知识讲解_三角形中的几何计算_基础

知识讲解_三角形中的几何计算_基础
知识讲解_三角形中的几何计算_基础

三角形中的几何计算

【学习目标】

1.进一步巩固正弦定理和余弦定理,并能综合运用两个定理解决三角形的有关问题;

2.学会用方程思想解决有关三角形的问题,提高综合运用知识的能力和解题的优化意识.

【要点梳理】

要点一:正弦定理和余弦定理的概念

①正弦定理公式:

②余弦定理公式:

第一形式:

第二形式:

要点二:三角形的面积公式

要点三:利用正、余弦定理解三角形

已知两边和一边的对角或已知两角及一边时,通常选择正弦定理来解三角形;已知两边及夹角或已知三边时,通常选择余弦定理来解三角形.特别是求角时尽量用余弦定理来求,尽量避免分类讨论.

在ABC ?中,已知,a b 和A 时,解的情况主要有以下几类:

①若A为锐角时:

sin

sin()

sin()

()

a b A

a b A

b A a b

a b

<

=

<<

?

??

?

?

??

无解

一解直角

二解一锐,一钝

一解锐角

sin

a b A

=a b

≥sin

b A a b

<

a b A

<一解一解两解无解

②若A为直角或钝角时:

()

a b

a b

>

?

?

?

无解

一解锐角

要点四:三角形的形状的判定

特殊三角形的判定:

(1)直角三角形

勾股定理:222

a b c

+=,

互余关系:0

90

A B

+=,cos0

C=,sin1

C=;

(2)等腰三角形:a b

=,A B

=;

用余弦定理判定三角形的形状(最大角A的余弦值的符号)

(1)在ABC

?中,

222

00222

090cos0

2

b c a

A A b c a

bc

+-

<?+>;

(2)在ABC

?中,

222

0222

90cos0

2

b c a

A A b c a

bc

+-

=?==?+=;

(3)在ABC

?中,

222

0222

90cos0

2

b c a

A A b c a

bc

+-

要点五:解三角形时的常用结论

在ABC

?中,0

180

A B C

++=,0

90

2

A B C

++

=

(1)在ABC

?中sin sin cos cos

A B a b A B A B

>?>?>?<;

(2)互补关系:

(3)互余关系:

【典型例题】

类型一:利用正、余弦定理解三角形

例1. 在ABC ?中,已知下列条件,解三角形.

(1)10a =,

b = 45A =?;

(2

)=a

c 45B =?.

【思路点拨】

(1)题中利用正弦定理先求B ,再求C 和c ;

(2)题中利用余弦定理求b ;求A 可以利用余弦定理,也可以利用正弦定理.

【解析】

(1

)∵101sin 2sin 45o B =?=, 法一:∵b a <,∴B A <,即00045B <<,

∴30B =?,105C =?

,1)c =.

法二:∵000180B <<, ∴30B =?或150B =?,

①当30B =?时,105C =?

,1)c =;

②当150B =?时,180A B +>?(舍去).

(2

)∵222222cos 2b a c ac B =+-=+-??

2121)

8=+-=

∴b =法一:

∵222222

1cos ,22b c a A bc +-= ∴60A =?,75C =?

法二:

∵0

sin sin sin45a

A B b =

a c <

∴A C <,有00090A <<,

∴60A =?,75C =?.

【总结升华】

①解三角形时,可以依据题意画出恰当的示意图,然后正确选择正、余弦定理解答;

②解三角形时,要留意三角形内角和为180°、同一个三角形中大边对大角等性质的应用.

举一反三:

【变式1】 △ABC

中,已知1c b ==,45B =?,求∠C 和a .

【答案】∵11sin sin sin sin 2b c C B C C =?=?=6C ?=π,56

C =π(舍

) 22213a A a =+-?=

-(2=

2sin 75sin105a a a =?=??=?

【变式2】在ABC ?中::3:7:5a b c =, 求角B ; 【答案】2222225371cos 12022352

o a c b B B ac +-+-===-?=??. 【变式3】在ABC ?中,若2a =

,b =

c =A 和sin C .

【答案】根据余弦定理:222cos 2b c a A bc +-=== ∵0180A <<,

∴30A =,sin 30(6sin c A C a ==

=. 例2.ABC ?中,ABC ?中,1,30a b A =∠=?,求边c 的值.

【思路点拨】结合三角形中大边对大角定理以及有解、无解的图形来考虑.

【解析】解法一:利用正弦定理

由sin sin a b A B

=得sin 60B B ∴=?或120?. ∴90C =?或30C =?, ∴sin 1C =或1sin ,2

C = 由sin sin a c A C

=,得2c =或1c =. 解法二:利用余弦定理列方程

222

222cos (2cos )()0,2b c a A c b A c b a bc

+-=?-+-=

即得到关于c 的一元二次方程,解方程得到2c =或1c =.

【总结升华】

(1)对于求解三角形的题目,一般都可有两种思路.但要注意方法的选择,同时要注意对解的讨论,从而舍掉不合理的解.此外,有的时候还要对边角关系(例如,大边对大角)进行讨论从而舍掉不合理的解.

(2)解题后可进行比较,可以看出思路2用余弦定理要简单得多,在解题过程中尽量采用简单方法. 举一反三:

【变式】ABC ?中,=c 452A a =?=,,求b B C 和,.

【答案】

解法一 :正弦定理

由sin sin sin sin a c A C =?得245

若60C =?,则75B =?,2sin sin751,sin sin 45a b B A ==??

