米勒循环与阿特金森循环

米勒循环与阿特金森循环
米勒循环与阿特金森循环

解读发动机(五)阿特金森和米勒循环

2011年10月04日 08:21 来源:汽车之家类型:原创编辑:任飞评论:0

[汽车之家技术讲堂] 怎样有效地利用燃油产生的能源,是提升发动机效率的一大关键,自发动机诞生之日起,这个课题就一直在进行。从19世纪末的阿特金森循环,到上世纪40年代的米勒循环,压缩比这个原本恒定的数值,被一种“另类”的运转机制打破。

话题又一次扯到“压缩比”这个问题上。想要提升动力,提高压缩比是一个手段。想要提高燃油经济型,提高压缩比也是一个手段。但压缩比不能无限提升,而且在发动机历史中的“远古时代”,这个问题就更难解决了。不过人类的智慧经常另辟蹊径,既然无法提高压缩比,那就把“膨胀比”搞大。

● 阿特金森循环发动机

1882年,James Atkinson发明了一款发动机,与当时的奥托循环发动机不同的是,这款发动机压缩行程和做功行程时,活塞的位移是不一样的。阿特金森发动机使用了较

为复杂的连杆作为动力从活塞到曲轴的输出,而活塞实际行程如下图所示(阿特金森发动机活塞行程较长,动画中未予表现)。

『活塞行程由蓝黄红绿四个色块表示,依次为:吸气、压缩、做功、排气四个行程』

这种设计很巧妙,用不同的连杆机制协同工作,使得各个行程幅度不同,不仅有效的改良了进排气情况,膨胀比大于压缩比更是阿特金森发动机最大的特点。更长的膨胀行程可以更有效的利用燃烧后废气仍然存有的高压,所以燃油效率也比奥托循环更高一些。

『连杆的引入不仅影响了活塞行程,作用在曲轴上的力矩发生了改变』

但复杂的连杆在体积上和故障情况都不如奥托发动机,所以在汽车上未能普及,不过船用、发电等大型柴油机在很大程度上借鉴了阿特金森发动机这种特性,可谓失之东隅收之桑榆。至于用晚闭进气门的方式,让压缩比小于膨胀比的形式是否存在于阿特金森发动机,目前无从考证(很多文献都认为阿特金森循环运用了晚闭进气门这个方式,但并无依据,连杆机构对压缩比的调整和较长的活塞行程才是阿特金森发动机的特色),但真真正正运用这种技术的,是下面这种发动机。

● 米勒循环发动机

1940年,miller重拾这种不对等膨胀/压缩比发动机,但舍弃了复杂的连杆结构,而是采用配气时机来制造这种效果。其解决方式为:在吸气冲程结束时,推迟气门的关闭,这就将吸入的混合气又“吐”出去一部分,再关闭气门,开始压缩冲程。

上图为常规奥拓循环发动机配气相位,下图为米勒循环配气相位』

『对比常规发动机,米勒循环进气门晚闭,将吸入气体

部分反流排出,排气门晚开,使做功时间加长』

这么简单的控制一个气门开闭的时机就制造了膨胀比大于压缩比的效果,相比传统奥托循环发动机,废气蕴含的能量得以利用。(ps:难道当年阿特金森不会想到用这种

方式实现吗?私认为应该是因为奥托循环发动机的专利的问题,因而阿特金森不得不那么做,而到了米勒的年代,奥托发动机的专利已经过期了。)

『1-2-3-4为传统发动机PV图,6-2-3-5为阿特金森/米勒循环PV图

阴影部分可以理解为阿特金森/米勒额外的活塞行程及其利用的能量』

● 这类发动机的缺陷

很多读者会意识到,有了可变进气正时技术,这种技术是非常容易实现的,但为什么这种技术未能普及广泛发动机之上呢?其原因如下:

◆ 1、独特的进气方式让低速扭矩很差

在低速时,本来就稀薄的混合气在“反流”之后变得更少,这让该类发动机低速扭矩表现很差,用于车辆起步显然动力不够,谁都不愿意自己的爱车输在起跑线上,厂商也不愿因此而让自己的商品落后于别家。

◆ 2、长活塞行程不利于高转速运转

较长的活塞行程确实可以充分的利用燃油的能量,提升经济性,但也因此限制了转速的升高,加速性能也变差,并且“升功率”这个性能指标会很低。而追求性能,尤其是追求高速性能的赛车发动机,往往行程与活塞直径的比值会很低。在民用车上,为了平衡,通常行程与缸径两个数据是接近的。

这就让阿特金森/米勒循环发动机的处境非常尴尬,只在转速的中间阶段才能有效发挥动力,这对于每天在路况复杂的城市交通中形式的汽车非常不利,所以普通汽车不会使用这种技术。但还有很多不平凡的汽车。

● 现代阿特金森/米勒循环发动机

从现实情况来看,目前市面上鲜有阿特金森循环发动机。虽然丰田普锐斯宣称使用了阿特金森发动机,但从实际结构来看,本质上是米勒循环的方式。这是因为在1993年,马自达重拾米勒循环发动机,装备量产车上,为避免更多的麻烦,丰田只能说自己是阿特金森循环了。

不过两家公司走的是两个不同的思路,马自达使用米勒循环发动机是为了用这种方式降低爆震提升动力,因而装备了机械增压器来进一步提升动力(很令人费解)。而丰田普锐斯是以节油为目的,发挥了阿特金森/米勒循环发动机的实质优势。

使用了机械增压的米勒循环Mazda 2.3S发动机』

『该款发动机装备在mazda Millenia之上』

因为阿特金森/米勒循环发动机这种充分利用能源的特点,故被各种节油的混合动力车型看中,它们并不在乎低速的“不在状态”和高速的“不中用”,因为这两个时段有电动机在为车轮提供动力,发动机的大多时段都是在发电,所以发动机可以在在油耗

最优异的转速运转。用电动机的大扭矩弥补动力的缺陷,互补之后的动力总成,让混合动力车在动力和经济型上都有着突出的表现。

然而想要通过阿特金森/米勒循环来制造高功率的发动机也许不大合适,马自达的发动机即便已经量产却未得以发展,功率的提升也基本上是增压带来的功效而非该循环原本的意图。所以阿特金森/米勒循环更多的被用于混动汽车之上,省油才是它的职责。

