电池组寿命提升五倍以上 均衡技术为什么这么牛

电池组寿命提升五倍以上 均衡技术为什么这么牛
电池组寿命提升五倍以上 均衡技术为什么这么牛

电池组寿命提升五倍以上均衡技术为什么这么牛

锂离子电池使用中为了满足能量和电压的需求,需要将数百只甚至是数千只单体电池通过串联和并联的方式组合为电池组,理论上这些单体电池应该具有完全相同的特性,但是实际上由于制造和生产过程相关工艺参数的波动,即便是同一批次的锂离子电池在性能上仍然存在一定的差异(例如容量、内阻和衰降速度等),虽然在在成组之前我们会进行筛选和匹配,仍然无法保证100%的一致,因此成组后,在使用过程中这些差异就会随着循环次数的增加而不断积累,导致单体电池之间的性能差异不断扩大,同时由于电池组庞大的电池数量,在使用过程中电池组内部必然存在一定的温度梯度,温度梯度的存在也会导致电池内阻的不一致性和电流分布的不一致性,从而导致单体电池衰降速度的不一致,这些因素都会导致电池组的循环性能要远远低于单体电池的循环寿命,例如北京公交示范线上运行的公交车,在没有均衡器保护的情况下,尽管单体电池寿命可达1000次以上,但是在组成电池组后仅仅经过150次循环就出现了严重的容量衰减,抽检发现部分单体电池的容量已经低于额定容量的80%以下,这主要是因为单体电池在库伦效率、衰降速度和内阻增加方面的微小差异在循环中持续积累,最终导致了部分单体电池衰降速度过快。

单体锂离子电池之间的不一致性主要包含温度、电压、SoC、容量和内阻等指标,如果我们将时间因素也考虑在内,锂离子电池的不一致性还应该包含自放电、库伦效率、容量衰降速度等,上海理工大学的Long

Zhou等将这些不一致因素分为三类:第一类为初始因素,例如电池的容量、内阻等,他们决定了锂离子电池的基本能力;2)第二是现在因素,例如容量、电压、SoC等,这些指标决定了锂离子电池目前的能力;3)第三是时间积累因素,例如容量衰降速度、内阻增加速度和充放电库伦效率,这些因素决定了锂离子电池未来的能力。锂离子电池一旦成组后,电池组的“初始状态”和“现在状态”就已经确定,我们需要解决就是“时间积累因素”对电池组性能造成的影响。

“时间积累因素”对锂离子电池组性能的影响主要是通过反复循环中的积累体现,我们以“容量衰降速度”为例,如果两个串联在一起的两只电池A和B,假设其中A电池的每次循环中的平均可逆容量衰降速度为0.005%,而B电池为0.008%,这两只电池容量衰降速度的不一致会在循环中持续积累,循环500次后,A电池容量衰降为2.5%,而B电池则达到了4%,如果在没有均衡保护的条件下,B电池由于可逆容量衰降速度较快,因此在充电的时候当A电池充满电后,B电池实际上已经发生了显著的过充,造成B电池容量加速衰降,甚至引发B电池的热失控。实际上锂离子电池在循环初期衰减速度明显高于后期,因此A和B之间

的容量衰降速度差别还可能更大,同时在B电池发生过充和过放后,其容量衰降速度还会进一步加速,因此一个锂离子电池组在没有均衡保护下情况下性能衰降速度要远远快于单体锂离子电池。

锂离子电池的均衡策略主要可以分为两类:1)耗散型均衡;2)非耗散型均衡。两者的主要区别在于均衡过程中电池的能量的去处,其中耗散型均衡通过直接对所有电池放电到某个固定电压值,从而恢复单体电池之间的平衡,优点是结构简单,但是能源浪费较多,同时存在产热的问题。非耗散型均衡通过将电压较高的单体电池的电量转移到电压较低的电池之中,实现单体电池之间的均衡,优点是能源浪费少,缺点是结构较为复杂,成本较高。

电压是锂离子电池在均衡中最为常用的参数,通过测量电池组内不同单体电池的电压,一旦单体电池的之间的电压差值达到某个标准,均衡器就开始工作,对单体电池进行均衡,均衡器的使用大大减少了循环中单体电池之间的偏差,提升了电池组的循环性能。

锂电池循环充放电寿命问题

锂电池循环充放电寿命问题 锂电池寿命问题:循环充放电一次就是少一次寿命吗?回答这个问题前,我们先来说说锂电池循环寿命的测试条件。 循环就是使用,我们是在使用电池,关心的是使用的时间,为了衡量充电电池到底可以使用多长时间这样一个性能,就规定了循环次数的定义。实际的用户使用千变万化,因为条件不同的试验是没有可比性的,要有比较就必须规范循环寿命的定义。 锂电池充电器 1国标规定的锂电池循环寿命测试条件及要求:在环境温度20℃±5℃的条件下,以1C充电,当电池端电压达到充电限制电压4.2V时,改为恒压充电,直到充电电流小于或等于1/20C,停止充电,搁置0.5h~1h,然后以1C电流放电至终止电压2.75V,放电结束后,搁置0.5h~1h,再进行下一个充放电循环,直至连续两次放电时间小于36min,则认为寿命终止,循环次数必须大于300次。 2国标规定的解释: A.这个定义规定了循环寿命的测试是以深充深放方式进行的 B.规定了锂电池的循环寿命按照这个模式,经过≥300次循环后容量仍然有60%以上 然而,不同的循环制度得到的循环次数是截然不同的,比如以上其它的条件不变,仅仅把4.2V的恒压电压改为4.1V的恒压电压对同一个型号的电池进行循环寿命测试,这样这个电池就已经不是深充方式了,最后测试得到循环寿命次数可以提高近60%。那么如果把截止电压提高到3.9V进行测试,其循环次数应该可以增加数倍。3这个关于循环充放电一次就少一次寿命的说法,我们要注意的是,锂电池的充电周期的定义:

一个充电周期指的是锂电池的所有电量由满用到空,再由空充电到满的过程。而这并不等同于充电一次。另外大家在谈论循环次数的时候不能忽视循环的条件,抛开规则谈论循环次数是没有任何意义的,因为循环次数是检测电池寿命的手段,而不是目的!4▲误区:许多人喜欢把手机锂离子电池用到自动关机再充电,这个完全没有必要。 实际上,用户不可能按照国标测试模式对电池进行使用,没有一个手机会在2.75V 才关机,而其放电模式也不是大电流恒流放电,而是GSM的脉冲放电和平时的小电流放电混合的方式。 有另外一种关于循环寿命的衡量方法,就是时间。有专家提出一般民用的锂离子电池的寿命是2~3年,结合实际的情况,比如以60%的容量为寿命的终止,加上锂离子电池的时效作用,用时间来表述循环寿命我认为更为合理。 注意事项 对于锂离子电池,没有必要用到关机再充电,锂离子电池本来就适合用随时充电的方式进行使用,这也是他针对镍氢电池的最大优势之一,请大家善加利用这个特性。锂电池完全充放电一次(完全充放电并不等同于一次充放电),循环寿命才减少一次。 电池保养常识: 1 记忆效应镍氢充电电池上常见的现象。具体表现就是:如果长期不充满电就开始使用电池的话,电池的电量就会明显下降,就算以后想充满也充不满了。所以保养镍氢电池的重要方式就是:电必须用完了才能开始充电,充满了电了才允许投入使用。现在常用的锂电池的记忆效应是可以小到忽略不计的。2 完全充电,完全放电

电池循环性能影响

电池循环影响循环性能对锂离子电池的重要程度无需赘言;另外就宏观来讲,更长的循环寿命意味着更少的资源消耗。因而,影响锂离子电池循环性能的因素,是每一个与锂电行业相关的人员都不得不考虑的问题。以下文武列举几个可能影响到电池循环性能因素,供大家参考。 材料种类:材料的选择是影响锂离子电池性能的第一要素。选择了循环性能较差的材料,工艺再合理、制成再完善,电芯的循环也必然无法保证;选择了较好的材料,即使后续制成有些许问题,循环性能也可能不会差的过于离谱(一次钴酸锂克发挥仅为135.5mAh/g 左右且析锂的电芯,1C虽然百余次跳水但是0.5C、500次90%以上;一次电芯拆开后负极有黑色石墨颗粒的电芯,循环性能正常)。从材料角度来看,一个全电池的循环性能,是由正极与电解液匹配后的循环性能、负极与电解液匹配后的循环性能这两者中,较差的一者来决定的。材料的循环性能较差,一方面可能是在循环过程中晶体结构变化过快从而无法继续完成嵌锂脱锂,一方面可能是由于活性物质与对应电解液无法生成致密均匀的SEI膜造成活性物质与电解液过早发生副反应而使电解液过快消耗进而影响循环。在电芯设计时,若一极确认选用循环性能较差的材料,则另一极无需选择循环性能较好的材料,浪费。 正负极压实:正负极压实过高,虽然可以提高电芯的能量密度,但是也会一定程度上降低材料的循环性能。从理论来分析,压实越大,相当于对材料的结构破坏越大,而材料的结构是保证锂离子电池可以循环使用的基础;此外,正负极压实较高的电芯难以保证较高的保液量,而保液量是电芯完成正常循环或更多次的循环的基础。 水分:过多的水分会与正负极活性物质发生副反应、破坏其结构进而影响循环,同时水分过多也不利于SEI膜的形成。但在痕量的水分难以除去的同时,痕量的水也可以一定程度上保证电芯的性能。可惜文武对这个方面的切身经验几乎为零,说不出太多的东西。大家有兴趣可以搜一搜论坛里面关于这个话题的资料,还是不少的。 涂布膜密度:单一变量的考虑膜密度对循环的影响几乎是一个不可能的任务。膜密度不一致要么带来容量的差异、要么是电芯卷绕或叠片层数的差异。对同型号同容量同材料的电芯而言,降低膜密度相当于增加一层或多层卷绕或叠片层数,对应增加的隔膜可以吸收更多的电解液以保证循环。考虑到更薄的膜密度可以增加电芯的倍率性能、极片及裸电芯的烘烤除水也会容易些,当然太薄的膜密度涂布时的误差可能更难控制,活性物质中的大颗粒也可能会对涂布、滚压造成负面影响,更多的层数意味着更多的箔材和隔膜,进而意味着更高的成本和更低的能量密度。所以,评估时也需要均衡考量。 负极过量:负极过量的原因除了需要考虑首次不可逆容量的影响和涂布膜密度偏差之外,对循环性能的影响也是一个考量。对于钴酸锂加石墨体系而言,负极石墨成为循环过程中的“短板”一方较为常见。若负极过量不充足,电芯可能在循环前并不析锂,但是循环几百次后正极结构变化甚微但是负极结构被破坏严重而无法完全接收正极提供的锂离子从而析锂,造成容量过早下降。 电解液量:电解液量不足对循环产生影响主要有三个原因,一是注液量不足,二是虽然注液量充足但是老化时间不够或者正负极由于压实过高等原因造成的浸液不充分,三是随着循环电芯内部电解液被消耗完毕。注液量不足和保液量不足文武之前写过《电解液缺失对电芯性能的影响》因而不再赘述。对第三点,正负极特别是负极与电解液的匹配性的微观表现为致密且稳定的SEI的形成,而右眼可见的表现,既为循环过程中电解液的消耗速度。不完整的SEI膜一方面无法有效阻止负极与电解液发生副反应从而消耗电解液,一方面在SEI 膜有缺陷的部位会随着循环的进行而重新生成SEI膜从而消耗可逆锂源和电解液。不论是对循环成百甚至上千次的电芯还是对于几十次既跳水的电芯,若循环前电解液充足而循环后电解液已经消耗完毕,则增加电解液保有量很可能就可以一定程度上提高其循环性能。

电池管理系统BMS---原理篇

电池管理系统(BMS)可根据起动能力对充电状态(SoC)、健康状态(SoH)和功能状态(SoF)进行快速、可靠的监测,以提供必要的信息。因此,BMS能够最大限度地降低因为电池意外失效而导致的汽车故障次数,从而尽可能地提升电池使用寿命和电池效率,并实现CO2减排功能。BMS的关键元件是智能电池传感器(IBS),它可以测量电池的端电压、电流和温度,并计算出电池的状态。 电能管理系统 用来为起停系统供电的典型供电网络包含一个车身控制模块(BCM)、一个电池管理系统(BMS)、一个发电机和一个DC/DC转换器(见图1)。 BMS借助专用的负载管理算法为BCM提供电池状态信息,BCM通过对发电机和DC/DC转换器进行控制来稳定和管理供电网络。DC/DC转换器为汽车内部的各个用电部件分配电能。 通常,铅酸电池的BMS直接安装在电池夹上的智能连接器中。该连接器包括一个低阻值的分流电阻(通常在100μΩ范围内)和一个带有高度集成器件(具有准确测量和处理功能)的小型PCB,称为智能电池传感器(IBS, 见图2)。IBS即便是在最恶劣的条件下以及在整个使用寿命中都能以高分辨率和高精确度测量电池电压、电流和温度,从而正确预测电池的充电状态(SoC)、健康状态(SoH)和功能状态(SoF)。这些参数定期或根据要求通过已获汽车行业认证的车载网络传送至BCM。

