Non local Andreev reflection in a carbon nanotube superconducting quantum interference devi

a r X i v :0705.4215v 2 [c o n d -m a t .m e s -h a l l ] 19 O c t 2007

Non local Andreev re?ection in a carbon nanotube superconducting quantum

interference device

S.Duhot and R.M′e lin

Institut NEEL,CNRS &Universit′e Joseph Fourier,BP 166,F-38042Grenoble Cedex 9,France We investigate a superconducting quantum interference device (SQUID)based on carbon nan-otubes in a fork geometry [J.-P.Cleuziou et al.,Nature Nanotechnology 1,53(2006)],involving

tunneling of evanescent quasiparticles through a superconductor over a distance comparable to the superconducting coherence length,with therefore “non local”processes generalizing non local An-dreev re?ection and elastic cotunneling.Non local processes induce a reduction of the critical current and modify the current-phase relation.We discuss arbitrary interface transparencies.Such devices in fork geometries are candidates for probing the phase coherence of crossed Andreev re?ection.

PACS numbers:74.50.+r,74.78.Na,74.78.Fk

I.INTRODUCTION

Implementing experimentally 1,2,3and understanding theoretically 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25the possibility of emitting spatially separated electron pairs from a superconductor in di?erent electrodes has aroused considerable interest recently,in connection with the realization of a source of entangled pairs of electrons 21,22.The Josephson junction through a carbon nanotube quantum dot 26and the superconducting quantum interference device 27(SQUID)realized recently can be viewed as steps towards future implementations of transport of spatially separated pairs of electrons in quantum information devices based on carbon nanotubes 23.As another application,the carbon nanotube SQUID realized recently by Cleuziou et al.27in the fork geometry in Fig.1proves the feasibility of future measurements of magnetization reversal of individual molecular magnets.

Even more miniaturized devices may be realized in the near future,with geometrical dimensions comparable to an intrinsic length scale of the superconductor:the characteristic length 28ξ0associated to the superconducting gap |?0|.Such devices 26,27,29may be sensitive 4,5,6to the fact that Andreev re?ection 30takes place in a coherence volume of linear dimension ξ0,therefore allowing for the possibility of splitting Cooper pairs in two parts of the circuit.

Andreev re?ection 30is the process by which a spin-up electron incoming from the normal side on a NS interface between a normal metal N and a superconductor S is re?ected as a hole in the spin-down band while a pair of electrons is transmitted in the superconductor.In a N a SN b structure with the electrical circuit on Fig.2,an electron in electrode N a can be scattered as a hole in N b if the contacts are separated by a distance comparable to the superconducting coherence length ξ0(see Fig.2a for non local Andreev re?ection).Alternatively,an electron from N a can be transmitted as an electron in N b across the superconductor 6(see Fig.2b for elastic cotunneling).

The goal of our article is to address possible realizations of non local Andreev re?ection in future carbon nanotube SQUIDs.These devices 24,25would provide further 26experimental signatures of the phase coherence of Cooper pair https://www.360docs.net/doc/9a3804257.html,pared to the previous Refs.[24,25]we investigate here higher order processes in the tunnel amplitudes giving rise to “non local Andreev bound states”.By contrast,if the distance between the Josephson junctions is much larger than the superconducting coherence length,the bound states are “local”,and localized over two separated regions of extend ξ0on each Josephson junction,not coupled by non local processes through the superconductor S (see Fig.1).

The article is organized as follows.Preliminaries are presented in Sec.II.Our results are presented in Sec.III A for the dc-Josephson e?ect in single channel systems.Multichannel e?ects are discussed in Sec.III B.Concluding remarks are presented in Sec.IV.Some details are left for Appendices.

II.

PRELIMINARIES

A.

Carbon nanotube superconducting interference device

A superconducting quantum interference device (SQUID)made of two superconductors and a carbon nanotube is considered (see Fig.1a),according to the recent experiment by Cleuziou et al.27.As a natural hypothesis,the proximity e?ect between the superconductor and the carbon nanotube (i.e.the penetration of pairs from the super-conductor to the nanotube)is supposed to induce a minigap |?0|in the portions of the nanotube in contact with the superconductors.

The nanotube is divided in ?ve sections connected to each other,from top to bottom:superconducting top section with a minigap |?0|in contact with the superconductor S’;quantum dot number 1;superconducting middle section of the nanotube with a minigap |?0|in contact with S;quantum

dot number 2;and superconducting bottom section with a minigap |?0|in contact with the superconductor S’(see Fig.1a).

S

φ(b)

Normal metal

Normal metal

S’

(c)S

φ

multichannel

tunnel junction

(d)

tunnel junction multichannel ch

(N hopping amplitudes in parallel)S’

FIG.1:(Color online.)Schematic representation of the carbon nanotube SQUID (a).The hopping description in the o?-resonant state is shown on (b).The transport properties of the SQUID depend only on the enclosed ?ux and on the su-perconducting phase di?erences,(c)shows a double bridge between two superconductors.(d)is a double insulating bridge between two superconductors,made of two multichannel insulators in parallel.Only non local processes through one of the superconductors (the superconductor S)are allowed in all these situations.The Oxyz axis is shown on (b).

Depending on the value of the gate voltage in experiments,the quantum dots 1and 2can be tuned from o?-resonant to resonant (changing the gate voltages has the e?ect of shifting the dot energy levels).Our article discusses mostly the o?-resonant state (in short:o?-state)such that dots 1and 2have a vanishingly small density of states within the minigap (see Fig.3a).It was well established experimentally by Cleuziou et al.27that their SQUID can be tuned from the o?-state with a very small critical current to the on-state with a large critical current by changing the gate voltages coupled to the two quantum dots formed by portions of the nanotube in between αand α′,and in between βand β′(see Fig.1a).

Our modeling is intended to capture “non local bound states”involving multiple electron-hole processes back and forth between dots 1and 2.We make the following simplifying assumptions.First,proximity e?ect between the nanotube and the superconductor is not described explicitely on a microscopic basis:for highly transparent interfaces between the carbon nanotube and the superconductor S,we treat proximity-induced superconductivity in the nanotube as bulk superconductivity,and therefore we use the denomination “gap”instead of “minigap”.Non local processes then take place at the discontinuities of the superconducting order parameter at αand α′.For lower interface transparencies between the superconductor S and the carbon nanotube,electrons and holes may propagate in the portion of the nanotube in contact with S before undergoing non local Andreev re?ection or elastic cotunneling,which amounts to averaging over many channels for non local processes.

Second,we consider the o?-state with a vanishingly small density of states if the absolute value of energy is smaller than the gap (see Fig.3a),and we use a standard description as tunnel amplitudes 31,32,33connecting the superconductors S and S’.

V b

I a

V b

I a

(b) Elastic cotunneling

S

Normal metal "b"

Normal metal "a"

e

e

(a) Crossed Andreev reflection

S

Normal metal "b"

Normal metal "a"

e

e

h

e

FIG.2:(Color online.)Schematic representation of the electrical circuit for probing the non local conductance in normal metal -superconductor -normal metal (N a SN b )structures 26.(a)shows a schematic representation of the non local Andreev re?ection process changing a spin-up electron in electrode N b into a spin-down hole in electrode N a and leaving a Cooper pair in the superconductor.(b)is a schematic

representation of elastic cotunneling transferring an electron from one normal electrode to the other via

a trip through the superconductor.

