基于ADAMS的轴向滑块凸轮式差速器仿真

基于ADAMS的轴向滑块凸轮式差速器仿真
基于ADAMS的轴向滑块凸轮式差速器仿真

ADAMS 曲柄滑块

机电工程学院 机械动力学项目训练 学号:S3120700 专业:机械制造及自动化 学生姓名:哈工程 任课教师:杨恩霞教授 2012年11月

Ⅰ项目训练要求: 建立单自由度杆机构动力学模型,由静止启动,选择一固定驱动力矩,绘制 原动件在一周内的运动关系线图。 我选择的机构为曲柄滑块机构,如图1-1所示,采用ADAMS 软件,建立简 单机械系统的动力学模型,借助软件进行求解计算和结果分析。 具体参数如下: AB杆(曲柄):L=0.5m W=0.2 m D=0.1 m m=0.01kg BC杆(连杆):L= 2m W= 0.2 m D= 0.1 m m =0.01kg 滑块: L=0.7 m W=0.6 m D=0.6 m m =2 kg 驱动力矩: M=200 N.m 阻力: F=100N 图1-1 Ⅱ运用ADAMS建立模型: 1)为了方便建立模型,将长度单位设为米。 2)选择设置(Setting)菜单中的工作网格(working Grid)命令,设定工作网 格在X方向的长度为5米,工作网格和Y方向的间距为5米。 3)运用rigid body:link 功能 按照已知的长宽高建立AB杆(曲柄)L=0.5m W=0.2 m D=0.1 m m=20kg;BC杆(连杆)L= 2m W= 0.2 m D= 0.1 m m =40kg。 4)运用rigid body:box功能,按照已知的长宽高建立滑块。L=0.6m W=0.6 m D=0.6 m m =30kg 建立如下图曲柄滑块机构模型 图1-2 5)修改构件的质量,在各个构件位置点击右键,选择modify修改。AB杆(曲柄)m=20kg; BC杆(连杆) m =40kg; 滑块m =30kg 6)运用joint :revolute 功能,建立曲柄与地面、曲柄与连杆、连杆与滑块 之间的转动副。

差速器的结构及工作原理 图解

差速器的结构及工作原理(图解) 汽车差速器是一个差速传动机构,用来保证各驱动轮在各种运动条件下的动力传递,避免轮胎与地面间打滑。 当汽车转弯行驶时,外侧车轮比内侧车轮所走过的路程长(图D-C5-5);汽车在不平路面上直线行驶时,两侧车轮走过的曲线长短也不相等; 即使路面非常平直,但由于轮胎制造尺寸误差,磨损程度不同,承受的载荷不同或充气压力不等,各个轮胎的实际上不可能相等,若两侧车轮都固定在同一转轴上,两轮角速度相等,则车轮必然出现边滚动边滑动的现象。 差速器的作用 车轮对路面的滑动不仅会加速轮胎磨损,增加汽车的动力消耗,而且可能导致转向和制动性能的恶化。 若主减速器从动齿轮通过一根整轴同时带动两侧驱动轮,则两侧车轮只能同样的转速转动。为了保证两侧驱动轮处于纯滚动状态,就必须改用两根半轴分别连接两侧车轮,而由主减速器从动齿轮通过差速器分别驱动两侧半轴和车轮,使它们可用不同角速度旋转。

这种装在同一驱动桥两侧驱动轮之间的差速器称为轮间差速器。 在多轴驱动汽车的各驱动桥之间,也存在类似问题。为了适应各所处的不同路面情况,使各驱动桥有可能具有不同的输入角速度,可以在各驱动桥之间装设轴间差速器。 布置在前驱动桥(前驱汽车)和后驱动桥(后驱汽车)的差速器,可分别称为前差速器和后差速器,如安装在四驱汽车的中间传动轴上,来调节前后轮的转速,则称为中央差速器。

差速器可分为普通差速器和两大类。 普通差速器的结构及工作原理 目前国产轿车及其它类汽车基本都采用了对称式锥齿轮普通差速器。 对称式锥齿轮差速器由行星齿轮、半轴齿轮、行星齿轮轴(十字轴或一根直销轴)和差速器壳等组成12-13(见图D-C5-6)。(从前向后看)左半差速器壳2和右半差速器壳8用螺栓固紧在一起。主减速器的从动齿轮7用螺栓(或)固定在差速器壳右半部8的上。十字形行星齿轮轴9安装在差速器壳接合面处所对出的园孔内,每个轴颈上套有一个带有滑动轴承(衬套)的直齿圆锥行星齿轮6,四个行星齿轮的左右两侧各与一个直齿圆锥半轴齿轮4相啮合。半轴齿轮的轴颈支承在差速器壳左右相应的孔中,其内花键与半轴相连。与差速器壳一起转动(公转)的行星齿轮拨动两侧的半轴齿轮转动,当两侧车轮所受阻力不同时,行星齿轮还要绕自身轴线转动--自转,实现对两侧车轮的差速驱动。

adams曲柄滑块机构实例仿真

题6-6图为开槽机上用的急回机构。原动件BC 匀速转动,已知 mm a 80=, mm b 200=, mm l AD 100=, mm l DF 400=。原动件为构件BC,为匀速转动,角速 度2/rad s ωπ= 。对该机构进行运动分析与动力分析。 在本例子中,将展示在ADAMS 中可以先用未组装的形式构造急回机构的各个部件,然后在仿真前让 这些部件自动地组装起来,最后进行仿真。这种方法比较适合构造由较多部件组成的复杂模型。 创建过程 ⒈启动ADAMS 双击桌面上ADAMS/View 的快捷图标,打开ADAMS/View 。在欢迎对话框中选择“Create a new model ”,在模型名称(Model name )栏中输入:jihuijigou ;在重力名称(Gravity )栏中选择“Earth Normal (-Global Y)”;在单位名称(Units )栏中选择“MMKS –mm,kg,N,s,deg ”。如图1-1所示。 题6-6图