阿特金森循环发动机的应用及优缺点

阿特金森循环 目前油电混合动力汽车中,基本上对于发动机进行了重新设计或重大改进。如丰田Prius的1.5升汽油机(1NZ-FXE)采用了阿特金森循环,它是在1NZ-FE的基础上改造得到的。这种循环发动机具有高热效率、高膨胀比、紧凑型倾斜挤气燃烧室(以形成有利于燃烧的挤气涡流)以及铝合金缸体,其主要目的是追求高的热效率而不是高功率。由于电机承担了功率调峰的作用,发动机可以舍弃非经济工作区的动力性能而追求经济工作区的高效率。如,日本丰田Prius所用的发动机的工作区域设定在1000~4500rpm。 在常规奥拓发动机的做功冲程完成后,封闭在汽缸内的气体压力仍然有3~5个大气压。在排气冲程中,这部分气体的热量白白的排放到大气中。如果提高做功行程的做功量,在膨胀行程末,汽缸内的压力降为稍高于大气压,再将排气气门打开,则会提高燃油效率,这种工作循环被称之为阿特金森循环,具有这种循环的发动机被称之为阿特金森循环发动机。 阿特金森循环发动机的热效率较之传统的奥拓循环发动机的提高有赖于控制泵气损失和在保持压缩比不变的前提下增大了膨胀比。 在1885年,阿特金森循环的实现是通过曲柄和气门等机构,其燃烧室的容积用以保持固定的压缩比,而膨胀比是随着载荷变化而变动以此来优化燃油效率。在二十世纪初,工程师试图通过复杂的连杆机构以期实现不同的冲程,事实证明这种做法并不适用。后随着电子技术的发展,可变气门配气相位(VVT)使得阿特金森循环真正成为可能。福特和丰田公司已经将阿特金森循环发动机商品化,应用于其混合动力汽车上。 这类发动机的缺陷: 有了可变进气正时技术,这种技术是非常容易实现的,但为什么这种技术未能普及广泛发动机之上呢?其原因如下: 1、独特的进气方式让低速扭矩很差 在低速时,本来就稀薄的混合气在“反流”之后变得更少,这让该类发动机低速扭矩表现很差,用于车辆起步显然动力不够,谁都不愿意自己的爱车输在起跑线上,厂商也不愿因此而让自己的商品落后于别家。 2、长活塞行程不利于高转速运转 较长的活塞行程确实可以充分的利用燃油的能量,提升经济性,但也因此限制了转速的升高,加速性能也变差,并且“升功率”这个性能指标会很低。而追求性能,尤其是追求高速性能的赛车发动机,往往行程与活塞直径的比值会很低。在民用车上,为了平衡,通常行程与缸径两个数据是接近的。

外部EGR技术在高压缩比米勒循环发动机上的试验研究_吴学松

网络出版时间:2014-03-14 13:49 网络出版地址:https://www.360docs.net/doc/9e585363.html,/kcms/detail/https://www.360docs.net/doc/9e585363.html,.20140314.1349.001.html 外部EGR技术在高压缩比米勒循环发动机上的试验研 究 吴学松1,詹樟松1,尚宇1,刘斌1,胡铁刚1,裴毅强2 (1.重庆长安汽车股份有限公司动力研究院,重庆401120,2.天津大学,天津300072) Experimental study about external EGR technology in a high compression ratio Miller cycle engine WU Xue-song1,ZHAN Zhang-song1,SHANG Yu1,LIU Bin1,HU Tie-gang1,PEI Yi-qiang2 (1. Powertrain Engineering R&D Center, Chongqing Changan Automobile co., LTD.,Chongqing 401120,China 2.Tianjin University, Tianjin 300072,China) Abstract: Under the same intake air mass, Miller cycle, realized by LIVC and EIVC, can reduce the pumping loss. Meanwhile, more heat energy is converted to mechanical energy because the expansion ratio is higher than the effective compression ratio. In this way, Miller cycle can improve the fuel economy. Considered the power output at the high load, the effective compression ratio should not be too small. Then the fuel economy at the low load is sacrificed by this effect. In order to solve this issue, external Exhaust Gas Recirculation (EGR) technology is introduced in a high compression ratio Miller cycle engine. The exhaust gas is reintroduced into the cylinder to optimize the combustion process in the partial load and improve the fuel economy and emission. In this study, different ratio of EGR is used to explore the effect of EGR technology on the engine performance and emission on a high compression ratio Miller cycle engine. Results show that external EGR can obviously reduce the pumping loss and improve the fuel economy. Vehicle fuel consumption can be reduced by 2.11% . Meanwhile, NOx emission is reduced because of the reduced maximum gas temperature and oxygen content. In some partial load, the NOx emission can be reduced by 88.5%. Key words: Pumping Loss, External EGR, High compression ratio, Miller cycle, NOx 摘要:米勒循环通过进气门早关或晚关,在相同进气量的条件下增大节气门开度,降低泵气损失,同时实现膨胀比大于有效压缩比,使更多的热能转换为机械能,改善燃油经济性。考虑到高负荷的动 力性,有效压缩比不能太小,因此,部分负荷燃油经济性改善程度受到限制。为解决这一难题,在高 压缩比米勒循环发动机上应用外部EGR技术,通过将发动机的部分废气重新引入气缸,实现对部分 负荷燃烧过程的优化控制,改善发动机的燃油经济性和排放性能。在一台高压缩比米勒循环发动机上, 将不同比率的废气重新引入气缸,探究外部EGR技术对高压缩比米勒循环发动机的性能和排放的影 响。结果表明,在高压缩比米勒循环发动机上应用外部EGR技术,可有效降低发动机部分负荷下的 泵气损失,改善燃油经济性,整车百公里油耗改善2.11%;同时可降低缸内最高燃烧温度及含氧量, 大量减少NOx排放,部分工况点甚至可降低88.5%。 关键词:泵气损失、外部EGR、高压缩比、米勒循环、NOx排放 中图文类号:TK411+.7 文献标识码:A 收稿日期:2013-07-08

