Thermal conductivity of lightly Sr- and Zn-doped La$_2$CuO$_4$ single crystals

Thermal conductivity of lightly Sr- and Zn-doped La$_2$CuO$_4$ single crystals
Thermal conductivity of lightly Sr- and Zn-doped La$_2$CuO$_4$ single crystals

a r X i v :c o n d -m a t /0301315v 1 [c o n d -m a t .s u p r -c o n ] 17 J a n 2003

Thermal conductivity of lightly Sr-and Zn-doped La 2CuO 4single crystals

X.F.Sun,?J.Takeya,Seiki Komiya,and Yoichi Ando ?

Central Research Institute of Electric Power Industry,Komae,Tokyo 201-8511,Japan.

(Dated:February 6,2008)

Both ab -plane and c -axis thermal conductivities (κab and κc )of lightly doped La 2?x Sr x CuO 4and La 2Cu 1?y Zn y O 4single crystals (x or y =0–0.04)are measured from 2to 300K.It is found that the low-temperature phonon peak (at 20–25K)is signi?cantly suppressed upon Sr or Zn doping even at very low doping,though its precise doping dependences show interesting di?erences between the Sr and Zn dopants,or between the ab plane and the c axis.Most notably,the phonon peak in κc decreases much more quickly with Sr doping than with Zn doping,while the phonon-peak suppression in κab shows an opposite trend.It is discussed that the scattering of phonons by stripes is playing an important role in the damping of the phonon heat transport in lightly doped LSCO,in which static spin stripes has been observed by neutron scattering.We also show κab and κc data of La 1.28Nd 0.6Sr 0.12CuO 4and La 1.68Eu 0.2Sr 0.12CuO 4single crystals to compare with the data of the lightly doped crystals for the discussion of the role of stripes.At high temperature,the magnon peak (i.e.,the peak caused by the spin heat transport near the N′e el temperature)in κab (T )is found to be rather robust against Zn doping,while it completely disappears with only 1%of Sr doping.

PACS numbers:74.25.Fy,74.62.Dh,74.72.Dn

I.INTRODUCTION

It has recently been discussed that the holes in the high-T c cuprates self-organize into quasi-one-dimensional stripes.1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17The stripe phase is a periodic distribution of antiferromagnetically-ordered spin regions separated by quasi-one-dimensional charged domain walls which act as magnetic antiphase bound-aries.Although the relation between the stripe correla-tions and the mechanism of high-T c superconductivity is not fully understood yet,it has become clear 10,17that the charge stripes determine the charge transport behav-ior,at least in the lightly hole doped region:charges can move more easily along the stripes than across the stripes.17Given that the stripes indeed a?ect the ba-sic physical properties such as charge transport,it is de-sirable to build a comprehensive picture of the roles of stripes in the cuprates.Since the nonuniform charge dis-tribution is expected to induce variations of the local crystal structure,1,4which disturb phonons,the phonon heat transport is expected to be a good tool capable of detecting the in?uence of stripes even in the charge-localized region.

Thermal conductivity is one of the basic transport properties that provides a wealth of useful information on the charge carriers and phonons,as well as their scat-tering processes.It is known that the antiferromagnetic (AF)insulating compound La 2CuO 4shows predominant phonon transport at low temperatures,which is mani-fested in a large phonon peak at 20–25K in the tem-perature dependence of both ab -plane and c -axis ther-mal conductivities (κab and κc );18such phonon peak dis-appears in Sr-doped La 2?x Sr x CuO 4(LSCO)with x =0.10–0.20.18The suppression of the phonon peak is normally caused by the defect scattering and the elec-tron scattering of phonons in doped single crystals;how-ever,it is also known that the phonon peak re-appears in

both κab (T )and κc (T )of overdoped La 1.7Sr 0.3CuO 4,18which cannot be explained in this scenario.Further-more,it was found that in rare earth (RE)and Sr co-doped La 2CuO 4,such as La 1.28Nd 0.6Sr 0.12CuO 4,the phonon thermal conductivity is much more enhanced in the non-superconducting LTT (low-temperature tetrag-onal)phase,compared to that in LSCO with the same Sr content.19This cannot happen if the defect scattering and electron scattering of phonons are the only source of the peak suppression.Based on the fact that in RE-and Sr-doped La 2CuO 4systems the phononic thermal con-ductivity is always strongly suppressed in superconduct-ing samples,19it was proposed that dynamical stripes cause a pronounced damping of phonon heat transport,while static stripes do not suppress the phonon trans-port so signi?cantly.19It is indeed possible that the static stripes are not e?ective in scattering phonons,if they only induce periodic local distortions in the crystal structure.Since the spin stripes in lightly doped LSCO (x =0.01–0.05)are reported to be static,5,6,7,8one may naively expect that the phonon heat transport is not strongly suppressed in such lightly doped LSCO.However,there has been no measurement of the thermal conductivity of lightly doped LSCO single crystals.

In this paper,we report our study of the thermal con-ductivity of lightly doped La 2?x Sr x CuO 4(x =0–0.04)single crystals.Such low doping levels are intentionally selected for the reasons of both tracing the evolution of the phonon peak and avoiding signi?cant modi?cations of the crystal structure and phonon mode,which may complicate interpretations of the data.It is found that the phonon peak is suppressed signi?cantly even with very small doping concentration,especially for the c -axis heat transport.Since this result is contrary to the naive expectation mentioned in the previous paragraph,we also study the thermal conductivity of La 2Cu 1?y Zn y O 4(LCZO)(y =0–0.04)single crystals,which have sim-

2

FIG.1:Thermal conductivity of lightly doped La2?x Sr x CuO4and La2Cu1?y Zn y O4single crystals along the ab plane and the c axis.Dashed line in panel(a)isκe,ab of La1.96Sr0.04CuO4estimated from the Wiedemann-Franz law.

ilar amount of dopants as LSCO.The important di?er-ence between these two systems is that there cannot be stripes in LCZO(since there is no carrier),while there are static spin stripes in LSCO at low temperatures.By comparing the thermal conductivity behaviors in these two systems,we can elucidate whether the static stripes are responsible for strong scattering of phonons.The comparison indicate that the stripes,though they are static,indeed damp the c-axis phonon transport signi?-cantly,while their role is minor in the in-plane phonon transport.