若120C =?,则15B =?,2sin sin15 1.sin sin 45a b B A =

=?? 解法二:余弦定理

22222cos 641,a b c bc A b b =+-=+-==,解得

若1b =,则222

cos 2a c b B ac

+-==7560B C =?=?,.

若1b =,则222

cos 2a c b B ac +-==15120B C =?=?,. 解法三:正余弦定理

22222cos 64a b c bc A b =+-=+-=,解得1b =.

若1b =,由sin sin sin a b c A B C

==,得sin B C = ∵b c a >>,所以B C A >>,所以7560B C =?=?, B=75°,C=60°;

若1b =,由

sin sin sin a b c A B C ==,得sin B C . ∵c a b >>,所以C A B >>,所以15120B C =?=?,.

类型二:正、余弦定理的综合应用

例3.已知ABC ?中,689a b c ===,,,试判断此三角形的形状.

【思路点拨】已知三边判断三角形的形状,通常先用勾股定理判断是否为直角三角形,斜三角形再用余弦定理判断最大边所对角的余弦值的符号.

【解析】因为a b c <<,所以A B C <<, 又22219cos 0296

a b c C ab +-==>, 所以2C <π

所以三角形是锐角三角形.

【总结升华】

余弦定理用于判定三角形的形状(最大角A 的余弦值的符号)

(1)在ABC ?中,222

00

222090cos 02b c a A A b c a bc +-<?+>; (2)在ABC ?中,222

22290cos 02b c a A A b c a bc +-=?==?+=; (3)在ABC ?中,222

22290cos 02b c a A A b c a bc +-

【变式】ABC ?的三边若满足下列条件,试判断三角形的形状:

(1)6810a b c ===,,;

(2)

6811.a b c ===,, 【答案】

(1)因为2222226810010a b c +=+===,所以三角形为直角三角形.

(2)因为a b c <<,所以A B C <<, 又22221cos 0296

a b c C ab +-==-<,所以2C >π, 所以三角形是钝角三角形.

例4.已知ABC ?满足中cos cos a A b B =,试判断ABC ?的形状.

【思路点拨】题目中给的是角与边的混合关系式,可用正弦定理化简成单一的角的关系;也可以用正弦定理、余弦定理化简成单一的边的关系,然后判断.

【解析】

方法一:用余弦定理化角为边的关系

由cos cos a A b B =得222222

22b c a a c b a b bc ac

+-+-?=?, 整理得22222222()()a b c a b a c b +-=+-,

即22222()()0a b a b c -+-=,

当220a b -=时,ABC ?为等腰三角形;

当2220a b c +-=即222a b c +=时,则ABC ?为直角三角形;

综上:ABC ?为等腰或直角三角形.

方法二:用正弦定理化边为角的关系 由正弦定理得:2sin sin a b R A B

== 即2sin a R A =,2sin b R B =

∵cos cos a A b B =,

∴2sin cos 2sin cos R A A R B B =

即sin 2sin 2A B =

∵0A B ∈、(,)π

∴22A B =或22A B +=π,即A B =或2A B +=

π

故ABC ?为等腰三角形或直角三角形.

【总结升华】 (1)要判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?是否符合勾股定理?还要研究角与角的大小关系:是否两个角相等?是否三个角相等?有无直角或钝角?

(2)解题的思想方法是:从条件出发,利用正、余弦定理等进行代换、转化、化简、运算,找出边与边的关系或角与角的关系,从而作出正确判断.

(3)一般有两种转化方向:要么转化为边,要么转化为角.

(4)判断三角形形状时,用边做、用角做均可.一般地,题目中给的是角,就用角做;题目中给的是边,就用边做,边角之间的转换可用正弦定理或余弦定理.

(5)sin sin =?==-或αβαβαπβ,不要丢解.

举一反三:

【变式1】根据下列条件,试判断ABC ?的形状.

(1)cos cos b A a B =;(2)2cos a b C =.

【答案】

(1)解法一:边角互化(化角)

由cos cos b A a B =得2sin cos 2sin cos R B A R A B =,

即()sin 0B A -=,于是B A =,

∴ABC ?为等腰三角形.

解法二:边角互化(化边)

由cos cos b A a B =得222222

22b c a a c b b a bc ac

+-+-?=?,即22a b =, 所以a b =,ABC ?为等腰三角形.

(2)解法一:正弦定理

由2cos a b C =得2sin 4sin cos R A R B C =,有()sin 2sin cos B C B C +=,得出()sin 0B C -=,

即B C =,

所以ABC ?为等腰三角形;

解法二:余弦定理

由2cos a b C =得222

22a b c a b ab

+-=?,得22b c =, 即b c =,

所以ABC ?等腰三角形.

【变式2】在ABC ?中,根据下列条件决定三角形形状. (1)sin sin sin cos cos B C A B C

+=

+;(2)2222()sin()()sin()a b A B a b A B -+=+-. 【答案】

(1)由222222

sin sin sin cos cos 22B C b c a c b a b c A B C a ac ab

+++-+-=?=++ 22290a b c A ?=+?=?, 则该三角形为直角三角形;

(2)∵2222()sin()()sin()a b A B a b A B -+=+-,

∴222sin cos 2sin cos a B A b A B =,

由正弦定理得:22sin sin cos sin sin cos A B A B A B =,

∵ABC ?中,sin 0A ≠, sin 0B ≠,

∴sin cos sin cos A A B B ?=?,即sin 2sin 2A B =,

∴22A B =或22A B =-π,即:A B =或2A B +=

π,

∴ABC ?是等腰三角形或直角三角形.

