如何选择具有出色信号完整性的示波器

如何选择具有出色信号完整性的示波器
如何选择具有出色信号完整性的示波器

是德科技

评估示波器的信号完整性

应用指南

引言

电子测试中经常会提到"信号完整性",这是衡量信号质量的重要指标。随着带宽范围提升,查看小信号或大信号的细微变化的需求增加,示波器自身的信号完整性的重要性已进一步提升。为什么信号完整性被视为示波器的关键指标? 信号完整性对示波器整体测量精度的影响非常大,它对波形形状和测量结果准确性的影响会出乎您的想象。示波器性能取决于其自身信号完整性的良莠,比如说信号失真、噪声和损耗。自身的信号完整性高的示波器能够更好地显示被测信号的细节;反之,如果自身的信号完整性很差,示波器便无法准确反映被测信号。示波器自身信号完整性方面的差异直接影响到工程师能否高效地对设计进行深入分析、理解、调试和评估。示波器的信号完整性不佳,将对产品开发周期、产品质量以及元器件的选择带来巨大风险。要避免这种风险,只有通过比较和评测,选择一台具有出色信号完整性的示波器才是解决之道。

图 1 (b). 请注意: 两款示波器测得的上升时间标准偏差有所不同, 尽管它们的带宽 (4 GHz)、采样率 (20 GSa/s) 和其他设置都是相同的。在快速上升时间测试中, In ?niium S 系列测得的标准偏差是 668 fs (飞秒), 而 LeCroy 示波器测得的标准偏差为 4 ps (皮秒), 偏差是 S 系列示波器的 6 倍。测量同一个信号的上升时间, 所得的标准偏差越低, 就表明示波器自身的信号完整性越出色, 水平系统的性能也就越高。

上升时间标准偏差

4.0 ps

上升时间标准偏差

668 fs

In ?niium DSOS404A (4 GHz, 20 GSa/s)

LeCroy 604Zi (4 GHz, 20 GSa/s)图 1(a). 即便是同品牌同带宽的示波器产品, 信号完整性水平也各有高低。这里是两款 4 GHz 带宽示波器测试同一个信号的眼图。两款示波器的带宽、垂直/水平设置完全相同。您可以看到, 右图 In ?niium S 系列示波器更真实地再现了信号的眼图, 眼图高度比左图 DSO9404A 高 200 mV 。优异的信号完整性能够更精确地再现被测信号的参数值和形状。

眼图高度 1.55 V

眼图高度 1.75 V

In ?niium DSO9404A (4 GHz) In ?niium DSOS404A (4 GHz)

信号完整性的构成要素十分复杂,本应用指南将为您庖丁解牛,逐一分解,文中提到的原理适用于所有示波器。针对某些构成要素,我们会以 Keysight In ?niium S 系列 500 MHz 至 8 GHz 带宽的示波器为例,详尽阐述。

示波器的各个属性彼此配合,相互影响,我们必须从全局角度加以考量。许多示波器品牌所宣传的分辨率、 本底噪声、抖动等技术指标都被冠以了 "最佳" 字眼。然而,滴水难成海,独木不成林。您必须清醒地认识到,要提供最佳的信号显示,绝不是仅凭单个最佳技术指标就能实现的。所以在选择示波器时,只有做到全盘兼顾才能做出最正确的选择。只关注信号完整性的一个方面而忽视其他属性,就好比只见树木不见森林,很有可能会导致错误判断。

图 2. 多数示波器都是采用 8 位 ADC, 而 S 系列示波器采用的是 40 GSa/s 10 位 ADC,

分辨率提升了四倍。

ADC 位数和最小分辨率

图 3. 分辨率是信号完整性的一个重要属性。提高 ADC 位数或设置恰当的量程都能改进分辨率。

模数转换器 (ADC) 是确保示波器自身信号完整性的关键技术。ADC 位数与示波器的分辨率成正比。理论上讲,10 位 ADC 示波器的分辨率比 8 位 ADC 示波器高 4 倍。同理,12 位 ADC 示波器相对于 10 位 ADC 示波器也是如此。图 2 以 10 位 ADC In ?niium S 系列示波器为例,实际验证了上述结论。

分辨率是指由示波器中的模数转换器 (ADC) 所决定的最小量化电平。8 位 ADC 可将模拟输入信号编码为 28 = 256 个电平,即量化电平或 Q 电平。ADC 在示波器量程内工作,因此在电流和电压测量中,量化电平的步长与示波器的量程设置有关。如果垂直设置为 100mV/格,则量程等于 800 mV (8 格 x 100 mV/格),量级电平分辨率就是 3.125 mV (即,800 mV 除以 256 个量化电平)。

我们现在看一个具体示例: 图 3 中,两款示波器都已设置为 800 mV 全屏显示。8 位 ADC 示波器的分辨率是 3.125 mV ,即,800 mV 除以 28 (256 个量化电平)。10 位 ADC 示波器的分辨率是 0.781 mV ,即,800 mV 除以 210 (1024 个量化电平)。计算出来的分辨率又被称作最小量化电平,在正常采集模式下,是示波器能识别的信号最小变化范围。

示波器通常支持高分辨率采集模式,在该模式下,要得到正确的信号,示波器的模拟前端要能够防混叠,且采样率远大于实际需要的采样率。也有的厂家采用过采样技术配合 DSP 滤波器来提高示波器的垂直分辨率,然后给出一个指标,说高分辨率模式下,其位数是多少。以 In ?niium S 系列示波器为例,其 ADC 固有分辨率是 10 位,高分辨率模式下是 12 位。高分辨率模式要求 ADC 实际支持的采样率远高于被测信号测量所需的硬件带宽。

提升分辨率,可以选择更高位数的 ADC ,同时示波器的垂直刻度选择范围要更宽。

图 4. 查看小信号细节时, 示波器硬件所支持的最小量程是一个关键指标, 决定了您能否查看信号的最小分辨率。

量程设置对分辨率的影响

量程设置对示波器的分辨率利用程度影响很大。启用模数转换器 (ADC) 首先需要设置垂直刻度并尽可能全屏显示波形。举个例子,假如被测信号波形占据示波器屏幕的 ?,那么 8 位 ADC 实际被使用的位数就降到了 7 位。又假设波形只占屏幕的 ?,那么 ADC 实际被使用的位数就从 8 位降至 6 位。如果将波形放大到占据整个屏幕,示波器 ADC 的 8 位分辨率就可以得到最充分利用。要获得最佳分辨率,就必须使用最灵敏的垂直刻度设置,在显示屏上尽可能接近满屏显示波形。

ADC 、示波器前端架构及使用的探头决定了示波器硬件能够支持将垂直量程设置降到多低。所有示波器的垂直刻度设置都有一个极限点,超过这个点,硬件不再起作用,这时,即使用户继续使用旋钮将垂直刻度设置变得更低,也不会改进分辨率,因为这时用的是软件放大功能。示波器厂商通常将这个点作为转折点,在此之后,即使将示波器的垂直刻度设置得更小,也只能在显示效果上放大信号,但无法像用户期待的那样提高分辨率,因为这时示波器是用软件放大波形。传统示波器在垂直量程设置降至 10mV/格以下,就会启用软件放大功能。另外,

部分厂商的示波器会在较小的垂直刻度设置 (通常是 10 mV/格以下) 时,自动将示波器带宽限制为远低于标称带宽的一个值。因为这些示波器的前端噪声过于明显,几乎不可能在全带宽上查看小信号。

我们现在对比一下两款示波器。小信号具有一定的幅度,当示波器垂直设置设为 16 mV 全屏时,它会占据几乎全屏的空间。 –Keysight Infiniium 9000 系列示波器等传统示波器硬件支持的最小刻度是 7 mV/格, 低于该设置的垂直刻度, 是用软件放大实现的, 7 mV/格的设置意味着量程是 56 mV (7 mV/格 x 8 格), 该示波器采用了 8 位 ADC, 量化电平数是 256, 因此其最小分辨率为 218 uV 。

–In ?niium S 系列示波器采用了 10 位 ADC, 硬件支持的最小垂直刻度是 2 mV/格, 并且该设置支持满带宽。2 mV/格设置对应的量程为 16 mV (2 mV/格 x 8 格), 因此分辨率为 16 mV/1024, 即为 15.6 uV — 是传统的 8 位示波器的 14 倍(参见图 4)。

图 5. In ?niium S 系列示波器结合使用低噪声前端和 10 位 ADC, 可将噪声减少

到一半。

图 6. 您能够查看示波器的噪声量, 只需断开示波器的所有输入连接, 并测量每个垂直量程设置下的噪声 (电压真有效值)。本例中, 每通道的噪声都是仅为 1 mVrms