FIG.3:(Color online.)Schematic representation of quantum dot density of states,with a dot level spacing δand a level broadening Γ.(a)corresponds to the o?-resonant state considered in our article,with no resonant level in the gap window.(b)corresponds to the resonant situation with a large density of states within the gap.

As a third assumption,it is well known that a single wall carbon nanotube contains two conduction channels.The idealized case of a single hopping amplitude is discussed in Sec.III A.Multichannel contacts are left for Sec.III B. As a?nal assumption,Coulomb interactions in the quantum dots are not accounted for,so thatδon Fig.3is supposed to be a?nite size e?ect not due to Coulomb interactions.

The distance Rα,βbetweenαandβ(seeαandβon Fig.1b)is supposed to be comparable to the coherence lengthξ0.The shortest path connectingα′andβ′(seeα′andβ′on Fig.1b)is much larger thanξ0(Rα′,β′?ξ0), with therefore no“non local”quasiparticle tunneling betweenα′andβ′.Compared to the fork in the experimental geometry realized in Ref.[27],these assumptions on geometry can be implemented in future experiments by reducing the distance betweenαandβ(seeαandβon Fig.1b)down to values comparable to the superconducting coherence lengthξ0.In the experiment by Cleuziou et al.27,the distance Rα,βbetweenαandβis comparable to the distance Rα,α′betweenαandα′,and to the distance Rβ,β′betweenβandβ′(of order400nm).We consider on the contrary future fork geometries with Rα,β ξ0,and with Rα,β?Rα,α′,Rβ,β′.

Choosing the gauge A x=?By/2,A y=Bx/2and A z=0(with the Oxyz axis on Fig.1b),with B the applied magnetic?eld and A the vector potential,leads to a?nite value for βαA d r,and to α′αA d r=? β′βA d r if we

suppose Rα,α′=Rβ,β′.Given Rα,β?Rα,α′,we neglect the line integral of the vector potential betweenαandβ: βαA d r?0.The line integral of the vector potential along a path fromα′toβ′in S’is?nite but quasiparticle propagation fromα′toβ′has a vanishingly small amplitude(because Rα′,β′?ξ0).Non local processes betweenα′andβ′are thus negligible.

B.Microscopic Green’s functions

The SQUID corresponds to two Josephson junctions,one for each interface.If the junctions are far apart(at a distance much larger than the superconducting coherence length),and for single channel weak links,one negative and one positive energy Andreev bound state is located on each junction,therefore leading to a total of four Andreev bound states for the SQUID(two bound states at positive energy with respect to the Fermi level,and two bound states at negative energy).As we show below,non local processes induce a coupling between these bound states in the form of level repulsion.

The supercurrent is obtained from di?erentiating the free energy with respect to the superconducting phase di?er-ence??.Beenakker36?nds three terms contributing to the supercurrent,some of which date back to the early stages of Josephson junction theory37.First at zero temperature the following term corresponds to a summation over the discrete bound states within the gap:

I S(??,φ)=2e|?0|

?(??)

θ[??n(??,φ)],(1)

whereφis the?ux enclosed in the loop of the SQUID,and where N ABS is the number of Andreev bound states. The step function in energyθ[??n(??,φ)]selects Andreev bound states below the Fermi level.The second term in Ref.[36],corresponds to the contribution of the continuum to the supercurrent.The contribution of the continuum is not included in the discussion in the forthcoming Secs.III A and III B.We will justify in Sec.III A2that it is indeed negligibly small in the situations that we consider.The third and last term in the expression of the supercurrent obtained by Beenakker36vanishes if the superconducting gap is independent on the phase di?erence,which we assume in the following.

The bound states are obtained in a standard description as the poles of the fully dressed Green’s functions.The later is determined by the Dyson equations,which allows to describe weak links ranging from tunnel contacts to highly transparent interfaces.

The Green’s functions of the superconductor are obtained by Fourier transform in a well known procedure38.For superconductors isolated from each other,the local Green’s function takes the form

?gα,α(ω)=?gβ,β(ω)=

πρN

|?0|2?( ω)2 ? ω|?0|exp(i?L)

|?0|exp(?i?L)? ω ,(2)

?gα′,α′(ω)=?gβ′,β′(ω)=

πρN

|?0|2?( ω)2 ? ω|?0|exp(i?R)

|?0|exp(?i?R)? ω ,(3)

where the superconducting phase variables?L and?R=?L+??are shown on Fig.1b,|?0|is the superconducting gap andρN the normal density of states.

The non local Green’s functions take the form

gα,β(ω)=gβ,α(ω)=C(ω)πρN 1|?0|2?( ω)2 ? ω|?0|exp(i?L)

|?0|exp(?i?L)? ω cos(k F Rα,β)

+ ?1001 sin(k F Rα,β) ,(4) where we use the notation C(ω)for

C(ω)=exp ?2Rα,β

103(h /2e ?)I C (φ/2π)

103(h /2e ?)I C (φ/2π)

FIG.4:(Color online.)Critical current as a function of the magnetic ?ux φin the loop of the SQUID,with (T α,T β)=(0.8,0.8)(a)and with (T α,T β)=(0.8,1)(b).The critical current is averaged over all values of k F R α,β.Di?erent curves correspond to di?erent values of C 0,the strength of non local processes.

2.Level repulsion among Andreev bound states and current-phase relation

Assuming a distance between the Josephson junctions much larger than the coherence length,and assuming also single channel contacts,we ?nd one Andreev bound state with negative energy localized on each junction,as it should.The bound states extend in the superconductor over a region of size comparable to the coherence length.If the distance between the Josephson junctions becomes comparable to the coherence length,the bound state energy levels depend on the coupling corresponding to ”non local”propagation in the superconductors (see Fig.1).

The variations of the bound state levels (±?1,±?2)with the ?ux φenclosed in the loop are shown on Fig.5a for C 0=0(absence of non local processes)and on Fig.5b for C 0=1(maximal value of non local processes).

Level repulsion among Andreev bound states upon increasing C 0(see Fig.5b)has the e?ect of reducing the slope of the bound state energy levels versus phase relation,which reduces the supercurrent.The bound states take the simple form given in Appendix C (see Eqs.(C1)and (C2))for a symmetric contact with t a =t b .We do not present in the article the too heavy expression of the bound state levels in the general case.

Now we consider single channel transmission modes between the superconductors S and S’,and with non local processes at the interfaces where a step function variation of the superconducting gap is assumed.As seen from Fig.6,the SQUID current phase relation ?uctuates from sample to sample.

We conclude this section by discussing the contribution of the continuum 36for the hopping model of SQUID in the o?-state.The supercurrent is obtained as the integral over energy of the spectral supercurrent.We show on Fig.7a typical variation of the spectral supercurrent as a function of energy.We ?nd practically no contribution of energies larger than |?0|in absolute value,as opposed to other cases such as Ref.[39].We conclude that the contribution of the continuum is negligible for the hopping model of SQUID in the o?-state in which the hopping elements are

?

FIG.5:(Color online.)Variation of the bound state levels in the absence of non local processes(C0=0)(a)and with the maximal strength of non local processes(C0=1)(b).The bound states repel each other for C0=1in the presence of non local processes on(b).For this?gure,we use??=0,k F Rα,β=1+2πn(with n an integer),Tα=0.8and Tβ=1.A similar repulsion between Andreev bound states is obtained in the dependence of the bound state energy levels as a function of the phase di?erence??.

energy-independent.The supercurrent is therefore well approximated by Eq.(1)as in Secs.III A and III B.As a physical interpretation,Andreev bound states are localized in the superconductor in a region of size set by the coherence length.A single channel weak link coupling two superconductors32is a very localized perturbation which does not couple most of the extended states in the superconducting electrodes,which explains why the states of the continuum are almost insensitive to the phase di?erence between the superconductors in the considered geometry with localized interfaces.