图1-1 欢迎对话框 ⒉设置工作环境 2、1 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View菜单栏中,选择设置(Setting)下拉菜单中的工作网 格(Working Grid)命令。系统弹出设置工作网格对话框,将网格的尺 寸(Size)中的X与Y分别设置成750mm与1000mm,间距(Spacing) 中的X与Y都设置成10mm。然后点击“OK”确定。如图2-1所表示 。 2、2用鼠标左键点击动态放大(Dynamic Zoom)图标, 在模型窗口中,点击鼠标左键并按住不放,移动鼠标进行放大或缩小。 2、3 用鼠标左键点击动态移动(Dynamic Translate)图标, 在模型窗口中,按住鼠标左键,移动鼠标选择合适的网格。 ⒊创建机构的各个部件 3、1 在ADAMS/View零件库中选择 连杆(Link)图标,长度为200mm (mm b200 ),其她参数合理选择。如图 3-1所示。在ADAMS/View工作窗口中先用 鼠标左键选择点(-80,0,0)mm(该点的位置 可以选择在其她地方),然后按照与题目中 差不多的倾斜角,点击鼠标左键(本题选择 点(-200,160,0)mm),创建出主曲柄BC (PART_2)。如图3-2所表示。 3、2在ADAMS/View零件库中选择连杆 (Link)图标,参数选择如图3-3所示。在工作窗口 中先用鼠标左键选择原点(0,0,0)mm(根据上面创建的主曲柄BC的位置与题中的条件,副曲柄AC的位置就是唯一的),然后按照与题目中差不多的倾斜角,点击鼠标左键(本题选择点(-230,290,0)mm),创建出副曲柄AC(PART_3)。如图3-3所表示。 图2-1 设置工作网格对话框 图3-1设置杆选项 图3-2 创建的主曲柄BC 图3-1设置杆选项

汽车差速器三维建模设计

差速器设计 汽车在行驶过程中,左、右车轮在同一时间内所滚过的路程往往是不相等的,如转弯时内侧车轮行程比外侧车轮短;左右两轮胎内的气压不等、胎面磨损不均匀、两车轮上的负荷不均匀而引起车轮滚动半径不相等;左右两轮接触的路面条件不同,行驶阻力不等等。这样,如果驱动桥的左、右车轮刚性连接,则不论转弯行驶或直线行驶,均会引起车轮在路面上的滑移或滑转,一方面会加剧轮胎磨损、功率和燃料消耗,另一方面会使转向沉重,通过性和操纵稳定性变坏。为此,在驱动桥的左、右车轮间都装有轮间差速器。在多桥驱动的汽车上还常装有轴间差速器,以提高通过性,同时避免在驱动桥间产生功率循环及由此引起的附加载荷、传动系零件损坏、轮胎磨损和燃料消耗等。 差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同角速度转动。差速器按其结构特征可分为齿轮式、凸轮式、蜗轮式和牙嵌自由轮式等多种形式。 一、差速器结构形式选择 (一)齿轮式差速器 汽车上广泛采用的差速器为对称锥齿轮式差速器,具有结构简单、质量较小等优点,应用广泛。他又可分为普通 锥齿轮式差速器、摩擦片式差速器 和强制锁止式差速器等 1.普通锥齿轮式差速器 由于普通锥齿轮式差速器结 构简单、工作平稳可靠,所以广泛 应用于一般使用条件的汽车驱动 桥中。图5—19为其示意图,图中 ω0为差速器壳的角速度;ω1、ω 2分别为左、右两半轴的角速度; To为差速器壳接受的转矩;T r为差速器的内摩擦力矩;T1、T2分别为左、右两半轴对差速器的反转矩。 根据运动分析可得 ω1+ω2=2ω0 (5—23) 显然,当一侧半轴不转时,另一侧半轴将以两倍的差速器壳体角速度旋转;当

发动机凸轮轴检测方法综述

发动机凸轮轴检测方法综述 Summarize to The Measure Method of Engine Cam Shaft 摘要论述了凸轮轴测量仪的测量原理和凸轮测量数据的处理与评定方法。 Abstract: The article mainly introduces the principle of the cam shaft measuring system and the method of data processing and assess in cam shaft measuring system. 关键词凸轮轴测量数据处理评定 keywords: cam shaft ,measure, data processing , assess. 1概述 凸轮机构广泛应用于自动化机械、精密仪器、自动化控制系统中,作为发动机的关键部件,凸轮轴是影响发动机气门开闭间隙大小和配气效率的主要因素。随着凸轮轴自动化加工水平的不断提高,为了高精度、高效率地检测凸轮轴,并正确处理、评定它的各项工艺误差,及时快速地反馈凸轮轴的质量信息,传统的光学机械量仪以及采用人工数据处理的方法,已不能适应凸轮轴工艺质量管理的实际检测需要。为此广州威而信精密仪器有限公司研制了基于计算机为检测、处理核心的L系列凸轮轴测量仪,它可以实现对凸轮轴加工质量的高效、高精度检测,从而对凸轮轴磨床的磨削工艺进行实时监控,以保证产品质量和提高生产效率。 发动机凸轮轴的测量包括与设计有关因素的测量项目和与质量管理有关因素的测量项目。L-2000型凸轮轴测量仪的主要功能有: (1)检测凸轮轴的轴颈(凸轮轴的装配基准)误差(圆度,跳动); (2)检测凸轮轴的桃型(包括基圆段,爬行段,升程段等)误差;

凸轮型线设计课件

内燃机课程设计 凸轮说明书 题目90kW四行程四缸汽油机凸轮型线设计学院机电工程学院 专业热能与动力工程专业 班级热动1002 学号 姓名 指导老师刘军 日期2013-6-25