噪声

要想查看低电流和电压值或是大信号的细微变化,您应当选择具备低噪声性能 (高动态范围) 的示波器。

注: 您无法查看低于示波器本底噪声的信号细节。

如果示波器本底噪声电平高于 ADC 的最小量化电平, 那么 ADC 的实际位数就达不到其标称位数应达到的理想性能。

示波器的噪声来源包括其前端、模数转换器、探头、电缆等,对于示波器的总体噪声而言,模数转换器本身的量化误差的贡献通常较小,前端带来的噪声通常贡献较大。

大多数示波器厂商会在示波器出厂之前对其进行噪声测量,并将测量结果列入到产品技术资料中。如果您没有找到相应信息,您可以向厂商索要或是自行测试。示波器本底噪声测量非常简单,只需花上几分钟即可完成。首先,断开示波器前面板上的所有输入连接,设置示波器为 50 Ω 输入路径。您也可以选择 1M Ω 路径。其次,设置存储器深度,比如 1 M 点,把采样率设为高值,以得到示波器全带宽。最后,您也可以打开示波器的无限余辉显示,以查看测得波形的粗细。波形越粗,示波器的本底噪声越大。

示波器通道在每个垂直量程设置上的噪声属性各有不同。波形粗细可以直观反映示波器在该特定设置下的噪声大概范围,准确测量应通过 Vrms 交流测量来量化分析噪声情况。您可以将测量结果绘制成噪声图,以便进一步分析 (图 7)。这些测量结果反映了每个示波器通道在不同垂直刻度设置下的噪声值,这决定着您所测得的电压数值的误差变化范围。示波器的本底噪声不仅影响电压测量,也影响水平参数的测量精度。

示波器的噪声越低,测量精度就会越高。

图 7. 您可以比较不同厂商的示波器的本底噪声。

图中示例是两款同带宽(4 GHz) In ?niium 示波器的本底噪声在不同量程设置下的对比。示波器的噪声越低, 您就能获得越高的信号完整性。

图 8. 每个示波器都有自己独特的频率响应。频率响应是否平坦对于信号完整性至关重要。砖墙式频响示波器的带外噪声最低, 而高斯频响的边沿振铃最低。图中显示了 8 GHz 带宽示波器 Infiniium DSOS804A 的幅度响应。垂直标度已放大到 1 db/格, 8 GHz

带宽内的频响幅度变化十分轻微。

图 9. 两款示波器测试的是同一个信号, 它们的额定带宽、采样率及其他设置均相同。右图中的波形精确地再现了被测信号的各个频谱分量, 但左图中的波形却没有。为什么有这种区别? 这是因为, 右图中的示波器采用了校正滤波器, 幅度和相位响应是平坦的, 而左图中的示波器则不然。

频率响应

每个示波器型号都有自己的频率响应曲线,它是用来 衡量示波器在额定带宽内采集信号准确性的重要参数。精确采集波形必须满足三个条件。

1. 示波器的频响曲线必须平坦。

2. 示波器的相位响应曲线必须平坦。

3. 被测信号的关键频谱成分必须在示波器的带宽范围内。上述三个条件缺一不可,否则会导致示波器无法精确采集和再现波形。偏离上述要求越大就意味着测量误差会越大。任何被测信号都可看成是多次谐波的叠加,每个谐波对应一个频率,示波器的使用者当然希望示波器能够准确测量每个谐波成份的幅度。理想情况下,示波器在其带宽范围内应该有平坦的幅度响应,并且针对每个频点上的信号时延 (相位) 都相等。频率响应平坦,意味着信号在通过示波器内部通道时会产生相同的时延,相同的幅度放大或缩小;如果相位响应不平坦,示波器显示的波形将会是失真的。

500 MHz DSOS054A 示波器的幅度响应

2.5 GHz DSOS254A

示波器的幅度响应

1 GHz DSOS104A

示波器的频率响应

2 GHz DSOS204A 的幅度响应 6 GHz DSOS604A

示波器的幅度响应

4 GHz DSOS404A

示波器的幅度响应频率响应 (续)

示波器的频率响应不平坦会导致显示出的信号失真。您在选购示波器时,可以向厂商索取频率响应数据。厂商一般不会在示波器技术资料中附带频率响应图,但通常可以根据您的要求来提供。为了方便起见,下面为您展示了各型号 In ?niium S 系列示波器的频率响应图。图中设置如下: 20 GSa/s 最大采样率;100 mV/格de 垂直标度;信号幅度占据屏幕 7.2 格。

示波器的整体频率响应受两个因素约束,一个是示波器自身的频率响应,另一个是所用探头或电缆的频率响应。如果您使用的是一根 1.5 GHz 带宽的 BNC 电缆,那么系统的整体带宽瓶颈就是这根 BNC 电缆,而不是示波器。探头和与探头相连的附件也是如此。由于探头和电缆本身也具有频率响应,所以您需要设法保证探头、附件以及电缆不会给示波器系统带来限制,以便使用示波器进行精确测量。

图 10. In ?niium PrecisionProbe 应用软件充分体现了软件带宽滤波器的灵活性, 它能够帮助工程师快速确定电缆或探头的频率响应, 进而校正这个系统的频响, 去除电缆或探头带来的信号损耗误差。

校正滤波器

软件滤波器

有些示波器的频率响应完全是由其模拟前端滤波器决定的;另一些示波器的频响则是由模拟前端和实时校正滤波器共同决定。实时校正滤波器通常是用硬件 DSP 实现的,并且会针对不同示波器家族略有调整,目的是保证幅度和相位响应是平坦的。由于不存在完美的模拟前端滤波器,所以将实时校正滤波器与模拟前端滤波器的组合使用,示波器的幅度和频率相位响应更加平坦。在业内,较高质量的示波器一定会使用校正滤波器配合模拟前端滤波器,以保证频响的平坦度。

频率响应的形状通常借助其滚降特征来体现。砖墙式频响最受青睐,这是因为该频响对带外噪声抑制力最强。需要注意一种极端情况,即被测信号的边沿速度很快,超过了示波器带宽的测量能力时,砖墙式频响测得的波形有可能伴有轻微的欠冲和过冲现象。使用高斯频响的示波器来测量,显示的振铃会小很多,但缺点是带外噪声较大。

除了硬件实现的实时校正滤波器之外,示波器还可以通过纯软件滤波方法增强示波器系统的频响平坦度。软件带宽滤波器的速度当然远比不上硬件滤波器,而且要求示波器采用最大采样率以避免信号混叠现象。相对于等效的硬件或模拟滤波器,这种软件滤波器的信号完整性有可能不是最好的。但是,软件滤波器的优点在于灵活性较大。

例如,In ?niium PrecisionProbe 应用软件就是一款软件滤波器。该软件通过去除通道、探头或电缆的影响,来提高信号完整性。另外,它使用具有极快边沿的内部校准信号,仅需两分钟时间就能表征探头或电缆的 S21 参数。根据表征结果,软件在滚降点上产生反相的滤波器,从而可以去除 BNC 电缆带来的信号损耗误差。

500 MHz DSOS054A 示波器的 ENOB 图 2.5 GHz DSOS254A 示波器的 ENOB

1 GHz DSOS104A 示波器的 ENOB 图

2 GHz DSOS204A 示波器的 ENOB 图有效位数 (ENOB) 是示波器动态性能的重要计量指标。尽管某些示波器厂商会提供示波器 ADC 本身的 ENOB 指标,但这一数值没有意义。整个示波器系统的 ENOB 指标才有意义。倘若示波器前端噪声过大,即便 ADC 具有较高的 ENOB ,整个测量系统的 ENOB 也会明显下降。一般情况下,示波器厂商不提供总体 ENOB 值,但他们可根据用户的要求,针对某个示波器型号进行表征并提供 ENOB 。

ENOB 不是具体的数值,而是借助一系列曲线进行描述。ENOB 是通过对固定幅度的正弦波信号进行扫频而测得;特定的垂直刻度设置都对应一条 ENOB 曲线,随着频率的变化而变化。示波器可以捕获分析和测试电压测量结果。时域分析法是用测得的数据减去理论上的最佳正弦波数据计算得出 ENOB 。ENOB 曲线

误差可能来自于示波器的前端,比如不同频率下相位的非线性和幅度变化,还有可能来自于 ADC 内插复用造成的失真。对相同的信号,我们也可以用频域测量法,根据主频功率和该主频以外的宽带范围内的功率来计算 ENOB 。两种方法得到的结果是相同的。

示波器的系统 ENOB 会比 ADC 自身的 ENOB 要低。例如,8 位 Infiniium 9000 系列 1 GHz 带宽示波器的 ENOB 约为 6.5。1 GHz DSOS104A 示波器配备 10 位 ADC 和超低噪声前端,其系统 ENOB 约为 8。为了加深您对 ENOB 的理解,接下来我将会附上几个 Infiniiuum S 系列示波器的 ENOB 图,其中被测信号占据屏幕的 7.2 格、最大采样率为 20 GSa/s 。

8 GHz DSOS804A 示波器的 ENOB

4 GHz DSOS404A 示波器的 ENOB

图(续)

一般来说,ENOB 越高越好。但是,我们不能把它作为评估信号完整性好坏的唯一指标。ENOB 没有考虑到示波器的偏置误差或相位失真等因素。这一点必须引起工程师的高度重视。

图 11. In ?niium S 系列示波器添加了新的时基模块。

时钟精度高达 75 x 10-9。固有抖动低于 130 fs (短期固有抖动)

图 12. 使用 In ?niium S 系列示波器测量实际抖动。

所有型号采用相同的时基技术模块, 测得的抖动水平分量低于 130 fs (短期固有抖动)