II.EXPERIMENTS

The single crystals of LSCO and LCZO are grown by the traveling-solvent?oating-zone(TSFZ)technique and carefully annealed in?owing pure He gas to remove the excess oxygen.20After the crystallographic axes are de-termined by using the X-ray Laue analysis,the crystals are cut into rectangular thin platelets with the typical sizes of2.5×0.5×0.15mm3,where the c axis is per-pendicular or parallel to the platelet with an accuracy of1?.The thermal conductivityκis measured in the temperature range of2–300K using a steady-state technique;21,22,23above150K,a double thermal shielding is employed to minimize the heat loss due to radiation, and the residual radiation loss is corrected for by using an elaborate measurement con?guration.The temperature di?erence?T in the sample is measured by a di?eren-tial Chromel-Constantan thermocouple,which is glued to the sample using GE vanish.The?T varies between 0.5%and2%of the sample temperature.To improve the accuracy of the measurement at low temperatures,κis also measured with“one heater,two thermometer”method from2to20K by using a chip heater and two Cernox chip sensors.21The errors in the thermal conduc-tivity data are smaller than10%,which is mainly caused by the uncertainties in the geometrical factors.Magne-tization measurements are carried out using a Quantum Design SQUID magnetometer.

3

III.RESULTS

A.Anisotropic Heat transport in La2CuO4

It is useful to?rst establish an understanding of the anisotropic heat transport in undoped crystals.The tem-perature dependences of the thermal conductivity mea-sured along the ab plane and the c axis in pure La2CuO4 are shown in Fig.1,which also contains data for LSCO and LCZO single crystals.For undoped La2CuO4sam-ple,a sharp peak appears at low temperature,at~25 K inκab(T)and at~20K inκc(T),respectively.In the c direction,above the peak temperature,κc de-creases with increasing T approximately following1/T dependence,which is typical for phonon heat transport.24 This phonon peak originates from the competition be-tween the increase in the population of phonons and the decrease in their mean free path(due to the phonon-phonon umklapp scattering)with increasing tempera-ture.In contrast to the mainly phononic heat trans-port in the c direction,in the ab plane another large and broad peak develops at higher temperature(~270 K),which has been attributed18to the magnon trans-port in a long-range-ordered AF state.The heat con-duction due to magnetic excitations has been observed in many low-dimensional quantum antiferromagnets, such as one-dimensional spin systems CuGeO3,21,23,25 Sr2CuO3,26SrCuO2,27and(Sr,Ca)14Cu24O41,28and also two-dimensional antiferromagnet K2V3O8.29The ab-sence of this high-T peak inκc(T)is obviously due to the much weaker magnetic correlations in the c direction compared to that in the CuO2plane.All these behav-iors in undoped La2CuO4are consistent with the previ-ously reported data.18It is worthwhile to note that the phononic peak value ofκc(27W/Km)is considerably larger than that ofκab(16W/Km).One possible reason for this di?erence is that the phonon heat transport is intrinsically easier along the c axis,which is not so easy to conceive in view of the layered crystal structure of La2CuO4.Another,more likely possibility is that there exists phonon-magnon scattering in the ab plane that causes additional damping of the phonon peak.Such scattering may also happen in the c axis,however,it should be much weaker than in the ab plane because it is well known that the magnons are good excitations only for the in-plane physics in the La2CuO4system.

B.Doping dependence of magnon peak and N′e el

transition

Upon Sr or Zn doping,there are strong doping de-pendences in bothκab andκc.Let us?rst discuss the change of the high-T magnon peak inκab(T)for di?er-ent dopants.This peak is suppressed very quickly upon Sr-doping and in fact completely disappears at only1% doping concentration.On the other hand,the suppres-sion of this peak is much slower in the Zn-doped case,

FIG.2:Magnetic susceptibility of(a)La2?x Sr x CuO4and (b)La2Cu1?y Zn y O4single crystals measured in0.5T?eld applied along the c axis.

where the peak,though gradually suppressed,survives to y=0.04.To clarify the relation between the high-T peak and the N′e el order,the magnetic susceptibility of LSCO and LCZO is measured from5to350K in the magnetic?eld of0.5T applied along the c axis.Figure 2shows the temperature dependences of the magnetic susceptibility,where the peak corresponds to the N′e el transition(no transition is observed in LSCO with x≥0.02).It is clear(as has been already reported30,31)that Sr doping is much stronger than Zn doping in destroy-ing the AF long-range order,where the former decreases the N′e el temperature T N much more quickly.The rea-son is related to the fact that holes introduced by Sr are mobile and have1/2spin,while Zn(zero spin)brings static spin vacancy in CuO2plane.Figure3summarizes the doping dependences of the size of the high-T peak in κab(T)[de?ned by the di?erence between the peak value andκab(100K)],as well as those of the N′e el temperature T N,for the two systems.This result con?rms that the magnon peak is quickly diminished as T N is reduced.It is useful to note that the disorder in the N′e el state induced by Sr doping appears to be detrimental to the magnon heat transport,because the magnon peak completely dis-appears at x=0.01even though the N′e el order is still

4

FIG.3:(a)Doping dependences of the size of high-T peak inκab(T)[de?ned by the di?erence between the peak value andκab(100K)]of La2?x Sr x CuO4and La2Cu1?y Zn y O4sin-gle crystals.(b)Doping dependences of the N′e el temperature T N for the two cases.

established at240K for this Sr doping.

C.Doping dependence of phonon peak

More interesting changes happen in the suppression of the phonon peak at low temperatures.One can see in Fig.1that inκab(T)the peak magnitude decreases more quickly with Zn doping than with Sr doping;on the con-trary,the peak value inκc decreases much more quickly with Sr doping than with Zn doping.It should be noted that those peculiar di?erences between Sr doping and Zn doping cannot be due to the additional electronic ther-mal conductivity in the Sr-doped samples:The electronic thermal conductivityκe can roughly be estimated by the Wiedemann-Franz law,κe=L0T/ρ,whereρis the elec-trical resistivity and L0is the Lorenz number(which can be approximated by the Sommerfeld value,2.44×10?8 W?/K2).Using the resistivity data for our crystals,32 the contributionκe,ab for La1.96Sr0.04CuO4can be es-timated to be smaller than0.25W/Km in the whole temperature region[dashed line in Fig.1(a)],and sam-ples with lower Sr doping should have smallerκe,ab than this estimate for x=0.04;clearly,the electronic contri-

FIG.4:Comparison of the low-temperature thermal conduc-tivity of LSCO(x=0.12)single crystals to that of Nd-and Eu-doped crystals,in which the phonon peak re-appears.The data for both(a)κab(T)and(b)κc(T)are shown.

bution can be safely neglected in the lightly Sr doped region in the discussion of theκab(T)behavior,not to mention theκc(T)behavior.Thus,the changes in the low-temperature peak upon doping must be due to the changes in the phonon transport properties,that is,the scattering process that determines the phonon mean free path.

