干、吹干等),严禁容器口对着人。 12、绝对不允许任意混合各种试剂以免发生危险。不能用手接触药品,不要用鼻子去闻试剂的气味,不得品尝任何试剂的味道。 13、检测剩余的实验试剂不得随意丢弃或带出实验室,放回指定容器或按规定处理。 14、实验操作完毕必须仔细认真清洗或擦拭可重复使用的实验器材,放置于规定位置。 四、用电相关安全规定 1、实验室内电气设备的安装和使用管理,必须符合安全用电要求,大功率实验设备用电必须使用专线,严禁与照明线共用,谨防因超负荷用电着火。 2、实验室内不准乱拉乱接电线。 3、实验室内的用电线路和配电盘、板、箱、柜等装置及线路系统中的各种开关、插座、插头等均应经常保持完好可用状态,空气开关功率必须与线路允许的容量相匹配。室内照明器具都要经常保持稳固可用状态。 4、实验室内仪器设备凡本身要求安全接地的,必须接地;要定期检查线路。 5、实验室内不得使用明火取暖,严禁抽烟。 6、手上有水或潮湿的,禁止接触电器用品或电器设备。 7、实验室内的鉴定人员必须掌握本室仪器、设备的性能和操作方法,严格按照规程操作。

讲座主持词开场白及结束语

讲座主持词开场白及结束语 【篇一】讲座主持词开场白及结束语 尊敬的各位领导,各位老师: 下午好! 这两天的冷空气,让我们感受到了春寒料峭,但是我们现在的会场却春意盎然,我们满怀热情地聚在一起为自己的个人素质提升,专业成长汲取必须的养分。 在我们每一个教师的心中或多或少地一直存在着这样几个问号:怎样做人,怎样做事,如何做学问?这三者又怎样去协调?怎样互融共通,实现我们完******教育人生? 当我们满怀这些困惑的时候,我们非常幸运地邀请到了江苏省特级教师、某某市教科室张主任来为我们答疑解惑,指点迷津。让我们用掌声来代替我们的心声,欢迎张主任的到来! 秦主任近年来积极倡导并努力践行“老老实实做人、勤勤恳恳做事、认认真真做学问”的做人标准和做事、做学问的要求,我们相信,秦主任的讲座,一定会拨开我们心头的疑云,让我们更加明朗地大步前行!闲言少叙,下面,我们就以热烈的掌声欢迎张主任为我们做精彩讲座! 时间飞快,就这么不经意地过去了,我相信大家都还意犹未尽呢。刚才秦主任用富有哲理的寓言,发人深省的故事,鲜活生动的案例,深入浅出的为我们诠释了做人、做事、做学问的真谛,这激-情澎湃,诗意盎然,字字珠玑的演讲,让我们如沐春风,犹如醍醐贯顶,豁然开朗啊!让我们以热

烈的掌声感谢张主任真挚教诲! 我相信,我们在场的每一位老师听了讲座后,不仅仅是豁然开朗,更会紧跟秦主任的身后,努力去践行“老老实实做人、勤勤恳恳做事、认认真真做学问”,追寻终极目标,实现自己的人生价值! 最后,让我们再次以热烈的掌声,感谢张主任在百忙之中抽出时间为我们带来了这一席丰盛的精神大餐,同时我们也把掌声送给我们自己,为我们自己取得真经,得以提升而高兴!今天的活动到此结束!【篇二】讲座主持词开场白及结束语 亲爱的各位老师,各位同学,大家晚上好!欢迎大家参加****系列活动。 今天,我们有幸请到****(演讲人的主要头衔)为大家做一场关于“大学生,如何提高自身的核心竞争力”的讲座,相信这是很多同学感兴趣的话题。 首先请允许我代表广大师生对***到来表示热烈的欢迎和由衷的感谢! (接下来要写一小段对演讲人生平的简介,不要多,一两百字即可,挑最重头的,也是捧一捧嘉宾,能够查一下他近期有没有参加过于这个讲座内容相关的活动,也说两句,表示你做了功课,而且又给了嘉宾很好的引子,他如果有意可以在开场时顺着他最近参加的活动说,这样整个衔接都很流畅了) (然后是对讲座内容的简单引入,三、五句即可,用问