丰田发动机系列及全参数

丰田车系 5A-FE 直列四缸 1.5L 16 气门DOHC 威驰9.8 68/6000 124/3200 8A-FE 直列四缸 1.3L 16 气门DOHC 威驰9.3 64/6000 110/3200 丰田5A FE发动机目前国内天津一汽04年至05年 1ZZ-FE 直列四缸 1.8L 16气门DOHC、DIS (含铅汽油)花冠9.5 94/6000 162/4400 3ZZ-FE 直列四缸 1.6L 16 气门DOHC、VVT-i、DIS (无铅汽油)10.5 81/6000 146/4400 1NZ-FE 直列四缸 1.5L 16 气门DOHC、VVT-i、DIS (无铅汽油)威驰花冠 2NZ-FE 直列四缸 1.3L 16气门DOHC、DIS (含铅汽油)威驰花冠 1MZ-FE V 型6 缸 3.0L 24气门DOHC,10.5 188/5200 203/4400 佳美94年后 1AZ-FE 直列四缸 2.0L 16气门DOHC、VVT-i、 DIS、ETCS-I 凯美瑞、RAV49.8 108/6000 190/6000 2AZ-FE 直列四缸 2.4L 16气门DOHC、VVT-i、 DIS、ETCS-I 凯美瑞大霸王RAV49.8 123/6000 224/4000 2TR-FE 直列4缸 2.7L双凸轮轴16气门(VVT-i)霸道、海狮 1GR-FE V型六缸4.0L 霸道、兰德酷路泽(第七代陆地巡洋舰)2GR-FE V 型六缸 3.5L 24 气门DOHC、双VVT-i、DIS、 ACIS、ETCS-i新款凯美瑞10.8 204/6200 346/4700/ 3GR-FE V 型六缸 3.0L 24 气门DOHC、双VVT-i、DIS 2005款皇冠、锐志10.5 170/6200 300/4400 5GR-FE V 型六缸 2.5L 24 气门DOHC、双VVT-i、DIS 锐志10.0 145/6200 242/4400 1FZ-FE 直列六缸 4.5L 陆地巡洋舰(第六代) 2UZ-FE V型八缸 4.7L 兰德酷路泽(第七代陆地巡洋舰) 1NZ-FXE 1.5升4缸直列双凸轮轴16气门普锐斯

对过度膨胀(米勒循环)的发动机的热力学分析

对过度膨胀的发动机的热力学分析 Jorge J. G. Martins Dept. Eng. Mecanica – Un. Minho Krisztina Uzuneanu Universitatea “Dunarea de Jos” of Galati Bernardo Sousa Ribeiro Universidade do Minho Ondrej Jasasky Thecnical University of Liberec 摘自: 点火燃烧发动机模型 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE. For permission and licensing requests contact: SAE Permissions 400 Commonwealth Drive Warrendale, PA 15096-0001-USA Email: permissions@https://www.360docs.net/doc/9e585363.html, Fax: 724-772-4891 Tel: 724-772-4028 For multiple print copies contact: SAE Customer Service Tel: 877-606-7323 (inside USA and Canada) Tel: 724-776-4970 (outside USA) Fax: 724-776-1615 Email: CustomerService@https://www.360docs.net/doc/9e585363.html, ISBN 0-7680-1319-4 Copyright ? 2004 SAE International Positions and opinions advanced in this paper are those of the author(s) and not necessarily

阿特金森循环(Atkinson cycle)

Atkinson循环在混合动力汽车中应用的优势 姓名:邓忠伟 学号:0140209108 1. Otto 循环发动机不利于节能的因素 1.1 部分负荷燃油消耗率高 车辆在正常运行时所需要的功率是很小的, 但实际使用中为了保证加速与爬坡能力, 需要选配较大功率的发动机, 这就使得发动机在经常运转部分负荷工况下的燃油消耗率远高于最佳燃油消耗率,造成整车能量利用率低、燃油经济性差。 1.2 泵气损失 泵气损失是造成Otto 循环发动机低负荷工况运转时燃油消耗率高的主要原因。节气门在部分开度时造成节流, 以及曲轴箱和进气管的压差对活塞下行造成阻力, 都造成了能量损失。采用节气门控制负荷的发动机即使在高速路行驶时也存在泵气损失, 只有在全力加速或爬坡时节气门全开, 不存在额外的进气管节流损失。Otto循环在部分负荷时的能量损失是和发动机参数联系在一起的: 泵气损失与进气节流相联系、热效率的降低与不合适的压缩比和膨胀比相联系。 1.3 小膨胀比 发动机将燃油化学能以热能形式释放出, 并转化为机械功。热能转化为机械功的比率由膨胀比决定。膨胀比为排气门打开时气缸容积与混合气被点燃时气缸容积比值。膨胀比越高, 转化为机械功的热能越多。在Otto循环发动机中膨胀比和压缩比基本相当。而压缩比有一上限, 超过此上限便会产生爆震, 给汽油机造成很大危害。因而对于给定燃油辛烷值的汽油机来说要避免爆震就不能有大的膨胀比。 1.4 过浓的混合气 传统Otto 循环发动机通过加浓混合气满足输出功率增加的需要。浓混合气在发动机内并不能完全被利用, 作为HC排放物被排到大气中或者在催化转化器中被氧化掉, 降低了燃油利用率。 2. Atkinson循环的原理及优势 2.1 Atkinson循环发动机的工作原理 1884年James Atkinson发明了Atkinson 循环发动机。Atkinson循环发动机是在Otto循环发动机的基础上多了一个回流过程, 包括进气、回流、压缩、膨胀和排气五个过程。Atkinson循环利用了进气门晚关来控制负荷而不是节气门的节流作用。进气门晚关时刻由气缸内充量的多少来决定的, 即根据负荷的大小来确定气门的关闭时刻。气门关闭后才是压缩冲程的实际开始点, 而膨胀冲程还是和原Otto循环相似或稍长, 这就减少了进气过程的泵气损失和压缩冲程的压缩功; 而膨胀比大于压缩比便能够更大程度地将热能转换为机械能, 提高发动机的指示热效率, 降低燃油消耗。另外进气门晚关使实际压缩比降低, 使得缸内燃烧温度降低, 有利于改善NOx的排放。 图1为Atkinson循环示意图: 其中1- 2为绝热压缩过程; 2- 3为定容加热过程; 3-4为绝热膨胀过程;4 - 1为定压放热过程。与传统Otto循环相比,Atkinson循环压缩起点较Otto循环晚; Otto循环4-1过程为定容放热, 而Atkinson循环为定压过程, 在相同工质数量和加热量条件下, 它有较大的膨胀功,所以热效率高。