D.Re-appearance of the phonon peak in

RE-doped LSCO

Although both the phonon-impurity scattering and the phonon-carrier scattering can contribute to the suppres-sion of the phonon peak,these scattering processes can-not be the only mechanisms to determine the Sr-doping dependence of the phonon heat transport,because the phonon peak re-appears in overdoped LSCO and in RE-doped LSCO.18,19Figure4shows our data for the re-appearance of the phonon peak in RE-doped samples

5

(both Nd and Eu doped cases)for x=0.12;these data are taken on single crystals,and essentially con?rms the polycrystalline data reported by Baberski et al.19The single crystal data of Fig.4allow us to compare the absolute values ofκab andκc of the RE-doped samples to those of the RE-free LSCO;such comparison tells us that the low-T peak values ofκab andκc of the RE-doped crystals at x=0.12are similar to those of the RE-free LSCO crystals at x=0.04,despite the factor of three di?erence in the Sr concentrations.This result clearly indicates that the phonon-impurity scattering and the phonon-carrier scattering are not the only scattering mechanisms to determine the phonon mean free path.

IV.DISCUSSION

A.Magnetic scattering of phonons in the ab plane

of LCZO

Based on the apparent similarity of the doping depen-dence of the phonon peak inκab,shown in Figs.1(a)and 1(b),one might naively conclude that the lattice disor-ders induced by Zn and Sr in the ab plane are very similar and that theκab(T)behavior is essentially explained only by the lattice disorder;however,this is not likely to be the case,which can be understood by considering the na-ture of the impurity scattering and the additional charge carriers introduced in LSCO.First,it is important to notice that the low-T phonon peak inκab is suppressed slightly more quickly by Zn doping than by Sr doping.In the impurity-scattering scenario,24it is di?cult to con-ceive that the phonons are scattered more strongly in LCZO than in LSCO,because the atomic mass di?er-ence between Cu and Zn is much smaller than that be-tween La and Sr.In addition,the contribution of the phonon-carrier scattering,which exists only in LSCO, would cause the phonon peak in LSCO to be suppressed more quickly than in LCZO.Thus,the di?erence between the Sr-doping dependence and the Zn-doping dependence inκab(T)at low temperature,which is opposite to the naturally expected trend,suggests that there are addi-tional scatterers of phonons in the Zn doped samples. It is most likely that the additional scatterers in LCZO are of magnetic origin;magnons,which cause the high-temperature peak in LCZO,are an obvious candidate, and the magnetic disordering around Zn atoms may also cause some scattering of phonons through magnetoelastic coupling.33It is useful to note that,as we mentioned in section III A,magnons are likely to be already responsi-ble for the relatively small phonon peak inκab(compared to that inκc)in pure La2CuO4.

B.Scattering of phonons by static spin stripes in

LSCO

Contrary to the relatively small di?erence in the phonon peak ofκab between LSCO and LCZO,the sup-pression of the phonon peak ofκc is much quicker in LSCO than in LCZO;especially,the sharp suppression of the phonon peak from x=0to0.01is quite surpris-ing and is the most striking observation of this work. Apart from the impurity scattering,two di?erent scat-tering processes of phonons are possibly responsible for the suppression of the c-axis phonon heat transport.The ?rst possibility is the magnon-phonon scattering.This may partly play a role(particularly in samples where the long-range N′e el order is established)in the c-axis phonon heat transport,although their role is expected to be mi-nor because of the essentially two-dimensional nature of the magnons in the LCO system,which means that the magnons cannot e?ectively change the wave vector of the c-axis phonons.The second possibility is the scattering of phonons caused by the static stripes that exist only in LSCO.In the following,we elaborate on this possibility. It is known that static spin stripes are formed at low temperatures in lightly doped LSCO.5,6,7,8If the charges also form static stripes together with the spins,they cer-tainly cause local lattice distortions.Even if the charges do not conform to the static stripe potentials set by the spins,the spin stripes themselves may well cause local lattice distortions due to the magnetoelastic coupling;33 this direct coupling between the spin stripes and the local lattice distortions is in fact very likely,because recently Lavrov et al.found that the spin-lattice coupling is very strong in lightly doped LSCO.34It should be noted that the local lattice distortions due to static stripes are not expected to scatter phonons when the stripes induce only static and periodic modulation of the lattice(which is in fact a kind of superlattice);however,possible disordering of stripes in the c direction can introduce rather strong scattering of phonons in this direction.In fact,because of the weak magnetic correlations along the c axis,the stripes in neighboring CuO2planes are only weakly cor-related or even uncorrelated,which is best evidenced by the very short magnetic correlation lengthξc in the stripe phase(usually smaller than the distance between neigh-boring CuO2planes)in the lightly doped LSCO.6,7

We can further discuss the possible role of static stripes in the suppression of the phonon peak inκab of lightly doped LSCO.Although the stripes are much better or-dered in the ab plane than in the c direction,6,7there are two reasons that phonons in the ab plane are possi-bly scattered by the stripes.First,the static spin stripes were reported to be established at about30K to17K for x=0.01to0.04by the neutron measurements.5,7 These temperatures are very close to the position of the phonon peak(20–25K).Near the stripe freezing tem-perature,local lattice distortions are expected to be well developed and yet are slowly?uctuating(or disordered), which would tend to scatter phonons.Second,there is no

evidence until today that well periodically-ordered static charge stripes are formed in lightly doped LSCO;instead, our charge transport data strongly suggest17,32,35that the charge stripes exist in a liquid(or nematic)state.14 Such disordered state of charge stripes would tend to scatter phonons.Thus,it is possible that the static stripes also contribute to the scattering of phonons in the in-plane heat transport in LSCO,although their e?ect appears to be much weaker than that in the c direction.

V.SUMMARY

We have measured the ab-plane and the c-axis thermal conductivities of lightly doped LSCO and LCZO single crystals.It is found that the low-temperature phonon peak is signi?cantly suppressed upon Sr or Zn doping even at very low doping levels,and that the doping de-pendence show clear di?erences between the Sr and Zn dopants,and betweenκab andκc.The experimental ob-servations can be summarized as follows:(i)The phonon peak inκc decreases much more quickly with Sr doping than with Zn doping.(ii)On the other hand,the phonon peak inκab is suppressed slightly more quickly with Zn doping than with Sr doping.(iii)At high temperature, the magnon peak inκab(T)decreases much more quickly with Sr doping than with Zn doping;in fact,the magnon peak completely disappears in LSCO with x=0.01,while it is still observable in LCZO with y=0.04.(iv)Rare-earth(Nd or Eu)doping for LSCO(x=0.12)enhances the phonon heat transport in bothκab andκc,and this is manifested in the re-appearance of the low temper-ature phonon peak,whose height is similar to that of rare-earth-free LSCO with x=0.04.