例5.锐角 ABC ?中,a b c ,,分别是角A B C ,,的对边.

(1) 若()()(),a c a c b b c +-=-求A ∠的大小 (2) 函数22sin sin(2)6

y B B =++π取最大值时,求B ∠的大小 【思路点拨】在(1)中,将所给边的关系式化简变形后,根据结构形式可判断出应该用余弦定理.

【解析】(1)∵()()(),a c a c b b c +-=-, ∴222.b c a bc +-=, 故由余弦定理得2221cos 22

b c a A bc +-== ∵A 是锐角三角形的内角,所以02A <<

π, ∴3A =π

.

(2)22sin sin(2)6

y B B =++π =1cos2sin 2cos cos2sin 66B B B -++π

π

11cos 221sin(2)26

B B B =-=+-π 当且仅当3B =

π时取等号 ∴3B =π

.

【总结升华】

对于三角形中边角的最大值或最小值问题可以运用正弦定理或余弦定理建立所求变量与三角形的角或边之间的函数关系,利用正、余弦函数的有界性或二次函数的知识解决问题

举一反三:

【变式】在ABC ?中,三内角满足的方程2(sin sin )(sin sin )(sin sin )0B A x A C x C B -+-+-= 有两个相等的根.

(1) 求证:角B 不大于3

π; (2) 当角B 取最大值时,判断ABC ?的形状.

【答案】

(1)由韦达定理得sin sin 1,sin sin C B B A

-=-即2sin sin sin B A C =+, 由正弦定理,有2b a c =+. 由余弦定理得22222222)()3()26212cos 22882a c a c a c b a c ac ac ac B ac ac ac ac ++-+-+--=

===≥, ∴03B <≤π

.

(2)当角B 取最大值时,3B =

π,且a c =, 易知ABC ?为正三角形.

(整理)届高三数学总复习平面解析几何练习题目汇总

第8章 第1节 一、选择题 1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m(m +1)+2m +2=0,∴m =-1或-2,故选A. 2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 [答案] A [解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0. 解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A. (理)设曲线y =ax2在点(1,a)处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12 D .-1 [答案] A [解析] y′=2ax ,在(1,a)处切线的斜率为k =2a , 因为与直线2x -y -6=0平行,所以2a =2,解得a =1. 3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2) D .(2,-2) [答案] D [解析] 一般解法:设对称点为(x ,y),则

????? x -12-y +12-1=0 y -1x +1=-1,解之得????? x =2y =-2, 特殊解法:当直线l :Ax +By +C =0的系数满足|A|=|B|=1时,点A(x0,y0)关于l 的对称 点B(x ,y)的坐标,x =-By0-C A ,y =-Ax0-C B . 4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O(0,0),A(2,0),C(0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( ) A .[0,1] B .[0,2] C .[-1,0] D .[-2,0] [答案] D [解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题, ∵kOD≥kOB =12,∴k =-1kOD ≥-2,且k<0, 又当折叠后O 与C 重合时,k =0,∴-2≤k≤0. 5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞) C.??? ?-∞,43∪(10,+∞) D.??? ?43,10 [答案] D [解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43

小学平面几何知识及习题

1、平面图形的分类及概念 2、

2、立体图形的分类及概念 平面图形的周长、面积计算公式表 3、立体图形的表面积、体积计算公式表

4、其它的几何概念 1、距离:从直线外一点到这条直线所垂直线段的长度叫做距离。 2、三角形的角和等于180°。 3、周长:围成一个图形的所有边长的总和叫做这个图形的周长。 4、面积:物体的表面或围成的平面图形的大小,叫做它们的面积。 5、表面积:一个立体图形所有的面的面积总和,叫做它的表面积。 6、体积:一个立体图形所占空间的大小,叫做它的体积。 7、容积:一个容器所能容纳物体体积的多少叫做该容器的容积。 8、角的计量单位是"度",用符号"°"表示。 9、角的大小要看两条边叉开的大小,叉开的越大,角越大。角的大小与角的两边画出的长短没有

关系。 10、平行线间的距离都相等。 11、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合。这个图形叫做轴对称图形。 12、对称轴:这条直线叫做对称轴。 13、两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。 5、关于几何的一些操作知识 1、画一个角的步骤如下: ⑴画一条射线,使量角器的中心和射线的端点重合,零刻度线和射线重合; ⑵在量角器所取刻度线的地方点一个点; ⑶以画出的射线的端点为端点,通过刚画的点,再画一条射线。 2、垂线的画法:1)过直线上一点画这条直线的垂线。2)过直线外一点画这条直线的垂线。 3、画平行线的步骤是: ⑴固定三角板,沿一条直角边先画一条直线; ⑵用直尺紧靠三角板的另一条直线边,固定直尺然后平移三角板; ⑶再沿一条直角边画出另一条直线 4、例:画一个长是2.5厘米,宽是2厘米的长方形。画的步骤如下: ⑴画一条2.5厘米长的线段; ⑵从画出的线段两端,在同侧画两条与这条线段垂直的线段,使它们分别长2厘米。 ⑶把这两条线段另外的端点连接起来。 5、圆的画法: ⑴分开圆规的两脚,在直线上确定半径:

19-20版 第1章 1.2 第3课时 三角形中的几何计算

第3课时三角形中的几何计算 学习目标核心素养 1.掌握三角形的面积公式的应 用.(重点 ) 2.掌握正、余弦定理与三角函数 公式的综合应用.(难点) 1.通过三角形面积公式的学习,培 养学生的数学运算的素养. 2.借助三角形中的综合问题的学 习,提升学生的数学抽象的素养. 1.三角形的面积公式 (1)S= 1 2a·h a= 1 2b·h b= 1 2c·h c(h a,h b,h c分别表示a,b,c边上的高); (2)S= 1 2ab sin C= 1 2bc sin A= 1 2ca sin B; (3)S= 1 2(a+b+c)·r(r为内切圆半径). 2.三角形中常用的结论 (1)∠A+∠B=π-∠C, ∠A+∠B 2= π 2- ∠C 2; (2)在三角形中大边对大角,反之亦然; (3)任意两边之和大于第三边,任意两边之差小于第三边; (4)三角形的诱导公式 sin(A+B)=sin_C,cos(A+B)=-cos_C, tan(A+B)=-tan_C? ? ? ? ? ∠C≠ π 2, sin A+B 2=cos C 2, cos A+B 2=sin C 2. 1.在△ABC中,已知a=2,b=3,∠C=120°,则S△ABC=()

A .3 2 B .33 2 C .3 D .3 B [S △AB C =12ab sin C =12×2×3×32=33 2.] 2.在△ABC 中,a =6,∠B =30°,∠C =120°,则△ABC 的面积为________. 93 [由题知∠A =180°-120°-30°=30°.∴6sin 30°=b sin 30°,∴b =6,∴S =1 2×6×6×sin 120°=9 3.] 3.若△ABC 的面积为3,BC =2,∠C =60°,则边AB 的长度等于________. 2 [在△ABC 中,由面积公式得S =12BC ·AC ·sin C =12×2·AC ·sin 60°=3 2AC =3, ∴AC =2. ∵BC =2,∠C =60°, ∴△ABC 为等边三角形. ∴AB =2.] 三角形面积的计算 【例1】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∠B =π3,cos A =4 5,b = 3. (1)求sin C 的值; (2)求△ABC 的面积. [解] (1)∵角A ,B ,C 为△ABC 的内角,且∠B =π3,cos A =4 5, ∴∠C =2π3-∠A ,sin A =3 5. ∴sin C =sin ? ?? ?? 2π3-A =32cos A +12sin A =3+4310.

(完整版)初中平面几何知识点汇总(一)

平面几何知识点汇总(一) 知识点一相交线和平行线 1.定理与性质 对顶角的性质:对顶角相等。 2.垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。 3.平行公理:经过直线外一点有且只有一条直线与已知直线平行。 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 4.平行线的性质: 性质1:两直线平行,同位角相等。 性质2:两直线平行,内错角相等。 性质3:两直线平行,同旁内角互补。 5.平行线的判定: 判定1:同位角相等,两直线平行。 判定2:内错角相等,两直线平行。 判定3:同旁内角相等,两直线平行。 知识点二三角形 一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接. 2.三角形中的三种重要线段 (1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. (2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. (3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.

二、三角形三边关系定理 ①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b. ②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c, c>b-a. 注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可 三、三角形的稳定性 三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理. 四、三角形的内角 结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180° 结论2:在直角三角形中,两个锐角互余. 注意:①在三角形中,已知两个内角可以求出第三个内角 如:在△ABC中,∠C=180°-(∠A+∠B) ②在三角形中,已知三个内角和的比或它们之间的关系,求各内角. 如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数. 五、三角形的外角 1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角. 2.性质: ①三角形的一个外角等于与它不相邻的两个内角的和. ②三角形的一个外角大于与它不相邻的任何一个内角. ③三角形的一个外角与与之相邻的内角互补 六、多边形 ①多边形的对角线 2)3 ( n n条对角线;②n边形的内角和为(n-2)×180°;③多边形的外角和为360°

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

2016五年级几何图形计算练习题

五年级数学几何图形练习题 一、计算题 1、一块平行四边形的水稻田,底180厘米、高70米。它的面积是多少平方米?(画图及计算) 2、一个近似于梯形的林地,上底1.5千米、下底3.9千米、高0.9千米。这个林地的面积是多少平方千米?(画图及计算) 3、一个长方形的苗圃,长41米、宽19米,按每平方米育树苗5棵计算。这个苗 圃一概可以育多少棵树苗? 4、爷爷家有一块三角形的小麦地,底32米、高15米,今年一共收小麦134.4千 克。平均每平方米收小麦多少千克? 5、张大伯家有一块梯形的玉米地,上地120米、下底160米、高40米。预计每 公顷可以收玉米6000千克。这块玉米地一共可以收玉米多少千克?按每千克玉米0.8元计算,玉米收入有多少元?

6、爷爷家的一块长120米、宽30米的地,按照每平方米收稻谷0.92千克计算。 今年这块地收稻谷多少千克?收的稻谷的质量是小麦的2.4倍,今年收小麦多少千克? 7、一块三角形的果园,面积是0.84公顷,已知底是250米。它的高是多少米? 选择题 1、把一个平行四边形活动框架拉成一个长方形,那么现在的长方形与原来的平行四边形相比,周长(),面积() A 、变大B、变小C、没变D、无法比较 2、一个三角形底不变,高扩大6倍,面积() A、不变B扩大6倍C、扩大3倍D、缩小3倍 3、一个平行四边形的底是40厘米,高是20厘米,与它等底等高的三角形的面积是() A 、4平方分米 B 400平方分米C、8平方分米 4、下列说法中错误的是() A 、在6与7之间的小数有无数个B、0既不是正数也不是负数。 C 、生活中,一般把盈利用正数表示D、两个不同形状的三角形面积也一定不相等 5、图中阴影部分与空白部分相比( A、面积相等,周长相等 B、面积不等,周长相等。 C、面积相等,周长不等。 D、无法比较。 三、求下面图形的周长和面积。

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(21121 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1 =+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直 线一般不重合.