人工挖土安全操作规程示范文本

人工挖土安全操作规程示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

人工挖土安全操作规程示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1.人工挖孔桩施工适用于桩径800~2000mm、桩深 不超过25m的桩。 2.从事挖孔桩的作业人员必须视力、嗅觉、听觉、心 脏、血压正常,必须经过安全技术培训,考核合格方可上 岗。 3.人工挖孔桩施工前,应根据桩的直径、桩深、土质、 现场环境等状况进行混凝土护壁结构的设计,编制施工方 案和相应的安全技术措施,并经企业负责人和技术负责人 签字批准。 4.施工前,总承包的施工企业应和具有资质的分包施工 企业签订专业分包合同,合同中必须规定双方的安全责 任。

5.人工挖孔桩施工前应对现场环境进行调查,掌握以下情况: ⑴地下管线位置、埋深和现况; ⑵地下构筑物(人防、化粪池、渗水池、坟墓等)的位置、埋深和现况; ⑶施工现场周围建(构)筑物、交通、地表排水、振动源等情况; ⑷高压电气影响范围。 6.人工挖孔桩施工前,工程项目经理部的主管施工技术人员必须向承担施工的专业分包负责人进行安全技术交底并形成文件。交底内容应包括施工程序、安全技术要求、现况地下管线和设施情况、周围环境和现场防护要求等。 7.人工挖孔作业前,专业分包负责人必须向全体作业人员进行详细的安全技术交底,并形成文件。 8.施工前应检查施工物资准备情况,确认符合要求,并

(完整版)the的用法

定冠词the的用法: 定冠词the与指示代词this ,that同源,有“那(这)个”的意思,但较弱,可以和一个名词连用,来表示某个或某些特定的人或东西. (1)特指双方都明白的人或物 Take the medicine.把药吃了. (2)上文提到过的人或事 He bought a house.他买了幢房子. I've been to the house.我去过那幢房子. (3)指世界上独一无二的事物 the sun ,the sky ,the moon, the earth (4)单数名词连用表示一类事物 the dollar 美元 the fox 狐狸 或与形容词或分词连用,表示一类人 the rich 富人 the living 生者 (5)用在序数词和形容词最高级,及形容词等前面 Where do you live?你住在哪? I live on the second floor.我住在二楼. That's the very thing I've been looking for.那正是我要找的东西. (6)与复数名词连用,指整个群体 They are the teachers of this school.(指全体教师) They are teachers of this school.(指部分教师) (7)表示所有,相当于物主代词,用在表示身体部位的名词前 She caught me by the arm.她抓住了我的手臂. (8)用在某些有普通名词构成的国家名称,机关团体,阶级等专有名词前 the People's Republic of China 中华人民共和国 the United States 美国 (9)用在表示乐器的名词前 She plays the piano.她会弹钢琴. (10)用在姓氏的复数名词之前,表示一家人 the Greens 格林一家人(或格林夫妇) (11)用在惯用语中 in the day, in the morning... the day before yesterday, the next morning... in the sky... in the dark... in the end... on the whole, by the way...

实验室安全标准操作规程

编号:SM-ZD-85177 实验室安全标准操作规程Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

实验室安全标准操作规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1职责 1.1实验室主任对安全全面负责。经常进行安全督察,组织安全检查,负责处理安全事故。 1.2实验员负责水、电线路、消防器材的配置和设施安全检查。 1.3各科实验老师负责本科的化学药品、水电气、门窗的安全。 1.4实验员负责试剂、药品,特别是有毒有害,易燃、易爆物质的管理。 2. 工作程序 2.1 安全操作规范 2.1.1检测人员在工作中要严格按照操作规程,杜绝一切违章操作,发现异常情况立即停止工作,并及时登记报告。 2.1.2禁止用嘴、鼻直接接触试剂。使用易挥发、腐蚀性

强、有毒物质必须带防护手套,并在通风橱内进行,中途不许离岗。 2.1.3在进行加热、加压、蒸馏等操作时,操作人员不得随意离开现场,若因故须暂时离开,必须委托他人照看或关闭电源。 2.1.4各种安全设施不许随意拆卸搬动、挪作他用,保证其完好及功能正常。 2.1.5操作人员要熟悉所使用的仪器设备性能和维护知识,熟悉水、电、燃气、气压钢瓶的使用常识及性能,遵守安全使用规则,精心操作。 2.2 有毒有害物质的管理 2.2.1化学试剂、药品中凡属易燃易爆,有毒(特别是剧毒物品)、易挥发产生有害气体的均应列为危险物品,严格分类,加强管理,专人负责。 2.2.2建立详细帐目,帐、物、卡相符,专人限量采购,入库检查。 2.2.3危险物品、易燃易爆物品单独存放,有毒物品放入专用加锁铁柜内,注意通风。