除上述功能与参数性能外,对IBS提出的其它关键要求包括低功耗、能够在恶劣的汽车环境中(即EMC、ESD)工作、进行汽车OEM厂商验收的车载通信接口一致性测试(即LIN)、满足汽车等级测试限制(针对被测参数的6σ限制),另外还需符合AEC-Q100标准要求。 电池监控 正如前一段中所提到的,IBS的主要用途是监控电池状态,并根据需要将状态变量传送至BCM或者其他ECU。将测量到的电池电流、电池电压和温度采样值作为电池监控输入。电池监控输出为SoC、SoH和SoF。 1. 充电状态(SoC) SoC的定义非常直观,通常以百分数的形式表示。完全充电的电池SoC为100%,完全放电的电池SoC为0%。SoC值随电池的充电和放电而改变。 This leads to formula (1), where Cr is the remaining (dischargeable) capacity of the battery and Ca is the total available battery capacity: 该值通过公式(1)计算,其中Cr代表电池的剩余(可放电)电量,Ca代表电池的可用总电量: 但是,常常会出现可用电池电量与电池的标称容量(通常标注在电池外壳上)不同的问题。对于一个新电池,它可能比标称容量更高,对于已经使用一段时间的电池来说,可用电量会降低。另一个问题是,实际可用电量很难根据IBS的输入值来确定。 因此,SoC通常用标称容量Cn来评定,它具有多项优点:

珠海朗尔电气蓄电池组在线均衡系统

LBE300 TM (系列) 蓄电池组在线均衡系统 ■延长蓄电池使用寿命两倍以上■为每一节蓄电池提供一个预警系统■智能化、网络化在线运行与管理 2013年版本 The Storage Battery Online Performance Balance System 电力行业

LBE300TM 蓄电池组在线均衡系统 ■延长蓄电池使用寿命两倍以上■为每一节蓄电池提供一个预警系统■智能化、网络化在线运行与管理 The Storage Battery Online Performance Balance System 目录 1、企业简介 2、直流电源在电力行业的重要性 3、传统蓄电池组运行状况 4、LBE300蓄电池组在线均衡系统在电力行业解决方案 5、LBE300在电力行业的应用价值 6、LBE300的应用案例与应用报告 7、企业资质 8、质量服务承诺

LBE300TM 蓄电池组在线均衡系统 ■延长蓄电池使用寿命两倍以上■为每一节蓄电池提供一个预警系统■智能化、网络化在线运行与管理 The Storage Battery Online Performance Balance System 珠海朗尔电气有限公司成立于2001年,国家高新技术企业,总部位于中国广东珠海。专注于电源解决方案及从事电源产品的研发、生产与销售,是国内最受信赖及著名的电源制造商之一。 多年来,朗尔电气一直走在技术发展的最前沿,不断开发、提供满足各种要求的电源产品及系统。目前朗尔生产的电源产品在安全、可靠的基础上,做到环保、智能、静音、模块化、数字化、网络化。

LBE300TM 蓄电池组在线均衡系统 ■延长蓄电池使用寿命两倍以上■为每一节蓄电池提供一个预警系统■智能化、网络化在线运行与管理 The Storage Battery Online Performance Balance System 2001 2002 200320062008-2012 Lonl产品“直流电源系统”通过中国电力科学院检测鉴定,并成功应用于国网及南方电网公司; Lonl被评为高新技术企业,同年通过了ISO9001质 量管理体系 认证;推出并网放电系统与节能老化负载产品,解决蓄电池活化放电与逆变并网的技术局 限; 2007 2005 200406年推出“LBE200蓄电池组在线均衡系统”,为蓄电池组的运行提供更为完善的解决方案;同年通过国家继电保护及自动化设备质量检测 中心的鉴定; 07年“LBE200蓄电池组在线均衡系统”获得国家实用新型专利证 书,填补了国内技术空白; 08年,Lonl获得国家软件企业证书; 09年,LBE200产品获得国家商标局商标注册; 10年,LBE200通过国家铁道部产品质量质量监督检验中心的检 测; 11年,LBE200获得广东省高新技术产品证书;同年蓄电池活化技术获得国家实用新型专利证书以 及两项发明专利; 12年,LBE200项目获得国家科技 部和珠海市科技局的创新资金扶持。

影响锂离子电池循环性能的几个因素

循环性能对锂离子电池的重要程度无需赘言;另外就宏观来讲,更长的循环寿命意味着更少的资源消耗。因而,影响锂离子电池循环性能的因素,是每一个与锂电行业相关的人员都不得不考虑的问题。以下文武列举几个可能影响到电池循环性能因素,供大家参考。 材料种类:材料的选择是影响锂离子电池性能的第一要素。选择了循环性能较差的材料,工艺再合理、制成再完善,电芯的循环也必然无法保证;选择了较好的材料,即使后续制成有些许问题,循环性能也可能不会差的过于离谱(一次钴酸锂克发挥仅为135.5mAh/g 左右且析锂的电芯,1C虽然百余次跳水但是0.5C、500次90%以上;一次电芯拆开后负极有黑色石墨颗粒的电芯,循环性能正常)。从材料角度来看,一个全电池的循环性能,是由正极与电解液匹配后的循环性能、负极与电解液匹配后的循环性能这两者中,较差的一者来决定的。材料的循环性能较差,一方面可能是在循环过程中晶体结构变化过快从而无法继续完成嵌锂脱锂,一方面可能是由于活性物质与对应电解液无法生成致密均匀的SEI膜造成活性物质与电解液过早发生副反应而使电解液过快消耗进而影响循环。在电芯设计时,若一极确认选用循环性能较差的材料,则另一极无需选择循环性能较好的材料,浪费。 正负极压实:正负极压实过高,虽然可以提高电芯的能量密度,但是也会一定程度上降低材料的循环性能。从理论来分析,压实越大,相当于对材料的结构破坏越大,而材料的结构是保证锂离子电池可以循环使用的基础;此外,正负极压实较高的电芯难以保证较高的保液量,而保液量是电芯完成正常循环或更多次的循环的基础。 水分:过多的水分会与正负极活性物质发生副反应、破坏其结构进而影响循环,同时水分过多也不利于SEI膜的形成。但在痕量的水分难以除去的同时,痕量的水也可以一定程度上保证电芯的性能。可惜文武对这个方面的切身经验几乎为零,说不出太多的东西。大家有兴趣可以搜一搜论坛里面关于这个话题的资料,还是不少的。 涂布膜密度:单一变量的考虑膜密度对循环的影响几乎是一个不可能的任务。膜密度不一致要么带来容量的差异、要么是电芯卷绕或叠片层数的差异。对同型号同容量同材料的电芯而言,降低膜密度相当于增加一层或多层卷绕或叠片层数,对应增加的隔膜可以吸收更多的电解液以保证循环。考虑到更薄的膜密度可以增加电芯的倍率性能、极片及裸电芯的烘烤除水也会容易些,当然太薄的膜密度涂布时的误差可能更难控制,活性物质中的大颗粒也可能会对涂布、滚压造成负面影响,更多的层数意味着更多的箔材和隔膜,进而意味着更高的成本和更低的能量密度。所以,评估时也需要均衡考量。 负极过量:负极过量的原因除了需要考虑首次不可逆容量的影响和涂布膜密度偏差之外,对循环性能的影响也是一个考量。对于钴酸锂加石墨体系而言,负极石墨成为循环过程中的“短板”一方较为常见。若负极过量不充足,电芯可能在循环前并不析锂,但是循环几百次后正极结构变化甚微但是负极结构被破坏严重而无法完全接收正极提供的锂离子从而析锂,造成容量过早下降。 电解液量:电解液量不足对循环产生影响主要有三个原因,一是注液量不足,二是虽然注液量充足但是老化时间不够或者正负极由于压实过高等原因造成的浸液不充分,三是随着循环电芯内部电解液被消耗完毕。注液量不足和保液量不足文武之前写过《电解液缺失对电芯性能的影响》因而不再赘述。对第三点,正负极特别是负极与电解液的匹配性的微观表现为致密且稳定的SEI的形成,而右眼可见的表现,既为循环过程中电解液的消耗速度。不完整的SEI膜一方面无法有效阻止负极与电解液发生副反应从而消耗电解液,一方面在SEI 膜有缺陷的部位会随着循环的进行而重新生成SEI膜从而消耗可逆锂源和电解液。不论是对循环成百甚至上千次的电芯还是对于几十次既跳水的电芯,若循环前电解液充足而循环后电解液已经消耗完毕,则增加电解液保有量很可能就可以一定程度上提高其循环性能。 测试的客观条件:测试过程中的充放电倍率、截止电压、充电截止电流、测试中的过充过放、测试房温度、测试过程中的突然中断、测试点与电芯的接触内阻等外界因素,都会