2020届高考数学(理)热点猜押练一 热点练15 立体几何中的证明与计算问题(含解析)

2020届高考数学(理)热点猜押练一致胜高考必须掌握的 20个热点 热点练15 立体几何中的证明与计算问题 1.如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC. (1)证明:A1C⊥平面BED. (2)求二面角A1-DE-B的余弦值. 2.如图,三棱台ABC-EFG的底面是正三角形,平面ABC⊥平面BCGF,CB=2GF, BF=CF. (1)求证:AB⊥CG. (2)若BC=CF,求直线AE与平面BEG所成角的正弦值.

3.如图,在底面为矩形的四棱锥P-ABCD中,PB⊥AB. (1)证明:平面PBC⊥平面PCD. (2)若异面直线PC与BD所成角为60°,PB=AB,PB⊥BC,求二面角B-PD-C的大小. 4.如图,在四棱锥P-ABCD中,底面ABCD是边长为1的菱形,∠BAD=45°,PD=2,M 为PD的中点,E为AM的中点,点F在线段PB上,且PF=3FB. (1)求证:EF∥平面ABCD. (2)若平面PDC⊥底面ABCD,且PD⊥DC,求平面PAD与平面PBC所成锐二面角的余弦值.

5.如图,多面体ABC-DB1C1为正三棱柱ABC-A1B1C1沿平面DB1C1切除部分所得,M为CB1的中点,且BC=BB1=2. (1)若D为AA1中点,求证AM∥平面DB1C1. (2)若二面角D-B1C1-B大小为错误!未找到引用源。,求直线DB1与平面ACB1所成角的正弦值. 6.如图所示,等腰梯形ABCD的底角∠BAD=∠ADC=60°,直角梯形ADEF所在的平面垂直于平面ABCD,且∠EDA=90°,ED=AD=2AF=2AB=2. (1)证明:平面ABE⊥平面EBD. (2)点M在线段EF上,试确定点M的位置,使平面MAB与平面ECD所成的锐二面角的余弦值为错误!未找到引用源。.

三角形中的几何计算

三角形中的几何计算 【知识与技能】 1.通常对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的度量问题. 2.能够运用正弦定理、余弦定理等知识和方法解决一些有关三角形的边和角以及三角形的面积等问题. 3.深刻理解三角形的知识在实际中的应用,增强应用数学建模意识,培养分析问题和解决实际问题的能力. 【重点】应用正、余弦定理解三角形. 【难点】灵活应用正、余弦定理及三角恒等变换解决三角形中的几何计算. 【三角形常用面积公式】(对应教材P25页B 组第2小题) (1)S = 2 1 ; (2)S = 21ab sin C =21 =21 ; (3)S = 2 1 ·r · (r 为三角形内切圆半径); (4)2a b c S p ++?= =?? 其中(海伦公式); (5)22sin sin sin sin sin sin b A C c A B S B C = == ; (6)4abc S R = (其中R 为三角形外接圆半径)。 类型1 三角形中的面积计算问题 【例1】△ABC 中,已知C =120°,AB =23,AC =2,求△ABC 的面积. 解:由正弦定理AB sin C =AC sin B ,∴sin B =AC sin C AB =2sin 120°23=12.因为AB >AC ,所以C >B , ∴B =30°,∴A =30°.所以△ABC 的面积S =12AB ·AC ·sin A =1 2 ·23·2·sin 30°= 3. 小结:由于三角形的面积公式有三种形式,实际使用时要结合题目的条件灵活运用;如果已知两边及其夹角可以直接求面积,否则先用正、余弦定理求出需要的边或角,再套用公式计算. 【练习】(2013·蒙阴高二检测)在△ABC 中,A =60°,AB =2,且△ABC 的面积S △ABC =3 2 ,则边BC 的长为________. 解:由S △ABC = 32,得12AB ·AC sin A =32,即12×2AC ×32=32 ,∴AC =1.由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos A =22+12-2×2×1×1 2 =3.∴BC = 3. 类型2 三角形中的长度、角度计算问题 【例2】如图所示,在四边形ABCD 中,AD ⊥CD,AD =10,AB =14,∠BDA =60°, ∠BCD =135°,求BC 的长. 解:在△ABD 中,由余弦定理,得AB 2=AD 2+BD 2-2AD ·BD ·cos ∠ADB ,

平面几何基础知识教程

平面几何基础知识教程(圆) 一、几个重要定义 外心:三角形三边中垂线恰好交于一点,此点称为外心 内心:三角形三内角平分线恰好交于一点,此点称为内心 垂心:三角形三边上的高所在直线恰好交于一点,此点称为垂心 凸四边形:四边形的所有对角线都在四边形ABCD内部的四边形称为凸四边形折四边形:有一双对边相交的四边形叫做折四边形(如下图) (折四边形) 二、圆内重要定理: 1.四点共圆 定义:若四边形ABCD的四点同时共于一圆上,则称A,B,C,D四点共圆基本性质:若凸四边形ABCD是圆内接四边形,则其对角互补 证明:略 判定方法: 1.定义法:若存在一点O使OA=OB=OC=OD,则A,B,C,D四点共圆2.定理1:若凸四边形ABCD的对角互补,则此凸四边形ABCD有一外接圆证明:略 特别地,当凸四边形ABCD中有一双对角都是90度时,此四边形有一外接圆3.视角定理:若折四边形ABCD中,∠=∠ ADB ACB,则A,B,C,D四点共圆