Based on the peculiar doping dependences of the low-temperature phonon peak,we can deduce the following conclusions for the phonon heat transport at low tem-peratures:(i)In the in-plane direction,disordered static stripes are probably working as scatterers of phonon(in addition to the Sr impurities and the holes)in LSCO, while in LCZO magnetic scatterings cause strong damp-ing of the phonon transport,which overcompensates the absence of the stripe scattering.(ii)In the c-axis heat transport,besides the possible contribution of the magnon-phonon scattering,strong disorder of the stripe arrangement along the c-axis is mainly responsible for the scattering of phonons.The latter scattering mechanism naturally explains the strong damping of the phonon peak in LSCO,while allowing much slower suppression of the phonon peak in LCZO where there is no stripe. Therefore,the e?ect of static spin stripes,which are formed in the lightly doped LSCO,appears to be most dramatically observed in the c-axis phonon heat trans-port.

Acknowledgments

We thank https://www.360docs.net/doc/905328458.html,vrov and I.Tsukada for helpful discussions.X.F.S.acknowledges support from JISTEC.

?ko-xfsun@criepi.denken.or.jp

?ando@criepi.denken.or.jp

1J.M.Tranquada,B.J.Sternlieb,J.D.Axe,Y.Nakamura, and S.Uchida,Nature375,561(1995).

2K.Yamada,C.H.Lee,K.Kurahashi,J.Wada,S.Waki-moto,S.Ueki,H.Kimura,Y.Endoh,S.Hosoya,G.Shi-rane,R.J.Birgeneau,M.Greven,M.A.Kastner,and Y.

J.Kim,Phys.Rev.B57,6165(1998).

3H.A.Mook,P.Dai,F.Dogan,and R.D.Hunt,Nature 404,729(2000).

4H.A.Mook,P.Dai,and F.Dogan,Phys.Rev.Lett.88, 097004(2002).

5S.Wakimoto,G.Shirane,Y.Endoh,K.Hirota,S.Ueki, K.Yamada,R.J.Birgeneau,M.A.Kastner,Y.S.Lee,P.

M.Gehring,and S.H.Lee,Phys.Rev.B60,R769(1999). 6M.Matsuda,M.Fujita,K.Yamada,R.J.Birgeneau,M.

A.Kastner,H.Hiraka,Y.Endoh,S.Wakimoto,and G.

Shirane,Phys.Rev.B62,9148(2000).

7M.Matsuda,M.Fujita,K.Yamada,R.J.Birgeneau,Y.

Endoh,and G.Shirane,Phys.Rev.B65,134515(2002). 8M.Fujita,K.Yamada,H.Hiraka,P.M.Gehring,S.H.Lee, S.Wakimoto,and G.Shirane,Phys.Rev.B65,064505 (2002).

9A.W.Hunt,P.M.Singer,K.R.Thurber,and T.Imai, Phys.Rev.Lett.82,4300(1999).

10Y.Ando,https://www.360docs.net/doc/905328458.html,vrov,and K.Segawa,Phys.Rev.Lett.

83,2813(1999).11T.Noda,H.Eisaki,and S.Uchida,Science286,265 (1999).

12X.J.Zhou,P.Bogdanov,S.A.Kellar,T.Noda,H.Eisaki, S.Uchida,Z.Hussain,and Z.-X.Shen,Science286,268 (1999).

13V.J.Emery,S.A.Kivelson,and O.Zachar,Phys.Rev.B 56,6120(1997).

14S.A.Kivelson,E.Fradkin,and V.J.Emery,Nature393, 550(1998).

15E.W.Carlson,https://www.360docs.net/doc/905328458.html,ad,S.A.Kivelson,and V.J.Emery, Phys.Rev.B62,3422(2000).

16J.Zaanen,Science286,251(1999).

17Y.Ando,K.Segawa,S.Komiya,and https://www.360docs.net/doc/905328458.html,vrov,Phys.

Rev.Lett.88,137005(2002)

18Y.Nakamura,S.Uchida,T.Kimura,N.Motohira,K.

Kishio,K.Kitazawa,T.Arima,and Y.Tokura,Physica C185-189,1409(1991).

19O.Baberski, https://www.360docs.net/doc/905328458.html,ng,O.Maldonado,M.H¨u cker, B.

B¨u chner,and A.Freimuth,Europhys.Lett.44,335(1998). 20S.Komiya,Y.Ando,X.F.Sun,and https://www.360docs.net/doc/905328458.html,vrov,Phys.

Rev.B65,214535(2002).

21Y.Ando,J.Takeya, D.L.Sisson,S.G.D¨o ettinger,I.

Tanaka,R.S.Feigelson,and A.Kapitulnik,Phys.Rev.B 58,R2913(1998).

22Y.Ando,J.Takeya,Y.Abe,K.Nakamura,and A.Kapit-ulnik,Phys.Rev.B62,626(2000).

23J.Takeya,I.Tsukada,Y.Ando,T.Masuda,and K.Uchi-

nokura,Phys.Rev.B62,R9260(2000).

24R.Berman,Thermal Conduction in Solids(Oxford Uni-versity Press,Oxford,1976).

25A.N.Vasil’ev,V.V.Pryadun, D.I.Khomskii,G.

Dhalenne,A.Revcolevschi,M.Isobe,and Y.Ueda,Phys.

Rev.Lett.81,1949(1998).

26A.V.Sologubenko,E.Felder,K.Giann′o,H.R.Ott,A.

Vietkine,and A.Revcolevschi,Phys.Rev.B62,R6108 (2000).

27A.V.Sologubenko,K.Giann′o,H.R.Ott,A.Vietkine, and A.Revcolevschi,Phys.Rev.B64,054412(2001).

28A.V.Sologubenko,K.Giann′o,H.R.Ott,U.Ammerahl, and A.Revcolevschi,Phys.Rev.Lett.84,2714(2000). 29B.C.Sales,M.D.Lumsden,S.E.Nagler,D.Mandrus, and R.Jin,Phys.Rev.Lett.88,095901(2002).