新能源汽车动力电池及其管理系统试卷A

新能源汽车动力电池及其管理系统试卷A 汽运19-301(26人) 一、【单选题】(每题2分共20分) 【单选题】 1、可逆电池的定义是:外接电源电压(A)电池装置电动势。(2分) A.大于 B.等于 C.小于 D.不一定 【单选题】 2、以下电池中不作为电动汽车动力电池的是(D)。(2分) A.铅酸电池 B.锂离子电池 C.镍氢电池 D.锌银电池 【单选题】 3、关于蓄电池的检测,下列说法正确的是(D)。(2分) A.外观检查时,只检查蓄电池接线柱、电缆和托架固定架是否有腐蚀即可。 B.外观检查时,只检查蓄电池周围无漏液,壳体和桩柱无破损裂纹即可。 C.用万用表检测蓄电池电压,只要在12.6V以上就一定可以用。 D.万用表检测的蓄电池端电压,只能作为检测的参考因素。 【单选题】 4、(B)电池性能比较高,可以快速充电、高功率放电、能量密度高,且循环寿命长,但高温下安全性能差。(2分) A.镍氢电池 B.锂离子电池 C.铅酸电池 D.锌银电池 【单选题】 5、动力电池包衰减诊断故障代码在下列(B)情况下可能出现。(2分) A.电池组已经退化到需要进行更换 B.电池组已经退化到只有原电池容量的20%左右 C.车辆的动力电池包电压为0伏 D.这些诊断故障代码是根据汽车的行驶里程设定的 【单选题】 6、动力电池的能量储存与输出都需要模块来进行管理,即动力电池能量管理模块,也称为动力电池管理系统,或动力电池能量管理系统,简称(C) 。(2分) A.BBC B.ABS C.BMS D.EPS 【单选题】 7、集中式动力电池管理系统的特征是(D)。(2分) A.电池管理系统与电池包分开 B.电池信息采集器与电池管理控制器分开 C.电池信息采集器与电池模组分开 D.信息采集器和管理器集合在一起

锂离子电池循环寿命影响因素分析

锂离子电池循环寿命影响因素分析 摘要:随着电子科学技术的不断发展,越来越多的电子产品使用锂离子电池作 为能量的供给,但是锂离子电池目前在使用上还存在许多问题,其中锂离子电池 的循环寿命就对整个电子产品的使用有关键的影响作用.当电池的寿命较低时,电子产品的使用寿命也会受到影响,即使及时更换新的电池也不能达到原来电池的 高匹配程度,所以有必要对锂离子电池循环寿命的影响因素进行探索。本文对锂 离子电池使用过程中循环寿命的影响因素进行分析和探讨,其中包括锂离子电池 设计和制造工艺、锂离子电池所使用的材料老化和衰退的情况、锂离子电池所使 用的环境和充放电制度等方面展开详细的探讨,并提出相应的对策。 关键词:锂离子电池;循环寿命;影响因素 锂离子电池作为最常用的充电电池,具有单体电压高、质量轻、自放电小、工作温度范围广、环境容纳度高等出色优点,其他类型电池很少全面具备这样的性能。但是锂离子电池依然存 在缺点,例如有些锂离子电池在经过一定周期的充电和放电循环之后,电池的容量下降过快,达不到标准500次循环的,本文将对锂离子电池的循环性能进行探讨。影响锂离子电池循环 性能的因素有很多,其中,电池在使用过程中,在其内部发生的化学反应是直接影响电池循 环寿命的,除此以外,电池制备所使用的材料、制作设计工艺等也会对电池的循环寿命造成 影响。本文就这几方面的内容进行探讨。 一、简述锂离子电池的构成和原理 (一)锂离子电池的构成 虽然锂离子电池从发明到使用经历较多改进,但是锂离子电池的本质构成并不复杂。锂 离子电池主要由正极、负极、电解液、隔膜、集流体以及电池外壳所构成。正负极所采用的 材料各自不同,但是都有一定的要求。电解液的选择需要满足良好的离子导体和电子绝缘体 的要求,同时应具备良好的热稳定性及化学稳定性。合适的集流体能够保证极片在工作过程 中处于稳定的状态。每一个部分的合理构成可以保证锂离子电池正负极反应的顺利进行。 (二)锂离子电池的反应原理 锂离子电池在工作过程中所发生的反应主要为:充电时,锂离子从正极经过电解液穿过 隔膜嵌入到负极,同时有相同数量的电子经外电路传递到负极,保证电荷平衡;而进行放电时,则相反,锂离子从负极脱嵌,经过电解液穿过隔膜再回到正极,此时相同数量的电子经 外电路传递到正极。在锂离子电池进行首次充电时,有机电解液在碳负极表面发生还原分解,形成一层电子绝缘、离子可导的钝化膜,这层钝化膜被称为固体电解质界面膜(solid electrolyte interface,SEI),该钝化膜能够阻止电解液与碳负极的反应以及溶剂分子共插对负极结构的破坏,对负极进行保护。 二、影响锂离子电池循环寿命的因素 影响锂离子电池循环寿命的因素包括内部和外部因素,内部因素主要是锂离子电池进行 充电和放电过程的化合反应,外部因素主要是在使用过程中的环境控制等。我们讨论在可控 范围内对锂离子电池循环寿命造成影响的因素,希望能够发现并且控制这些因素的办法,延 长电池的循环寿命,使锂离子电池能够得到更加良好的应用。