固有抖动

抖动是指信号边沿对理想位置的偏移,以 ps rms 或 ps pp 为单位。抖动通常出现在高速数字系统中,它的来源有很多种,包括晶振产生的热噪声和随机机械噪声。另外,轨迹、电缆和连接器中存在的符号间干扰也会给系统增添额外的抖动。过多的抖动是系统无法接受的,因为抖动会造成计时违规,从而导致系统操作失常。例如,通信系统存在过多抖动就会产生不可接受的比特误码率 (BER),从而造成信号传输错误。因此,要确保高速数字系统的可靠性,您就必须执行抖动测量。

在测量之前,您首先要了解示波器的抖动测量功能,以及对测量结果的解析能力。具体地说,示波器首先对数字波形进行采样并存储。每个波形都是由一组采样点构成。理想情况下,示波器能够采集采样点等间距的波形。但在实际应用中,示波器的内部电路缺陷会使 ADC 采样点水平偏移理想位置,这种偏移就是示波器自身固有的本底抖动。因此在抖动测量中,示波器无法分辨哪些抖动是来自被测器件或是示波器本身。

理想情况下,使用示波器对一个无抖动的理想信号进行抖动测量,得到的抖动值应当为零。但是,我们必须要考虑示波器本身的抖动。示波器抖动的来源有多个方面,包括: 多片 ADC 进行内插带来的误差,ADC 采样时钟输入信号的抖动,以及其他内部抖动源。这种水平偏移误差源的集合会构成一个总的水平时间误差,即等效的采样时钟抖动 (简称为采样时钟抖动),也可以叫做固有源抖动时钟 (SJC)。示波器厂商将其精简为术语 "固有抖动",用于表示示波器在短时间内的最低固有抖动。测量本底抖动 = 函数 (噪声、信号斜率、固有抖动)

即便对无抖动的理想信号进行测量,示波器的抖动测量结果也不会为零。"本底抖动" 表示示波器对一个无抖动的理想信号进行抖动测量的结果。本底抖动的构成不仅包括上述提到的采样时钟抖动,而且还包括垂直误差源产生的抖动,例如垂直噪声和混叠的信号谐波。垂直误差源能够影响水平时间测量,因为它们可以改变阈值交叉点。

与水平精度相关的示波器电路被称为时基,用于确保时标精度和抖动水平分量。时基电路设计得好的示波器,固有抖动值有机会更低,因为水平系统的抖动贡献少了。

固有抖动

输入信号斜率

测量本底抖动

TIE_Clk

S rms

典型示波器

图 13. 示波器厂商通过绘制 TIE 测量与输入信号斜率的关系图, 可以提供测量本底抖动的特征 (如果使用的是正弦波信号, 则给出 TIE 测量值与频率的关系)。除 In ?niium S 系列以外, 所有其他示波器的固有抖动图都与左图类似。从图中可以看出, 在示波器的水平系统成为决定性因素之前, 固有抖动始终是由信号斜率和垂直噪声决定的, 这就叫做测量本底抖动。S 系列的抖动曲线与垂直噪声和斜率存在直接关系, 这表明示波器水平系统对总体固有抖动没有任何影响。In ?niium S 系列在处理 8 GHz (最大带宽) 输入正弦波信号时, 它的带内固有抖动低于 120 fs 。

In ?niium DSOS404A

In ?niium DSO9404A

请注意: 尽管上述每个属性都很重要,但是这七个属性之间的匹配度才是决定总体精度的最关键因素。只有灵活运用这些属性的示波器才能提供更高的测量精度。

固有抖动 (续)

总结

您是否正在评测一台新的示波器,希望确保它能够在广泛的频率范围内全面而精确地显示被测信号?如果是,您所选的示波器就必须具备信号完整性的所有促成因素: 高分辨率、低固有噪声、平坦的频率响应和适当的 ENOB 。Infiniium S 系列示波器整合了新的时基模块、前端电路设计以及 ADC 技术模块,提供出色的测量功能,可以为您提供同类产品中最佳的本底抖动和最出色的垂直信号属性。S 系列覆盖了 500 MHz 至 8 GHz 的带宽范围,隶属于 In ?niium 示波器家族,该家族的实时示波器带宽最高是 63 GHz

分辨率ADC 位数产品技术资料

噪声

前端电路大多数示波器厂商在产品技术资料中列出。

硬件支持的垂直刻度设置ADC/前端

产品技术资料一般不会规定软件放大模式的起始刻度。

部分厂商在垂直刻度设置较小时, 自动将带宽限制到较低的值。频率响应平坦度模拟滤波器和校正滤波器产品技术资料通常不包含这个技术指标。

您需要向厂商索取特定型号的幅度和相位响应技术指标。时标精度时基产品技术资料

固有抖动量时基

有的厂商提供, 有的不提供; 如果技术资料未包括这个指标, 请向厂商索要。ENOB (有效位数)

示波器垂直和水平系统组合

有的厂商提供, 有的不提供; 如果技术资料未包括这个指标, 请向厂商索要。

术语表

ADC (模数转换器): 通常是指示波器中一个将电压转变为数字幅度值的电子元件。ADC 的总体量化电平或输出电平数等于2n,其中n 是指ADC 位数。

分辨率位数: 用于衡量示波器在测量信号时可给出的潜在输出电平数,和ADC 位数、高分辨率模式和/或均值模式有关。

ENOB (有效位数): 通常表示 ADC 或示波器的动态范围。ENOB 考虑到了噪声和其他垂直失真来源。ADC 芯片的 ENOB 会比整个示波器系统的ENOB 要高。

滤波器: 滤波器是指一个具有特定频率响应特征的电路或算法。滤波器可以是模拟电路,也可用 DSP 硬件实现或通过软件方法实现,但后者速度较慢。

频率响应: 描述示波器在特定带宽范围内的幅度或相位特征。理想的频率响应图应当极为平坦,且具有砖墙式频响。

前端电路: 指示波器 BNC 输入与 ADC 芯片之间的电路,包括模拟滤波器、1 MΩ和 50 Ω路径间的开关转换电路和衰减器 (为ADC 适当地缩放信号。

抖动: 指信号边沿对理想水平位置的偏移。示波器是测量目标系统抖动性能的理想工具。然而,示波器本身的固有抖动会对抖动测量造成影响。固有抖动: 示波器的固有抖动包括示波器内部的抖动测量值,也被称为固有源抖动时钟 (SJC)。示波器厂商将其精简为 "固有抖动",用于表示示波器在短时间内的最低固有抖动。

测量本底抖动: 指示波器为抖动测量信号添加的误差,换句话说,它是示波器测量一个无抖动的理想信号所得到的抖动值。本底抖动的构成不仅包括上文提到的采样时钟抖动,而且还包括垂直误差源产生的抖动,例如垂直噪声和混叠信号谐波。

噪声: 指信号边沿对真正信号的垂向偏移。您无法查看低于示波器噪声电平的信号细节。如果噪声电平高于 ADC 量化电平,那么 ADC 就达不到其标称的理想位数。前端电路是示波器噪声的最大来源。

分辨率: 示波器ADC 的分辨率是指由模数(A/D) 转换器决定的最小量化电平。示波器对多次采集的时间点求平均值可以得到较低的分辨率。或者,示波器采用整合了过采样技术和 DSP 滤波器的高分辨率模式,可以实现较高的分辨率。

采样时钟抖动(SCJ): 指抖动的水平分量。

时基: 指示波器中用于确保水平精度和低采样时钟抖动的电路。

如欲下载上述文档, 请在 URL 网址中插入出版物编号

: https://www.360docs.net/doc/8917806896.html,/litweb/pdf/xxxx-xxxxEN.pdf

产品网站

如欲了解最新、最全面的应用和产品信息,请访问是德科技产品网站: https://www.360docs.net/doc/8917806896.html,/?nd/S-series

相关文献

Keysight Infiniium S 系列示波器 (500 MHz 至 8 GHz)技术资料5991-3904CHCN Keysight Infiniium 90000A 系列示波器 (2.5 至 13 GHz)技术资料5989-7819CHCN Keysight Infiniium 90000 X 系列示波器 (13 至 33 GHz)技术资料5990-5271CHCN Keysight Infiniium 90000 Q 系列示波器 (20 至 63 GHz)

技术资料5990-5299CHCN 用于 Infiniium 系列示波器的 Keysight EZJIT 和 EZJIT Plus 抖动分析软件技术资料5989-0109CHCN 利用实时抖动分析查找抖动源应用指南5988-9740CHCN 使用 Keysight EZJIT Plus 软件分析抖动

应用指南5989-3776CHCN 针对 EZJIT Plus 任意数据抖动分析选择适当的 ISI 滤波器大小应用指南5989-4974CHCN 选择 EZJIT Plus 软件所用的随机抖动带宽

应用指南

5989-5056CHCN

https://www.360docs.net/doc/8917806896.html,/?nd/S-series

如欲获得是德科技的产品、应用和服务信息, 请与是德科技联系。如欲获得完整的产品列表, 请访问: https://www.360docs.net/doc/8917806896.html,/?nd/contactus