30F.C.Chou,F.Borsa,J.H.Cho,D.C.Johnston,https://www.360docs.net/doc/905328458.html,s-

cialfari,D.R.Torgeson,and J.Ziolo,Phys.Rev.Lett.71, 2323(1993).

31B.Keimer,N.Belk,R.J.Birgeneau,A.Cassanho,C.Y.

Chen,M.Greven,M.A.Kastner,A.Aharony,Y.Endoh, R.W.Erwin,and G.Shirane,Phys.Rev.B46,14034 (1992).

32Y.Ando,https://www.360docs.net/doc/905328458.html,vrov,S.Komiya,K.Segawa,and X.F.

Sun,Phys.Rev.Lett.87,017001(2001).

33F.Cordero,A.Paolone,R.Cantelli,and M.Ferretti,Phys.

Rev.B62,5309(2000).

https://www.360docs.net/doc/905328458.html,vrov,S.Komiya,and Y.Ando,Nature418,385 (2002);cond-mat/0208013.

35S.A.Kivelson, E.Fradkin,V.Oganesyan,I.P.Bind-loss,J.M.Tranquada, A.Kapitulnik, C.Howald, cond-mat/0210683.

第七章、统计热力学基础习题和答案

统计热力学基础 一、选择题 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科B 2. 在研究N、V、U有确定值的粒子体系的统计分布时,令刀n i = N,刀n i & i = U , 这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的C 3. 假定某种分子的许可能级是0、&、2 £和3 &,简并度分别为1、1、2、3四个这样的分子构成的定域体系,其总能量为3£时,体系的微观状态数为:() A. 40 B. 24 C. 20 D. 28 A 4. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式 C. 忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法A 5. 对于玻尔兹曼分布定律n i =(N/q) ? g i ? exp( - £ i/kT)的说法:(1) n i是第i能级上的粒子分布数; (2) 随着能级升高,£ i 增大,n i 总是减少的; (3) 它只适用于可区分的独立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 6. 对于分布在某一能级£ i上的粒子数n i,下列说法中正确是:() A. n i 与能级的简并度无关 B. £ i 值越小,n i 值就越大 C. n i 称为一种分布 D. 任何分布的n i 都可以用波尔兹曼分布公式求出B 7. 15?在已知温度T时,某种粒子的能级£ j = 2 £ i,简并度g i = 2g j,则「和£ i上 分布的粒子数之比为:( ) A. 0.5exp( j/2£kT) B. 2exp(- £j/2kT) C. 0.5exp( -£j/kT) D. 2exp( 2 j/k£T) C 8. I2的振动特征温度? v= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2的温度是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 9. 下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) A. S、G、F、C v B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 10. 分子运动的振动特征温度?v是物质的重要性质之一,下列正确的说法是: ( ) A. ? v越高,表示温度越高 B. ?v越高,表示分子振动能越小 C. ?越高,表示分子处于激发态的百分数越小 D. ?越高,表示分子处于基态的百分数越小 C 11. 下列几种运动中哪些运动对热力学函数G与

数字式转速表的应用设置

数字式转速表的应用设置 应用时各种数据的调整和设置都是通过支架上的三个按键来完成的,如左上图所示,支架上左边的倒三角形符号是“DOWN”按键,中间的是“SET”按键,右边的三角形符号是“UP”按键。通过连续按动“SET”按键,转速表的功能按“时钟---转速---设定警告---设定缸数---发动机累计工作时间”五种状态循环,下面具体说明每一种状态: 1、时钟状态 该状态下弧形LED光柱动态显示转速,四位数码管按24小时制显示时间,7:00--19:00期间显示亮度加倍,以适应白天的环境亮度,其他时间(夜间)则保持柔和的亮度。 按“DOWN”按键调整分钟,按“UP”按键调整小时。 2、转速状态 该状态下弧形LED光柱动态显示转速,四位数码管动态精确显示转速,数码管显示每0.5秒刷新一次。 3、设定警告状态 该状态下四位数码管无显示,弧形LED光柱中有一个单元熄灭,其他的全亮,熄灭的单元表示当前设定的警告转速。 通过按“DOWN”按键向下调整警告转速,按“UP”按键向上调整警告转速,运行中当发动机转速高于设定的警告转速时,警告灯点亮,否则熄灭。这个功能可以灵活运用,如将警告转速设定于低中速区,用于换档提示,也可设定于高速区,表示超速警告。 是该状态下的效果图,表示当前的警告转速是4600RPM,右下角的红灯为警告灯。 4、设定缸数状态 尽管该功能是为了适应多缸车的应用而开发,但是严格意义上来说,它是输入信号的倍率设定,因此不能简单的理解为几缸车就设定为几,正确理解这个功能是保证转速表正常运行的关键。 数码管显示的是“11”,数字“11”就是我们要说的信号倍率,这个转速表的倍率设置分两段,“0”字头字段包含“01-09”共9种倍率设置,用于汽车信号;“1”字头字段包含“11-18”共8种倍率设置,用于摩托车信号。 “0”字头字段:用于汽车,“01”表示发动机每转一圈送一个信号的情况,当然没有单缸的汽车,那么“01”有什麽意义呢?因为汽车版转速表的标准配

第七章、统计热力学基础习题和答案

统计热力学基础 题 择 一、选 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科B 2.在研究N、V、U 有确定值的粒子体系的统计分布时,令∑n i = N,∑n iεi = U, 3.这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的 C 4.假定某种分子的许可能级是0、ε、2ε和3ε,简并度分别为1、1、2、3 四个这样的分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:( ) A. 40 B. 24 C. 20 D. 28 A 5. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律 6.时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式 C. 忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法 A 7.对于玻尔兹曼分布定律n i =(N/q) ·g i·exp( -εi/kT)的说法:(1) n i 是第i 能级上的 粒子分布数; (2) 随着能级升高,εi 增大,n i 总是减少的; (3) 它只适用于可区分的独 8.立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 9.对于分布在某一能级εi 上的粒子数n i ,下列说法中正确是:( ) 10.A. n i 与能级的简并度无关 B. εi 值越小,n i 值就越大 C. n i 称为一种分布 D.任何分布的n i 都可以用波尔兹曼分布公式求出 B 11. 15.在已知温度T 时,某种粒子的能级εj = 2εi,简并度g i = 2g j,则εj 和εi 上分布的粒子数之比为:( ) A. 0.5exp( j/2εk T) B. 2exp(- εj/2kT) C. 0.5exp( -εj/kT) D. 2exp( 2 j/kεT) C 12. I2 的振动特征温度Θv= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2 的温度 13.是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 14.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) A. S、G、F、C v B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 15. 分子运动的振动特征温度Θv 是物质的重要性质之一,下列正确的说法是: ( ) A.Θv 越高,表示温度越高 B.Θv 越高,表示分子振动能越小 C. Θv 越高,表示分子处于激发态的百分数越小 D. Θv 越高,表示分子处于基态的百分数越小 C 16.下列几种运动中哪些运动对热力学函数G 与A 贡献是不同的:( ) A. 转动运动 B. 电子运动 C. 振动运动 D. 平动运动 D 17.三维平动子的平动能为εt = 7h 2 /(4mV2/ 3 ),能级的简并度为:( )