丰田发动机系列及参数完整版

丰田发动机系列及参数标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

丰田车系 5A-FE 直列四缸1.5L 16气门DOHC 威驰 9.8 68/6000 124/3200 8A-FE 直列四缸1.3L 16气门DOHC 威驰 9.3 64/6000 110/3200 丰田5A FE发动机目前国内天津一汽04年至05年 1ZZ-FE 直列四缸1.8L 16气门DOHC、DIS(含铅汽油)花冠 9.5 94/6000 162/4400 3ZZ-FE 直列四缸1.6L 16气门DOHC、VVT-i、DIS(无铅汽油) 10.5 81/6000 146/4400 1NZ-FE 直列四缸1.5L 16气门DOHC、VVT-i、DIS(无铅汽油)威驰花冠

2NZ-FE 直列四缸1.3L 16气门DOHC、DIS(含铅汽油)威驰花冠 1MZ-FE V型6缸 3.0L 24气门 DOHC, 10.5 188/5200 203/4400 佳美94年后 1AZ-FE 直列四缸2.0L 16气门 DOHC、VVT-i、DIS、ETCS-I 凯美瑞、RAV4 9.8 108/6000 190/6000 2AZ-FE 直列四缸2.4L 16气门 DOHC、VVT-i、DIS、ETCS-I 凯美瑞大霸王RAV4 9.8 123/6000 224/4000 2TR-FE 直列4缸 2.7L 双凸轮轴16气门(VVT-i)霸道、海狮 1GR-FE V型六缸 4.0L 霸道、兰德酷路泽(第七代陆地巡洋舰) 2GR-FE V型六缸 3.5L 24气门DOHC、双VVT-i、DIS、ACIS、ETCS-i 新款凯美瑞 10.8 204/6200 346/4700/ 3GR-FE V型六缸 3.0L 24气门DOHC、双VVT-i、DIS 2005款皇冠、锐志 10.5

丰田发动机系列及全全参数

丰田车系 5A-FE 直列四缸1.5L 16气门DOHC 威驰9.8 68/6000 124/3200 8A-FE 直列四缸1.3L 16气门DOHC 威驰9.3 64/6000 110/3200 丰田5A FE发动机目前国天津一汽04年至05年 1ZZ-FE 直列四缸1.8L 16气门DOHC、DIS(含铅汽油)花冠9.5 94/6000 162/4400 3ZZ-FE 直列四缸1.6L 16气门DOHC、VVT-i、DIS(无铅汽油)10.5 81/6000 146/4400 1NZ-FE 直列四缸1.5L 16气门DOHC、VVT-i、DIS(无铅汽油)威驰花冠 2NZ-FE 直列四缸1.3L 16气门DOHC、DIS(含铅汽油)威驰花冠 1MZ-FE V型6缸3.0L 24气门DOHC,10.5 188/5200 203/4400 佳美94年后 1AZ-FE 直列四缸2.0L 16气门DOHC、VVT-i、DIS、ETCS-I 凯美瑞、 RAV4 9.8 108/6000 190/6000

2AZ-FE 直列四缸2.4L 16气门DOHC、VVT-i、DIS、ETCS-I 凯美瑞大霸王 RAV4 9.8 123/6000 224/4000 2TR-FE 直列4缸 2.7L 双凸轮轴16气门(VVT-i)霸道、海狮 1GR-FE V型六缸4.0L 霸道、兰德酷路泽(第七代陆地巡洋舰) 2GR-FE V型六缸3.5L 24气门DOHC、双VVT-i、DIS、ACIS、ETCS-i 新款凯美瑞10.8 204/6200 346/4700/ 3GR-FE V型六缸3.0L 24气门DOHC、双VVT-i、DIS 2005款皇冠、锐志10.5 170/6200 300/4400 5GR-FE V型六缸2.5L 24气门DOHC、双VVT-i、DIS 锐志10.0 145/6200 242/4400 1FZ-FE 直列六缸4.5L 陆地巡洋舰(第六代) 2UZ-FE V型八缸4.7L 兰德酷路泽(第七代陆地巡洋舰) 1NZ-FXE 1.5升4缸直列双凸轮轴16气门普锐斯

米勒循环与阿特金森循环

阿特金森和米勒循环 [技术讲堂]怎样有效地利用燃油产生的能源,是提升压缩比效率的一大关键,自压缩比诞生之日起,这个课题就一直在进行。从19世纪末的阿特金森循环,到上世纪40年代的米勒循环,压缩比这个原本恒定的数值,被一种“另类”的运转机制打破。 话题又一次扯到“压缩比”这个问题上。想要提升动力,提高压缩比是一个手段。想要提高燃油经济型,提高压缩比也是一个手段。但压缩比不能无限提升,而且在压缩比历史中的“远古时代”,这个问题就更难解决了。不过人类的智慧经常另辟蹊径,既然无法提高压缩比,那就把“膨胀比”搞大。 ● 阿特金森循环压缩比 1882年,James Atkinson发明了一款压缩比,与当时的奥托循环压缩比不同的是,这款压缩比压缩行程和做功行程时,活塞的位移是不一样的。阿特金森压缩比使用了较为复杂的连杆作为动力从活塞到曲轴的输出,而活塞实际行程如下图所示(阿特金森压缩比活塞行程较长,动画中未予表现)。 『活塞行程由蓝黄红绿四个色块表示,依次为:吸气、压缩、做功、排气四个行程』 这种设计很巧妙,用不同的连杆机制协同工作,使得各个行程幅度不同,不仅有效的改良了进排气情况,膨胀比大于压缩比更是阿特金森压缩比最大的特点。更长的膨胀行程可以更有效的利用燃烧后废气仍然存有的高压,所以燃油效率也比奥托循环更高一些。