本文中的产品指标和说明可不经通知而更改?Keysight Technologies, 2014

Published in USA, September 25, 2014出版号: 5991-4088CHCN https://www.360docs.net/doc/8917806896.html,

myKeysight

https://www.360docs.net/doc/8917806896.html,/find/mykeysight 个性化视图为您提供最适合自己的信息!https://www.360docs.net/doc/8917806896.html,

局域网扩展仪器 (LXI) 将以太网和 Web 网络的强大优势引入测试系统中。是德科技是 LXI 联盟的创始成员。https://www.360docs.net/doc/8917806896.html,

PCI 扩展仪器 (PXI) 模块化仪器提供坚固耐用、基于 PC

的高性能测量与自动化系统。3 年保修

是德科技卓越的产品可靠性和广泛的 3 年保修服务完美结合,从另一途径帮助您实现业务目标: 增强测量信心、降低拥有成本、

增强操作方便性。是德科技保证方案

https://www.360docs.net/doc/8917806896.html,/find/AssurancePlans

5 年的周密保护以及持续的巨大预算投入, 可确保您的仪器符合规范要求, 精确的测量让您可以继续高枕无忧。https://www.360docs.net/doc/8917806896.html,/quality

Keysight Electronic Measurement Group DEKRA Certified ISO 9001:2008 Quality Management System 是德科技渠道合作伙伴

https://www.360docs.net/doc/8917806896.html,/find/channelpartners

黄金搭档: 是德科技的专业测量技术和丰富产品与渠道合作伙伴的便捷供货渠道完美结合。

示波器触发功能

关于示波器的触发功能 我记得初入力科的时候,在关于示波器的三天基础知识培训中有一整天的时间都是在练习触发功能。“触发”似乎是初学者学习示波器的难点。我们常帮工程师现场解决关于触发的测试问题的案例也很多。通常有些工程师只知道“Auto Setup”之后看到屏幕上有波形然后“Stop”下来再展开波形左右移动查看细节。因此,我有时候甚至接到这样的电话,质疑我们的示波器有问题,因为他在”Auto Setup”之后看到的波形总是在屏幕上来回“晃动”。但是当我问他触发源设置得对不对,触发电平设置得合适否,是否采用了合适的触发方式等问题时,我没有得到答案; 即使有时遇到我心目中的高手,我也常发现他们对触发的基本概念都没有建立起来。我喜欢在写作某个主题之前google一下,但是很遗憾我没有找到一篇堪称完整的启蒙文章。虽然三家示波器厂家的PPT讲稿中都有很多关于触发的,但细致介绍触发的中文文章真的很少。当然,这也是幸运的,因为我的拙文也许将是很多工程师茅塞顿开的启蒙之作。 触发是数字示波器区别于模拟示波器的最大特征之一。数字示波器的触发功能非常地丰富,通过触发设置使用户可以看到触发前的信号也可以看到触发后的信号。对于高速信号的分析,其实很少去谈触发,因为通常是捕获很长时间的波形然后做眼图和抖动分析。触发可能对于低速信号的测量应用得频繁些,因为低速信号通常会遇到很怪异的信号需要通过触发来隔离。 假如示波器的触发电路坏了,示波器仍然可以工作,只是这时候看到的波形在屏幕上来回“晃动”,或者说在屏幕上闪啊闪的。这其实相当于您将触发模式设置为“Auto”状态并把触发电平设置得超过信号的最大或最小幅值。示波器的采集存储器是一个循环缓存,新的数据会不断覆盖老的数据,直到采集过程结束。如图一所示。没有触发电路,这些采集的数据不断地这样新老交替,在屏幕上视觉上感觉波形在来回“晃动”。Auto Setup是自动触发设置,示波器根据被测信号的特点自动设置示波器的水平时基,垂直灵敏,偏置和触发条件,使得波形能显示在示波器上。其主要目的是保证波形能显示出来,这对于拿到示波器不知道如何使波形“出来”的新手是有用的。但如果不理解触发的概念,通过Auto Setup的设置就开始观察,测量甚至得出结论是不对的。示波器毕竟是工程师的眼睛,工程师需要透彻掌握这个工具,用好这双眼睛。 所谓触发,按专业上的解释是:按照需求设置一定的触发条件,当波形流中的某一个波形满足这一条件时,示波器即实时捕获该波形和其相邻部分,并显示在屏幕上。触发条件的唯一性是精确捕获的首要条件。为了观察特定波形之前发生的更多事件,把触发点往显示窗口右方推移一段时间,即是延迟触发;为了了解特定波形之后发生的更多事件,把触发点往显示窗口左方推移一段时间,即是超前触发。如图二所示。在数字示波器中,触发点可以位于采集存储的记录的任何位置。如图一的右边图形,触发点停留在采集存储的中间时刻。 为了更形象地理解触发,我常用一段很酸的话来形容。所谓触发,就是“在此刻停留”,或者说是“等待那一刻”。触发电路可以理解为有那么一双纯情的眼睛在注视在她面前走过的每一个人(信号流),当她看到她的意中人(触发条件)时,她的眼睛凝视这个人,让意中人停留在她注视的位置(触发点)。但她会继续寻找她的下一个意中人。每次找到了意中人,她都会让意中人在她注视的位置(触发点)停留。因此,她的眼睛注视点(触发点)的位置只停留那些意中人(满足条件的波形)。

视频信号的传输方式

视频信号的传输方式 监控系统中,视频信号的传输是整个系统非常重要的一环,也是广大工程商挺挠头的一件事,随着工程中监控设备价格的透明性和工程商竞争的加剧,信号传输部分的费用越来越受到大家的重视;目前,在监控系统中最常用的传输介质是同轴电缆、双绞线、光纤等方式,对于不同场合、不同的传输距离,怎样能保证传输质量、降低费用,根据多年的工程经验,在这里我们作一些介绍供参考。 一、同轴电缆传输 (一)通过同轴电缆传输视频基带信号视频基带信号也就是通常讲的视频信号,它的带宽是0-6MHZ,一般来讲,信号频率越高,衰减越大,一般设计时只需考虑保证高频信号的幅度就能满足系统的要求,视频信号在5.8MHZ的衰减如下:SYV75-3 96编国标视频电缆衰减30dB/1000米, SYV75-5 96编国标视频电缆衰减19dB/1000米,,SYV75-7 96编国标视频电缆衰减13dB/1000米;如对图象质量要求很高,周围无干扰的情况下,75-3电缆只能传输100米,75-5传输160米,75-7传输230米;实际应用中,存在一些不确定的因素,如选择的摄像机不同、周围环境的干扰等,一般来讲,75-3电缆可以传输150米、75-5可以传输

300米、75-7可以传输500米;对于传输更远距离,可以采用视频放大器(视频恢复器)等设备,对信号进行放大和补偿,可以传输2-3公里;另外,通过一根同轴电缆还可以实现视频信号和控制信号的共同传输,即同轴视控传输技术,下面简单介绍一下该技术:在监控系统中,需要传输的信号主要有两种,一个是图像信号,另一个是控制信号。其中视频信号的流向是从前端的摄像机流向控制中心;而控制信号则是从控制中心流向前端的摄像机(包括镜头)、云台等受控对像;并且,流向前端的控制信号,一般又是通过设置在前端的解码器解码后再去控制摄像机和云台等受控对像的。同轴视控传输技术是利用一根视频电缆便可同时传输来自摄象机的视频信号以及对云台、镜头的控制功能,这种传输方式节省材料和成本、施工方便、维修简单化,在系统扩展和改造时更具灵活性;同轴视控实现方法有两类:一是采用频率分割,即把控制信号调制在与视频信号不同的频率范围内,然后同视频信号复合在一起传送,再在现场做解调将两者区分开;由于采用频率分割技术,为了完全分割两个不同的频率,需要使用带通滤波器、带通陷波器和低通滤波器、低通陷波器,这样就影响了视频信号的传输效果;由于需将控制信号调制在视频信号频率的上方,频率越高,衰减越大,这样传输距离受到限制;另外方法是采用双调制的方

第三讲 示波器基础之触发功能(上)

第三讲示波器基础之触发功能(上) 作者:汪进进来源:美国力科公司深圳代表处 中心议题: ?示波器的触发功能的含义 解决方案: ?多用于低频信号的准确测量中 ?要点:触发源、触发点、触发电平、触发模式 触发是数字示波器区别于模拟示波器的最大特征之一。数字示波器的触发功能非常丰富,通过设置,用户可以看到触发前后的信号。对于高速信号的分析,触发应用较少,因为通常是捕获很长时间的波形然后做眼图和抖动分析。而对于低速信号的测量,触发应用非常频繁,因为通常会有很多杂讯需要被隔离。 示波器的采集存储器是一个循环缓存,新的数据会不断覆盖老的数据,直到采集过程结束。触发电路坏掉的示波器仍然可以工作,只是此时看到的波形在屏幕上来回“晃动”,或者说在屏幕上闪烁,这其实相当于将触发模式设置为“Auto”状态并把触发电平设置得超过信号的最大或最小幅值。没有触发电路,这些采集的数据不断地这样新老交替,在屏幕上视觉上感觉波形在来回“晃动”。如图一所示。 图一数字示波器的存储器是循环缓存 Auto Setup是自动触发设置,示波器根据被测信号的特点自动设置示波器的水平时基,垂直灵敏,偏置和触发条件,使得波形能显示在示波器上。如果不理解触发的概念,通过Auto Setup的设置就开始观察,测量的结果,甚至得出的结论都是不对的。 所谓触发,专业的解释是:按照需求设置一定的触发条件,当波形流中的某一个波形满足这一条件时,示波器即实时捕获该波形和其相邻部分,并显示在屏幕上。触发条件的唯一性是精确捕获的首要条件。为了观察特定波形之前发生的更多事件,把触发点往显示窗口右方推移一段时间,即是延迟触发;为了了解特定波形之后发生的更多事件,把触发点往显示窗口