B.SQUIDs involving multichannel contacts

A metallic carbon nanotube consists of two conduction channels,and it is thus natural to extend the discussion in Sec.III A to the case of multichannel33junctions(see Figs.1c and d).We evaluate the density of Andreev bound states35for multichannel systems with N ch=2and N ch=15channels,and with C0=0and C0=1(see Fig.8). Increasing the strength of non local processes by increasing C0reduces the density of Andreev bound states,therefore reducing the value of the supercurrent,in agreement with Sec.III A1.

IV.CONCLUSIONS

To conclude,we have discussed signatures of non local Andreev re?ection on the current-phase relation of a dc-SQUID in a fork geometry similar to Cleuziou et al.27,but with the dimension of the middle superconductor compa-rable to the superconducting coherence length,so that quasiparticles may tunnel through the superconductor,with or without electron-hole https://www.360docs.net/doc/9a3804257.html,pared to a geometry consisting of two parallel normal bridges connecting two superconductors24,25,we investigated here processes of higher order that are not washed out by disorder.For idealized single channel systems with sharp step-function variations of the superconducting gap in the nanotube,we found that

(h /2e ?)I S (??/2π)

k F k F k F (h /2e ?)I S (??/2π)

FIG.6:(Color online.)Supercurrent versus phase di?erence ??,with non local processes,for di?erent values of k F R α,β,and for (T α,T β)=(0.8,0.8),without magnetic ?ux φ=0(a),with magnetic ?ux φ=2(b).The supercurrent is very small for k F R α,β=1.5+2πn (with n and integer),not far from k F R α,β?π/2+2πn .

non local processes induce sample to sample ?uctuations of the current phase relation due to the dependence of non local processes on the Fermi phase factors.Multichannel systems capture moderate interface transparencies between the nanotube and the superconductor because in this case electrons incoming in the superconductor can propagate in the nanotube before undergoing crossed Andreev re?ection.Increasing the strength of non local processes reduces the supercurrent,as for single channel systems.

From the point of view of future experiments,non local processes play a role in SQUIDs with fork geometries and with junctions made of carbon nanotubes,normal metals or semiconducting quantum wires.It would be interesting to measure the reduction of the current-phase relation of the SQUID upon increasing the strength of crossed processes in multichannel systems,via a comparison of samples with di?erent dimensions,or via the temperature dependence of the coherence length.A more di?cult experiment consists in probing sample to sample ?uctuations of the SQUID supercurrent.A good characterization of the sample parameters (such as number of channels,interface transparencies)is required in order to distinguish between the intrinsic ?uctuations of crossed processes and unwanted variations of the junction parameters when changing from one sample to another.As pointed out to us by F.Giazotto,the strength of non local processes can be monitored by the temperature dependence of the superconducting coherence length ξ0= v F /|?0|(in the ballistic limit)or ξ0=

-10

-5 0 5 10-1.04-1.02-1-0.98-0.96

(h /e ) I S (h ω/2π?)

h ω/2π?

Spectral supercurrent N ch =5FIG.7:(Color online.)Variations of the spectral supercurrent for a given realization of the microscopic Fermi phase factors in the vicinity of ω=hω/2π??|?0|.We ?nd practically no contribution of the continuum for the hopping model of SQUID in the o?-state.We use the phase di?erence ??=2on the ?gure,but similar variations of the spectral current are obtained for other values of ??.We also chose C 0=1on the ?gure.

APPENDIX A:FLUCTUATIONS OF NON LOCAL TRANSPORT THROUGH A DIFFUSIVE

SUPERCONDUCTOR

The charge transmission coe?cient of a di?usive superconductor vanishes after averaging over disorder in the di?usive limit 11,15.To show that the charge transmission coe?cient of a disordered superconductor ?uctuates at the scale of the Fermi wave-length λF ,we show that the opposite hypothesis does not hold.Simply,we obtain ?uctuations of the charge transmission coe?cient by adding a very small extra ballistic region much larger than the Fermi wave-length but much smaller than the elastic mean free path.

APPENDIX B:CRITICAL CURRENT IN THE TUNNEL LIMIT

In this Appendix,the supercurrent is expanded in the tunnel amplitude t a,b connecting the two interfaces between the superconductors.We do not detail the corresponding calculation based on diagrammatic perturbation theory.We start with the ?rst terms of an expansion of the supercurrent in the tunnel amplitudes [see the following Eqs.(B1)-(B10)].The dimensionless parameters τa,b =(πρN t a,b )2,related in the tunnel limit to the dimensionless interface transparencies through T a,b ?4τa,b ,are supposed to be small.The Dyson equations are expanded systematically in the tunnel amplitudes and the lowest order diagrams are collected,leading to the following expansion for the supercurrent:

I S (??,φ)=A a sin (??+φ)+A b sin (???φ)+B sin (2??)

(B1)

+D a sin (2(??+φ))+D b sin (2(???φ)),

with

A a =

e h τb |?0|

(B3)

02468

246810D e n s i t y o f b o u n d s t a t e s

E / ?

FIG.8:(Color online.)Distribution of the Andreev bound state density of states at phase di?erence ??=π,for N ch =2channels (a)and for N ch =15channels (b),without non local processes (C 0=0, )and with non local processes to their maximal value (C 0=1, ).Each histogram is normalized to the number of Andreev bound states averaged over the realizations of the Fermi phase factors.

B =?

e 2h τ2a |?0|

(B5)

D b =?

e

?(??)

=0,(B7)

and we obtain

cos (??(0))=

(1?τ)δφ±

2τ(2?C 2?

/2)2,(B8)

where we supposed a symmetric contact withτa,b=τ.Forδφ?τ,the critical current is given by

I c(π/2+δφ)=4πτ|?0|δφ,(B9) and forδφ?τ,it is given by

I c(π/2+δφ)=πτ2|?0| 2?C2?

+O(τ3),(B11)

h

where non local e?ects do not enter Eq.(B11)at the leading order.We conclude in the tunnel limit to a reduction of the contrast of the critical current oscillations upon increasing the strength C?of non local processes.The main body of the article corresponds to interfaces with moderate of large transparencies,described by Andreev bound states obtained from the Green’s function dressed by tunnel processes to in?nite order,as opposed to the limit of tunnel contacts considered in this Appendix.

APPENDIX C:ANDREEV BOUND STATES

In a symmetric SQUID with t a=t b and no magnetic?eld(φ=0),the bound states take the form

?±1(??)=±|?0| B+(??)(C1)

?±2(??)=±|?0| B?(??)(C2) with

A±(??)=2cos(??)T(1±C?sin(k F Rα,β))+1(C3)

+T2(1±C?sin(k F Rα,β))2+T2C2?cos(k F Rα,β)2

and

B±(??)=[1+T(1±C?sin(k F Rα,β))]2+T2C2?cos(k F Rα,β)2(C4) whereτ=π2ρ2N t2=t2/W2,related to the normal transmission by the relation32

=(4t2a,b/W2)/(1+t2a,b/W2)2(C5)

T a,b

NN

where W=1/πρN is the band-width,withρN the normal density of states.The bound state levels are determined self-consistently in such a way as C?is the value of C(ω)[see Eq.(5)],where ωis replaced by the bound state energy in a self-consistent manner.