证明:如上图,连CD ,AB ,设AC 与BD 交于点P 因为∠=∠ADB ACB ,所以 180=∠=∠∠=∠∠+∠=∠+∠+∠= ∠+∠+∠=ΔCPB ∽ΔDPA 所以有 再注意到因此Δ∽Δ因此由此(ΔABD 的内角和) 因此A ,B,C,D四点共圆PC PB PD PA CPD BPA CPD BPA PCD PBA BCD BAD BCA PCD BAD BDA PBA BAD 特别地,当∠=∠ADB ACB =90时,四边形ABCD 有一外接圆 2.圆幂定理: 圆幂定理是圆的相交弦定理、切割线定理、割线定理、切线长定理的统一形式。 相交弦定理:P 是圆内任一点,过P 作圆的两弦AB ,CD ,则PA PB PC PD ?=? 证明:

高考数学平面解析几何的复习方法总结

2019年高考数学平面解析几何的复习方法 总结 在高中数学知识体系中,平面解析几何是其中很大的一块,涉及到直线及其方程、线性规划、圆及其方程、椭圆及其方程、抛物线及其方程、双曲线及其方程以及曲线与方程的关系及其图像等具体的知识点。在高考的考查中,又可以将上述的7个知识点进行综合考查,更是增加了考查的难度。要想学好这部分知识,在高考总不丢分,以下几点是很关键的。 突破第一点,夯实基础知识。 对于基础知识,不仅一个知识点都要熟稔于心,还要有能力将这些零散的知识点串联起来。只有这样,才能形成属于自己的知识框架,才能更从容的应对考试。 (一)对于直线及其方程部分,首先我们要从总体上把握住两突破点:①明确基本的概念。在直线部分,最主要的概念就是直线的斜率、倾斜角以及斜率和倾斜角之间的关系。倾斜角α的取值范围是突破[0,π),当倾斜角不等于90°的时候,斜率k=tanα;当倾斜角=90°的时候,斜率不存在。②直线的方程有不同的形式,同学们应该从不同的角度去归类总结。角度一:以直线的斜率是否存在进行归类,可以将直线的方程分为两类。角度二:从倾斜角α分别在[0,π/2)、α=π/2和(π/2,π)的范围内,认识直线的特点。以此为基础突破,将直线方程的五种不同的形式套入其中。直线方程的不同形式突破需要满足的条件以及局限性是不同的,我们也要加以总结。

(二)对于线性规划部分,首先我们要看得懂线性规划方程组所表示的区域。在这里我们可以采用原点法,如果满足条件,那么区域包含原点;如果原点带入不满足条件,那么代表的区域不包含原点。 (三)对于圆及其方程,我们要熟记圆的标准方程和一般方程分别代表的含义。对于圆部分的学习,我们要拓展初中学过的一切与圆有关的知识,包括三角形的内切圆、外切圆、圆周角、圆心角等概念以及点与圆的位置关系、圆与圆的位置关系、圆的内切正多边形的特征等。只有这样,才能更加完整的掌握与圆有关的所有的知识。 (四)对于椭圆、抛物线、双曲线,我们要分别从其两个定义出发,明白焦点的来源、准线方程以及相关的焦距、顶点、突破离心率、通径的概念。每种圆锥曲线存在焦点在X轴和Y轴上的情况,要分别进行掌握。 突破第二点,学习基本解题思想。 对于平面几何部分的学习,最基本的解题思想就是数形结合,还包括函数思想、方程思想、转化思想等。要想掌握数形结合这种思想方法,首先同学们心中要有坐标轴,要掌握好学过的各种平面几何的概念。其次,要掌握解决不同问题的方法。对于不同的题型,同学们要掌握不同的解题方法,并将这种解题方法及其例题记录在笔记本上。对于向量方法,最长用的地方就解决与斜率有关的问题;对于“设而不求”的方法,最常用到的地方就是两种不同的平面几何图形相交的情况下求弦长的问题;设点法,最长用到的地方就是两种曲线相切以及求最值得问题等。同学们要分门别类的进行总结,才能达到事半功倍的效

数学运算之几何问题专题

数学运算之几何问题专题 面积基本公式:(1)三角形的面积S=1/2ah (2)长方形的面积S=a×b (3)正方形的面积S=a2 (4)梯形的面积S=(a+b)/2×h (5)圆的面积=πr2=1/4πd2 (1)等底等高的两个三角形面积相同; (2)等底的两个三角形面积之比等于高之比; (3)等高的两个三角形面积之比等于底之比。 解决面积问题的核心是“割、补”思维,即当我们看到一个关于求解面积的问题,不要立刻套用公式去求解,这样做很可能走入误区,最后无法求解或不能快速求解。对于此类问题通常的使用的方法就是“辅助线法”即通过引入新的辅助线将图形分割或者补全为很容易得到的规则图形,从而快速求得面积。 体积基本公式:(1)长方体的体积V=abc (2)正方体的体积V=a3 (3)圆柱的体积V=Sh =πr2,S为圆柱底面积。 (4)圆锥的体积V=1/3Sh =1/3πr2h ,S为圆锥底面积。 周长基本公式:(1)长方形的周长C=(a+b)×2 (2)正方形的周长C=a×4 (3)圆的周长C=2πr =πd