电子类常用缩写(英文翻译)

电子类常用缩写(英文翻译) 电阻器厂家忆卓电阻器公司教您认识电子类常用缩写(英文翻译) 河北沧州忆卓专家级的电阻器生产销售企业。公司是国内最早经营生产自主研发电阻器的厂家之一,连年受到省市直辖部门的好评是最诚信企业。公司的电阻器产品畅销国内外市场,不仅为企业赢得了更多的客户也为河北省赢得了荣誉 点击图片进入企业网站 电子类常用缩写(英文翻译)AC(alternating current) 交流(电)A/D(analog to digital) 模拟/数字转换 ADC(analog to digital convertor) 模拟/数字转换器 ADM(adaptive delta modulation) 自适应增量调制 ADPCM(adaptive differential pulse code modulation) 自适应差分脉冲编码调制ALU(arithmetic logic unit) 算术逻辑单元ASCII(American standard code for information interchange) 美国信息交换标准码A V(audio visual) 声视,视听BCD(binary coded decimal) 二进制编码的十进制数BCR(bi-directional controlled rectifier)双向晶闸管BCR(buffer courtier reset) 缓冲计数器BZ(buzzer) 蜂鸣

器,蜂音器C(capacitance,capacitor) 电容量,电容器CATV(cable television) 电缆电视CCD(charge-coupled device) 电荷耦合器件CCTV(closed-circuit television) 闭路电视CMOS(complementary) 互补MOS CPU(central processing unit)中央处理单元CS(control signal) 控制信号D(diode) 二极管DAST(direct analog store technology) 直接模拟存储技术DC(direct current) 直流DIP(dual in-line package) 双列直插封装DP(dial pulse) 拨号脉冲DRAM(dynamic random access memory) 动态随机存储器DTL(diode-transistor logic) 二极管晶体管逻辑DUT(device under test) 被测器件 DVM(digital voltmeter) 数字电压表 ECG(electrocardiograph) 心电图ECL(emitter coupled logic) 射极耦合逻辑EDI(electronic data interchange) 电子数据交换EIA(Electronic Industries Association) 电子工业联合会EOC(end of conversion) 转换结束 EPROM(erasable programmable read only memory) 可擦可编程只读存储器EEPROM(electrically EPROM) 电可擦可编程只读存储器ESD(electro-static discharge) 静电放电FET(field-effect transistor) 场效应晶体管FS(full scale) 满量程F/V(frequency to voltage convertor) 频率/电压转换FM(frequency modulation) 调频FSK(frequency

数字转速表设计

数字转数表的电路如图所示。它主要由装有永久磁铁的磁盘、霍尔集成传感器、选通门电路、时基信号电路、电源计数及数码显示电路等组成。计数及数码显示电路采用CMOS-LED数码显示组件CLlO2,它可以计数并显示数码。 转盘的输入轴与被测旋转轴相连,当被测轴旋转时,便带动转盘随之转动。当转盘上的小永久磁铁经过霍尔集成传感器IC1时,IC1便会将磁信号转换为转速电信号。该信号经与非门l反相输人至与非门3的输入端,而与非门3的另一输大端接来自时基电路IC2的方波脉冲信号。这个时基信号是用来控制与非门3的开与刁,形成选通门,以此来控制转速信号能否从与非门3输出。 当接通电源后,转速信号立即被送往与非门3的输入端,如果此时时基信号为低电平,则选通门关闭,转速信号元法通过选通门。当第一个时基信号到来时,选通门才被打开,并同时使CMOS-LED数码显示组件IC4、IC5、IC6的LE端呈寄存状态。时基信号的上升沿也同时触发由与非门4、5组成的反相器及由R4、R5、R7、C3、VD2及VD3组成的微分复位电路,复位脉冲由VD3输出后加至IC4、IC5、IC6的R端,使址数器复位清零。在完成上述功能后,时基信号在一个单位时间(例如lmin)内保持高电平。在这段时间内,选通门与非门3一直处于开启状态,转速信号则通过选通门送至LED数码显示组件,实现了在单位时间内的计数。在单位时间结束时,时基信号又回到低电平,此时选通门关闭并自动置计数电路的LE端为选通状态。此时,计数器的计数内容送至寄存器并同时显示其内容。当第二个时基信号到来时,又把计数器的内容清零,并重复上述过程。但此时的寄存器及显示器的内容不变,只有当第二次采样结束后,才会更新而显示新的测试结果。 上一篇:LM35DZ摄氏温度传感受器温度计应用电路 - 相关文章返回分类首页 [传感器电路图] 基于磁传感器设 本文来自: https://www.360docs.net/doc/905328458.html, 原文网址:https://www.360docs.net/doc/905328458.html,/sch/sen/0073040.html 本文来 自: https://www.360docs.net/doc/905328458.html, 原文网址:https://www.360docs.net/doc/905328458.html,/sch/sen/0073040.html

电子类常用缩写(英文翻译)