Lets us consider the case k F Rα,β=2πn(with n an integer).The bound states levels deduced from Eqs(C3)and (C4)are then degenerate:

??1(??)=??2(??)=?|?0|

.,(C7)

(1+t2/W2)2+C2?t4/W4

where we introduced the band-width W according to Ref.[32].The SQUID is then equivalent to two identical S-I-S junctions,as seen from comparing Eq.(C6)to Ref.[32].

For k F Rα,β=π/2+2πn(with n an integer)the degeneracy is removed only if C0=0:

??1,2(??)=?|?0|

with

4τ(1±C?)

α(1,2)=

1?α(1,2)sin(??/2)2?β(1,2)sin(??)(C10) with

4τcos(2φ)(1±C?)

α(1,2)=

.(C12)

(1+τ(1±C))2?4τsin(φ)2(1?C?)±4τ2C?sin(2φ)2

and

?

|?0|=|?0| (1+τ(1±C?))2.(C13)

1D.Beckmann,H.B.Weber and H.v.L¨o hneysen,Phys.Rev.Lett.93,197003(2004).

2S.Russo,M.Kroug,T.M.Klapwijk and A.F.Morpurgo,Phys.Rev.Lett.95,027002(2005).

3P.Cadden-Zimansky and V.Chandrasekhar,cond-mat/0609749.

4J.M.Byers and M.E.Flatt′e,Phys.Rev.Lett.74,306(1995).

5G.Deutscher and D.Feinberg,App.Phys.Lett.76,487(2000);

6G.Falci,D.Feinberg and F.Hekking,Europhysics Letters54,255(2001).

7P.Samuelsson,E.V.Sukhorukov and M.B¨u ttiker,Phys.Rev.Lett.91,157002(2003).

8E.Prada and F.Sols,Eur.Phys.J.B40,379(2004).

9P.K.Polin′a k,https://www.360docs.net/doc/9a3804257.html,mbert,J.Koltai and J.Cserti,Phys.Rev.B74,132508(2006).

10T.Yamashita,S.Takahashi and S.Maekawa,Phys.Rev.B68,174504(2003).

11D.Feinberg,Eur.Phys.J.B36,419(2003).

12R.M′e lin and D.Feinberg,Phys.Rev.B70,174509(2004)

13R.M′e lin,Phys.Rev.B73,174512(2006).

14A.Levy Yeyati,F.S.Bergeret,A.Martin-Rodero and T.M.Klapwijk,cond-mat/0612027.

15S.Duhot and R.M′e lin,Eur.Phys.J.B53,257(2006).

16J.P.Morten,A.Brataas and W.Belzig,Phys.Rev.B74,214510(2006).

17F.Giazotto,F.Taddei,F.Beltram and R.Fazio,Phys.Rev.Lett.97,087001(2006).

18A.Brinkman and A.A.Golubov,Phys.Rev.B74,214512(2007).

19M.S.Kalenkov and A.D.Zaikin,cond-mat/0611330.

20S.Duhot and R.M′e lin,cond-mat/0710748.

21M.S.Choi,C.Bruder and D.Loss,Phys.Rev.B62,13569(2000);P.Recher,E.V.Sukhorukov and D.Loss,Phys.Rev.B 63,165314(2001).

22G.B.Lesovik,T.Martin and G.Blatter,Eur.Phys.J.B24,287(2001);N.M.Chtchelkatchev,G.Blatter,G.B.Lesovik and T.Martin,Phys.Rev.B66,161320(R)(2002).

23V.Bouchiat,N.Chtchelkatchev,D.Feinberg,G.B.Lesovik,T.Martin and J.Torres,Nanotechnology14,77(2003).

24R.M′e lin and S.Peysson,Phys.Rev.B68,174515(2003)

25R.M′e lin,Phys.Rev.B72,134508(2005).

26P.Jarillo-Herrero,J.A.van Dam and L.P.Kouwenhoven,Nature439,953(2006).

27J.P.Cleuziou,W.Wernsdorfer,V.Bouchiat,T.Ondaruhu,M.Monthioux,Nature Nanotechnology1,53(2006).

28The coherence length at zero energy isξ0,ball= v F/|?0|in a ballistic system(with v F the Fermi velocity and|?0|the superconducting gap).In a di?usive system,ξ0,dif f~p

33D.Averin and A.Bardas Phys.Rev.Lett.75,1831(1995);D.Averin and H.T.Imam Phys.Rev.Lett.76,3814(1996). 34F.W.J.Hekking and Yu.V.Nazarov,Phys.Rev.Lett.71,1625(1993);Phys.Rev.B44,11506(1991).

35A.Kormanyos,Z.Kaufmann,J.Cserti,https://www.360docs.net/doc/9a3804257.html,mbert,Phys.Rev.Lett.96,237002(2006)and references theresin.

36C.W.J.Beenakker,Phys.Rev.Lett.67,3836(1991).

37J.Bardeen,R.K¨u mmel,A.E.Jacobs and L.Tewordt,Phys.Rev.187,556(1969).

38A.A.Abrikosov,L.P.Gorkov and I.E.Dzyaloshinski,Methods of Quantum Field Theory in Statistical Physics(Dover,New York,1963).

39C.Benjamin,Th.Jockqueere,A.Zazunov and Th.Martin,cond-mat/0605338.

认知行为疗法的特点

认知行为疗法的特点: ⑴求助者与咨询师是合作关系 ⑵假设心理痛苦在很大程度上是认知过程发生机能障碍的结果 ⑶强调改变认知,从而产生情感与行为的改变 ⑷针对具体、结构性的目标问题,短期,教育性的治疗。 ?一、基本原理 (一)贝克的认知疗法 1、三个概念----------共同感受、自动化思维、规则 ①共同感受:人们用以解决问题的工具。常以解决问题的形式出现。这一过程实际上就是知觉和思维的过程。 ②自动化思维:人们在使用共同感受这一工具时,常常忽略了认知过程,许多判断、推理和思维显得是模糊、 跳跃的,很像一些自动化的反应。 ③规则:是个体在成长过程中所习得的社会认可的行为准则。个体依据它们评价过去,预期未来,并用 它们来指导行动。 2、出现情绪和行为问题的机制: ①在使用共同感受这一工具中,如果对外界信息不能做出适当的解释与评价,就会造成认知扭曲,从而导致错 误观念并最终引起不适应的行为;(两次交友失败,认定自己交友能力不行) ②自动化思维使思维过程中的一些错误观念形成了固定的思维习惯,使个体自身对这些错误的认知观念不能加 以反省和批判;(孩子回来晚了,是不是又犯错误挨留了) ③在运用规则上,如果个体不顾客观条件,过分按规则行事,会使其行为不能与现实环境相协调,从而导致情 绪困扰和不适应的行为。(听话的孩子) ***如果个体不能正确使用共同感受这一工具来处理日常生活中的问题,或是对自己的自动化思维中某些错误观念不能加以内省(思维的批判性),或是过分按规则行事,无论哪种情况,都会造成认知歪曲,产生不良的情绪和不适应的观念。 3、七种认知歪曲: ①主观推断:没有根据就做结论。“孩子回来晚了,是不是出什么事了”。 ②选择性概括:仅根据一件是就形成结论。“这次考试我有一科低分,说明我不行”。 ③过度概括:仅凭一次偶然事件便得出极端信念。“这次恋爱失败了,我不具备交友的能力”。 ④夸大和缩小:用一种比实际上大或小的意义来感知一个事件或情境。“及格说明我不行,高分也不说明我聪明”。 ⑤个性化:个体在没有根据的情况下静一些外部事件与自己联系起来的倾向。“服务员对我粗暴无礼,都是因为我的错”。 ⑥贴标签或错贴标签:根据缺点或以前的过失来描述。“我是个失败者”。 ⑦极端思维:用非黑即白的方式思考。“不成功就是失败”。 5、五种认知治疗技术: ①识别自动思维—帮助求助者学会发掘和识别这些自动化的思维过程 ②识别认知性错误—指求助者在概念和抽象性上常犯的错误,比自动化思维更难识别 ③真实性验证—这是认知治疗的核心。将求助者的自动性思维和错误观念视为一种假设,鼓励求助者在严格设计的行为模 式或情境中对这一假设进行验证。让求助者认识到其观念是不合实际的,并能自觉加以改变。 ④去中心化—让求助者改变举止,然后记录别人不良反应的次数,结果他发现很少有人注意他的变化。 ⑤忧郁或焦虑水平的监控—让求助者认识到自己的情绪的波动特点,从而增强治疗信心。 (二)雷米的认知治疗理论 1、自我概念与群集观点 ①求助者的错误观念主要指错误的自我概念; ②错误观念不是独立存在的,而是以群集的方式表现出来,每一个错误观念的群集都对应着某一类情绪障碍; 每一种观念都有类似的句式,大多数都是对自我的一种判断。