90kW四行程四缸汽油机凸轮型线设计 前言 四冲程汽车发动机都采用气门式配气机构,其功用是按照发动机的工作顺序和工作循环要求,定时开启和关闭各缸的进、排气门,使新气进入气缸,废气从气缸排出。其中,凸轮机构作为机械中一种常用机构,在自动学和半自动学当中应用十分广泛,凸轮外形设计在配气机构设计中极为重要,这是由于气门开关的快慢、开度的大小、开启时间的长短都取决于配气机构的形状。因此,配气凸轮的外形设计和配气凸轮型线设计就决定了时间的大小、配气机构各零件的运动规律及其承载情况。 任务书首先对凸轮进行设计,然后利用最大速度和最大加速度位置基于高次方程凸轮运动规律进行凸轮型线的优化设计,建立数学模型,并设计图论过渡段和绘制图轮廓图。 凸轮的设计 1.给定的参数及要求 (1)凸轮设计转速n c =4636r/min; (2)进气门开启角233°(曲轴转角),凸轮工作段包角 116.5°; (3)排气门开启角220°(曲轴转角),凸轮工作段包角 110°; (4)气门重叠角15°(曲轴转角),凸轮转角7.5°; (5)凸轮基圆直径 28mm; (6)进气门最大气门升程h vmax =8.2,排气门最大气门升程h vmax =8。 2.凸轮型线类型的选择 配气机构是发动机的一个重要系统,其设计好坏对发动机的性能、可靠性和

寿命有极大的影响。其中凸轮型线设计是配气机构设计中最为关键的部分,在确定了系统参数后,重要的问题是根据发动机的性能和用途,正确选择凸轮型线类型及凸轮参数。 凸轮型线有多种,如复合正弦,复合摆线,低次方,高次方,多项动力,谐波凸轮等。其中,高次方、多项动力、谐波凸轮等具有连续的高阶倒数的凸轮型线,具有良好的动力性能,能满足较高转速发动机配气机构工作平稳性的要求。 由于凸轮设计转速为n c =2318 r/min ,即每分钟凸轮轴转2318圈,属于高速发动机,且为使发动机运动件少,传动链短,整个机构的刚度大,因此我们用双圆弧凸轮的凸轮轴上置式配置机构。 由于四冲程发动机每完成一个工作循环,每个气缸进、排气一次。这时曲轴转两周,而凸轮轴只旋转一周,所以曲轴与凸轮轴的转速比或传动比为2:1,即由上式已知可知曲轴的转速为2318*2=4636r/min 。 3.计算凸轮的外形尺寸 图一 圆弧凸轮的几何参数示意图 由上图可知,圆弧凸轮有五个参数:基圆半径r 0=PR ,腹弧半径r 1=OA ,

国内外限滑差速器结构及性能对比

国外限滑差速器结构及性能对比 一、国外几种常用限滑差速器简介 在发达国家,限滑差速器是一种非常常用的汽车零部件,比如在欧美国家,几乎所有的皮卡都装备有限滑差速器,但在国,限滑差速器由于价格较贵,目前只有少数厂家采用,并且只作为选装件。由于大多数限滑差速器的结构复杂,制造成本高,同时有些关键问题不能很好的解决,因此国的限滑差速器绝大多数从国外进口。 根据结构类型限滑差速器可以分为以下几种: 图1 限滑差速器结构分类 根据工作原理亦可归纳为摩擦式、超越式、与ABS刹车系统相结合的电子限滑差速系统、齿轮变传动比式等几种,分别简述如下:

1.摩擦式:具体结构可以分为无预压摩擦片式和弹簧预压摩擦片式限滑差速器。 图2无预压摩擦片式限滑差速器图3 弹簧预压摩擦片式限滑差速器其工作原理是利用摩擦片之间的摩擦力限制半轴轮相对于差速器壳体转动,使相对转动的阻力增大,从而限制打滑。该类型差速器工作平稳,技术成熟,在国外的高级轿车、越野车和工程机械上应用较广。 该类型差速器缺点是: ①易磨损,维修难; ②锁紧系数大了转向难,小了限滑功能差; ③这类差速器对润滑油有特殊要求,故在选用润滑油时要兼顾齿轮和摩擦片对油的不同要求; ④该型差速器结构复杂,价格较高。 2.超越式差速器: 工作原理是只允许一侧半轴转的比差速器壳快,不允许比差速器壳慢,否则就被锁在差速器壳上。由此差速器壳快的车轮上没有任何牵引力,只能被拖着走,因此在超越和给合的转换过程中工作不太平稳,转

向阻力和转向时对轮胎磨损较大。 3.与ABS刹车系统相结合的电子限滑差速系统: 工作原理:该限滑——防抱死系统通过传感器监视两侧半轴的转速及方向盘的转角,并根据方向盘的转角计算两侧车轮的转速比例。若两侧车轮的转速之比与计算值之差超过给定的误差围,便通过ABS制动系统对转速相对偏高的车轮进行适度的制动,使两轮的转速之比保持在理论值附近。 这种限滑系统的优点是工作平稳,准确,对转向毫无影响。 该限滑系统缺点是: ①该类差速器通过制动快速轮来增加慢转轮的扭矩,而不像其他类型的限滑差速器,通过将快转轮上的扭矩转移到慢转轮上来防止快转轮打滑,故要获得同样的牵引力,消耗的发动机功率要增加许多; ②该类差速器牵涉电子系统复杂,传感器被泥泞污染后即失去功能。 4.齿轮结构限滑差速器: 齿轮结构限滑差速器学名叫变传动比限滑差速器,包括:单周节和三周节变传动比限滑差速器两种。变传动比的限滑差速器早在20世纪30年代TIMKEN公司就将它装到载货汽车的驱动桥上,经过几十年的改进,目前主要应用在工程机械中,目前的应用厂家主要有ZF、日本小松和中国的一些工程机械厂家。 A.单周节变传动比限滑差速器结构: 单周节限滑差速器齿轮每个齿都一样,齿轮采用了非渐开线的分段齿形设计,行星轮和半轴轮的每个齿从刚开始啮合到结束啮合这个过程