电子类常用缩写(英文翻译) AC(alternating current) 交流(电) A/D(analog to digital) 模拟/数字转换 ADC(analog to digital convertor) 模拟/数字转换器 ADM(adaptive delta modulation) 自适应增量调制 ADPCM(adaptive differential pulse code modulation) 自适应差分脉冲编码调制 ALU(arithmetic logic unit) 算术逻辑单元 ASCII(American standard code for information interchange) 美国信息交换标准码 AV(audio visual) 声视,视听 BCD(binary coded decimal) 二进制编码的十进制数 BCR(bi-directional controlled rectifier)双向晶闸管 BCR(buffer courtier reset) 缓冲计数器 BZ(buzzer) 蜂鸣器,蜂音器 C(capacitance,capacitor) 电容量,电容器 CATV(cable television) 电缆电视 CCD(charge-coupled device) 电荷耦合器件 CCTV(closed-circuit television) 闭路电视 CMOS(complementary) 互补MOS CPU(central processing unit)中央处理单元 CS(control signal) 控制信号 D(diode) 二极管 DAST(direct analog store technology) 直接模拟存储技术 DC(direct current) 直流 DIP(dual in-line package) 双列直插封装 DP(dial pulse) 拨号脉冲 DRAM(dynamic random access memory) 动态随机存储器 DTL(diode-transistor logic) 二极管晶体管逻辑 DUT(device under test) 被测器件 DVM(digital voltmeter) 数字电压表 ECG(electrocardiograph) 心电图 ECL(emitter coupled logic) 射极耦合逻辑 EDI(electronic data interchange) 电子数据交换 EIA(Electronic Industries Association) 电子工业联合会 EOC(end of conversion) 转换结束 EPROM(erasable programmable read only memory) 可擦可编程只读存储器 EEPROM(electrically EPROM) 电可擦可编程只读存储器 ESD(electro-static discharge) 静电放电 FET(field-effect transistor) 场效应晶体管 FS(full scale) 满量程 F/V(frequency to voltage convertor) 频率/电压转换 FM(frequency modulation) 调频

红外数字式转速表外文翻译

浙江师范大学本科毕业设计(论文)外文翻译

1 本科毕业设计(论文)外文翻译

家庭的低数CISC的8051 各种组件的功能如下所述。微型控制器。由于它的与基于微型控制器使用20引脚的AT89C2051字计算、支付能力和兼容性从Atmel 的一个1282 KB的闪存,这里。所有的微控制器引脚可利用的项目。这个微型控制器具有位定时器或者计数器、一个线、两个16输入/输出)-个字节RAM,15条输入输出(、一个全双工串行口、一个高精确度模拟比较器、一片上振荡向量两级中断结构,5 器和时钟电路。字16x2液晶显示模块。要显示移动的速度和距离,我们使用一块基于HD44780的的引脚LCD母数字液晶控制器。LCD的背光功能,使数据即使在夜晚都依然可见。配置和液晶显示功能。早前已经被发表在液晶显示器有EFY的几个问题中。中。在这里使用距离行驶的读数都保 存在一个外部串行EEPROM。串行EEPROM EEPROM。的是24C02飞利浦协议 的串行)和SDA总线协议。该总线由两个活动连接线和一条地线。主动线,串行数据线()是双向的。挂接到总线的每个设备都有自己唯一的地址,不管SCL 串行时钟线(。根据功能,这些芯片都可以作为一个驱动器,内存或ASICLCD 它是一个MCU,芯片可以驱动器只是一个接收器,而记忆体或/或发射机。显然,LCDI/O接收器和发起数据传同时发射器和接收器。该总线是一种多主总线。这意味着,超过一个IC,它被认为是上启动主机总线的数据传输能力可以连接到它。该协议规范规定的IC 2 本科毕业设计(论文)外文翻译

本科毕业设计(论文)外文翻译 .2图制造建设中的簧片开关和磁铁需要在电机的自行车(英雄本田的辉煌)前轮固定。通常在使用扬声器的小玩具中是都可以用到的。,一个小的圆形磁铁(直径约2厘米)磁铁固定在鼓的中部连接到下方的辐条轮鼓。磁铁固定使用热胶水或环氧树脂。固管的机械需要,需要使磁铁和干簧管正确对齐,如图.3所示。PVC定磁簧开关,管测量垂直剪下,分为两半。只用一个一半PVC15.2将3.2厘米直径、长厘米管。坐骑和安全保障的的干簧管和电缆用领带固定在熟料手柄上(通常用于的PVC。一旦烘干,焊两条线的另一端当两个簧片开关的引线。塑料手柄上紧急照明设备)用螺钉固定。现在,请将前面避震前叉,使得磁簧开关管正对磁体的开关。 4 本科毕业设计(论文)外文翻译

第七章 统计热力学基础

第七章统计热力学基础 一、单选题 1.统计热力学主要研究()。 (A) 平衡体系(B) 近平衡体系(C) 非平衡体系 (D) 耗散结构(E) 单个粒子的行为 2.体系的微观性质和宏观性质是通过()联系起来的。 (A) 热力学(B) 化学动力学(C) 统计力学(D) 经典力学(E) 量子力学 3.统计热力学研究的主要对象是:() (A) 微观粒子的各种变化规律(B) 宏观体系的各种性质 (C) 微观粒子的运动规律(D) 宏观系统的平衡性质 (E) 体系的宏观性质与微观结构的关系 4.下述诸体系中,属独粒子体系的是:() (A) 纯液体(B) 理想液态溶液(C) 理想的原子晶体 (D) 理想气体(E) 真实气体 5.对于一个U,N,V确定的体系,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:() (A) 玻兹曼分布定律(B) 等几率假设(C) 分子运动论 (D) 统计学原理(E) 能量均分原理

6.在台称上有7个砝码,质量分别为1g、2g、5g、10g、50g、100g,则能够称量的质量共有:() (A) 5040 种(B) 127 种(C) 106 种(D) 126 种 7.在节目单上共有20个节目序号,只知其中独唱节目和独舞节目各占10个,每人可以在节目单上任意挑选两个不同的节目序号,则两次都选上独唱节目的几率是:() (A) 9/38 (B) 1/4 (C) 1/180 (D) 10/38 8.以0到9这十个数字组成不重复的三位数共有() (A) 648个(B) 720个(C) 504个(D) 495个 9.各种不同运动状态的能级间隔是不同的,对于同一种气体分子,其平动、转动、振动和电子运动的能级间隔的大小顺序是:() (A)△e t >△e r >△e v >△e e(B)△e t <△e r <△e v <△e e (C) △e e >△e v >△e t >△e r(D)△e v >△e e >△e t >△e r (E)△e r >△e t >△e e >△e v 10.在统计热力学中,对物系的分类按其组成的粒子能否被分辨来进行,按此原则:() (A) 气体和晶体皆属定域子体系(C) 气体属离域子体系而晶体属定域子体系 (B) 气体和晶体皆属离域子体系(D) 气体属定域子体系而晶体属离域子体系 11.对于定位系统分布X所拥有的微观状态t x为:(B) (A)(B)