专家授课主持词结束语范本

专家授课主持词结束语范本 【篇一】 通过成功举办奥运会、花博会以及应对国际金融危机的冲击,首都和顺义的发展都站了新的历史起点上。我们该如何把握当前的宏观经济以及新形势下北京和顺义的发展,相信王教授的讲课能够带给我们启迪和思考。 下面让我们以热烈的掌声欢迎王教授为我们授课! 刚才,王瑞璞教授围绕我国宏观经济发展形势、政策走向以及首都在今后一段时期面临的发展机遇和挑战作了一个很好的报告。更为难能可贵的是,王教授还紧密联系地方发展实际,联系广大干部群众的思想和工作实际,为我们解读了一些普遍关心的问题。我想这对于我区贯彻落实“人文北京、科技北京、绿色北京”发展战略,深刻把握我区发展面临的新课题、新矛盾,制定区域经济和社会发展“十二五”规划,促进我区经济社会平稳较快发展,使顺义重点新城成为首都建设“世界城市”的重要功能区,成为建设“三个北京”的典范有很大的帮助,希望大家在会后继续认真思考,深刻领会。让我们再次以热烈的掌声向王教授的精彩授课表示感谢! 【篇二】 今天我们有幸请到了中国科学院研究生管理学院副院长、中国社会心理学会副会长、博士生导师石勘教授。 石勘教授多年来致力于管理学和心理学研究,在人力资源管

理方面具有丰富的理论研究和实践经验。 围绕职业生涯规划,石勘教授将为我们进行首场讲座,让我们用热烈的掌声欢迎石勘教授为我们讲课。 感谢石勘教授!今天石勘教授针对当前青年就业创业,不同职业特点需求,职场要求和规划,结合案例为我们进行了深入、精彩的传授!相信会对我们如何找准职业规划定位,实现个人成才发展提供积极的指导和帮助。 我提议,让我们再次用热烈的掌声,感谢石勘教授的精彩授课! 同志们,今天是元宵节,团区委以及东升方圆集团的刘宝平先生专门在这里为大家准备了晚餐和元宵。 请大家在这里共进晚餐,共度元宵佳节。 晚餐时间是6:00,之前这段时间请大家参观“观光南瓜园”。 现在散会。

人工挖土安全要求规程范本

工作行为规范系列 人工挖土安全要求规程(标准、完整、实用、可修改)

编号:FS-QG-78734人工挖土安全要求规程 Manual excavation safety requirements 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 1.新工人必须参加入场安全教育,考试合格后方可上岗。 2.在从事挖土作业前必须熟悉作业内容、作业环境,对使用的工具要进行检修,不牢固者不得使用;作业时必须执行安全技术交底,服从带班人员指挥。 3.配合其他专业工种人员作业时,必须服从该专业工种人员的指挥。 4.作业时必须根据作业要求,佩戴防护用品,施工现场不得穿拖鞋。 5.作业时必须遵守劳动纪律。不得擅自动用各种机电设备。 6.挖土前应按安全技术交底要求了解地下管线、人防及其他构筑物情况,按要求坑探,掌握构筑物的具体位置。地下构筑物外露时,应按交底要求进行加固保护。作业中应避

开管线和构筑物。在现场电力、通讯电缆2m范围内和现场燃气、热力、给排水等管道1m范围内挖土时,必须在主管单位人员的监护下采取人工开挖。 7.开挖槽(坑、沟)深度超过1.5m时必须根据土质和开挖深度情况按技术交底要求放坡、支撑或护壁。遇边坡不稳、有坍塌危险征兆时,必须立即撤离现场。并报告有关负责人,经过安全处理后,方可继续施工。 8.槽、坑、沟边上口边1m以内,不得来回上人走动,不得堆放任何物、料、机具或杂物,堆±高度不得超过1.5m。槽、坑、沟与建筑物、构筑物之间距离不得小于1.5m。堆土不得遮压检查井、消防井等设施。 9.开挖深度超过2m时,必须在周边设置牢固的安全防护栏,并立挂密目安全网。槽深大于2.5m时,应分层挖土,层高不得超过2m,层间应设平台,平台宽度不得小于0.5m。作业时两人横向间距不得小于2m,纵向间距不得小于3m。严禁掏洞挖土、搜底扩槽,严禁在槽内或坑坡脚下休息。 10.槽、坑、沟根据情况必须设置上下坡道或安全梯。进出上、下沟槽必须走马道、安全梯。马道、安全梯间距不宜