如何区分发动机CG、CB、GS、YB (带图二)

如何区分发动机CG、CB、GS、YB 看了一些资料,知道摩托车发动机分为很多种,如CG、CB、GS、YB等,并分析了各自的性能。 看完之后,还是迷迷糊糊,不知道到底怎么区分这些发动机。 请高手介绍下,如果从外观(以图的方式)分辨这些发动机,并说说目前常见的国产品牌摩托车分别用什么发动机。 谢谢! CG,是顶杆机,CB GSX YBR是链条机! #3 摩托车,顶杆机和链条机的优点和缺点 CG 顶杆机 顶杆发动机配气机构只要由气门摇臂,挺柱,下置摇臂,和凸轮轴构成,凸轮机构在曲轴箱内,这样的形式叫OHV,也就是下置凸轮式发动机,是一种比较原始的结构,其优点是结构简单可靠性高。缺点是配气机构是往复运动,外加机件质量大,高转惯性大,极高转速工作下挺柱会因为惯性跳离摇臂,产生哒哒的噪音,所以这种形式的发动机不适合相对高速运 CB 链条机 发动机配气机构主要有时规链,链轮,凸轮轴,气门摇臂,链条张紧器,小链压条等构成,国内小链机一般都是OHC型(顶置凸轮轴)也有少数DOHC的(双顶置凸轮轴)因为凸轮轴转速必须是曲轴的1/2,所以通过时规链条带动凸轮链轮完成动力传递和减速。这样的形式优点是配气机构的重量小,运转惯性低,适合相对高的转速工作,噪音小。 CB机和CG机对比和今后发展的去向 顶杆式配气机构(CG机) 工作原理: 曲轴正时齿轮与凸轮轴齿轮相啮合,当发动机运转时,曲轴旋转,曲轴正时齿轮带动凸轮轴

齿轮旋转。凸轮轴随凸轮轴齿轮转动,使得凸轮从动件(下摇臂)随凸轮曲线的起伏而摆动。下摇臂的摆动,使顶杆上下运动,再通过气门摇臂的传动,使进、排气门按凸轮型线的规律打开、关闭。 凸轮型线: 因为进、排气口的空气流量与气门升程成正比。气门升程越大,气门开度就越大,气门流通截面的面积也就越大,空气流量就越大。而凸轮的曲线高度变化即可控制气门的升程,从而控制气缸不同工作阶段时的进、排气量。因此,合理的凸轮型线对发动机的工作非常重要。工作特点: 配气机构中,顶杆作往复运动,运动惯量大。在发动机高速运转时,顶杆以每秒几十次的高速上下运动,对下摇臂、气门摇臂形成冲击,产生冲击噪音。另外,高速旋转的曲轴正时齿轮与凸轮轴齿轮之间也会产生啮合噪音。发动机转速越高,这些噪音也越大。 顶杆对下摇臂和气门摇臂间的高速冲击,致使它们的接合面磨损很大。高速往复运动的零件产生很大的冲击载荷,加剧发动机零件间的磨损。发动机运转不平稳,振动较大。 由于顶杆等部件往复运动,产生的惯性力作用在气门摇臂上,在高速时将导致气门关闭过迟。进气门关闭过迟,将造成混合气倒流,压力损失。排气门关闭过迟,将造成可燃气泄漏,油耗上升,排放废气增加。 由于凸轮轴位于下部,凸轮与摇臂之间的传动零件过多,配气机构的刚性较差。在发动机运转时,这些零件在周期性作用力下产生变形及振动,使得气门的运动规律发生畸变,气门的开闭时间与幅度相对于凸轮型线产生了偏差,发动机的配气相位不准。将导致功率下降,油耗增加

差速器设计说明书

学号成绩 汽车专业综合实践说明书 设计名称:汽车差速器设计 设计时间 2012年 6月 系别机电工程系 专业汽车服务工程 班级 姓名 指导教师 2012 年 06 月 18日

目 录 任务设计书 已知条件:(1)假设地面的附着系数足够大; (2)发动机到主传动主动齿轮的传动效率96.0=w η; (3)车速度允许误差为±3%; (4)工作情况:每天工作16小时,连续运转,载荷较平稳; (5)工作环境:湿度和粉尘含量设为正常状态,环境最高温度为30 度; (6)要求齿轮使用寿命为17年(每年按300天计,每天平均10小时); (7)生产批量:中等。 (8)半轴齿轮、行星齿轮齿数,可参考同类车型选定,也可自己设计。 (9)主传动比、转矩比参数选择不得雷同。 差速器的功用类型及组成 差速器——能使同一驱动桥的左右车轮或两驱动桥之间以不同角速度旋转,并传递转矩的机构。起轮间差速作用的称为轮间差速器,起桥间作用的称桥间(轴间)差速器。轮间差速器的功用是当汽车转弯行驶或在不平路面上行驶时,使左右驱动轮以不同的转速滚动,即保证两侧驱动车轮作纯滚动。 1.齿轮式差速器 齿轮式差速器有圆锥齿轮式和圆柱齿轮式两种。 按两侧的输出转矩是否相等,齿轮差速器有对称式(等转矩式)和不对称式(不等转矩式)。目前汽车上广泛采用的是对称式锥齿轮差速器,具有结构简单、质量较小等优点,应用广泛。它又可分为普通锥齿轮式差速器、摩擦片式差速器和强制锁止式差速器等。其结构见下图:

2.滑块凸轮式差速器 图二—2为双排径向滑块凸轮式差速器。 差速器的主动件是与差速器壳1连接在一起的套,套上有两排径向孔,滑块2装于孔中并可作径向滑动。滑块两端分别与差速器的从动元件内凸轮4和外凸轮3接触。内、外凸轮分别与左、右半轴用花键连接。当差速器传递动力时,主动套带动滑块并通过滑块带动内、外凸轮旋转,同时允许内、外凸轮转速不等。理论上凸轮形线应是阿基米德螺线,为加工简单起见,可用圆弧曲线代替。

凸轮型线设计

序号: 编码: 重庆理工大学 第二十四届“开拓杯”学生课外学术科技作品竞赛 参赛作品 作品名称:配气凸轮型线设计 作品类别: A 类别: A自然科学类学术论文 B 科技发明制作 C哲学社会科学类学术论文与社会调查报告

配气凸轮型线设计 摘要:配气机构是内燃机重要组成部分,它控制着内燃机的换气过程,其设计优劣直接影响着内燃机的动力性,经济性和排放性以及工作可靠性。今年来随着内燃机的高速化,低排放化的趋势,人们对其配气机构的性能要求越来越高。而凸轮型线配气机构的核心部分,其设计的合理性影响着配气机构的各个性能指标。凸轮型线的设计既要保证获得尽可能的大时面值和丰满系数以提高换气效率,又要保证加速度曲线连续,、无突变。本次论文针对以上情况,设计出一款缸径为68的配气凸轮,并对其性能做出相应的评价。 关键词:配气机构凸轮升程凸轮型线 Abstract:Air distribution mechanism is an important part of the internal combustion engine, which controls the gas exchange process of the internal combustion engine, the design of which has a direct impact on the engine power, economy and emissions as well as work reliability. This year, with the high speed of the internal combustion engine, the trend of low emission, the performance requirements of the gas distribution agencies are getting higher and higher. And the core part of the cam type air distribution mechanism, the rationality of its design affects the performance indexes of the air distribution mechanism. The design of the cam profile is not only to ensure that the face value and fullness coefficient are obtained as much as possible to improve the ventilation efficiency, but also to ensure that the acceleration curve is continuous, and there is no mutation. This paper, in view of the above situation, design a bore 68 of the cam, and make the corresponding evaluation on its performance. Key word:Valve train Cam lift Cam profile 1.凸轮设计的基本原则

ADAMS机构设计与分析

曲柄滑块机构的仿真与分析: 图中件1、2、为齿轮,按圆柱建模,其中齿轮2半径350mm、厚度50mm;齿轮1半径150mm、厚度40mm;件3连杆(宽150mm;厚60mm)、件4长方体滑块(长600mm、宽300mm、高400mm),要求整个模型与栅格成对称状态。其中:齿轮1材料密度为7.8 10-3kg/cm2;连杆3质量Q=65kg,惯性矩Ixx=0.132kg.m2,Iyy=6.80kg.m2,Izz=6.91kg.m2;滑块4材料为铝。 绘图步骤简介: 步骤1:启动ADAMS/View程序 1)选择MD Adams>Adams-view MD 2010 2)在打开的对话框中选择create a new model 。 3)选择start in 后在单击,在自己指定的工作目录下新建的一个文件夹,以保存样机模型。 4)在model name栏中输入模型名称:model_lixiang 5)在gravity选项栏中选择earth normal(-global Y)。 6)在units文本框设定为MMKS—mm、kg、N、s、deg 。 7)单击ok按钮。如图:

步骤2:设定建模环境 1)选择settings>working grid,按图所示进行设置工作栅格大小及间距。 2)单击ok按钮,可看到工作栅格已经改变。 3)在主工具箱中选择,显示view控制图标。 4)按F键或在主工具箱中单击,可看到整个工作栅格。 步骤3:样机建模 1、创建设计点 1)在集合建模工具集中,单击点工具图标 2)在主工具箱的选项栏中选择添加到零件上add to ground。 3)在建模视窗中,先点击ground,再选择该点,点击右键,打开修改点对话框,修改坐标为A(-800,-20,20),重复此过程,依次创建点B(-300,0,25)、C(0,0,0)、D(1000,0,0) 2、创建驱动齿轮1 1)在集合建模工具集中,单击圆柱工具图标、。 2)在主工具箱的选项栏中选择新零件new part 3)在长度选项输入40mm、半径选项输入150mm,如图(1)。 4)在建模视窗中,点击点(-800,-20,20),水平拖动鼠标至点的右边点击,创建圆柱体5)旋转圆柱体与屏幕垂直:鼠标放在圆柱体左端附近,点击右键,选择标记点marker菜单,

差速器的结构及工作原理

汽车差速器是一个差速传动机构,用来保证各驱动轮在各种运动条件下的动力传递,避免轮胎与地面间打滑。 当汽车转弯行驶时,外侧车轮比内侧车轮所走过的路程长(图D-C5-5);汽车在不平路面上直线行驶时,两侧车轮走过的曲线长短也不相等; 即使路面非常平直,但由于轮胎制造尺寸误差,磨损程度不同,承受的载荷不同或充气压力不等,各个轮胎的滚动半径实际上不可能相等,若两侧车轮都固定在同一刚性转轴上,两轮角速度相等,则车轮必然出现边滚动边滑动的现象。 差速器的作用 车轮对路面的滑动不仅会加速轮胎磨损,增加汽车的动力消耗,而且可能导致转向和制动性能的恶化。 若主减速器从动齿轮通过一根整轴同时带动两侧驱动轮,则两侧车轮只能同样的转速转动。为了保证两侧驱动轮处于纯滚动状态,就必须改用两根半轴分别连接两侧车轮,而由主减速器从动齿轮通过差速器分别驱动两侧半轴和车轮,使它们可用不同角速度旋转。 这种装在同一驱动桥两侧驱动轮之间的差速器称为轮间差速器。 在多轴驱动汽车的各驱动桥之间,也存在类似问题。为了适应各驱动桥所处的不同路面情况,使各驱动桥有可能具有不同的输入角速度,可以在各驱动桥之间装设轴间差速器。 布置在前驱动桥(前驱汽车)和后驱动桥(后驱汽车)的差速器,可分别称为前差速器和后差速器,如安装在四驱汽车的中间传动轴上,来调节前后轮的转速,则称为中央差速器。 差速器可分为普通差速器和防滑差速器两大类。