认知行为疗法概述

认知行为疗法概述 什么就是CBT 认知行为治疗(Cognitive-behavioraltherapy,CBT)就是由阿伦·贝克博士创立的一大类包括了认知治疗与行为治疗的心理治疗方法,就是通过改变个人非适应性的思维与行为模式来减少情绪与行为失调,改善心理问题的一系列心理治疗方法的总与。目前,CBT已成为世界上传播最为广泛、被使用最多的心理治疗方法。 CBT的作用不言而喻,但对于心理治疗在抑郁症治疗中就是否有效,部分人还存在着疑虑与/或误解。实际上从文献分析来瞧,CBT在治疗轻-中度抑郁症中的疗效与药物相当;在中-重度抑郁症的治疗中,CBT联合药物治疗效果明显优于单 纯药物治疗。为期两年的随访发现,经CBT治疗的患者复发率明显低于仅通过药物治疗的患者。 英国NICE指南(指英国国立健康与临床优化研究所)、美国APA指南(美国精神病学学会)、爱丁堡皇家医学院SIGN指南(苏格兰校际指南网络国家临床指南)与加拿大CANMET指南(加拿大双相障碍治疗指南)都推荐CBT为心理治疗中的首选疗法。需要特别指出的就是,CBT就是一种优秀而有效的疗法,但CBT不就是万能的:单用CBT治疗适用于轻-中度患者,但不推荐单独应用于中-重度患者,禁止单用CBT治疗严重的抑郁症患者。优秀的疗法需要被恰当使用。 《中国抑郁障碍防治指南》中的抑郁障碍管理部分共有九条内容,但没有任何一条内容直接提到如何进行用药管理,这与美国APA的治疗原则类似。所提到的内容全部就是关于如何建立关系、进行评估、患者监测、开展教育、提高依从性,这些问题通常比如何用药更为关键。 精神科医生应学会两条腿走路,既会药物治疗,又会心理治疗。现在的情况就是,

认知行为疗法及案例分析

认知行为疗法与案例分析 尹童20120403006 一.概述 认知行为治疗师一组通过改变思维和行为的方法来改变不良认知,达到消除不良情绪行为的短程心理治疗方法。其中有代表性的阿尔伯特?艾利斯的合理情绪行为疗法(REBT),阿伦?T.贝克(A.T.Beck)和雷米(V.C.Raimy)的认知疗法(CT)以及唐纳德?梅肯鲍姆(Donald Meichenbaum)的认知行为疗法(CBT) 认知行为疗法具体有以下特点:1.求助者和咨询师是合作关系。2.假设心理痛苦在很大程度上是认知过程发生机能障碍的结果。3.强调认知改变,从而产生情感与行为方面的改变。 4.通常是一种针对具体的和结构行的目标问题的短期和教育性的治疗。 二、唐纳德?梅肯鲍姆(Donald Meichenbaum)的认知行为矫正技术 唐纳德?梅肯鲍姆(Donald Meichenbaum)的认知行为矫正技术,简称(CBM)技术。关注的是求助者的自我言语表达的改变。梅肯鲍姆认为一个人的自我陈述在很大程度上与别人的陈述一样能够影响个体的行为。CBM的一个基本前提是求助者必须注意自己是如何想的、如何感受的和行动的以及自己对别人的影响,这是行为改变的一个先决条件。要发生改变,求助者就需要打破行为的刻板定势,这样才能在不同的情境中评价自己的行为。 CBM假设痛苦的情绪通常是来自于适应不良的想法。然而,与合理情绪疗法之间也存在区别。合理情绪疗法在揭露和辩论不合理想法时更直接和更具有对抗性。梅肯鲍姆的自我指导训练则更多地注意帮助求助者察觉他的自我谈话。治疗过程包括交给求助者做自我陈述与训练他矫正给自己的指导,从而使他能更有效地应对所遇到的问题。咨询师和求助者一起进行角色扮演,通过模仿求助者现实生活中的问题情境来练习自我指导和期望的行为。重要的是要获得对一些问题情境具有实践意义的应对技能,其中的一些问题包括强迫和攻击行为、考试恐惧和演讲恐惧。 在梅肯鲍姆的疗法中认知重组起着关键的作用。梅肯鲍姆认为认知结构是思维的组织方面,它似乎监督和指导着想法的选择。认知结构就像一个“执行处理者”,它掌握着思维的蓝图,决定什么时候继续、中断、改变思维。 梅肯鲍姆提出,“行为的改变是要经过一系列中介过程的,包括内部言语、认知结构与行为的相互作用及随之而来的结果。他区分了变化过程的三个阶段,在每一阶段这个三个方面都相互交织在一起。他认为只关注一个方面将被证明是不够的。 第一阶段:自我观察。

C#中Reflection(反射)