“the way+从句”结构的意义及用法

“theway+从句”结构的意义及用法 首先让我们来看下面这个句子: Read the followingpassageand talkabout it wi th your classmates.Try totell whatyou think of Tom and ofthe way the childrentreated him. 在这个句子中,the way是先行词,后面是省略了关系副词that或in which的定语从句。 下面我们将叙述“the way+从句”结构的用法。 1.the way之后,引导定语从句的关系词是that而不是how,因此,<<现代英语惯用法词典>>中所给出的下面两个句子是错误的:This is thewayhowithappened. This is the way how he always treats me. 2.在正式语体中,that可被in which所代替;在非正式语体中,that则往往省略。由此我们得到theway后接定语从句时的三种模式:1) the way+that-从句2)the way +in which-从句3) the way +从句 例如:The way(in which ,that) thesecomrade slookatproblems is wrong.这些同志看问题的方法

不对。 Theway(that ,in which)you’re doingit is comple tely crazy.你这么个干法,简直发疯。 Weadmired him for theway inwhich he facesdifficulties. Wallace and Darwingreed on the way inwhi ch different forms of life had begun.华莱士和达尔文对不同类型的生物是如何起源的持相同的观点。 This is the way(that) hedid it. I likedthe way(that) sheorganized the meeting. 3.theway(that)有时可以与how(作“如何”解)通用。例如: That’s the way(that) shespoke. = That’s how shespoke.

实验室安全标准操作规程(正式)

编订:__________________ 单位:__________________ 时间:__________________ 实验室安全标准操作规程 (正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5509-66 实验室安全标准操作规程(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1职责 1.1实验室主任对安全全面负责。经常进行安全督察,组织安全检查,负责处理安全事故。 1.2实验员负责水、电线路、消防器材的配置和设施安全检查。 1.3各科实验老师负责本科的化学药品、水电气、门窗的安全。 1.4实验员负责试剂、药品,特别是有毒有害,易燃、易爆物质的管理。 2. 工作程序 2.1 安全操作规范 2.1.1检测人员在工作中要严格按照操作规程,杜绝一切违章操作,发现异常情况立即停止工作,并及时登记报告。

2.1.2禁止用嘴、鼻直接接触试剂。使用易挥发、腐蚀性强、有毒物质必须带防护手套,并在通风橱内进行,中途不许离岗。 2.1.3在进行加热、加压、蒸馏等操作时,操作人员不得随意离开现场,若因故须暂时离开,必须委托他人照看或关闭电源。 2.1.4各种安全设施不许随意拆卸搬动、挪作他用,保证其完好及功能正常。 2.1.5操作人员要熟悉所使用的仪器设备性能和维护知识,熟悉水、电、燃气、气压钢瓶的使用常识及性能,遵守安全使用规则,精心操作。 2.2 有毒有害物质的管理 2.2.1化学试剂、药品中凡属易燃易爆,有毒(特别是剧毒物品)、易挥发产生有害气体的均应列为危险物品,严格分类,加强管理,专人负责。 2.2.2建立详细帐目,帐、物、卡相符,专人限量采购,入库检查。 2.2.3危险物品、易燃易爆物品单独存放,有毒