『连杆的引入不仅影响了活塞行程,作用在曲轴上的力矩发生了改变』 但复杂的连杆在体积上和故障情况都不如奥托压缩比,所以在汽车上未能普及,不过船用、发电等大型柴油机在很大程度上借鉴了阿特金森压缩比这种特性,可谓失之东隅收之桑榆。至于用晚闭进气门的方式,让压缩比小于膨胀比的形式是否存在于阿特金森压缩比,目前无从考证(很多文献都认为阿特金森循环运用了晚闭进气门这个方式,但并无依据,连杆机构对压缩比的调整和较长的活塞行程才是阿特金森压缩比的特色),但真真正正运用这种技术的,是下面这种压缩比。 ● 米勒循环压缩比 1940年,miller重拾这种不对等膨胀/压缩比压缩比,但舍弃了复杂的连杆结构,而是采用配气时机来制造这种效果。其解决方式为:在吸气冲程结束时,推迟气门的关闭,这就将吸入的混合气又“吐”出去一部分,再关闭气门,开始压缩冲程。 上图为常规奥拓循环压缩比配气相位,下图为米勒循环配气相位』

浅谈阿特金森循环发动机

浅谈阿特金森循环发动机 图:阿特金森循环发动机 自四冲程内燃机诞生至今,如何提高发动机的效率是发动机工程师们一直努力研究的课题。提到发动机效率,“压缩比”就自然而然地成为了讨论的主角了。一直以来,“高压缩比=高效率、高功率”已经成为了内燃机学当中不变的信条。由进气、压缩、膨胀、排气四个冲程循环构成的四冲程内燃机,是奥托历时14年于1876年研发成功的,该发动机原理,被称为奥托循环。而其中能提高内燃机效率最具关键性的一环——压缩冲程,由原理变为机械的过程,曾困扰了奥托十数年之久。

图:阿特金森循环发动机活塞行程示意图,黄红绿四个色块依次表示:吸气、压缩、 膨胀、排气四个活塞冲程。 因为当时的技术限制,压缩比不能作出更大的提升,因此发动机的效率也不能进一步地提升。1882年,英国工程师James At kinson(詹姆斯?阿特金森)在使用奥托循环内燃机的基础上,通过一套复杂的连杆机构,使得发动机的压缩行程大于膨胀行程,这种巧妙的设计,不仅改善了发动机的进气效率,也使得发动机的膨胀比高于压缩比,有效地提高了发动机效率,这种发动机的工作原理被称为阿特金森循环。

图:复杂的连杆机构不仅影响了活塞行程,也使得作用在曲轴上的力矩发生了改变。 然而,采用了阿特金森循环的发动机虽然在热效率方面得到了提高,但是,过于复杂的连杆机构使其工作的稳定性和可靠性相对较低,所以并不能得到广泛应用。到了1940年,美国工程师Ralph Miller(拉夫?米勒)研发出一款膨胀比高于压缩比的发动机。但是,这款发动机摒弃此前由阿特金森研采用复杂的连杆机构来实现的形式,而是采用了在吸气冲程结束,进入压缩冲程时,令进气门延迟关闭,迫使原本已经吸入气缸内的可燃混合气有一部分通过进气门“吐”出气缸,再关闭气门。令引擎的实际压缩行程不是从活塞下止点就开始,而是在下止点在往上某个点(或许是只有0.7倍的活塞行程)才开始,降低了活塞的实际压缩行程,也就达到了压缩行程小于膨胀行程的目的了。而由于有部分油气混合物返回进气道,使得压缩过程的实际油气混合物的量较少,因此阿特金森/米勒发动机的理论压缩比设计都比较高,令较稀疏的油气混合物有充分的压缩量。以丰田的2ZR-FXE引擎为例,理论压缩比高达13.0:1,但实际压缩比相当于10:1左右(因实际压缩行程被缩短所致)。

浅谈阿特金森循环发动机

浅谈阿特金森循环发动机 文:Botzi摄影:图鸣谢:审编:健 关键词:阿特金森循环米勒循环奥托循环混合动力压缩比 图:阿特金森循环发动机 自四冲程内燃机诞生至今,如何提高发动机的效率是发动机工程师们一直努力研究的课题。提到发动机效率,“压缩比”就自然而然地成为了讨论的主角了。一直以来,“高压缩比=高效率、高功率”已经成为了内燃机学当中不变的信条。由进气、压缩、膨胀、排气四个冲程循环构成的四冲程内燃机,是奥托历时14年于1876年研发成功的,该发动机原理,被称为奥托循环。而其中能提高内燃机效率最具关键性的一环——压缩冲程,由原理变为机械的过程,曾困扰了奥托十数年之久。

图:阿特金森循环发动机活塞行程示意图,黄红绿四个色块依次表示:吸气、压缩、膨胀、排气四个活塞冲程。 因为当时的技术限制,压缩比不能作出更大的提升,因此发动机的效率也不能进一步地提升。1882年,英国工程师James At kinson(詹姆斯?阿特金森)在使用奥托循环内燃机的基础上,通过一套复杂的连杆机构,使得发动机的压缩行程大于膨胀行程,这种巧妙的设计,不仅改善了发动机的进气效率,也使得发动机的膨胀比高于压缩比,有效地提高了发动机效率,这种发动机的工作原理被称为阿特金森循环。 图:复杂的连杆机构不仅影响了活塞行程,也使得作用在曲轴上的力矩发生了改变。