C#中Reflection反射 反射(Reflection)是.NET中的重要机制,通过放射,可以在运行时获得.NET中每一个类型(包括类、结构、委托、接口和枚举等)的成员,包括方法、属性、事件,以及构造函数等。还可以获得每个成 员的名称、限定符和参数等。有了反射,即可对每一个类型了如指掌。如果获得了构造函数的信息, 即可直接创建对象,即使这个对象的类型在编译时还不知道。 程序代码在编译后生成可执行的应用,我们首先要了解这种可执行应用程序的结构。 应用程序结构分为应用程序域—程序集—模块—类型—成员几个层次,公共语言运行库加载器管理应 用程序域,这种管理包括将每个程序集加载到相应的应用程序域以及控制每个程序集中类型层次结构 的内存布局。 程序集包含模块,而模块包含类型,类型又包含成员,反射则提供了封装程序集、模块和类型的对象。我们可以使用反射动态地创建类型的实例,将类型绑定到现有对象或从现有对象中获取类型,然后调 用类型的方法或访问其字段和属性。反射通常具有以下用途。 (1)使用Assembly定义和加载程序集,加载在程序集清单中列出模块,以及从此程序集中查找类型 并创建该类型的实例。 (2)使用Module了解包含模块的程序集以及模块中的类等,还可以获取在模块上定义的所有全局方 法或其他特定的非全局方法。 (3)使用ConstructorInfo了解构造函数的名称、参数、访问修饰符(如pulic或private)和实现详 细信息(如abstract或virtual)等。使用Type的GetConstructors或GetConstructor方法来调用特 定的构造函数。 (4)使用MethodInfo了解方法的名称、返回类型、参数、访问修饰符(如pulic或private)和实现 详细信息(如abstract或virtual)等。使用Type的GetMethods或GetMethod方法来调用特定的方法。 (5)使用FiedInfo了解字段的名称、访问修饰符(如public或private)和实现详细信息(如static)等,并获取或设置字段值。 (6)使用EventInfo了解事件的名称、事件处理程序数据类型、自定义属性、声明类型和反射类型等,添加或移除事件处理程序。 (7)使用PropertyInfo了解属性的名称、数据类型、声明类型、反射类型和只读或可写状态等,获取或设置属性值。 (8)使用ParameterInfo了解参数的名称、数据类型、是输入参数还是输出参数,以及参数在方法签

认知行为疗法的优劣势

认知行为疗法的优劣势 (一)认知行为疗法的优势 1.认知行为疗法结构化强,体系清晰,应用广泛,因为它有一整套完整的评估方法,在此次案例分析中,我们针对案主的行为判断出其是因为错误的认知导致的焦虑和自伤行为发生,因此运用认知行为疗法从预估、干预和评估三个步骤,采取ABC模型、量表、基线数据等一些模块化评估方法进行介入治疗,这一系列过程都是按照认知行为疗法体系结构进行实施的,所以相对较为方便。 2.认知行为疗法可操作性强,方法简洁,它可直接为案主提供使用技巧,从而应用这些技巧方式迁移到生活工作中所遇到的情况或问题上,同时它强调的是一种合作关系,这样也有利于案主关注自身个体和可以随时调整急需改变的想法,感受和行为。例如在此次案例中,社会工作者利用认知行为疗法的基本理论,与案主共同描绘ABC模型,同时要求案主自己填写量表,这些都是操作性强,也较为简洁的方法,同时也便于案主在平时的生活工作中进行自我纠正。 (二)认知行为疗法的不足 1.太过于强调意识。认知行为疗法必须要案主自愿参与进行

改变不良的认知和问题行为,通常在最初需要使用其他方法进行介入,一旦案主自主接受后再使用认知行为疗法,因此,社会工作者不能在案主未认识到问题的时候强行运用认知行为疗法对其实施改变想法、感受和行为的介入。

在本次案例中,一旦案主自我意识太过薄弱,那么认知行为疗法就无法进行下去,因为认知行为疗法最为重要的地方在于案主要与社会工作者一同完成构建描绘ABC模型和填写量表,这些过程严格来说都是要根据案主的自我意识来完成的。 2.只注重行为发生当前的原因。认知行为疗法往往只关注行为发生的表层原因,而在特定情况下,案主可能因为过去的经历等一些潜在问题才导致的这么一个行为发生,所以社会工作者在一定情况下需要注意潜在或过去的问题才能达到预期效果。例如在此案例中,案主因为“压力、劳累和不能完成学校的任务”、“压力、劳累和不能完成工作任务”的原因导致其自伤的结果,根据认知行为疗法中的ABC模型分析出因素B(“自己只有达到父母的高度才算是一个“成功者””、“我无用,在工作中达不到老板的要求”),再根据因素B来进行纠正行为,而没有真正探究其潜在的原因导致的这么一个结果,比如过去的经历或问题等。 3.关注的是个体本身。认知行为疗法是在心理学基础上关注个体及自身的想法、感受及行为,忽略了环境及文化等社会层面的因素,因此作为社会工作者在评估问题时要适当视人在情境中,要将案主的文化和环境因素考虑在内,同时应给案主提供一个赋权的环境,避免剥夺的情况发生。

Reflection essay

Reflection essay Parkway college student: HU DIE (NNDN 108025)

This is my first time come to A & E department for attachment. It is very different from what I think it all about. We can see some "interesting cases" here. Like one finger been cut off, fall down lead to head bleeding, very bad fever and most excited part is I saw some prison case. This is I never saw before. And I heard CGH is the only place treat the police case. First day we just do some orientation about this hospital. Know where is where, but I was very confuse that day. This area is very complicate for me. But second day I go to nurse station in the morning and observation room in the afternoon. In the nurse station, we do some treatment for patient. Like dressing, give nebulizer, give IM injection( e.g. ATT injection), do ECG, eye irrigation, sometimes fleet enema, guide the patients where to wait where to go for x ray, provide urine test bottle, and IV infusion Most time we are doing all this. The most impression case was the patient's finger be cut off, bleeding all over. He is really in pain. I feel very scared. Just stand there watch what the staff do. Stop bleeding. And send to the doctor. Then afternoon i went to observation room, in observation room, some patient come for observe only, but some wait for admission, send they to the ward, during this period, we do vital signs, HGT, give oxygen, monitor ECG depending on the patients' condition. Really can see some patients are very sick. And scream all over. We should calm they down, support their emotion. Luckily I got chance to stand in minor operation room, see two minor operation there. A child's head was bleeding because of fall down. And another case was drainage out the pus from the buttock. But I think one challenging place for nurses is triage, the nurse should ask every single patient about their history and current complain, pain score, then decide to send to which doctor's room. We must be very observing there. How the patient appears to you. Is he/she in pain? Or any other problems. Then the triage nurses will consultant the patient. Chart down the vital signs, if the patient has diabetes, check the hypocount, if blood pressure really high, we must check hypocount also. It's really a challenge place. If the patient is very sick, then the patient will be sending to resuscitate room straight away. I saw the nurses and doctors work together there. Resuscitate the patient, usually the patient in resuscitate room is very weak. And the doctors are very nice, teach us a lot, how to diagnose patient, assess patient. Most of the patients are elderly. Emergency case, the staffs there work very fast. Most of the patient will be done an ECG, vital signs, that's the basic things need to do to the patient there. We must learn to act fast there. Anything we do not understand must ask. The patients' life's are in our hands. I got one chance to do CPR in a real patient. The patient needs to be resuscitated. Find that in real situation is different from the theory, we no need to count how many compression have delivered, just do, finally we cannot save the patient's life. I really hope the theory in our book can happen, hope he can come back. But it never happens. Make me feel very sad. When the doctor said: wait for the line to be flat. Really feel so