影响锂电池循环的几个因素

影响锂离子电池循环性能的几个因素 (锂电技术水太深,文武的东西别当真) 循环性能对锂离子电池的重要程度无需赘言;另外就宏观来讲,更长的循环寿命意味着更少的资源消耗。因而,影响锂离子电池循环性能的因素,是每一个与锂电行业相关的人员都不得不考虑的问题。以下文武列举几个可能影响到电池循环性能因素,供大家参考。 材料种类:材料的选择是影响锂离子电池性能的第一要素。选择了循环性能较差的材料,工艺再合理、制成再完善,电芯的循环也必然无法保证;选择了较好的材料,即使后续制成有些许问题,循环性能也可能不会差的过于离谱(一次钴酸锂克发挥仅为135.5mAh/g左右且析锂的电芯,1C虽然百余次跳水但是0.5C、500次90%以上;一次电芯拆开后负极有黑色石墨颗粒的电芯,循环性能正常)。从材料角度来看,一个全电池的循环性能,是由正极与电解液匹配后的循环性能、负极与电解液匹配后的循环性能这两者中,较差的一者来决定的。材料的循环性能较差,一方面可能是在循环过程中晶体结构变化过快从而无法继续完成嵌锂脱锂,一方面可能是由于活性物质与对应电解液无法生成致密均匀的SEI膜造成活性物质与电解液过早发生副反应而使电解液过快消耗进而影响循环。在电芯设计时,若一极确认选用循环性能较差的材料,则另一极无需选择循环性能较好的材料,浪费。 正负极压实:正负极压实过高,虽然可以提高电芯的能量密度,但是也会一定程度上降低材料的循环性能。从理论来分析,压实越大,相当于对材料的结构破坏越大,而材料的结构是保证锂离子电池可以循环使用的基础;此外,正负极压实较高的电芯难以保证较高的保液量,而保液量是电芯完成正常循环或更多次的循环的基础。 水分:过多的水分会与正负极活性物质发生副反应、破坏其结构进而影响循环,同时水分过多也不利于SEI膜的形成。但在痕量的水分难以除去的同时,痕量的水也可以一定程度上保证电芯的性能。可惜文武对这个方面的切身经验几乎为零,说不出太多的东西。大家有兴趣可以搜一搜论坛里面关于这个话题的资料,还是不少的。 涂布膜密度:单一变量的考虑膜密度对循环的影响几乎是一个不可能的任务。膜密度不一致要么带来容量的差异、要么是电芯卷绕或叠片层数的差异。对同型号同容量同材料的电芯而言,降低膜密度相当于增加一层或多层卷绕或叠片层数,对应增加的隔膜可以吸收更多的电解液以保证循环。考虑到更薄的膜密度可以增加电芯的倍率性能、极片及裸电芯的烘烤除水也会容易些,当然太薄的膜密度涂布时的误差可能更难控制,活性物质中的大颗粒也可能会对涂布、滚压造成负面影响,更多的层数意味着更多的箔材和隔膜,进而意味着更高的成本和更低的能量密度。所以,评估时也需要均衡考量。 负极过量:负极过量的原因除了需要考虑首次不可逆容量的影响和涂布膜密度偏差之外,对循环性能的影响也是一个考量。对于钴酸锂加石墨体系而言,负极石墨成为循环过程中的“短板”一方较为常见。若负极过量不充足,电芯可能在循环前并不析锂,但是循环几百次后正极结构变化甚微但是负极结构被破坏严重而无法完全接收正极提供的锂离子从而析锂,造成容量过早下降。 电解液量:电解液量不足对循环产生影响主要有三个原因,一是注液量不足,二是虽然注液量充足但是老化时间不够或者正负极由于压实过高等原因造成的浸液不充分,三是随着循环电芯内部电解液被消耗完毕。注液量不足和保液量不足文武之前写过《电解液缺失对电芯性能的影响》因而不再赘述。对第三点,正负极特别是负极与电解液的匹配性的微观表现为致密且稳定的SEI的形成,而右眼可见的表现,既为循环过程中电解液的消耗速度。不完整的SEI膜一方面无法有效阻止负极与电解液发生副反应从而消耗电解液,一方面在SEI膜有缺陷的部位会随着循环的进行而重新生成SEI膜从而消耗可逆锂源和电解液。不论是对循环成百甚至上千次的电芯还是对于几十次既跳水的电芯,若循环前电解液充足而循环后电解液已

磷酸铁锂电池地放电特性及寿命

磷酸铁锂电池(以下简称锂铁电池)作为铁电池的一种,一直受到业界朋友的广泛关注(也有人说锂铁电池其实就是锂离子电池的一种)。就铁电池而言,它可以分为高铁电池和锂铁电池,今天我们以型号为STL18650的锂铁电池为例,来具体说明一下锂铁的电池的放电特性及寿命。 STL18650的锂铁电池(容量为1100mAh)在不同的放电率时其放电特性如图2所示。最小的放电率为0.5C,最大的放电率为10C,五种不同的放电率形成一组放电曲线。由图1中可看出,不管哪一种放电率,其放电过程中电压是很平坦的(即放电电压平稳,基本保持不变),只有快到终止放电电压时,曲线才向下弯曲(放电量达到800mAh以后才出现向下弯曲)。在0.5~10C的放电率范围内,输出电压大部分在2.7~3.2V范围内变化。这说明该电池有很好的放电特性。 图1 STL18650的放电特性 容量为1000mAh的STL18650在不同的温度条件下(从-20~+40℃)的放电曲线如图2所示。如果在23℃时放电容量为100%,则在0℃时的放电容量降为78%,而在-20℃时降到65%,在+40℃放电时其放电容量略大于100%。 从图3中可看出,STL18650锂铁电池可以在-20℃下工作,但输出能量要降低35%左右。 图2 STL18650在多温度条件下的放电曲线 STL18650的充放电循环寿命曲线如图4所示。其充放电循环的条件是:以1C充电率充电,以2C放电率放电,历经570次充放电循环。从图3的特性曲线可看出,在经过570次充放电循环,其放电容量未变,说明该电池有很高的寿命。