然而,采用了阿特金森循环的发动机虽然在热效率方面得到了提高,但是,过于复杂的连杆机构使其工作的稳定性和可靠性相对较低,所以并不能得到广泛应用。到了1940年,美国工程师Ralph Miller(拉夫?米勒)研发出一款膨胀比高于压缩比的发动机。但是,这款发动机摒弃此前由阿特金森研采用复杂的连杆机构来实现的形式,而是采用了在吸气冲程结束,进入压缩冲程时,令进气门延迟关闭,迫使原本已经吸入气缸内的可燃混合气有一部分通过进气门“吐”出气缸,再关闭气门。令引擎的实际压缩行程不是从活塞下止点就开始,而是在下止点在往上某个点(或许是只有0.7倍的活塞行程)才开始,降低了活塞的实际压缩行程,也就达到了压缩行程小于膨胀行程的目的了。而由于有部分油气混合物返回进气道,使得压缩过程的实际油气混合物的量较少,因此阿特金森/米勒发动机的理论压缩比设计都比较高,令较稀疏的油气混合物有充分的压缩量。以丰田的2ZR-FXE引擎为例,理论压缩比高达13.0:1,但实际压缩比相当于10:1左右(因实际压缩行程被缩短所致)。 图:奥拓循环发动机配气相位 这种基于阿特金森循环理论改良而来的发动机,称为米勒循环发动机,也是目前近现代阿特金森循环发动机的基本工作原理。采用米勒循环的发动机,因摒弃了复杂的连杆机构,在工作的稳定性和可靠性方面得到了很好的保证,但是,为什么米勒循环发动机不能够得到广泛的应用呢?这就由其自身的特性确定的。

浅析米勒循环发动机

浅析米勒循环发动机 【摘要】米勒循环发动机又称转子发动机,它采用三角转子旋转运动来控制发动机自身的工作循环,与传统的往复活塞式发动机的工作形式有很大差异。这种相对的新式机器是由德国人发明(菲加士·汪克尔),在吸收总结的汽车前辈的研究成果基础上,解决了关键技术问题,正是这样世界上第一台米勒循环发动机(以下简称转子发动机)得以诞生。 【关键词】米勒循环;三角转子;转子发动机 1.转子发动机的诞生 实际上,在16世纪末期,在某些出版物上第一次出现了“连续运转内燃机”的说法。发动机的连杆、曲柄机构的发明人沃特·詹姆斯(1736~1819),也曾经研究过转子式内燃机,特别是在过去的150年间,许多发明家都相继提出过很多关于转子发动机结构的提案。在1846年,其中有一些发明家就画出了转子发动机工作室的几何形状,这是现代转子发动机结构的雏形,也是当时第一台概念发动机。但是这些概念发动机都没能真正实用化,直到1954年德国人提出了气密封系统的转子发动机方案,后来又经过华尔特·弗劳德从运动学上经过改良才得以突破了密封等技术的关键,这些结构的相继使用,使汪克尔型转子发动机得以实用化。在1957年研制出汪克尔转子发动机。 1964年,日内瓦的德法合资企业COMOBIL公司,首次把转子发动机应用到了轿车上,这引起了马自达公司很大的兴趣,因为马自达公司一向对新技术非常敏感而且情有独钟,这样的背景下,马自达公司投巨资从汪克尔公司买下了这项新技术,1967年,日本人将转子发动机装到马自达轿车上开始进行批量生产。 2.转子发动机的实际应用 由于这是一项高新技术,在当时懂得这项技术的人更是寥寥无几,转子发动机出现了故障很少有人会修,而且还有很多的弊端,比如油耗大等,汽车行业的很多人对这种发动机的市场前景产生了怀疑。20世纪70年代石油危机爆发,各国忙于应对各方面的困难而没有顾忌转子发动机,只有马自达公司仍然深信转子发动机的潜力,独自研究和生产转子发动机,并为此付出了相当大的代价。他们渐渐克服了转子发动机的缺陷,成功的由实验性生产过渡到商业性生产,并将装配了RX~7型马自达跑车打入了美国市场,令人刮目相看。 在世界环保意识日益强化,石油资源日渐枯竭的今天,以氢气做动力源的研究已成为一大课题。当年马自达坚持下来的转子发动机从结构上讲是最适合燃烧氢气的,而且最“干净”因为氢气燃烧完排放出来的是水蒸气,对环保没有任何污染。马自达公司改制了RX-7型跑车的转子发动机,是它可以用氢气做燃料。这种发动机装配在马自达HR-X汽车上,1立方米的燃料箱存储了相当43立方米的压缩氢气,以60km/hd的车速可以行使230km,引起了各界人士的关注。由于从生产装配到维护修理,转子发动机都与传统发动机大不一样,开发成本大。加上往复活塞发动机在功率、重量、排放、能耗等方面都比过去高出许多,转子发动机并没有显示出明显的优势,因此各大汽车企业都没有积极的去开发利用,只有马自达公司一家在苦苦支撑。 MAZDA旗下的当家跑车RX-7绝对是日本跑车中极具代表性的一款,这是全球唯一一款搭载转子发动机的量产车。 2003年马自达发布了新版本,马自达RX-8,该款车并不是RX-7的换代产

汽车发动机五大机构两大系统

汽油发动机主要分两大机构五大系统:五大系统包括:燃料供给系,起动系,冷却系,润滑系,点火系。 燃料供给系:燃料供给系由空气供给系统、燃油供给系统与电子控制系统组成。 起动系: 主要由蓄电池、起动控制与传动机构与起动机(马达)等组成

冷却系: 冷却系统主要由水泵、散热器、风扇、水套与节温器等组成. 1风扇罩25 风扇电机3风扇4水箱6水泵皮带7 水泵8 9 10水管11回水管12 补水管13 次水箱14过热蒸汽管15下水管16 上水管17 水箱固定胶

润滑系:润滑系统由机油泵、机油滤清器、机油冷却器、集滤器等组成。此外,润滑系统

点火系: 点火系由传统式由蓄电池、发电机、点火线圈、断电器、火花塞等组成.普通式与传统式点火系统类似,只就是用电子元件取代了断电器.电子点火式全部就是全电子点火

系统,完全取消了机械装置,由电子系统控制点火时刻,包括蓄电池、发电机、点火线圈、火花塞与电子控制系统等。柴油机就是没有点火系,柴油机就是工作原理:空气进入气缸后,压缩成高温体同时再由高压得柴油泵通过喷油嘴直接喷到气缸后自燃后产生动能. 1、点火开关2、点火线圈3、绝缘盖4、初级线圈5、次级线圈6、分电器7、蓄电池8、点火控制器9、传 动齿轮10、真空提前装置11、分电器主轴12、分 火头13、分电器盖14、离心提前装置 不过就是柴油机还就是汽油都就是四冲程:进气冲程,压缩冲程,燃烧冲程(作功冲程),排气冲程.