认知行为疗法集合

根据语义分析技术,要使一个包含“我”的句子有意义,必须做到( )。多选(A)表语位置上不能使用“我” (B)谓语位置上不能使用系动词? (D)把“我”换成与“我”有关的具体行为和事件 参考答案:CD 语义分析方法:要使一个包含“我”的句子有意义,必须做到以下两点:1、要把主语位置上的“我”换成与“我”有关的更为具体的事件和行为;2、表语位置上的词必须能够根据一定的标准进行评价。 关于语义分析技术理解正确的是( )。单选 (A)改变原有句式结构 (B)如何进行语义表达 (C)分析原有语法结构 (D)着重语义结构分析 参考答案:A 举一反三:心理咨询技能/认知行为疗法查看详情 语义分析技术的关键是分析并改变求助者核心观念“主-谓-表”的句式结构,从而使求助者根据较为客观的标准看待自己的问题,用对具体事件的评价取代对自我的整体性评价,从而改变根深蒂固的核心错误观念。 (1/25)贝克提出的认知治疗技术包括( )。多选 (A)去中心化 (B)识别认知性错误 (C)去个性化 (D)识别自动性思维 参考答案:ABD 举一反三:心理咨询技能/认知行为疗法查看详情 贝克进一步提出了五种具的认知治疗技术:1识别自动性思维。2识别认知性错误。3真实性验证。4去中心化。5忧郁或焦虑水平的监控。 (2/25)关于雷米的认知治疗观点,下列说法中正确的是( )。单选 (A)治疗的目的就是消除表层的错误观念 (B)治疗的目的就是揭示并改变那些深层的错误观念 (C)治疗应从深层的错误观念入手 (D)治疗应逐步根除表层的错误观念

参考答案:B 举一反三:心理咨询技能/认知行为疗法查看详情 雷米认为,认知治疗的目的是要揭示并改变那些中心的、深层的错误观念,而治疗的手段则应从边缘、表层的错误观念入手,逐步靠近中心、挖掘深层并最终予以纠正。 下列关于雷米的认知治疗理论的叙述,正确的包括()。多选 (A)认为导致不适应行为和情绪的根本原因是错误的认知过程和观念 (B)强调错误观念的存在状态 (C)把自我概念作为中心问题 (D)治疗应从核心错误观念入手 参考答案:ABC 举一反三:心理咨询技能/认知行为疗法查看详情 D错误,治疗应从表层、边缘的错误观念入手。 (3/25)认知行为矫正技术强调求助者必须()。多选 (A)打破行为的刻板定势 (B)注意到自己对别人的影响 (C)巩固行为的固有顺序 (D)注意到自己如何感受和行为 参考答案:ABD 举一反三:心理咨询技能/认知行为疗法查看详情 认知行为矫正技术(CBM)的一个基恩前提是求助者必须注意自己是如何想的,如何感受和行动的,以及自己对别人的影响,这是行为改变的一个先决条件。要发生改变,求助者就需要打破行为的刻板定时,这样才能在不同的情境中评价自己的行为。 (4/25)关于行为治疗的步骤,下列说法中错误的是( )单选 (A)首先制定行为矫正目标 (B)一旦达到目标,即可逐步结束干预计划 (C)增加积极行为、减少消极行为是重要环节 (D)监测干预计划并根据情况进行调整 参考答案:A 举一反三:心理咨询技能/认知行为疗法查看详情 。行为治疗是基于实验心理学的成果,帮助患者建立或消除某些行为,从而达到治疗目的的一门心理治疗技术。行为治疗的实施依赖人的三种学习行为:反应学

Reflection Report

Bestandsnaam: Reflection Report Auteur: walenkampwalenkamp Versie nr.: 1 Datum 31 mei 2012 1 Reflection Report To keep you on track with the acquisition of your international competencies you are advised to work on your reflection report every week. Generally you can distinguish three phases in your foreign adventure: Start-up phase: settling in, what strikes you, challenges, loneliness, Middle phase: What has changed in your original goals, challenges and tasks, how are your expectations being met in reality, are you able to analyze and understand your experiences. Final phase: Finalize your reflection report, prepare for ‘culture shock’ upon return, focus on competencies acquired and capitalization. So you know what to do: acquire international competencies, and you will know what to produce to show what you have acquired (Reflection Report). The question now is: how are you going to consciously and purposefully acquire these competencies. The Vademecum will guide you. Contents 1. Experiences: keep track of experiences, and how they help you acquiring international competencies. a. What was the experience that made the biggest impression on you. What effect did it have on you? b. What was your best/worst experience? c. What are the most important things you learned? d. Go back to the challenges you anticipated before your departure , and to the competencies you thought you would need to cope with them. How do they correspond with your real experiences. Discuss what happened. e. What challenges did you meet and did you cope with them? f. Which competencies did you acquire, to what extent and how did you acquire them? 2. Prepare for your return: what do you expect, how are you going to handle that? 3. Capitalize on your study or internship abroad. a. Explain what you have experienced and how your expectations were met, or not. b. List the challenges you expected and the ones you actually encountered, and explain how you coped with them c. Discuss the international (professional, academic, linguistic, intercultural and personal) competencies you acquired and how they are of use in your future career. d. Explain what makes you a better candidate for a job than someone who did not go abroad. 4. Feedback on preparation module. We would like to hear from you what you found useful and what not, what you have missed and should be included. What can be done better and how.

认知行为疗法(三)

认知行为疗法(三) 四、适应症 认知行为治疗可以用于治疗许多疾病和心理障碍,如抑郁症、焦虑症、神经性厌食症、性功能障碍、药物依赖、恐怖症、慢性疼痛、精神病的康复期治疗等。 其中最主要的是治疗情绪抑郁病人,尤其对于单相抑郁症的成年病人来说是一种有效的短期治疗方法。 抑郁症 认知主题:剥夺、挫败、失落。 不合理认知: 极端化——抑郁者受挫后会无端地自罪自责,夸大自己的缺点,缩小自己的优点; 自责——把全部责任归咎于他们自己,表现出一种认知上的不合逻辑性和不切实际性。 消极思维:在他眼中的自己和未来,都蒙上了一层厚厚的灰色,他常常坚信自己是一个失败者,并且失败的原因全在于他自己。他坚信自己低人一等、不够聪明、不够称职、不够好看、不够有钱等等。总之干什么都不会成功,都没有希望。抑郁症患者的这些观点常常是扭曲的,与现实不相符合的。 核心信念:我不好,我不受欢迎,别人不喜欢我。 核心信念和个人经历、他对重要人物的认同以及对别人态度的感知等因素有关。如童年有过重大丧失体验的人,孩子不能理

解事情是跟他无关的,相反会认为和他有关,并且是由于他不好造成的,会形成“我不好”的核心信念。 抑郁症最大的风险是自杀。 自杀的认知主题: 一是高度的绝望感(贝克认为“绝望”指“对未来的消极观念,消极期待或悲观”),绝望程度越高越有可能自杀; 二是感到不能应付生活问题,断定所遇到的问题不可能解决,会感到无路可走。所以危机干预中让他们了解到事情有解决的可能性和可实行性,可以纠正不合理认知,降低自杀风险。 焦虑症 焦虑症出现的认知主题: 1、夸大危险:对自己知觉到的危险过度夸大的反应;对事物的失控作灾祸性的解释。其认知的内容大部分都是围绕着身体或心理、社会的危险,如怕死去、怕发疯、怕失控、怕晕倒、怕被人注视、怕出错、怕发生意外等,他们会有选择性地注意那些集中筛查身体或心理的威胁性信息。 例如,当事人的一个亲友患心肌梗塞死去,她在目睹抢救过程之后,头脑中出现了“要是生心脏病就太可怕了”的想法,当夜睡梦中惊醒,感到心跳、胸闷,于是认为“已经得了心脏病了”,这种灾难性的想法和解释将焦虑推向了高峰,形成了第一次惊恐发作。 焦虑患者的核心信念:

teaching reflection(教学反思)