简谈示波器的触发

示波器的触发 1.触发概述 触发的定义:按照需求设置一定的触发条件,当波形流中的某一个波形满足这一条件时,示波器即时捕获该波形和其相邻部分,并显示在屏幕上。 触发的作用:保证每次时基扫描或采集的时候,都从输入信号上满足定义的触发条件处开始,这样每一次扫描或采集的波形就同步,可以使每次捕获的波形相重叠,从而显示稳定的波形。即:捕获感兴趣的信号;稳定显示。 用于:对单次信号进行捕获,对重复信号中的异常波形隔离捕获,对周期性信号进行稳定的显示等。 如果没有触发,每一屏的显示都不同,如图1所示。当示波器快速刷新的时候,看到的信号是混叠的,没有稳定的图像,无法观察和测量。 图1 无触发的图像 触发是数字示波器区别于模拟示波器的最大特征之一。模拟示波器只有简单的边沿触发。没有存储单元,触发只是示波器显示波形的一个起始信号,只定义了波形的起点。而数字存储示波器把模拟信号数字化,由于有数据存储,并可以定义触发点在内存中的位置,可以看到触发之前的波形,可以设置更多更复杂的触发类型,满足不同特征波形的触发和观察。 2.触发设置 2.1触发源 触发源决定触发信号从哪里获得。多数情况下,触发信号来自输入信号本身。触发电路与被测信号处理电路是并行结构,所以触发电路并不会影响到被测信号的数字化处理,也就决定了触发信号不光可以从被测信号引入,还可以通过其他通道、外触发通道等引入。若示波器具有外部触发输入端,那么它上面连接的信号则可以驱动触发电路时示波器触发。若想要观察与电源有关的干扰信号,可以使用电源触发。

2.2触发点 为了观察特定波形之前发生的更多事件,把触发点往显示窗口右方推移一段时间,即是预触发。 为了了解特定波形之后发生的更多事件,把触发点往显示窗口左方推移一段时间,即是延迟触发。 另外,将触发点向左移可充分利用示波器的存储空间。 一般将触发点设置在中间位置以方便观察和调节,因为示波器的波形扩展时是以触发点为对称点展开的。 2.3触发释抑 有时,为了使示波器能在信号的正确部分触发并不容易。许多示波器采用专门特性,简化了任务。触发器释抑时间是发生正确触发后的一段时间,在这段时间内,示波器不能触发。当触发源是复杂波形的时候,该特性能发挥作用。其结果是,只有在适当的触发点示波器才能触发。图2解释了如何使用触发释抑特性来显示有用波形。 图2 触发释抑 2.3 触发电平 触发电平是指信号需要达到该电平才能被触发。 设置任何触发条件都需要有一个具体的触发电平。触发电平定义了信号是否为满足触发条件的“事件”。 在上升沿触发时,只有该上升沿在上升的过程中达到触发电平的位置才认为是“事件”从而被“隔离”在触发点。

示波器有关知识及选型方案

示波器有关知识及选型方案 此方案为北京海洋兴业科技有限公司所有,如需转载请注明出处。 示波器自从问世以来,它一直是最重要、最常用的电子测试仪器之一。由于电子技术的发展,示波器的能力在不断提升,其性能与价格也五花八门,市场参差不齐。示波器看似简单,但如何选择,也存在许多问题。本文根据多年的经验,结合北京海洋兴业科技有限公司选型指南,从几个方面告知您在选择示波器时应注意的问题: 一、了解您需要测试的信号 您要知道用示波器观察什么?您要捕捉并观察的信号其典型性能是什么?您的信号是否有复杂的特性?您的信号是重复信号还是单次信号?您要测量的信号过渡过程的带宽,或者上升时间是多大?您打算用何种信号特性来触发短脉冲、脉冲宽度、窄脉冲等?您打算同时 显示多少信号?您对测试信号作何种处理? 二、选择示波器的核心技术差异:模拟(DRT)、数字(DSO)、还是数模兼合 (DPO) 传统的观点认为模拟示波器具有熟悉的控制面板,价格低廉,因而总觉得模拟示波器“ 使用方便” 。但是随着 A/D 转换器速度逐年提高和价格不断降低,以及数字示波器不断增加的测量能力和实际上不受限制的测量功能,数字示波器已独领风骚。但是数字示波器显示具有三维的缺陷、处理连续性数据慢等缺点,需要具有数模兼合技术的示波器,例 DPO 数字荧光示波器。 三、确定测试信号带宽 带宽一般定义为正弦波输入信号幅度衰减到 -3dB 时的频率,即幅度的70.7% 。带宽决定示波器对信号的基本测量能力。如果没有足够的带宽,示波器将无法测量高频信号,幅度将出现失真,边缘将会消失,细节数据将被丢失;如果没有足够的带宽,得到的信号所有 特性,包含响铃和振鸣等都毫无意义。 一个决定您所需要的示波器带宽有效经验——“5倍经验准则”:将您要测量的信号最高频率分量乘以5,使测量结果获得高于2%的精度。

示波器触发功能使用

灵活使用示波器触发功能 每个工程师刚刚开始接触示波器的时候,都是从最基础的数字信号的信号质量开始测量的。找一块板子,接一个时钟信号,一个数据信号,测量它们的最大/最小电压(Max/Min)、建立/保持时间(Setup/Hold Time)、上升/下降时间(Rise/Fall Time)等基础参数。这些基础参数的测量老工程师们都耳熟能详,也都知道怎么去测量它们,但很多朋友却不知道,如果能灵活地使用示波器的各种触发功能进行辅助,将会使测量时间大大缩短,测量结果更加精准。下面我们来看一看示波器的触发功能在信号质量测量时的一些经典应用。 最古老的也是最经典的触发–边沿触发带给我们的启示 边沿触发从示波器诞生之日起就与示波器密不可分,最早的模拟示波器只有一种触发功能,就是边沿触发。边沿触发非常简单和常用,以至于很多工程师用了几年的示波器都没有意识到这是一种触发功能。边沿触发包括上升沿触发和下降沿触发,以上升沿触发为例,示波器的触发器会比较触发电平(Trigger Level)前后两个点的电压,当后一个点的电压高于前一个点时,就会判定为上升沿触发;下降沿触发则反之。 信号的最大/最小电压(Max/Min)测量是一个常规的测量项目,一般常用的方法有两种,一种是直接用示波器的自动测量,打开统计功能,找出最大/最小值,第二种是打开示波器的无限余辉,累积一段时间后,用光标测量最大/最小值。但这两种方法都有一个小缺点,就是无法直观地看到Max/Min电压所对应的波形。对于Debug而言,更希望能清楚地看到这个最坏的波形,以便能找到调试的思路。利用传统的边沿触发,通过调节边沿触发的触发电平,我们就可以轻松地看到最大/最小电压所对应的波形并进行测量。 选择上升沿触发,将触发模式调成Normal (注1)。然后慢慢调高触发电平,直到触发事件变得非常稀少(示波器面板上Trig’d绿色指示灯的亮/灭间隔明显变长或屏幕波形刷新速度明显变慢),这意味着电压的上升已处于极限位置,此时触发点的波形就是最大电压的波形。同理,选择下降沿触发,调低触发电平,可以精确定位最小电压所对应的波形。

示波器触发

示波器触发 1、触发的作用 触发是示波器非常重要的特征之一,因为示波器具有强大的触发功能,所以能够用于异常信号捕获和电路故障调试。示波器的触发有两个重要作用: 1)捕获感兴趣的信号波形; 2)确定时间参考零点,稳定显示波形。 2、触发器简单工作原理 简单的边沿触发器的工作原理如下图所示。首先预设一个触发电平,触发信号与触发电平比较,当触发信号穿越触发电平后,电压比较器立即产生一个快沿触发脉冲,去驱动下一级硬件,这样即可进行边沿触发。 触发信号的来源可以是信号自身,亦可以是一个同步的触发信号(或外触发信号)。示波器的捕获板内部有开关,可以把任何一个示波器通道或外触发输入通道切换到触发器。这是示波器非常灵活的一面,需要了解。 3、触发释抑(Hold Off) 示波器的触发释抑Hold Off对于稳定显示Burst类型的波形是非常重要的。如下图所