普通差速器的结构及工作原理 目前国产轿车及其它类汽车基本都采用了对称式锥齿轮普通差速器。 对称式锥齿轮差速器由行星齿轮、半轴齿轮、行星齿轮轴(十字轴或一根直销轴)和差速器壳等组成12-13(见图D-C5-6)。(从前向后看)左半差速器壳2和右半差速器壳8用螺栓固紧在一起。主减速器的从动齿轮7用螺栓(或铆钉)固定在差速器壳右半部8的凸缘上。十字形行星齿轮轴9安装在差速器壳接合面处所对出的园孔内,每个轴颈上套有一个带有滑动轴承(衬套)的直齿圆锥行星齿轮6,四个行星齿轮的左右两侧各与一个直齿圆锥半轴齿轮4相啮合。半轴齿轮的轴颈支承在差速器壳左右相应的孔中,其内花键与半轴相连。与差速器壳一起转动(公转)的行星齿轮拨动两侧的半轴齿轮转动,当两侧车轮所受阻力不同时,行星齿轮还要绕自身轴线转动--自转,实现对两侧车轮的差速驱动。 行星齿轮的背面和差速器壳相应位置的内表面,均做成球面,这样作能增加行星齿轮轴孔长度,有利于和两个半轴齿轮正确地啮合。 差速器的工作原理 在传力过程中,行星齿轮和半轴齿轮这两个锥齿轮间作用着很大的轴向力,为减少齿轮和差速器壳之间的磨损,在半轴齿轮和行星齿轮背面分别装有平垫片3和球面垫片5。垫片通常用软钢、铜或者聚甲醛塑料制成。 差速器的润滑是和主减速器一起进行的。为了使润滑油进入差速器内,往往在差速器壳体上开有窗口。为保证润滑油能顺利到达行星齿轮和行星齿轮轴轴颈之间,在行星齿轮轴轴颈上铣出一平面,并在行星齿轮的齿间钻出径向油孔。在中级以下的汽车上,由于驱动车轮的转矩不大,差速器内多用两个行星齿轮。相应的行星齿轮轴相为一根直销轴,差速器壳可以制成开有大窗孔的整体式壳,通过大窗孔,可以进行拆装行星齿轮和半轴齿轮的操作。 差速器的工作原理图解 一般的差速器主要是由两个侧齿轮(通过半轴与车轮相连)、两个行星齿轮(行星架与环形齿轮连接)、一个环形齿轮(动力输入轴相连)。 传动轴传过来的动力通过主动齿轮传递到环齿轮上,环齿轮带动行星齿轮轴一起旋转,同时带动侧齿轮转动,从而推动驱动轮前进。

气门异响与凸轮型线的关系

气门异响与凸轮型线的关系 颜景操 (一汽海马动力有限公司海口) 摘要:讨论了气门异响问题与凸轮型线的关系。HM479Q-B发动机在前期开发过程中出现了气门异响的问题。本文详细描述了气门异响问题的解决过程,并分析讨论了有可能产生气门异响问题的几种因素,包括凸轮粗糙度、气门压装变形及凸轮型线缓冲段截止位置气门升程和挺杆速度等。通过以上试验,增加了在凸轮轴设计方面数据的积累。 关键词:气门异响气门间隙气门压装凸轮粗糙度凸轮轴型线 引言 由于HM479Q-B是我司首次自主研制的一款发动机,开发中出现了气门异响的问题,在解决过程中,对有可能产生气门异响问题的各种因素(凸轮粗糙度、气门压装变形、凸轮轴型线)进行了分析并试验验证,最后找出气门异响与凸轮轴型线缓冲段截止点气门升程及挺杆速度之间存在的关系,为凸轮轴设计提供了宝贵的经验。 1、气门异响的发现 气门异响的现象:在怠速时,在气门室侧能清晰地听到有节奏的“嗒、嗒、嗒”响声,转速提高,响声也随之增长。 海马对气门异响有严格的检查标准,根据噪声大小,发动机异响分为A、B、C、D、E等级别,发动机热试中,车间操作人员需要对发动机进行检测并作出评定,只有C级以上的发动机才能判为合格。 08年6月,装配了60台发动机,热试过程中,发现有30台存在气门异响问题,检验人员判定噪声等级为D或E级,即发动机下线合格率只为50%。