图3 STL18650的充放电循环寿命曲线 过放电到零电压试验 采用STL18650(1100mAh)的锂铁动力电池做过放电到零电压试验。试验条件:用0.5C充电率将1100mAh的STL18650电池充满,然后用1.0C放电率放电到电池电压为0C。再将放到0V的电池分两组:一组存放7天,另一组存放30天;存放到期后再用0.5C充电率充满,然后用1.0C放电。最后比较两种零电压存放期不同的差别。 试验的结果是,零电压存放7天后电池无泄漏,性能良好,容量为100%;存放30天后,无泄漏、性能良好,容量为98%;存放30天后的电池再做3次充放电循环,容量又恢复到100%。 这试验说明该电池即使出现过放电(甚至到0V),并存放一定时间,电池也不泄漏、损坏。这是其他种类锂离子电池不具有的特性。

锂电池循环充放电问题

东莞市钜大电子有限公司 锂电池循环充放电问题 笔者:I_know_i_ask 工具/原料 (2) 步骤/方法 (2) 循环使用理解 (2) 锂电池循环寿命测试条件及要求 (3) 国标规定的解释 (3) 循环充放电寿命减少的说法 (4) 误区 (4) 注意事项 (5) 预防措施 (5)

问题锂电池寿命问题:循环充放电一次就是少一次寿命吗?回答这个问题前,我们先来说说锂电池循环寿命的测试条件。 工具/原料 锂电池 充电器 步骤/方法 循环使用理解 循环就是使用,我们是在使用电池,关心的是使用的时间,为了衡量充电电池到底可以使用多长时间这样一个性能,就规定了循环次数的

定义。实际的用户使用千变万化,因为条件不同的试验是没有可比性的,要有比较就必须规范循环寿命的定义。 锂电池循环寿命测试条件及要求 国标规定的锂电池循环寿命测试条件及要求:在环境温度20℃±5℃的条件下,以1C充电,当电池端电压达到充电限制电压4.2V时,改为恒压充电,直到充电电流小于或等于1/20C,停止充电,搁置0.5h~1h,然后以1C电流放电至终止电压2.75V,放电结束后,搁置0.5h~1h,再进行下一个充放电循环,直至连续两次放电时间小于36min,则认为寿命终止,循环次数必须大于300次。 国标规定的解释 A.这个定义规定了循环寿命的测试是以深充深放方式进行的 B.规定了锂电池的循环寿命按照这个模式,经过≥300次循环后容量仍然有60%以上 然而,不同的循环制度得到的循环次数是截然不同的,比如以上其它的条件不变,仅仅把4.2V的恒压电压改为4.1V的恒压电压对同一个型号的电池进行循环寿命测试,这样这个电池就已经不是深充方式了,最后测试得到循环寿命次数可以提高近60%。那么如果把截止电压提高到3.9V进行测试,其循环次数应该可以增加数倍。

锂离子电池工作原理及优缺点

新能源技术被公认为21世纪的高新技术。电池行业作为新能源领域的重要组成部分,已成为全球经济发展的一个新热点。当前世界电池工业发展的三个特点,一是绿色环保电池迅猛发展,包括锂离子蓄电池、氢镍电池等;二是一次电池向蓄电池转化,这符合可持续发展战略;三是电池进一步向小、轻、薄方向发展。锂离子电池是在锂电池的基础上发展起来的一种新型电池,主要由正极、负极、电解液、电极基材、隔离膜和罐材等材料组成。在商品化的可充电池中,锂离子电池的比能量最高,特别是聚合物锂离子电池,可以实现可充电池的薄形化。相对于传统的铅酸电池和镍氢、镉镍电池而言,锂离子电池比容量高、循环寿命长、安全性能好,将逐步取代镍氢、镉镍等电池。锂离子电池广泛的应用于便携式摄放一体机、CD、游戏机、手机、笔记本电脑和电动汽车等方面。本文就锂离子电池材料的工作原理及优缺点进行简单介绍。 构造及原理 锂离子电池是指以两种不同的能够可逆地嵌入及脱出锂离子的嵌锂化合物分别作为电池正极和负极的二次电池体系。充电时,锂离子从正极脱嵌,通过电解质和隔膜,嵌入到负极中;放电时则相反,锂离子从负极脱嵌,通过电解质和隔膜,嵌入到正极中。以以钴酸锂为正极材料的锂离子电池为例: 充电时的电极反应: 正极:LiCoO2→Li1-x CoO2+xLi+ + xe- 负极:6C + xLi+ + xe-→Li x C6

总反应:LiCoO 2 +6C → Li 1-x CoO 2+Li x C 6 放电时:有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。 正极 锂离子电池的正极材料须具备以下主要性质: 1、 吉布斯自由能高,以提供较高的电池电压。 2、 相对分子量小,能容纳的锂的量多,以提供较大的电池容 量。 3、 具有大孔径隧道结构以利于锂离子的嵌入和脱出。 4、 极性弱,以保证良好的可逆性。 5、 热稳定性良好,以保证工作的安全。 6、 重量轻、易于制作。 可以作为正极的材料有LiCoO 2、LiNiO 2、LiMn 2O 4、LiMnO 2、LiFePO 4、LiV 3O 8、LiVO 2、LiV 2O 4、Li 6V 5O 15、LiCo 0.2Ni 0.8O 2、摘自 百度百科; 锂离子电 池

关于加强免维护铅酸蓄电池管理的规定

关于加强免维护铅酸蓄电池管理的规定根据我集团公司各单位铅酸电池使用现状,为保证电站阀控式密封铅酸蓄电池及其高频开关电源(以下简称直流设备)保持良好的运行状态,延长使用寿命,保证余热电站直流母线保持合格电压和蓄电池的放电容量,结合富平公司余热电站电池失效事故教训,特做如下规定: 1、本规定适应浮充电运行余热电站直流系统、总降压站及高压电气室操作电源系统、UPS电源电池。不适应按照充电放电循环运行的电池系统。 2、新安装要求 2.1直流设备通风应良好,运行环境温度应保持在5℃~35℃,安装地点应装设温度调节装置。 2.2蓄电池采用串联接线,蓄电池之间应保持2cm以上距离,若电池安装在柜内,上下层之间距离不应小于15cm。蓄电池应保持清洁,极板、极柱接触应良好,连接螺丝应牢固,不得有放电现象。 3. 新蓄电池验收项目及标准 3.1检查蓄电池容量。对电池组进行三次充放电试验,放电终止电压根据制造厂的规定,其中一只蓄电池防到了终止电压,应停止放电。在三次充放电循环之内,若达不到额定容量值的100%,此组蓄电池不合格。 3.2测量电池的绝缘电阻。220V电池组的绝缘电阻不小于0.2MΩ。