示,如果没有Hold Off,示波器第一次触发在Burst波形的第一个脉冲,第二次有可能触发在Burst波形的第三个脉冲,这样屏幕看到的就不是稳定的Burst波形串,而左右晃动的波形。示波器采用Hold Off解决这个问题,当示波器第一次触发后,必须在经过Hold Off 时间后,才能够进行第二次触发,这样,如果设置Hold Off时间大于Burst波形串的时间,则第二次也会触发到第二个Burst波形的第一个脉冲,这样整个Burst波形串即可稳定的显示在示波器的屏幕上。 4、边沿(Edge)触发 边沿触发是示波器最常用的触发类型,也是示波器默认的触发类型。边沿触发分为上升边沿触发(默认类型),下降边沿触发,或者双边沿触发。双边沿触发功能可以让我们简单看看数据信号的眼图(并不准确,尤其边沿抖动部分)。 5、边沿再边沿(Edge Then Edge)触发

示波器的触发功能

示波器的同步 要明白触发的概念,首先要了解示波器同步的概念。那么什么是示波器的同步呢?我们这里所说的示波器同步是指示波器的扫描信号与被观测的信号同步,也就是说它们的频率之间存在着整数倍的关系。为什么要这样?不这样会有什么结果?带着这样的问题让我们来考察图1的情况。 我们先了解一下示波器的工作原理。我们知道,示波器是通过在X和Y偏转板上加上控制电压,控制由电子枪射出电子束的偏转从而在屏幕上描绘出轨迹的,一般在X偏转板加的是正向锯齿波信号,线性上升的电压控制电子束从左到右移动,形成水平扫描。因为上升的电压与时间成线性关系,扫描得到的轨迹就可以模拟时间轴。如果同时在Y偏转板加上与被测信号成比例的电压,使电子束在水平移动的同时也在垂直方向移动,这样电子束就描绘出了被测信号与时间的关系,也就是信号的波形。这是示波器显示波形的基本原理。 现在我们来看图1。图1中的Y是一周期性信号,X是扫描信号,显然它们是不同步的。当将这样的信号同时分别加到示波器的Y和X偏转系统时,显示的波形如图2所示,其中当X从T0扫描到T1时描绘出的波形是A,从T1到T2扫描时描绘出的波形是B,而从T2到T3扫描时描绘出的是C,显然它们在屏幕上的位置都不同,而且先后出现,所以您会看到的是它们的混合,得不到一个稳定的波形。这就是示波器的扫描与信号不同步的结果。 如果我们设法将X信号变成图3 所示的情形,使每一次扫描开始时刻都对应于Y信号一个周期的同一点,使得每一次扫描对应的Y信号都相同,也就是让示波器的扫描信号与被测信号“同步”。当将这样的信号同时分别加到示波器的X和Y偏转系统时,由于每一个扫描周期X和Y的信号都相同,电子束受到同样的偏转控制,因而每一次扫描的电子束都打在屏幕上的同样的轨迹上,也就是说我们可以得到图4所示的波形。这是您能看到的唯一波形,因为每一个扫描周期电子束都打在这个波形的轨迹上,而不是其他位置,因而这个波形是稳定的。这就是示波器扫描与信号同步的结果。

fluke示波器的使用方法

示波器的使用方法 示波器虽然分成好几类,各类又有许多种型号,但是一般的示波器除频带宽度、输入灵敏度等不完全相同外,在使用方法的基本方面都是相同的。本章以SR-8型双踪示波器为例介绍。 (一)面板装置 SR-8型双踪示波器的面板图如图5-12所示。其面板装置按其位置和功能通常可划分为3大部分:显示、垂直(Y轴)、水平(X轴)。现分别介绍这3个部分控制装置的作用。 1.显示部分主要控制件为: (1)电源开关。 (2)电源指示灯。 (3)辉度调整光点亮度。 (4)聚焦调整光点或波形清晰度。 (5)辅助聚焦配合“聚焦”旋钮调节清晰度。 (6)标尺亮度调节坐标片上刻度线亮度。 (7)寻迹当按键向下按时,使偏离荧光屏的光点回到显示区域,而寻到光点位置。 (8)标准信号输出1kHz、1V方波校准信号由此引出。加到Y轴输入端,用以校准Y 轴输入灵敏度和X轴扫描速度。 2.Y轴插件部分 (1)显示方式选择开关用以转换两个Y轴前置放大器YA与YB 工作状态的控制件,具有五种不同作用的显示方式: “交替”:当显示方式开关置于“交替”时,电子开关受扫描信号控制转换,每次扫描都轮流接通YA或YB 信号。当被测信号的频率越高,扫描信号频率也越高。电

子开关转换速率也越快,不会有闪烁现象。这种工作状态适用于观察两个工作频率较高的信号。 “断续”:当显示方式开关置于“断续”时,电子开关不受扫描信号控制,产生频率固定为200kHz方波信号,使电子开关快速交替接通YA和YB。由于开关动作频率高于被测信号频率,因此屏幕上显示的两个通道信号波形是断续的。当被测信号频率较高时,断续现象十分明显,甚至无法观测;当被测信号频率较低时,断续现象被掩盖。因此,这种工作状态适合于观察两个工作频率较低的信号。 “YA”、“YB ”:显示方式开关置于“Y A ”或者“YB ”时,表示示波器处于单通道工作,此时示波器的工作方式相当于单踪示波器,即只能单独显示“Y A”或“YB ”通道的信号波形。 “YA + YB”:显示方式开关置于“Y A + YB ”时,电子开关不工作,YA与YB 两路信号均通过放大器和门电路,示波器将显示出两路信号叠加的波形。 (2)“DC-⊥-AC” Y轴输入选择开关,用以选择被测信号接至输入端的耦合方式。置于“DC”是直接耦合,能输入含有直流分量的交流信号;置于“AC”位置,实现交流耦合,只能输入交流分量;置于“⊥”位置时,Y轴输入端接地,这时显示的时基线一般用来作为测试直流电压零电平的参考基准线。 (3)“微调V/div” 灵敏度选择开关及微调装置。灵敏度选择开关系套轴结构,黑色旋钮是Y轴灵敏度粗调装置,自10mv/div~20v/div分11档。红色旋钮为细调装置,顺时针方向增加到满度时为校准位置,可按粗调旋钮所指示的数值,读取被测信号的幅度。当此旋钮反时针转到满度时,其变化范围应大于2.5倍,连续调节“微调”电位器,可实现各档级之间的灵敏度覆盖,在作定量测量时,此旋钮应置于顺时针满度的“校准”位置。 (4)“平衡” 当Y轴放大器输入电路出现不平衡时,显示的光点或波形就会随“V/div”开关的“微调”旋转而出现Y轴方向的位移,调节“平衡”电位器能将这种位移减至最小。 (5)“↑↓ ” Y轴位移电位器,用以调节波形的垂直位置。 (6)“极性、拉YA ” Y A 通道的极性转换按拉式开关。拉出时YA 通道信号倒相显示,即显示方式(YA+ YB )时,显示图像为YB - Y A 。 (7)“内触发、拉YB ” 触发源选择开关。在按的位置上(常态)扫描触发信号分别取自YA 及YB 通道的输入信号,适应于单踪或双踪显示,但不能够对双踪波形作时间比较。当把开关拉出时,扫描的触发信号只取自于YB 通道的输入信号,因而它适合于双踪显示时对比两个波形的时间和相位差。 (8)Y轴输入插座采用BNC型插座,被测信号由此直接或经探头输入。 3.X轴插件部分

什么是变送器的二线制和四线制信号传输方式

什么是变送器的二线制和四线制信号传输方式?......什么是...... 二线制传输方式中,供电电源、负载电阻、变送器是串联的,即二根导线同时传送变送器所需的电源和输出电流信号,目前大多数变送器均为二线制变送器;四线制方式中,供电电源、负载电阻是分别与变送器相连的,即供电电源和变送器输出信号分别用二根导线传输。......请看变送器八问八答。 一.什么是两线制电流变送器? 什么是两线制?两线制有什么优点? 两线制是指现场变送器与控制室仪表联系仅用两根导线,这两根线既是电源线,又是信号线。两线制与三线制(一根正电源线,两根信号线,其中一根共GND) 和四线制(两根正负电源线,两根信号线,其中一根GND)相比,两线制的优点是: 1、不易受寄生热电偶和沿电线电阻压降和温漂的影响,可用非常便宜的更细的导线;可节省大量电缆线和安装费用; 2、在电流源输出电阻足够大时,经磁场耦合感应到导线环路内的电压,不会产生显著影响,因为干扰源引起的电流极小,一般利用双绞线就能降低干扰;两线制与三线制必须用屏蔽线,屏蔽线的屏蔽层要妥善接地。 3、电容性干扰会导致接收器电阻有关误差,对于4~20mA两线制环路,接收器电阻通常为250Ω(取样Uout=1~5V)这个电阻小到不足以产生显著误差,因此,可以允许的电线长度比电压遥测系统更长更远; 4、各个单台示读装置或记录装置可以在电线长度不等的不同通道间进行换接,不因电线长度的不等而造成精度的差异,实现分散采集,分散式采集的好处就是:分散采集,集中控制.... 5、将4mA用于零电平,使判断开路与短路或传感器损坏(0mA状态)十分方便。 6,在两线输出口非常容易增设一两只防雷防浪涌器件,有利于安全防雷防爆。 三线制和四线制变送器均不具上述优点即将被两线制变送器所取代,从国外的行业动态及变送器心片供求量即可略知一斑,电流变送器在使用时要安装在现场设备的动力线上,而以单片机为核心的监测系统则位于较远离设备现场的监控室里,两者一般相距几十到几百米甚至更远。设备现场的环境较为恶劣,强电信号会产生各种电磁干扰,雷电感应会产生强浪涌脉冲,在这种情况下,单片机应用系统中遇到的一个棘手问题就是如何在恶劣环境下远距离可靠地传送微小信号。 两线制变送器件的出现使这个问题得到了较好地解决。我们以DH4-20变送模块为核心设计了小型、价廉的穿孔型两线制电流变送器。它具有低失调电压(<30μV)、低电压漂移(<0.7μV/C°)、超低非线性度(<0.01%)的特点。它把现场设备动力线的电流隔离转换成4~20mA的按线性比例变化的标准电流信号输出,然后通过一对双绞线送到监测系统的输入接口上,双绞线同时也将位于监测系统的24V工作电源送到电流变送器中。测量信号和电源在双绞线上同时传送,既省去了昂贵的传输电缆,而且信号是以电流的形式传输,抗干扰能力得到极大的加强。 二.电流变送器的4-20mA输出如何转换? 两线制电流变送器的输出为4~20 mA,通过250 Ω的精密电阻转换成1~5V或2-10V的模拟电压信号.转换成数字信号有多种方法,如果系统是在环境较为恶劣的工业