例1、现有边长1米的一个木质正方体,已知将其放入水里,将有0.6米浸入水中,如果将其分割成边长0.25米的小正方体,并将所有的小正方体都放入水中,直接和水接触的表面积总量为()。 A 3.4平方米B9.6平方米C13.6平方米D16平方米 【解析】边长1米的一个木质正方体放入水里,有0.6米浸入水中,说明要考虑水的浮力的作用,并且告诉了浮力的大小。可以得到的小正方体有64个,每一个直接和水接触的表面积包括一个底面和4个侧面的60%。根据题意,直接和水接触的表面积总量为64×(0.25×0.25+40.6×0.25×0.25)=13.6(平方米)。答案选C。 例2、甲、乙两个容器均有50厘米深,底面积之比为5∶4,甲容器水深9厘米,乙容器水深5厘米,再往两个容器各注入同样多的水,直到水深相等,这时两容器的水深是()。 A20厘米B25厘米C30厘米D35厘米 【解析】不妨假设两个容器的底面积分别为5和4,设注入同样多的水后相等的水深为x厘米,根据题意,注入水的体积相等,得到方程5(x-9)=4(x-5),解方程得x=25(厘米)。答案选B。 例3、半径为5厘米的三个圆弧围成如右图所示的区域,其中AB弧与AD弧为四分之一圆弧,而BCD弧是一个半圆弧,则此区域的面积是多少平方厘

《几何图形初步》全章复习与巩固(基础)知识讲解

《几何图形初步》全章复习与巩固(基础)知识讲解 【学习目标】 1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法; 3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题; 4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形. 【知识网络】 【要点梳理】 要点一、多姿多彩的图形 1. 几何图形的分类 要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图: 把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 立体图形:棱柱、棱锥、圆柱、圆锥、球等. ? ? ?平面图形:三角形、四边形、圆等. 几何图形

? ??要点诠释: ①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图; ②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看: 主(正)视图---------从正面看 几何体的三视图 左视图-----从左(右)边看 俯视图---------------从上面看 要点诠释: ①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. ②能根据三视图描述基本几何体或实物原型. (3)几何体的构成元素及关系 几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成. 要点二、直线、射线、线段 1. 直线,射线与线段的区别与联系 2. 基本性质 (1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释: ①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点间的距离. 3.画一条线段等于已知线段 (1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.

浙教版初中数学几何计算型综合问题(含答案)

几何计算型综合问题 【考点透视】 几何计算型综合问题,是以计算为主线的综合各种几何知识的问题.在近年全国各地中考试卷中占有相当的分量.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力,要求学生熟练掌握三角形、四边形、三角函数、圆等几何知识,较熟练地应用转化思想、方程思想、分类讨论思想、数形结合思想等常见的数学思想. 解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决. 值得注意的是近年中考几何综合计算的呈现形式多样,如折叠类型、探究型、开放型、运动型、情境型等,背景鲜活,具有实用性和创造性,在考查考生计算能力的同时,考查考生的阅读理解能力、动手操作能力、抽象思维能力、建模能力……力求引导考生将数学知识运用到实际生活中去. 【典型例题】 例1 在生活中需要测量一些球(如足球、篮球…)的直径,某学校研究性学习小组,通过实验发现下面的测量方法:如图,将球放在水平的桌面上,在阳光的斜射下,得到球的影子AB,设光线AD、CB分别与球相切于点E、F,则E、F即为球的直径.若测得AB的长为41.5cm,∠ABC=37°.请你计算出球的直径(精确到1cm) 分析:本题实际上是解直角梯形ABFE中的问题, 作AG⊥CB于G,在Rt△ABG中,求出AG即可. 解:作AG⊥CB于G, ∵AD、CB分别与圆相切于E、F, ∴EF⊥FG,EF⊥EA, ∴四边形AGFE是矩形, ∴AG=EF 在Rt△ABG中,AB=41.5,∠ABG=37°, ∴AG=AB·sin∠ABG=41.5×sin37°≈25. ∴球的直径约为25cm. 说明:将几何计算题与研究性学习问题和方案设计问题有机的结合起来,是近年中考题的又一热点.这类题一般难度不太大,关键是考查建模能力. 例2.在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在

初中平面几何知识点汇总一

初中平面几何知识点汇 总一 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

平面几何知识点汇总(一)知识点一相交线和平行线 1.定理与性质 对顶角的性质:对顶角相等。 2.垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。 3.平行公理:经过直线外一点有且只有一条直线与已知直线平行。 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 4.平行线的性质: 性质1:两直线平行,同位角相等。 性质2:两直线平行,内错角相等。 性质3:两直线平行,同旁内角互补。 5.平行线的判定: 判定1:同位角相等,两直线平行。 判定2:内错角相等,两直线平行。 判定3:同旁内角相等,两直线平行。 知识点二三角形 一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接. 2.三角形中的三种重要线段

(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. (2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高. 二、三角形三边关系定理 ①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b. ②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c, c>b-a. 注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可 三、三角形的稳定性 三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理. 四、三角形的内角 结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180° 结论2:在直角三角形中,两个锐角互余. 注意:①在三角形中,已知两个内角可以求出第三个内角 如:在△ABC中,∠C=180°-(∠A+∠B) ②在三角形中,已知三个内角和的比或它们之间的关系,求各内角. 如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数. 五、三角形的外角 1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角. 2.性质: ①三角形的一个外角等于与它不相邻的两个内角的和. ②三角形的一个外角大于与它不相邻的任何一个内角. ③三角形的一个外角与与之相邻的内角互补 六、多边形