汽车发动机得两大机构 发动机就就是引擎,就是从英文单词“en gin e”音译而来 得。汽车所用得发动机主要就是活塞式发动机,p ist on en gine ,或称为reciprocating engine (往复式发动机)以及转子发动机(R otar y Eng ine ,RE)。 所以,汽车发动机得类型主要有以下几种:(直列L,V 型,水平对置,W 型与转子发动机(三角活塞发动机,RE ) 活塞式发动机 我们说就是汽车发动机就好比我们人类得心脏.如果发动机坏人那么车也就不能动了。汽车发动也叫内燃机。就是通过内能转换成动能得机器。也就就是通过燃烧燃油产生热能后澎胀推动活塞作功产生动能让汽车行驶机器。 汽车发动机又分两种:柴油机与汽油机。也就就是一种就是

阿特金森循环

阿特金森循环技术 专业术语简介: 压缩比:压缩比指的是发动机混合气体被压缩的程度,用压缩前汽缸总容积与压缩后汽缸容积(即燃烧室容积)之比来表示。 膨胀比:膨胀比指的是发动机混合气体膨胀的程度,用膨胀后汽缸总容积与膨胀前汽缸容积(即燃烧室容积)之比来表示。 VVT:可变气门相位系统。具体的方式有气门中止开启方式、凸轮轮廓改变方式、凸轮相位改变方式和多模式变换方式。 一.阿特金森循环的起源和发展过程 1.奥托循环: 奥托循环是奥托历时14年于1876年研发成功的,由进气、压缩、膨胀、排气四个冲程循环构成的四冲程内燃机。(见人民教育出版社九年级物理第16章第4节热机图16.4-3) 2.阿特金森循环: 阿特金森循环是公元1882年,由英国发明家James Atkinson发明的一种热效率更好、做功行程更长的过膨胀循环,利用连杆与曲轴设计的变化,增加更复杂的曲轴连杆结构,令活塞相邻两次往返至上、下止点的行程距离一长一短,形成膨胀比大于压缩比的运作过程,达到比一般奥托循环的四行程引擎更高的热效率。 3.米勒循环: 米勒循环是米勒在1940年,对阿特金斯森循环进行改造得来的,舍弃了其复杂的曲轴连杆结构,利用改变气门开启与关闭的时机来创造两行程容积的差异,来达到膨胀比大于压缩比的目标 (目前在Hybrid混合动力车款上的汽油引擎,虽标榜采用阿特金森循环,但却采用了与米勒循环相同的设计,通过气门正时VVT改变来达到过膨胀目标,原理上与米勒循环引擎一致,只是名称专利方面的因素才以阿特金森为名,故本文探讨的阿特金森循环实为米勒循环。)

二. 阿特金森循环与米勒循环的简介 1.为什么要发明阿特金森循环? ①在常规奥托循环发动机的做功冲程完成后,封闭在汽缸内的气体压力仍然有3~5个大气压。但这一部分能量都被当成废气排放出去了,没有得到利用 ②要提高发动机的热效率,可以提高引擎的膨胀比,因为引擎的膨胀比越大,代表膨胀行程中活塞运动的距离更远、气体膨胀的倍数更多、做的功越多,引擎的动力输出就越大、热效率就越高。但膨胀比却不可以无限增大,因为在奥托循环中“膨胀比=压缩比”,而在压缩的行程中,气缸内的温度会急剧上升,如果压缩比过高,则会导致缸内的油气混合器被提前点燃,从而导致引擎爆震、敲缸发生,反而降低动力输出和热效率。 为了追求高的机械效率,又要防止因压缩比过大而引发的问题,又因为奥托发明奥托循环后,注册了许多专利,就不能用像奥托那样简单的方法来传输动力了,所以阿特金森便用力一套很复杂的曲轴连杆来传输动力如图 图:阿特金森循环发动机活塞行程示意图,黄红绿四个色块依次表示:吸气、压缩、膨胀、排气四个活塞冲程。

米勒循环与阿特金森循环

解读发动机(五)阿特金森和米勒循环 2011年10月04日 08:21 来源:汽车之家类型:原创编辑:任飞评论:0 条 [汽车之家技术讲堂] 怎样有效地利用燃油产生的能源,是提升发动机效率的一大关键,自发动机诞生之日起,这个课题就一直在进行。从19世纪末的阿特金森循环,到上世纪40年代的米勒循环,压缩比这个原本恒定的数值,被一种“另类”的运转机制打破。 话题又一次扯到“压缩比”这个问题上。想要提升动力,提高压缩比是一个手段。想要提高燃油经济型,提高压缩比也是一个手段。但压缩比不能无限提升,而且在发动机历史中的“远古时代”,这个问题就更难解决了。不过人类的智慧经常另辟蹊径,既然无法提高压缩比,那就把“膨胀比”搞大。 ● 阿特金森循环发动机 1882年,James Atkinson发明了一款发动机,与当时的奥托循环发动机不同的是,这款发动机压缩行程和做功行程时,活塞的位移是不一样的。阿特金森发动机使用了较

为复杂的连杆作为动力从活塞到曲轴的输出,而活塞实际行程如下图所示(阿特金森发动机活塞行程较长,动画中未予表现)。 『活塞行程由蓝黄红绿四个色块表示,依次为:吸气、压缩、做功、排气四个行程』 这种设计很巧妙,用不同的连杆机制协同工作,使得各个行程幅度不同,不仅有效的改良了进排气情况,膨胀比大于压缩比更是阿特金森发动机最大的特点。更长的膨胀行程可以更有效的利用燃烧后废气仍然存有的高压,所以燃油效率也比奥托循环更高一些。

『连杆的引入不仅影响了活塞行程,作用在曲轴上的力矩发生了改变』 但复杂的连杆在体积上和故障情况都不如奥托发动机,所以在汽车上未能普及,不过船用、发电等大型柴油机在很大程度上借鉴了阿特金森发动机这种特性,可谓失之东隅收之桑榆。至于用晚闭进气门的方式,让压缩比小于膨胀比的形式是否存在于阿特金森发动机,目前无从考证(很多文献都认为阿特金森循环运用了晚闭进气门这个方式,但并无依据,连杆机构对压缩比的调整和较长的活塞行程才是阿特金森发动机的特色),但真真正正运用这种技术的,是下面这种发动机。 ● 米勒循环发动机 1940年,miller重拾这种不对等膨胀/压缩比发动机,但舍弃了复杂的连杆结构,而是采用配气时机来制造这种效果。其解决方式为:在吸气冲程结束时,推迟气门的关闭,这就将吸入的混合气又“吐”出去一部分,再关闭气门,开始压缩冲程。