Teaching reflection Recently, I presented a few lectures to the students of ** College. What I have learnt from the practice of teaching is of great variety. At this moment, after a lecture of English teaching, I cannot help but to reflect on my experience. First of all, my beloved students range from the first year students to junior ones, from the specialty of statistics to English teaching. That is to say, it is necessary for me to employ different teaching methods in that the background information of them is of great difference. It is rather challenging for me to appeal to the interests of all the students. But, from my point of view, I have already tried my best to mobilize them to be involved into the progress of learning. Just as what the Silent Way holds, tell me and I forget; teach me and I remember; involve me and I learn. As for the students of statistics, I mainly use the traditional grammar-translation approach to teach the college English, partly because they are the freshmen and it is not a wise choice to impel them to reason some thought-provoking statements. Why is it not a wise choice? One day, one guy asked me for the answers of the exercises at the end of the unit. He reminded me that almost all of

认知行为疗法

认知行为治疗 锁定 认知行为疗法一般指认知行为治疗 本词条由好大夫在线提供专业内容并参与编辑 孙春云(副主任医师)北京回龙观医院临床心理科 刘华清(主任医师)北京回龙观医院临床心理科 认知行为治疗由A.T.Beck在60年代发展出的一种有结构、短程、认知取向的心理治疗方法,主要针对抑郁症、焦虑症等心理疾病和不合理认知导致的心理问题。它的主要着眼点,放在患者不合理的认知问题上,通过改变患者对已,对人或对事的看法与态度来改变心理问题。 定义 认知是指一个人对一件事或某对象的认知和看法,对自己的看法,对人的想法,对环境的认积和对事的见解等。 认知行为治疗认为:人的情绪来自人对所遭遇的事情的信念、评价、解释或哲学观点,而非来自事情本身。正如认知疗法的主要代表人物贝克(A·T·Beck)所说:“适应不良的行为与情绪,都源于适应不良的认知”。 例如,一个人一直“认为”自己表现得不够好,连自己的父母也不喜欢他,因此,做什么事都没有信心,很自卑,心情也很不好。治疗的策略,便在于帮助他重新构建认知结构,重新评价自己,重建对自己的信心,更改认为自己“不好”的认知。

认知行为治疗认为治疗的目标不仅仅是针对行为、情绪这些外在表现,而且分析病人的思维活动和应付现实的策略,找出错误的认知加以纠正[1]。 2基本概念 "ABC"理论:由Ellis提出。 A指与情感有关系的事件(activating events);B指信念或想法(Beliefs),包括理性或非理性的信念;C指与事件有关的情感反应结果(Consequences)和行为反应。 事件和反应的关系:通常认为,事件A直接引起反应C。事实上并非如此,在A与C之间有B的中介因素。A对于个体的意义或是否引起反应受B的影响,即受人们的认知态度,信念决定。 举例:对一幅抽象派的绘画;有人看了非常欣赏,产生愉快的反应;有人看了感到这只是一些无意义的线条和颜色,既不产生愉快感,也不厌恶。画是事件A,但引起的反应C各异,这是由于人们对画的认知评估B不同所致。 认知评估或信念对情绪反应或行为有重要影响,非理性或错误认知导致异常情感或行为,而不是事件本身。 自动思维 遇到事件后的脑子出现的想法称作自动思维。 举例:看到狗便产生恐惧,在看到狗与巩惧反应之间有一个想法是这狗会咬我,还可能有狗咬人的恐怖的想象。狗会咬我就是自动思维。

Final learning reflection

Final learning reflection Skill development (1) What knowledge and skills do you need to have to be able to do your job? Do you have the necessary knowledge and skills? Did your study at university help you in preparing/not preparing you for co-op? Explain. My job is a web developer; I need to have at least this page encoding capabilities and basic graphic design concepts. Through the study of INTE2047 E-Business Systems 1 I have the most basic skills, code, development tools, etc. Not only that, I also need to have some knowledge of the database and the corresponding ability to communicate with other staff to facilitate daily communication. A better understanding of customer needs. And how to deal with difficult clients. And keep smile. In the RMIT University, the university teacher always gave us a lot of useful guidance, For example, how to make eye contact with people, how to speak, how to handle emergencies, how to organize work plans, and etc.so we quickly adapt to the work environment. (2) Identify at least three (3) skills (technical and non-technical) you have gained? Give evidence (using [S]situation [T]argot [A]action[R]exult) that you can then use to update your CV. ●Great technical skills S: We develop websites for customers, requires a strong technical capability to support T: In a short time to adapt to the company's high-strength code quiz, to survive in the technical examination! A: Extra code exercises every day R: Get the corresponding technical skills ●Great interpersonal skills that maintain good working relationships with clients and fellow employees. S: Good ability to communicate with others is that skills we must have in the work place. T: Maintain good relations with customers and other employees. A: Active communication with others, to know each other's needs. R: I got a lot of friends from my customers and other employees.

反射(reflection)学习整理

反射学习整理 【摘要】 本文主要通过自己对反射机制的总结编写的文档,主要目的就是为了自己以后能可以参考温习也可以方便刚刚入门的同仁们学习指导,通过doc的编写相信可以在帮助别人的同时提高自己。 反射机制; Reflection API; 如何使用反射机制; 反射机制的应用举例; 第一节反射机制 什么是反射机制,说的通俗一些就是在java运行期间动态加载一些不确定的类对象,那么我们如何使用一个类的呢?当然大多数情况下我们是使用一个确定的类,然后通过在内存中的加载再使用之。 其实在一个project中会有很多类,虚拟机并不是在每一次运行时都将所有的类都进行加载然后解析的,是在我们使用的过程中才会被加载,这个大家可以看一下ClassLoader(在后期中我也会编写ClassLoader相关的文章总结) 反射机制提供的功能: 加载运行时才能确定的数据类型; 解析类的结构,获取其内部的信息; 能够操作的类型或者实例; 1. 访问属性; 2. 调用方法; 3. 创建新的对象; 以上的功能我会在接下来的文字中都进行阐述,然后每一个功能点都会通过代码的形式进行逐一的说明举例; 1.1动态加载类 Java虚拟机在运行是能加载的类型有如下几种: 类接口; 数组; 枚举; 注解(Annotation,可以参见我的另一篇文档,《java Annotation学习文档》); 基本数据类型; 在类加载的时候,JVM会自动加载上述类型对应的Class对象。 package com.wangwenjun.demo;

import java.util.ArrayList; public class ReflectionDemo1 { private final static String LIST_STRING="java.util.ArrayList"; //动态加载java.util.ArrayList的类路径 @SuppressWarnings("unchecked") public static void main(String[] args) { try { Class clazz=Class.forName(LIST_STRING); //通过反射获取运行时的Class ArrayList list=(ArrayList) clazz.newInstance(); //通过newInstance方法获取Object list.add("hello"); System.out.println(list.size()+":"+list.get(0)); } catch (ClassNotFoundException e) { e.printStackTrace(); } catch (InstantiationException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (IllegalAccessException e) { // TODO Auto-generated catch block e.printStackTrace(); } } } 执行结果为:1:hello 通过上面的代码我们可以总结出来使用Reflection大致需要如下的几步: 获取目标对象的Class对象; 调用Class对象内省方法获取目标对类成员信息; 访问目标类的成员属性; 1.2解析类的结构 通过第一步的操作,我们获取了目标对象的class之后就可以解析出来class对应的内部结构;别不多说直接上代码,来看看如何解析出来目标对象; 我们定义一个Teacher类 package com.wangwenjun.demo; public class Teacher { private String username; private int age;