高考数学:平面解析几何知识点

高考数学:平面解析几何知识点 1.数量积表示两个向量的夹角 【知识点的知识】 我们知道向量是有方向的,也知道向量是可以平行的或者共线的,那么,当两条向量与不平行时,那么它们就会有一个夹角θ,并且还有这样的公式:cosθ=.通过这公式,我们就可以求出两向量之间的夹角了. 【典型例题分析】 例:复数z=+i与它的共轭复数对应的两个向量的夹角为60°. 解:=====cos60°+i sin60°. ∴复数z=+i与它的共轭复数对应的两个向量的夹角为60°. 故答案为:60°. 点评:这是个向量与复数相结合的题,本题其实可以换成是用向量(,1)与向量(,﹣1)的夹角. 【考点点评】 这是向量里面非常重要的一个公式,也是一个常考点,出题方式一般喜欢与其他的考点结合起来,比方说复数、三角函数等,希望大家认真掌握. 2.直线的一般式方程与直线的性质 【直线的一般式方程】 直线方程表示的是只有一个自变量,自变量的次数为一次,且因变量随着自变量的变化而变化.直线的一般方程的表达式是ay+bx+c=0. 【知识点的知识】 1、两条直线平行与垂直的判定 对于两条不重合的直线l1、l2,其斜率分别为k1、k2,有: (1)l1∥l2?k1=k2;(2)l1⊥l2?k1?k2=﹣1. 2、直线的一般式方程: (1)一般式:Ax+By+C=0,注意A、B不同时为0.直线一般式方程Ax+By+C=0(B≠0)

化为斜截式方程y=﹣x﹣,表示斜率为﹣,y轴上截距为﹣的直线. (2)与直线l:Ax+By+C=0平行的直线,可设所求方程为Ax+By+C1=0;与直线Ax+By+C =0垂直的直线,可设所求方程为Bx﹣Ay+C1=0. (3)已知直线l1,l2的方程分别是:l1:A1x+B1y+C1=0(A1,B1不同时为0),l2:A2x+B2y+C2=0(A2,B2不同时为0),则两条直线的位置关系可以如下判别: ①l1⊥l2?A1A2+B1B2=0; ②l1∥l2?A1B2﹣A2B1=0,A1C2﹣A2B1≠0; ③l1与l2重合?A1B2﹣A2B1=0,A1C2﹣A2B1=0; ④l1与l2相交?A1B2﹣A2B1≠0. 如果A2B2C2≠0时,则l1∥l2?;l1与l2重合?;l1与l2相交?. 3.圆的标准方程 【知识点的认识】 1.圆的定义:平面内与定点距离等于定长的点的集合(轨迹)叫做圆.定点叫做圆心,定长就是半径. 2.圆的标准方程: (x﹣a)2+(y﹣b)2=r2(r>0), 其中圆心C(a,b),半径为r. 特别地,当圆心为坐标原点时,半径为r的圆的方程为: x2+y2=r2. 其中,圆心(a,b)是圆的定位条件,半径r是圆的定形条件. 【解题思路点拨】 已知圆心坐标和半径,可以直接带入方程写出,在所给条件不是特别直接的情况下,关键是求出a,b,r的值再代入.一般求圆的标准方程主要使用待定系数法.步骤如下: (1)根据题意设出圆的标准方程为(x﹣a)2+(y﹣b)2=r2; (2)根据已知条件,列出关于a,b,r的方程组; (3)求出a,b,r的值,代入所设方程中即可.

中考数学几何计算题

分析中考的几何计算题 几何计算题历年来是中考的热点问题。几何计算是以推理为基础的几何量的计算,主要有线段与弧的长度计算、角和弧的度数计算、三角函数值的计算、线段比值的计算以及面积、体积的计算,从图形上分类有:三角形、四边形、多边形以及圆的有关计算。解几何计算题的常用方法有:几何法、代数法、三角法等。 一、三种常用解题方法举例 例1. 如图,在矩形ABCD 中,以边AB 为直径的半圆O 恰与对边CD 相切于T ,与对角线AC 交于P , PE ⊥AB 于E ,AB=10,求PE 的长。 解法一:(几何法)连结OT,则OT ⊥CD ,且OT=2 1 AB =5,BC=OT=5,AC=25100+=55 ∵BC 是⊙O 切线,∴BC 2 =CP ·CA ∴PC=5,∴AP=CA-CP=54 ∵PE ∥BC ∴ AC AP BC PE =,PE=5 55 4×5=4 说明:几何法即根据几何推理,由几何关系式进行求解的方法,推理时特别 要注意图形中的隐含条件。 解法二:(代数法)∵PE ∥BC ,∴AB AE CB PE = ∴2 1 ==AB CB AE PE 设:PE=x ,则AE=2x ,EB=10–2x 连结PB 。 ∵AB 是直径,∴∠APB=900 在Rt △APB 中,PE ⊥AB ,∴△PBE ∽△APE ∴ 2 1 ==AE PE EP EB ∴EP=2EB ,即x=2(10–2x ) 解得x=4 ∴PE=4 说明:代数法即为设未知数列方程求解,关键在于找出可供列方程的相等关系,例如:相似三角形中的线段比例式;勾股定理中的等式;相交弦定理、切割线定理中的线段等积式,以及其他的相等关系。 解法三:(三角法)连结PB ,则BP ⊥AC 。设∠PAB=α 在Rt △APB 中,AP=10COS α 在Rt △APE 中,PE=APsin α, ∴PE=10sin αCOS α 在Rt △ABC 中, BC=5,AC=55 ∴sin α= 555 55= ,COS α=5525 510= ∴PE=10×55255?=4 说明:在几何计算中,必须注意以下几点: (1) 注意“数形结合”,多角度,全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系。

相关文档
最新文档