专家培训讲座主持词结束语

专家培训讲座主持词结束语 【篇一】 同志们: 今天,我们十分荣幸地邀请到了中央党校博士生导师王瑞璞教授,为大家作关于“当前中国宏观经济分析与对策及对首都经济影响”的 讲座。首先,让我们以热烈的掌声欢迎王瑞璞教授!王教授多年来一直 致力于中国经济社会发展和党建工作的研究,在经济学领域久负盛名,同时也是国内的党建专家。先后出版了《社会主义改革的理论与实践》、《邓小平经济理论的卓越贡献》、《中国改革报告》以及长达1800万字的《中国共产党建设全书》等20余本著作,发表论文250余篇,在国内学术界引起了较大的反响。除了学术方面的高深造诣,王 瑞璞教授还经常深入到各地调研、授课,为促动地方经济社会发展提 出了大量的真知灼见,受到了全国各地学员的一致好评。 通过成功举办奥运会、花博会以及应对国际金融危机的冲击,首 都和顺义的发展都站了新的历史起点上。我们该如何把握当前的宏观 经济以及新形势下北京和顺义的发展,相信王教授的讲课能够带给我 们启迪和思考。 下面让我们以热烈的掌声欢迎王教授为我们授课! 刚才,王瑞璞教授围绕我国宏观经济发展形势、政策走向以及首 都在今后一段时期面临的发展机遇和挑战作了一个很好的报告。更为 难能可贵的是,王教授还紧密联系地方发展实际,联系广大干部群众 的思想和工作实际,为我们解读了一些普遍关心的问题。我想这对于 我区贯彻落实“人文北京、科技北京、绿色北京”发展战略,深刻把 握我区发展面临的新课题、新矛盾,制定区域经济和社会发展“十二五”规划,促动我区经济社会平稳较快发展,使顺义重点新城成为首 都建设“世界城市”的重要功能区,成为建设“三个北京”的典范有

很大的协助,希望大家在会后继续认真思考,深刻领会。让我们再次 以热烈的掌声向王教授的精彩授课表示感谢! 【篇二】 各位委员、各位同志: 今天,区政协在这里举办政协委员培训讲座,组织全体政协委员 和政协机关工作人员实行一次系统的理论学习。这次培训讲座,是区 政协XX届XX次主席会议和会议研究决定举办的,主要是根据我区政 协换届后,新委员的人数较多,对政协理论、政协知识的掌握还不够,对如何展开政协工作还需要“入门”。另外,增强学习,也是政协委 员一项经常的、长期的任务。我们举办这次培训讲座的目的,就是协 助委员尽快熟悉政协工作,了解自己享有的权利、应尽的义务和肩负 的责任,认清当前我们面临的新形势和新任务,更好地履行政治协商、民主监督、参政议政的职责。这次,我们十分荣幸地邀请到XX市委党 校教研室陈XX主任为我们作辅导报告。陈主任工作非常繁忙,专门抽 出时间给我们授课,首先,让我们用热烈的掌声向陈主任表示衷心的 感谢!(鼓掌)希望大家珍惜这次难得的学习机会,认真听讲。下面请陈 主任为我们讲课!(鼓掌) ………… 二 各位委员、各位同志: 刚才,陈主任为我们作了一场十形象生动的辅导报告,所讲的内 容深入浅出,内涵深刻,既具有较强的系统性和理论性,也非常切合 基层 政协工作的实际,为我们进一步掌握政协*理论、明确自身岗位 职责提供了很大的协助。今天的培训班时间虽短,但已经达到了预期 的目的。让我们再次以热烈的掌声向陈主任的生动演讲表示衷心的感 谢!

way 用法

表示“方式”、“方法”,注意以下用法: 1.表示用某种方法或按某种方式,通常用介词in(此介词有时可省略)。如: Do it (in) your own way. 按你自己的方法做吧。 Please do not talk (in) that way. 请不要那样说。 2.表示做某事的方式或方法,其后可接不定式或of doing sth。 如: It’s the best way of studying [to study] English. 这是学习英语的最好方法。 There are different ways to do [of doing] it. 做这事有不同的办法。 3.其后通常可直接跟一个定语从句(不用任何引导词),也可跟由that 或in which 引导的定语从句,但是其后的从句不能由how 来引导。如: 我不喜欢他说话的态度。 正:I don’t like the way he spoke. 正:I don’t like the way that he spoke. 正:I don’t like the way in which he spoke. 误:I don’t like the way how he spoke. 4.注意以下各句the way 的用法: That’s the way (=how) he spoke. 那就是他说话的方式。 Nobody else loves you the way(=as) I do. 没有人像我这样爱你。 The way (=According as) you are studying now, you won’tmake much progress. 根据你现在学习情况来看,你不会有多大的进步。 2007年陕西省高考英语中有这样一道单项填空题: ——I think he is taking an active part insocial work. ——I agree with you_____. A、in a way B、on the way C、by the way D、in the way 此题答案选A。要想弄清为什么选A,而不选其他几项,则要弄清选项中含way的四个短语的不同意义和用法,下面我们就对此作一归纳和小结。 一、in a way的用法 表示:在一定程度上,从某方面说。如: In a way he was right.在某种程度上他是对的。注:in a way也可说成in one way。 二、on the way的用法 1、表示:即将来(去),就要来(去)。如: Spring is on the way.春天快到了。 I'd better be on my way soon.我最好还是快点儿走。 Radio forecasts said a sixth-grade wind was on the way.无线电预报说将有六级大风。 2、表示:在路上,在行进中。如: He stopped for breakfast on the way.他中途停下吃早点。 We had some good laughs on the way.我们在路上好好笑了一阵子。 3、表示:(婴儿)尚未出生。如: She has two children with another one on the way.她有两个孩子,现在还怀着一个。 She's got five children,and another one is on the way.她已经有5个孩子了,另一个又快生了。 三、by the way的用法