深度解读发动机 阿特金森和米勒循环

深度解读发动机阿特金森和米勒循环 字号 欢迎发表评论2011年10月08日05:29来源:汽车点评网 纠错|收藏|订阅将本文转发至: 转发到和讯微博 |转发到新浪微博 |转发到搜狐微博 |转发到腾讯微博 |转发到QQ空间 |转发到人人网 |转发到豆瓣网 |转发到手机 怎样有效地利用燃油产生的能源,是提升发动机效率的一大关键,自发动机诞生之日起,这个课题就一直在进行。从19世纪末的阿特金森循环,到上世纪40年代的米勒循环,压缩比这个原本恒定的数值,被一种“另类”的运转机制打破。 话题又一次扯到“压缩比”这个问题上。想要提升动力,提高压缩比是一个手段。想要提高燃油经济型,提高压缩比也是一个手段。但压缩比不能无限提升,而且在发动机历史中的“远古时代”,这个问题就更难解决了。不过人类的智慧经常另辟蹊径,既然无法提高压缩比,那就把“膨胀比”搞大。

●阿特金森循环发动机 1882年,James Atkinson发明了一款发动机,与当时的奥托循环发动机不同的是,这款发动机压缩行程和做功行程时,活塞的位移是不一样的。阿特金森发动机使用了较为复杂的连杆作为动力从活塞到曲轴的输出,而活塞实际行程如下图所示(阿特金森发动机活塞行程较长,动画中未予表现)。

活塞行程由蓝黄红绿四个色块表示,依次为:吸气、压缩、做功、排气四个行程这种设计很巧妙,用不同的连杆机制协同工作,使得各个行程幅度不同,不仅有效的改良了进排气情况,膨胀比大于压缩比更是阿特金森发动机最大的特点。更长的膨胀行程可以更有效的利用燃烧后废气仍然存有的高压,所以燃油效率也比奥托循环更高一些。 连杆的引入不仅影响了活塞行程,作用在曲轴上的力矩发生了改变

阿特金森循环

1.阿特金森循环 在常规奥拓发动机的做功冲程完成后,封闭在汽缸内的气体压力仍然有3~5个大气压。在排气冲程中,这部分气体的热量白白的排放到大气中。如果提高做功行程的做功量,在膨胀行程末,汽缸内的压力降为稍高于大气压,再将排气气门打开,则会提高燃油效率,这种工作循环被称之为阿特金森循环,具有这种循环的发动机被称之为阿特金森循环发动机。 目前油电混合动力汽车中,基本上对于发动机进行了重新设计或重大改进。如丰田Prius的1.5升汽油机(1NZ-FXE)采用了阿特金森循环,它是在1NZ-FE的基础上改造得到的。这种循环发动机具有高热效率、高膨胀比、紧凑型倾斜挤气燃烧室(以形成有利于燃烧的挤气涡流)以及铝合金缸体,其主要目的是追求高的热效率而不是高功率。由于电机承担了功率调峰的作用,发动机可以舍弃非经济工作区的动力性能而追求经济工作区的高效率。如,日本丰田Prius所用的发动机的工作区域设定在1000~4500rpm。 阿特金森循环发动机的热效率较之传统的奥拓循环发动机的提高有赖于控制泵气损失和在保持压缩比不变的前提下增大了膨胀比。 在1885年,阿特金森循环的实现是通过曲柄和气门等机构,其燃烧室的容积用以保持固定的压缩比,而膨胀比是随着载荷变化而变动以此来优化燃油效率。在二十世纪初,工程师试图通过复杂的连杆机构以期实现不同的冲程,事实证明这种做法并不适用。后随着电子技术的发展,可变气门配气相位(VVT)使得阿特金森循环真正成为可能。福特和丰田公司已经将阿特金森循环发动机商品化,应用于其混合动力汽车上。 这类发动机的缺陷: 有了可变进气正时技术,这种技术是非常容易实现的,但为什么这种技术未能普及广泛发动机之上呢?其原因如下: 1、独特的进气方式让低速扭矩很差 在低速时,本来就稀薄的混合气在“反流”之后变得更少,这让该类发动机低速扭矩表现很差,用于车辆起步显然动力不够,谁都不愿意自己的爱车输在起跑线上,厂商也不愿因此而让自己的商品落后于别家。 2、长活塞行程不利于高转速运转 较长的活塞行程确实可以充分的利用燃油的能量,提升经济性,但也因此限制了转速的升高,加速性能也变差,并且“升功率”这个性能指标会很低。而追求性能,尤其是追求高速性能的赛车发动机,往往行程与活塞直径的比值会很低。在民用车上,为了平衡,通常行程与缸径两个数据是接近的。

EGR技术浅析解读

船用柴油机EGR技术 摘要 废气再循环( EGR) 技术是船用中速柴油机应对IMO Tier III 排放法规的重要技术措施。本文简要介绍废气再循环技术的原理、废气再循环的技术发展状况,指出了EGR技术主要存在的问题和设计控制的原则,使废气的再循环量在每一个工作点都达到最佳状况,保证排放污染物中的排放值最低。介绍了国外知名船用柴油机生产商及技术咨询公司应对IMO Tier III 排放法规将要采取的技术措施。 [关键词]: 船用柴油机;IMO Tier III;EGR原理;技术措施; Abstract Exhaust gas recirculation ( EGR) is the most conceivable method to fulfill the coming IMO Tier III emission regulation.In this paper, it is briefly introduced on EGR development and working principle, Critical problems of the EGR and design principle are discussed subject to the EGR valve to get an optimal exhaust gas flow at every working point. Exhaust emission is deceased greatly. Technical solutions from famous marine diesel engine manufactures and consultancy companies to comply with IMO Tier III are summarized. [Key words]:marine diesel engine; IMO Tier III; EGR Principle; technical solution

相关文档
最新文档