3.3测量充电设备的稳流精度不大于±(0.5%-1%),稳压精度不大于±(0.1%-0.5%),及直流母线纹波系数不大于(0.2%-0.51%)。 3.4测量每只电池端电压符合厂家规定。 3.5检查厂方提供的安全阀开启闭合试验报告,闭阀压力应在1kPa~10kPa范围内,开阀压力应在10kPa~49kPa范围内。 4 运行维护要求 4.1为提高蓄电池的使用寿命,要做好初充电。 (1)全部更换电池组,一般要求生产厂家进行初次充电 (2)厂家不能到场,按照电池说明书要求充放电。 (3)一般初次充电的操作流程为:恒流限压充电→恒压充电→浮充电→恒压充电→浮充电。即均充→浮充→均充→浮充。第一次浮充时间不得低于8小时,均充状态检查各电池电压偏差不得大于0.05V。(4)初次充电后必须进行最少三次充放电活化电池。 4.2蓄电池组在正常运行中以浮充电方式运行,浮充电电压宜控制在(2.24)V×N,均衡充电电压宜控制在(2.30-2.35)V×N。12V电池,N=6。 4.3运行中主要监视蓄电池组的端电压值,浮充电流值,每只蓄电池的电压值,蓄电池组及直流母线的对地电阻值和绝缘状况。 4.4蓄电池一般每个月进行一次补充充电,充电装置应自动或手动进行一次恒流限压充电→恒压充电→浮充电,即均充→浮充。长期未均充电池先用低于或等于I10电流放电20-30%电量后,再均充→浮充,活化电池。再使蓄电池组随时具有满容量,确保运行安全可靠。

蓄电池在线均衡活化资料

一、目的和意义 蓄电池是电力系统必备的后备电源,是设备运行中的最后一道防线。现有蓄电池组运行,从技术上讲存在一些缺陷,直流系统的蓄电池组一般由几十只至一百多只单体蓄电池串联而成,串联状态下的蓄电池组在充电和放电时,所有蓄电池的电流是一致的,但由于电池的参数、外部环境及单体自放电的差异,使得蓄电池组各单体电池的电压实际并不均衡,有些电压过高、有些则过低,造成蓄电池组中某些单体蓄电池出现过充电或过放电,过充的蓄电池水分蒸发、内阻增大造成容量减小,欠充的蓄电池涂层老化、活性物质减少、同样造成容量减少,而且这一过程一但开始,容量的减小是随着时间增加而不断加速的,这将进一步加深蓄电池参数的不一致性,正是这种恶性循环极大地缩短了蓄电池组的使用寿命。这样长时间的充电不均衡必将导致部分电池严重损坏,一旦蓄电池故障,将造成保护失灵、开关拒动、通道中断…后果不堪设想。 传统的蓄电池组充电曲线中定期(720h)的强充电,为了提高充电不足的个别单体电池的电压,人为地对蓄电池组进行所谓的“均衡充电”,对蓄电池组中的性能落后蓄电池进行补偿性充电,希望能够提升整组蓄电池电压一致性,恢复它的容量,实际上却牺牲了大部分单体电池的性能,大大降低了电池组的使用寿命以及可靠性。 立项的目的是研制出一套变电站蓄电池组动态均衡在线维护系统,对蓄电池进行实时在线均衡,使每一节蓄电池处于相同的工作状态,蓄电池组始终保持在最佳运行状态;同时对性能偏弱的电池进行在线活化,大大延长了蓄电池的使用寿命;提供在线蓄电池内阻和容量检测,准确判断蓄电池的好坏,提高蓄电池组的可靠性。从根本上解决了蓄电池组不均衡的问题,让蓄电池组的运行稳定、可靠,使供电系统的正常运行得到全面保障。 二、国内外研究水平综述 目前国内尚无完善的变电站蓄电池组动态均衡在线维护系统的研究 范例。针对于蓄电池的检测和维护,仅局限于电池巡检仪、放电仪、内阻 测试仪和蓄电池在线监测系统几种产品,但都存在功能单一,只能检测不能 维护的缺点。当前国内该项研究处于研发试制初期,个别省网公司有零

影响铅酸蓄电池使用寿命的主要因素

影响铅酸蓄电池使用寿命的主要因素 蓄电池是UPS系统中的一个重要组成部分,它的优劣直接关系到整个UPS 系统的可靠程度。不管UPS设计的多么先进,功能多么齐备,一旦蓄电池失效,再好的UPS也无法提供不间断供电。千万不要因贪图便宜而选用劣质铅酸蓄电池,这样会影响整个UPS系统的可靠性,并将因此造成更大的损失。 蓄电池是整个UPS系统中平均无故障时间(MTBF)最短的部分。如果能够正确使用和维护,就能够延长其使用寿命,反之其使用寿命会大大缩短。因此,我们要了解蓄电池的基本原理和使用注意事项。 关于铅酸蓄电池 蓄电池的种类一般可分为铅酸蓄电池、铅酸免维护蓄电池及镍镉电池等,考虑到负载条件、使用环境、使用寿命及成本等因素,UPS一般选择阀控式铅酸免维护蓄电池。它的主要特点是在充电时正极板上产生氧,通过化学反应在负极板上还原成水,使用时在规定浮充寿命期内不必加水维护,因此又称为免维护铅酸蓄电池。免维护只是与普通蓄电池相比,使用过程中免去了添加纯水或蒸馏水,调整电解液液面的工作,并非免去一切维护工作。相反,为实现UPS 的不间断 供电,我们要更加细致地维护和保养好铅酸免维护蓄电池。 下面介绍一下影响蓄电池使用寿命的主要因素和使用过程中应注意的事项: ⑴环境温度对电池的影响较大。环境温度过高,会使电池过充电产生气体,环境温度过低,则会使电池充电不足,这都会影响电池的使用寿命。因此,一般要求环境温度在25℃左右, UPS浮充电压值也是按此温度来设定的。实际应用时,蓄电池一般在5℃~35℃范围内进行充电,低于5℃或高于35℃都会大大降低电池的容量、缩短电池的使用寿命。 ⑵放电深度对电池使用寿命的影响也非常大。电池放电深度越深,其循环使用次数就越少,因此在使用时应避免深度放电。虽然UPS都有电池低电位保护功能,一般单节电池放电至10.5V左右时,UPS就会自动关机。但是,如果UPS 处于轻载放电或空载放电的情况下,也会造成电池的深度放电。 ⑶电池在存放、运输、安装过程中,会因自放电而失去部分容量。因此,在安装后投入使用前,应根据电池的开路电压判断电池的剩余容量,然后采用不同的方法对蓄电池进行补充充电。对备用搁置的蓄电池,每3个月应进行一次补充充电。可以通过测量电池开路电压来判断电池的好坏。以12V电池为例,若开