实验室安全操作规程

实验室安全操作规程 1、化验室安全操作规程 (1)实验前应做好准备,必须对所用药品与设备性能有充分的了解,熟悉每个具体操作中的安全注意事项。 (2)实验前必须熟悉实验室及其周围的环境和水龙头、电闸门的位置 (3)实验时应保持安静,思想要集中,遵守操作规程,切勿粗心大意,马马虎虎,更不准在实验室内开玩笑。 (4)严禁在实验室内饮食或煮食,或者把食具带劲实验室。 (5)每次实验完毕后应把手洗净,并检查水、电、气等安全措施完善后才能离开实验室(6)每个实验室都必须备有灭火器或砂土,并尽可能放在显眼的地方,能同事备有消防用的消防栓或水缸则更好 (7)实验室应保持空气流通,并设有专用的卫生箱,以供及时治疗的需要。常备药品有:红汞药水:供一般破伤使用 酒精:轻微的灼烧伤可用进过酒精的脱脂棉擦拭 5%硼酸氢钠溶液:受酸性物灼伤可用作冲洗 3%硼酸溶液:受碱性物灼伤可用作冲洗 还需要备有碘酒:紫药水及绷带和药棉 2、火和电的安全预防 (1)在使用中电气动力时,必须事先检查电开关,马达以及机械设备各部门是否安置妥善(2)开始工作时和停止工作时,必须将开关彻底扣严和拉下 (3)在更换保险丝时,要按负荷量,不得加大或以铜丝代替使用。 (4)严禁用湿手、湿布或铁柄毛刷等去清扫或擦拭电闸刀、点插销等,防止触电 (5)凡电气动力设备过热时,应立即停止运转 (6)定碳、定硫电炉或其他高温炉,其硅碳棒露出部分应设有安全罩,严禁将安置妥善的安全罩随意撤掉,以免发生触电事故。 (7)禁止洒水在电气设备和电线路上,以免漏电 (8)凡使用110伏以上电源装置,仪器的金属部分必须安装地线 (9)电热设备,例如马弗炉、烘箱、电炉和电热板等,所用电源的导线应经常注意检查其各接触处是否妥当,导线有无损坏和被腐蚀等 (10)马弗炉、烘箱等用电设备,使用时必须要有人负责照管,以防发生事故 (11)马弗炉需放在水泥等不燃物砌成的坚固台子上,不要靠近木板墙或木质门窗。(12)使用易燃物时,必须在距离火源较远的地方进行,绝不可靠近火源,尤其是乙醚着火的危险性极大,用时必须小心,用完后的剩余部分也应及时的存放到专门的安全地方。(13)绝不可以将氧气钢瓶存放在靠近电源的地方,并需防止强烈震动,气体出口活门处绝不可涂油和与有机物接触,以免发生爆炸的危险。 3、化学药品的安全预防 (1)距度星的药品,例如KCN、AS2O3等等,必须制定保管使用规则,并严格遵守,及时工作人员很少,也不可例外的有所忽视。这类药品不能与一般药品同样的存放和任意使用,即使用过后的余量已经很少也应及时送保管员及时查收,不应任意放在工作台上。 (2)内服有毒药品,如氰化物、铅化物、汞及汞化物、络酸盐、氧化砷钡盐等,应装在坚固的瓶中保管,禁止入口,与手接触用后要洗手。 (3)接触皮肤有毒的药品,例如氰化物、氟氢酸、溴水、过氯酸等,要装在严禁坚固的瓶中保管,使用时要特别小心,不得与皮肤接触。 (4)呼吸有毒药品(及有毒气体和蒸气)如氰化氢、氮的氧化物、氯化氢、硫化氢、溴、

相关文档
最新文档