高端示波器的触发功能简介

高端示波器的触发功能简介 触发是数字示波器区别于模拟示波器的最大特征之一。所谓触发,按专业上的解释是:按照需求设置一定的触发条件,当波形流中的某一个波形满足这一条件时,示波器即实时捕获该波形和其相邻部分,并显示在屏幕上。触发条件的唯一性是精确捕获的首要条件。为了观察特定波形之前发生的更多事件,把触发点往显示窗口右方推移一段时间,即是延迟触发;为了了解特定波形之后发生的更多事件,把触发点往显示窗口左方推移一段时间,即是超前触发。 图一触发原理示意图 示波器的采集存储器是一个循环缓存,新的数据会不断覆盖老的数据,直到采集过程结束。触发点有时侯也叫触发延迟,在数字示波器中,触发点可以位于采集存储的记录的任何位置。如图二的右边图形,触发点停留在采集存储的中间时刻。假如示波器的触发电路坏了,示波器仍然可以工作,只是这时候看到的波形在屏幕上来回“晃动”,或者说在屏幕上闪啊闪的。这其实相当于您将触发模式设置为“Auto”状态并把触发电平设置得超过信号的最大或最小幅值。 图二触发存储示意图 通常示波器有四种触发模式,Auto,Normal,Single,Stop。Auto是指不管是否满足触发条件,都实时刷新波形,这时候示波器的屏幕上的波形通常看起来是“晃动”的。Normal 是指满足触发条件才触发,否则波形会静止不动,并且对于力科示波器在屏幕的右下角有红色的提示:“Waiting for Trigger”。 Single指仅捕获第一次满足触发条件的波形,捕获后就停止。 Stop指强制让波形静止不动。 示波器示波器的触发功能主要有两点,第一,隔离感兴趣的事件,在触发点处隔离的事件是满足触发条件的信号。第二,同步波形,或者说稳定显示波形,即找到一种触发方式使波形不再“晃动”,也就是找出信号的规律性来同步信号。下面以力科公司的高端示波器界面为例介绍高端示波器主要的触发方式。 1、边沿触发(Edge) 边沿触发是最常用最简单最有效的触发方式,也是中低端示波器的主要触发方式,绝大

(下)关于示波器的触发功能

博客首页 | 排行榜 | 与非网新用户系统正式上线 | 注册 电子业界资讯搜索博文 搜 索 汪进进进进的博客的博客 分享 悦纳 感动 博客相册个人档案 示波器基示波器基础础系列之四 系列之四 ——— 关于示波器的于示波器的触触发功能功能((下篇下篇)) 2008-09-30 10:10 加入收藏 转发分享 关于示波器的触发功能(下篇) 汪进进 美国力科公司深圳代表处 上篇中我们谈到了触发的一些基本概念。下篇我们首先总结下触发功能的含义,然后对各种触发方式做简单解释。 触发功能功能::示波器的触发功 能主要有两点,第一,隔离感兴趣的事件。第二,同步波形,或者说稳定显示波形。 隔离感兴趣的事件,就是在触发点处隔离的事件是满足触发条件 的信号。如下图所示,在触发点隔离的事件是总小于47.5ns或大于52ns的脉宽,该脉宽的计算是以触发电平穿越触发点处的脉宽波形的交叉点处的时间间 隔。 图一 触发的首要功能是隔离感兴趣的事件 同步波形,就是找到一种触发方式使波形不再“晃动”,也就是找出信号的规律性来同步信号。 如图二所示的信号,每组数据包里有四个脉冲,这四个脉冲并不是等时间间隔的,如果用上

图二 同步信号使波形能稳定显示升沿触发,则波形不能同步,视觉上在“晃动”,但是每组数据包是等时间间隔到来的,如果以每组数据包的第一个脉冲的上升沿作为触发源,则能稳定显示波形。因此可以用边沿延迟触发,在前一个上升沿到来之后,延迟一段时间再触发下一个上升沿,在上例中需要 ):边沿触发是最常用最简单最有效的触发方式,绝 Edge): 边沿触发(Edge 延迟的时间为标识的蓝色的时间间隔部分。 下面我们来逐一解释各种触发方式。边 ): 大多数的应用都只是用边沿触发来触发波形。边沿触发仅是甄测信号的边沿、极性和电平。当被测信号的电平变化方向与设定相同(上升沿或下降沿),其值变化到与触发电平相同时,示波器被触发,并捕捉波形。如图三所示,在触发点停留的总是上升沿。上升沿在上升的过程中如果能达到触发电平的高度就被触发,否则在Normal模式下示波器上的波形静止不动,示意波器的右下角提示“waiting for triggering” 图三 边沿触发由边沿触发引伸的是边沿延迟触发(holdoff),前面在解释示波器触发的第二个功能时有提到。每次触发到前一个边沿之后,等待设定的延迟时间或延迟事件再触发下一个满足条件的边沿,最长可延迟20s或9,999,999个事件。事件是相对于触发电平而言,在图二的例子中触发电平

触发方式对示波器波形的影响_电子测量研讨报告

Beijing Jiaotong University 电子测量技术研讨 研究触发方式对示波器波形的影响 学院:电子信息工程学院 小组成员: 学号: 班级: 指导教师: 时间:2013.11.27

题目:在Multisim环境下,利用Agilent54622D虚拟示波器,通过仿真实验来说明触发电平、触发极性、触发耦合方式对波形显示的影响。 1、实验目的 认识示波器的触发电路及其作用 熟悉Multisim环境并进行仿真电路的设计 掌握Agilent54622D虚拟示波器的触发设置 理解触发电平、触发极性及触发耦合方式对波形显示的影响 2、实验原理 被测信号从示波器的Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。 2.1触发源 要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发信号由何处供给。通常有三种触发源:内触发(INT)、电源触发(LINE)、外触发EXT)。 内触发使用被测信号作为触发信号, 如通道1、通道2。 外触发使用外加信号作为触发信号,外触发信号与被测信号间应具有周期性的关系,何时开始扫描与被测信号无关 电源触发使用交流电源频率信号作为触发信号。这种方法在测量与交流电源频率有关的信号时是有效的。特别在测量音频电路、闸流管的低电平交流噪音时更为有效。 正确选择触发信号对波形显示的稳定、清晰有很大关系。例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。

监控系统中视频信号传输方式

监控系统中视频信号传输方式 监控系统中,视频信号的传输是整个系统非常重要的一环,也是广大工程商挺挠头的一件事,随着工程中监控设备价格的透明性和工程商竞争的加剧,信号传输部分的费用越来越受到大家的重视;目前,在监控系统中最常用的传输介质是同轴电缆、双绞线、光纤等方式,对于不同场合、不同的传输距离,怎样能保证传输质量、降低费用,根据多年的工程经验,在这里我们作一些介绍供参考。 一、 同轴电缆传输 (一)通过同轴电缆传输视频基带信号 视频基带信号也就是通常讲的视频信号,它的带宽是0-6MHZ,一般来讲,信号频率越高,衰减越大,一般设计时只需考虑保证高频信号的幅度就能满足系统的要求,视频信号在5.8MHZ的衰减如下:SYV75-3 96编国标视频电缆衰减30dB/1000米, SYV75-5 96编国标视频电缆衰减 19dB/1000米,,SYV75-7 96编国标视频电缆衰减13dB/1000米;如对图象质量要求很高,周围无干扰的情况下,75-3电缆只能传输100米,75-5传输160米,75-7传输230米;实际应用中,存在一些不确定的因素,如选择的摄像机不同、周围环境的干扰等,一般来讲,75-3电缆可以传输150米、75-5可以传输300米、75-7可以传输500米;对于传输更远距离,可以采用视频放大器(视频恢复器)等设备,对信号进行放大和补偿,可以传输2-3公里;另外,通过一根同轴电缆还 可以实现视频信号和控制信号的共同传输,即同轴视控传输技术,下面简单介绍一下该技术: 在监控系统中,需要传输的信号主要有两种,一个是图像信号,另一个是控制信号。其中视频信号的流向是从前端的摄像机流向控制中心;而控制信号则是从控制中心流向前端的摄像机(包括镜头)、云台等受控对像;并且,流向前端的控制信号,一般又是通过设置在前端的解码器解码后再去控制摄像机和云台等受控对像的。同轴视控传输技术是利用一根视频电缆便可同时传输来自摄象机的视频信号以及对云台、镜头的控制功能,这种传输方式节省材料和成本、施工方便、维修简单化,在系统扩展和改造时更具灵活性;同轴视控实现方法有两类: 一是采用频率分割,即把控制信号调制在与视频信号不同的频率范围内,然后同视频信号复合在一起传送,再在现场做解调将两者区分