蓄电池组在线均衡系统在电力行业的应用

蓄电池组在线均衡系统在电力行业的应用 一、电力系统直流系统蓄电池典型事故案例分析 直流电源在发电厂和变电站就相当于人身上的血液一样重要,所有开关的分、合闸、微机保护、自动控制都依赖于直流电源。据中国电力网不完全统计:变电站及电厂直流电源事故中,由蓄电池问题而引起的占83%以上: 1、2013年4月29日14时52分32秒220KV滥坝变110KV II母、I母相续发生三相故障,110KV母差保护动作,因直流电源损坏,只跳开5个110KV开关,其余10个开关未跳开,随后主变保护动作,1、2号主变三侧开关仍未跳开。后由滥坝站5回220KV线路的对侧保护动作跳闸,滥坝变全站失压。此次事件共造成2个220KV变电站全站失压,5个110KV变电站全站失压,1个220KV变电站110KV母线失压,2个110KV变电站部分失压。 事故暴露的问题:220KV滥坝变电站双套蓄电池故障(直接原因),在220滥坝变电站发生110KV母线三相故障引起站用间交流电压降低,10KV电压下降到68%Ue,导致两套充电机退出运行时,因220KV滥坝变电站双套蓄电池失效率,

造成开关未完全跳开,故障无法隔离,需由滥坝变对侧220KV线路后备保护动作切除故障。 蓄电池失效原因分析(直接原因):蓄电池组为惠州海志电池有限公司产品,两组300Ah,2006年12月投运。检测结果显示,三个蓄电池的内阻达到欧姆级(分别是1组81号和2组68号、104号),对蓄电池组的正常供电形成极大阻碍。解体检测表明该批蓄电池故障状况为部分电池内部出现不可逆硫酸盐化,同时硫酸盐化引起的极耳严重腐蚀现象。事故时,在冲击负荷的影响下,一组蓄电池组中81号电池、二组蓄电池组中68、104号电池损坏,两组电池输出电压大幅度下降,致使全站大部分开关、保护和自动装置不能正常工作。 2、2010年5月17日19时18分,大唐淮北发电厂D号机负荷300MW,机组厂用电源640开关跳闸,机组解列,汽轮机跳闸, D号机ETS系统发“DEH 故障”首出信号、发变组保护C柜发“热工保护动作”信号机组跳闸。 原因分析:故障录波显示640开关跳闸时,机组运行信号正常,640开关跳闸为首出;发变组保护无故障信号,无保护动作记录;电网系统电压正常,母差、失灵保护、高周切机联切无任何信号,无保护动作记录。跳闸后,检查640开关控制回路绝缘,跳闸线圈、跳闸中间继电器动作电压正常。根据上述情况,结合现场设备实际分析:由于640开关跳闸回路中的跳闸继电器TJ动作功率偏小(实测为2W);回路中的控制电缆长度超过了400m,长电缆存在对地电容效应,在蓄电池组存在漏液造成直流系统正对地电压偏低(实测52V)时,当直流系统发生某个较大的干扰时(如大功率负载启动、或某个瞬间接地),造成直流系统电压瞬时较大波动或冲击,并在控制长电缆中的电容回路中产生冲击电流,进而导致跳闸继电器TJ动作。 3、郑州热电厂发电机定子接地保护动作跳闸分析。 郑州热电厂 3号发电机为典型的发电机变压器组(发变组)单元接线,发电机为东方电机厂生产的QFSN-200-2型,机组于1992年投运,现处于稳定运行期。2001-11-18,3号发电机处于正常运行状态,当时机组带有功负荷125 MW,无功负荷25 Mvar,对外供热量160 t/h。事故经过:凌晨01:35,3号机集控室铃响,中央信号盘发出“保护回路故障”和“故障录波器动作”光字,随即喇叭叫,中央信号盘又出“发电机定子接地”、“主汽门关闭”、“断水保护动作”、“远方跳闸

锂离子电池的使用寿命

锂离子电池的使用 这部分是本文的重点,我们分三点来谈。 1、如何为新电池充电 在使用锂电池中应注意的是,电池放置一段时间后则进入休眠状态,此时容量低于正常值,使用时间亦随之缩短。但锂电池很容易激活,只要经过3—5次正常的充放 电循环就可激活电池,恢复正常容量。由于锂电池本身的特性,决定了它几乎没有记忆效应。因此用户手机中的新锂电池在激活过程中,是不需要特别的方法和设备的。不仅理论上是如此,从我自己的实践来看,从一开始就采用标准方法充电这种“自然激活”方式是最好的。 对于锂电池的“激活”问题,众多的说法是:充电时间一定要超过12小时,反复做三次,以便激活电池。这种“前三次充电要充12小时以上”的说法,明显是从镍电池(如镍镉和镍氢)延续下来的说法。所以这种说法,可以说一开始就是误传。锂电池和镍电池的充放电特性有非常大的区别,而且可以非常明确的告诉大家,我所查阅过的所有严肃的正式技术资料都强调过充和过放电会对锂电池、特别是液体锂离子电池造成巨大的伤害。因而充电最好按照标准时间和标准方法充电,特别是不要进行超过12个小时的超长充电。通常,手机说明书上介绍的充电方法,就是适合该手机的标准充电方法。 此外,锂电池的手机或充电器在电池充满后都会自动停充,并不存在镍电充电器所谓的持续10几小时的“涓流”充电。也就是说,如果你的锂电池在充满后,放在充电器上也是白充。而我们谁都无法保证电池的充放电保护电路的特性永不变化和质量的万无一失,所以你的电池将长期处在危险的边缘徘徊。这也是我们反对长充电的另一个理由。 此外在对某些手机上,充电超过一定的时间后,如果不去取下充电器,这时系统不仅不停止充电,还将开始放电-充电循环。也许这种做法的厂商自有其目的,但显然对电池和手机/充电器的寿命而言是不利的。同时,长充电需要很长的时间,往往需要在夜间进行,而以我国电网的情况看,

相关文档
最新文档