2、原因分析 1)是否与凸轮轴的凸桃粗糙度有关:我司凸轮轴产品研制中取消了磷化处理的工艺要求,但是对于凸桃粗糙度的要求没有提高,仍然为Ra0.6,对比其他发动机厂家凸轮轴产品,不做磷化处理的凸桃粗糙度要求均提高到Ra0.2。 2)是否与气门压装变形有关:在对一台异响的HM479Q发动机进行分解后,发现气门弯曲的现象,由于不存在活塞碰气门的问题,装机气门为合格产品也就不存在气门本身弯曲的问题,最后分析确认是气门压装过程中,有压弯的可能,这是不是造成气门异响的原因? 3)是否与凸轮轴设计有关:HM479Q-B是在HM479Q发动机上衍生出来另一款机型,除了是否组装VVT以外,配气机构上只存在着凸轮轴的区别,其余均为共用件。 3、试验验证 1)为验证气门异响是否与凸轮轴的凸桃粗糙度有关,我司请供应商按照我们的要求,试制了两套凸轮轴:①经磷化处理,磷化前凸桃粗糙度要求为Ra0.6; ②取消磷化处理,凸桃粗糙度要求为Ra0.4. 为确保试验的准确性,我们抽了一台存在气门异响的发动机,按照同样的气门间隙标准进行调整,在同一热试台上热试,请同一检验人员对异响等级进行判定,对应三种状态的凸轮轴(①经磷化处理,磷化前凸桃粗糙度要求为Ra0.6; ②取消磷化处理,凸桃粗糙度要求为Ra0.4;e取消磷化处理,凸桃粗糙度要求为Ra0.6。)判定结果均为D级。 则得出结论:凸桃表面磷化处理或粗糙度改为R0.4对异响没有改善。 2)为验证气门异响是否与气门压装变形有关,在对气门压装设备进行了改善,提高了压装的稳定性后,组装了50台套新的缸盖总成用于更换39台存在气门异响的发动机上的缸盖总成。 本次试验,为同时验证调小气门间隙是否对异响有所改善,且排除人为因素对判定结果产生的影响,特别安排热试线4名异响判定人员全部参与评定,前边组装的14台发动机气门间隙按照进气:0.15±0.03mm,排气:0.19±0.03mm;后边25台气门间隙按照进气:0.22±0.04mm,排气:0.31±0.04mm调整。

限滑差速器分析

目录 前言 (2) 1.工作原理 (2) 2.与传统差速器区别 (3) 3.限滑差速器类别及应用 (5) 3.1○机械限滑式差速器 (6) 3.2○电子限滑差速器 (10) 4结论 (13) 参考文献: (13)

限滑差速器分析 摘要:本文简要的介绍了限滑差速器的工作原理以及现代汽车中的运用。 关键词:限滑差速器工作原理应用 前言 限滑差速器,英文名为Limited Slip Differential,简称LSD。限滑差速器,顾名思义就是限制车轮滑动的一种改进型差速器,指两侧驱动轮转速差值被允许在一定范围内,以保证正常的转弯等行驶性能的类差速器。事实上LSD依构造的不同可以分为好几种型式,而每一种LSD亦都有其特别之处。 1.工作原理 在谈论LSD这个机件之前,务必先知道差速器的功能与动作原理。而差速器本身的动作原理,亦属于专业级的构造,若要单纯用文字来叙述,大部分的读者可能很难理解,所以笔者先用日常最容易接触的现象和状况,来解释原厂差速器的设计功能和必需性。 现行车辆的转向设计是依据艾克曼第五轮原理来设定,也就是弯道内轮的转向角度大于外轮。再由三角函数计算内侧车轮所转动的距离会比外侧车轮距离短,一旦距离有差异时,等于内外轮 (左、右轮) 的转速不一致,如果从变速箱所输出的传动轴没有藉由差速器来分隔左、右输出,那么车辆在转弯时便无法调整左、右轮的转速。在慢速时藉由多余且不当的摩擦来带过,而高速转弯则会发生弯道内轮因多余的旋转及摩擦,导致轮胎跳离地面连带利用车轴及悬挂使车体上扬,当内侧车体上扬加上离心力的驱动,很自然就会朝转弯方向的另一侧翻覆。 所以说车辆的左、右车轮绝对不是同轴型式,尤其现代汽车又以前轮驱动设计居多,没有差速器的构造,驾驶者根本无法操控方向盘,因为只要驾驶者转动方向盘,轮胎藉由地面产生的回馈力,强力的将方向盘推回中心原点,如此一来操控根本无法存在,所以在传动轮中央置入差速器是传动系统必备的要件。 由于差速器是藉由盆型齿轮及角齿轮驱动,内部包含边齿轮及差速小齿轮。当车辆直行时,并无差速作用,差速小齿轮及边齿轮整个会随着盆齿轮公转无差速作用,一旦车辆转弯内、外轮阻力不一样时,差速齿轮组因阻力的作用迫使产生自转功能进而调整左、右轮速。既然左、右轮速的变化及调整是藉由轮胎及地面阻抗来自由产生,那么后续的使用状况就将造成车辆无法行驶的状态。

差速器的计算过程

学号06071305成绩 汽车专业综合实践说明书 设计名称:汽车差速器设计 设计时间 2010年 4月 系别机电工程系 专业汽车服务工程 班级 13班 姓名郑永豹 指导教师邓宝清 2010 年 05 月 24 日

目录 一、设计任务书........................... 错误!未定义书签。 二、差速器的功用类型及组成............... 错误!未定义书签。 (一)、齿轮式差速器................... 错误!未定义书签。 (二)滑块凸轮式差速器................ 错误!未定义书签。 (三)蜗轮式差速器.................... 错误!未定义书签。 (四)牙嵌式自由轮差速器.............. 错误!未定义书签。 三、主减速器基本参数的选择计算........... 错误!未定义书签。 (一)主减速器直齿圆柱齿轮传动设计.... 错误!未定义书签。 四、主减速器主、从动齿轮的支撑方案选择... 错误!未定义书签。 (一)、主动齿轮的支撑................. 错误!未定义书签。 五、差速器设计计算....................... 错误!未定义书签。 (一)差速器中的转矩分配计算.......... 错误!未定义书签。 (二)差速器的齿轮主要参数选择........ 错误!未定义书签。六.总结................................. 错误!未定义书签。参考文献................................. 错误!未定义书签。附图..................................... 错误!未定义书签。