示波器的触发源和触发方式

示波器的触发源和触发方式 Q:示波器有哪几种触发方式?如何设置示波器的触发源和方式? 被测信号从示波器的Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。 1.触发源(Source)选择 要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发信号由何处供给。通常有三种触发源:内触发(INT)、电源触发(LINE)、外触发EXT)。 内触发使用被测信号作为触发信号,是经常使用的一种触发方式。由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。双踪示波器中通道1或者通道2都可以选作触发信号。 电源触发使用交流电源频率信号作为触发信号。这种方法在测量与交流电源频率有关的信号时是有效的。特别在测量音频电路、闸流管的低电平交流噪音时更为有效。 外触发使用外加信号作为触发信号,外加信号从外触发输入端输入。外触发信号与被测信号间应具有周期性的关系。由于被测信号没有用作触发信号,所以何时开始扫描与被测信号无关。 正确选择触发信号对波形显示的稳定、清晰有很大关系。例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。 2.触发耦合(Coupling)方式选择 触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。这里介绍常用的几种。 AC耦合又称电容耦合。它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。但是如果触发信号的频率小于10Hz,会造成触发困难。 直流耦合(DC)不隔断触发信号的直流分量。当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。

音频信号的两种传输方式

音频信号的两种传输方式 前言 音频信号有两种传输方式,即平衡式(XLR)与非平衡式(RCA)。关于两种传输模式究竟孰优孰劣,这个问题长久以来都有争论。萝卜青菜各有所爱,今天我们就来谈谈这两种传输方式。(如有不同观点,欢迎在文末留言~) 在讨论两种传输方式之前,我们先来了解下音频信号,因为你首先得知道你要传输的到底是个什么东西吧? 音频信号 音频信号是(Audio)带有语音、音乐和音效的有规律的声波的频率、幅度变化信息载体。 根据声波的特征,可把音频信息分类为规则音频和不规则声音。其中规则音频是我们熟悉的语音、音乐和音效。规则音频是一种连续变化的模拟信号,可用一条连续的曲线来表示,称为声波。另一种不规则音频就没规律可言了,噪音之类的都是。 一.信号的平衡传输(XLR)

平衡传输是一种应用非常广泛的音频信号传输方式。它是利用相位抵消的原理,将音频信号传输过程中所受的其它干扰降至最低。 平衡式音源输出(公头)、功放前级输入(母头)端口都是使用三个脚位的连接插件,平衡传输线里的三芯,一芯传输正半波(正相)信号,一芯传输的是负半波(反相)信号,最后一芯是地线。 平衡式连接必须注意的问题 1、它需要并列的三根导线来实现,即接地、热端、冷端。所以平衡输入、输出插件必须具有3个脚位,如卡农或大三芯插件(如图)。 2、传输线当然也得是2芯1屏蔽层的线,由于热端信号线和冷端信号线在同一屏蔽层内相对距离很近,所以在传输过程中受到的其他干扰信号也几乎相同。然而被传输的热端信号和冷端信号的相位却相反,所以在下一级设备的输入端把热端信号和冷端信号相减,相同的干扰信号被抵消,被传输信号由于相位相反而不会损失。所以在专业的场合和传输距离比较远的时候通常使用平衡传输方法。 3、器材之间的平衡式连接必须还要注意一个问题,就是美国与欧洲的规格完全不同:三芯中除接地外,正、负两芯美规与欧规是相反的(美规1地2正3负,欧规1地2负3正)。

示波器触发详解

( 编者按:残奥会闭幕了,但没有太多人关心,人们在关心“风暴”——世界上最发达的国家的金融风暴,世界上人口最多的国家的奶粉风暴。“你喝过三鹿奶粉了吗?” 中国的每一个父母都对自己的子女的作为个体异常地关心呵护,但这些家长本身作为个体成为社会系统的一分子的时候,不知道为什么这个社会系统集体性地缺少了社会责任感。23家的奶粉全部有问题,但国外品牌一家都没有问题。天啊,中国人真的那么丑陋吗? 天下兴亡,匹夫有责。但除了关心点天下大事之外,我每天还是继续着实现我的职业使命——让中国的工程师用上世界上最好的示波器!这种使命感让我有动力在周末的清晨敲打键盘完成本周的文章。我们都知道,心里想的和嘴上说的总是有差距,想表达出自己想的是每个人一辈子的功课。将嘴上说变成纸上写的又是一个升级过程。“写下来”是帮助我们准确深入理解某些概念的一种训练,在学生时代我们常要接受这样的训练。 这周我要分享的话题是关于示波器的触发功能。我很早就有写这样的文章的想法了,但因为说和写的差距,我常讲触发但写下来并不容易,今天终于完成了上篇。这是针对初学者的,很多已了解示波器的工程师不需要阅读此文了。我对我的表达的准确性和方式很是惶恐,总觉得没有写好,上周日就写了初稿,上周一就发给同事寻求修改意见,今天又做了适当修改。如果大家有什么修改意见请给我反馈,我希望以后初学者读完此文就完全明白了触发是什么概念,不再只会Auto Setup了。希望通过大家的集思广益来帮我完成这个想法。请记住,分享是快乐的。 祝大家充实和快乐!) 关于示波器的触发功能(上篇) 汪进进美国力科公司深圳代表处 我记得初入力科的时候,在关于示波器的三天基础知识培训中有一整天的时间都是在练习触发功能。“触发”似乎是初学者学习示波器的难点。我们常帮工程师现场解决关于触发的测试问题的案例也很多。通常有些工程师只知道“Auto Setup”之后看到屏幕上有波形然后“Stop”下来再展开波形左

示波器的触发源和触发方式

示波器的触发源和触发方式 被测信号从示波器的Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。 1.触发源(Source)选择 要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发信号由何处供给。通常有三种触发源:内触发(INT)、电源触发(LINE)、外触发EXT)。 内触发使用被测信号作为触发信号, 如通道1、通道2。 外触发使用外加信号作为触发信号,外触发信号与被测信号间应具有周期性的关系,何时开始扫描与被测信号无关。 电源触发使用交流电源频率信号作为触发信号。这种方法在测量与交流电源频率有关的信号时是有效的。特别在测量音频电路、闸流管的低电平交流噪音时更为有效。 正确选择触发信号对波形显示的稳定、清晰有很大关系。例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。 2.触发耦合(Coupling)方式选择 触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。 AC耦合又称电容耦合。它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。但是如果触发信号的频率小于10Hz,会造成触发困难。 直流耦合(DC)不隔断触发信号的直流分量。当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。 低频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电路,触发信号的高频成分被抑制。 此外还有用于电视维修的电视同步(TV)触发。

视频信号的传输方式

视频信号的传输方式 1、视频基带传输:最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。 优点:短距离传输图像信号损失小,造价低廉,系统稳定。 缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量。布线量大、维护困难、可扩展性差,适合小系统。尤其是现在非标线材盛行的今天,当你发现有视频干扰,加矩阵后字符跳动,通过视频分配器后画面有干扰时,查查自己使用的线缆达标吗? 2、光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为激光信号在光纤中传输。 优点:传输距离远、衰减小,抗干扰性能最好,适合远距离传输。标准的光端机都0---20公里传输距离,8路光端机性价比最高,这个跟光头有关系,做光端机的朋友都知道。现在光端机价格很便宜,但质量好的还是很贵。 缺点:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易升级扩容。有的工程人员为了省那便宜的光跳线和法兰,直接尾纤接设备了,以后维修的时候你就知道那根跳线和法兰有多重要。 3、网络传输:解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/ 4、 H.264音视频压缩格式传输监控信号。 优点:采用网络视频服务器作为监控信号上传设备,有Internet网络安装上远程监控软件就可监看和控制。 缺点:受网络带宽和速度的限制,只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。不过我很看好网络传输。 4、双绞线传输(平衡传输):也是视频基带传输的一种,将75Ω的非平衡模式转换为平衡模式来传输的。是解决监控图像1Km内传输,电磁环境复杂场合的解决方式之一,将监控图像信号处理通过平衡对称方式传输。

相关文档
最新文档