4.差速器设计

第四节差速器设计 汽车在行驶过程中,左、右车轮在同一时间内所滚过的路程往往是不相等的,如转弯时内侧车轮行程比外侧车轮短;左右两轮胎内的气压不等、胎面磨损不均匀、两车轮上的负荷不均匀而引起车轮滚动半径不相等;左右两轮接触的路面条件不同,行驶阻力不等等。这样,如果驱动桥的左、右车轮刚性连接,则不论转弯行驶或直线行驶,均会引起车轮在路面上的滑移或滑转,一方面会加剧轮胎磨损、功率和燃料消耗,另一方面会使转向沉重,通过性和操纵稳定性变坏。为此,在驱动桥的左、右车轮间都装有轮间差速器。在多桥驱动的汽车上还常装有轴间差速器,以提高通过性,同时避免在驱动桥间产生功率循环及由此引起的附加载荷、传动系零件损坏、轮胎磨损和燃料消耗等。 差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同角速度转动。差速器按其结构特征可分为齿轮式、凸轮式、蜗轮式和牙嵌自由轮式等多种形式。 一、差速器结构形式选择 (一)齿轮式差速器 汽车上广泛采用的差速器为对称锥齿轮式差速器,具有结构简单、质量较小等优点,应用广泛。他又可分为普通 锥齿轮式差速器、摩擦片式差速器 和强制锁止式差速器等 1.普通锥齿轮式差速器 由于普通锥齿轮式差速器结 构简单、工作平稳可靠,所以广泛 应用于一般使用条件的汽车驱动 桥中。图5—19为其示意图,图中 ω0为差速器壳的角速度;ω1、ω 2分别为左、右两半轴的角速度; 为差速器的内摩擦力矩;T1、T2分别为左、右两半轴To为差速器壳接受的转矩;T r 对差速器的反转矩。 根据运动分析可得 ω1+ω2=2ω0(5—23)

显然,当一侧半轴不转时,另一侧半轴将以两倍的差速器壳体角速度旋转;当差速器壳体不转时,左右半轴将等速反向旋转。 根据力矩平衡可得 T0T2T1T0 T1-T2{ =+= (5 - 24) 差速器性能常以锁紧系数k 是来表征,定义为差速器的内摩擦力矩与差速器壳接受的转矩之比,由下式确定 结合式(5—24)可得 k ) -0.5T0(1T1k )0.5T0(1T2{ =+= (5 - 26) 定义快慢转半轴的转矩比 k b =T2/T1,则 kb 与k 之间有 k k -+= 11kb kb k +-= 11kb (5 - 27) 普通锥齿轮差速器的锁紧系数是一般为0.05~0.15,两半轴转矩比k b=1.11~1.35,这说明左、右半轴的转矩差别不大,故可以认为分配给两半轴的转矩大致相等,这样的分配比例对于在良好路面上行驶的汽车来说是合适的。但当汽车越野行驶或在泥泞、冰雪路面上行驶,一侧驱动车轮与地面的附着系数很小时,尽管另一侧车轮与地面有良好的附着,其驱动转矩也不得不随附着系数小的一侧同样地减小,无法发挥潜在牵引力,以致汽车停驶。 2.摩擦片式差速器 为了增加差速器的内摩擦力矩,在半轴齿轮7与差速器壳1之间装上了摩擦片2(图5—20)。两根行星齿轮轴5互相垂直,轴的两端制成V 形面4与差速器壳孔上的V 形面相配,两个行星齿轮轴5的V 形面是反向安装的。每个半轴齿轮背面有压盘3和主、从动摩擦片2,主、从动摩擦片2分别经花键与差速器壳1和压盘3相连。 当传递转矩时,差速器壳通过斜面对行星齿轮轴产生沿行星齿轮轴线方向的轴向力,该轴向力推动行星齿轮使压盘将摩擦片压紧。当左、右半轴转速不等时,主、

配气机构凸轮型线优化设计

一、绪论 1.1引言 配气机构是内燃机的重要组成部分。它的功能是实现换气过程,即根据气缸的工作次序,定时地开启和关闭进、排气门,以保证气缸吸入新鲜空气和排除燃烧废气。一台内燃机的经济性能是否优越,工作是否可靠,噪音与振动能否控制在较低的限度,常常与其配气机构设计是否合理有密切关系。 设计合理的配气机构应具有良好的换气性能,进气充分,排气彻底,即具有较大的时面值,泵气损失小,配气正时恰当。与此同时,配气机构还应具有良好的动力性能,工作时运动平稳,振动和噪音较小,不发生强烈的冲击磨损等现象,这就要求配气机构的从动件具有良好的运动加速度变化规律,以及合适的正、负加速度值.内燃机配气凸轮机构是由凸轮轴驱动的,配气机构的这些性能指标很大程度上取决于配气凸轮的结构。本文从改进配气凸轮型线设计角度来进行配气机构优化设计研究。 1.2配气凸轮型线设计 凸轮机构从动件滚子直接与凸轮轮廓而接触并产生相对运动,利用滚子的滚动以减小因相对运动产生的摩擦与磨损,以提高机构的寿命和可靠性。在设计凸轮型线时首先满足从动件的运动规律。 从动件运动规律的应满足下列要求: ①应保证能获得尽量大的时间断面值,气门开启和关闭要快以求在尽可能小的凸轮转角内气门接近全开位置。 ②应保证配气机构各零件所受的冲击和振动尽可能小,以求大得配气机构工作得平稳性和可靠性。 为满足以上从动件的设计要求,一条良好的凸轮型线应能保证: ①适宜的配气相位。使配气相位符合发动机的特性要求,如功率、油耗、怠速及最大功率和扭矩时的转速等,保证配气机构获得尽可能大的时面值或丰满系数,以提高内燃机的充气效率和降低残余废气系数。 ②使发动机具有较好的充气性能。由于发动机的形式不同,需要的气门运动规律也就有所不同。例

相关文档
最新文档