数字转速表的设计方案

数字转速表的设计方案 第1章前言 单片机作为嵌入式微控制器在工业测控系统,智能仪器和家用电气中得到广泛应用。虽然单片机的品种很多,但MCS-51系列单片机仍不失为单片机中的主流机型。本课程一MCS-51系列以及派生系列单片机芯片为主介绍单片机的原理与应用,与其特点是由浅入深,注重接口技术和应用。 近年来,微型计算机的发展速度足以让世人惊叹,以计算机为主导的信息技术作为一种崭新的生产力,正在向社会的各个领域渗透,也使机电一体化的进程大大加快。 机电一体化是当今制造技术和产品发展的主要倾向,也是我国机电工业发展的必由之路。可以认为,它是用系统工程学的观点和方法,研究在机电系统和产品中如何将机械、计算机、信息处理和自动控制技术综合应用,以求机电系统和产品达到最佳的组合。机电一体化产品所需要的是嵌入式微机,而单片机具有体积小、集成度高、功能强等特点,适于嵌入式应用。智能仪器、家用电器、数控机床、工业控制等机电设备和产品中竟相使用单片机。 就目前而言,单片机的发展势头依然不减,各种型号和功能更强的单片机和超级接口芯片不断出现,进一步向高层次发展的重要标志就是构成多机系统和分布式网络。世界上单片机芯片的产量以每年27%的速度递增,到本世纪初已达30亿片,而我国的年需求量也超过了亿片的数量,这表明单片机有着广阔的应用前景。本课程设计主要针对目前我国早期应用比较广泛的“MCS-51”单片机进行系统的讲解和分析。为使用和开发各类机电一体化设备和仪表建立基础。 第2章基本原理 利用AT89C51作为主控器组成一个转速表。电机转速采用光电脉冲传感器来测量,设置定时器/计数器T0和T1,利用其部定时器T1设置为定时方式,且定时时间为1s。计数器T0设置为外部脉冲计数工作方式,设在1s测量的脉冲个数为n,又由于脉冲频率为60个脉冲/转,故测到转速n就是脉冲频率。定时1s,在1s允许中断,每中断一次,软件计数器加1,1s后,关闭中断,则软件计数器即为1s的脉冲数,通过计数一

数字转速表课程设计报告

目录 第1章概述 0 2.1 基本原理 (2) 2.2 设计思路 (2) 2.3 设计方案 (2) 第3章硬件电路设计 (4) 3.1按键设计电路图 (4) 3.2 显示电路设计图 (4) 第4章软件设计 (6) 4.1主程序流程及说明 (6) 4. 2中断服务子程序 (7) 4.3键盘扫描程序 (7) 第5章系统调试及软件仿真 (9) 5.1 程序调试 (9) 5.2 硬件电路调试 (10) 第6章总结 (12) 第6章总结 (12) 参考文献 (14) 附录A (15) 系统原理图: (15) 附录B (16) 程序清单: (16) 第1章概述 随着科学技术特别是微型计算机技术的高速发展,单片微机技术也获

得了飞速发展。目前,单片机已经在日常生活和控制领域等方面得到广泛的应用,它正为我国经济的快速发展发挥着举足轻重的作用。作为自动化专业的一名工科学生应该牢牢掌握这一重要技术。而课程设计这一环节是我们提高单片机应用能力的很好机会,也是我们学好这一课程的必经环节。通过课程设计可以进一步巩固我们前面所学理论知识,使我们对单片机理论知识有一个深刻的认识和全面的掌握。另外通过这一真正意义上的实践活动,我们可以从中发现自己不足之处并能够在自己的深思下和老师的指导下得到及时的解决。再次,它能使我们的应用能力和科技创新能力得到较大的提高。 本课程设计是单片机系统在测速方面的简单应用。目前单片机技术已经在电机转速等为控制对象的控制系统中得到了广泛的应用,而在这一控制过程中必须通过单片机来测量转速。基于此本课程设计利用89C51单片机及外围电路来设计一个数字转速表。通过测量转速所对应的方波脉冲来测量转速,其转速可以通过键盘输入给定,同时其具体数值也可以在LED 上显示出来。 单片机作为嵌入式微控制器在工业测控系统,智能仪器和家用电气中得到广泛应用。虽然单片机的品种很多,但MCS-51系列单片机仍不失为单片机中的主流机型。本课程一MCS-51系列以及派生系列单片机芯片为主介绍单片机的原理与应用,与其特点是由浅入深,注重接口技术和应用。 机电一体化是当今制造技术和产品发展的主要倾向,也是我国机电工业发展的必由之路。可以认为,它是用系统工程学的观点和方法,研究在机电系统和产品中如何将机械、计算机、信息处理和自动控制技术综合应用,以求机电系统和产品达到最佳的组合。机电一体化产品所需要的是嵌入式微机,而单片机具有体积小、集成度高、功能强等特点,适于嵌入式应用。智能仪器、家用电器、数控机床、工业控制等机电设备和产品中竟相使用单片机。

汽车常用的英汉对照单词

发动机 engine 发动机 block 气缸体 cylinder 气缸 crankcase 曲轴箱 house 安装 crankshaft 曲轴 camshaft 凸轮轴 coolant 冷却液 oil pan 机油盘 water socket 水套 internally 内部地 adequately充分地 lubricate 润滑 liner(发动机)气缸套 remove 拆下 replace 取代 seal 密封,封条 valve 气门;阀 port 孔管道exhaust 排气intake 进气,吸入manifold 歧管spark 火花injector 喷油器install 安装piston connectingrod 连杆combustion 燃烧compression 压缩pin 销fit 使配合closely 紧密地up and down 上上下下scrape 活塞销reciprocating motion往复运动rotary 旋转的harmonic balancer 扭转减震器timing gear 正时齿轮chain belt链(条)传动带lifter n. 挺柱pushrod n.rockerarm摇臂hydraulic adj.液压的clearance n.间隙valve guide 气门导管valve seat 气门座spring retainer 弹簧座圈diameter 直径combustion chamber燃烧室ground. 与水平面成secure 紧固stem 杆,柄induction (发动机)进气density 浓度oxygen [化]氧injection 喷射ignition 点火diagnostic 诊断malfunction 故障content 含量utilize 利用duration 持续(时间)monitor 监控RPM = Revolution Per Minute 发动机转速precisely 精确地target value 目标值indicator 指示器combination meter 组合仪表identify 确认diagnostic trouble code = DTC 故障码blink 闪烁fail-safe 失效保护illuminate 照明Airflow Sensor 空气流量计Intake Air Temperature Sensor 进气温度传感器Throttle Position Sensor 节气门位置传感器EGR=Exhaust Gas Recirculation 废气再循环Park/Neutral Position (PNP) Switch 驻车/空挡位置开关Cranking 起动equip 装备 Vacuum Solenoid Valve 真空电磁阀fuel pump 燃油泵igniter 点火器pressure up 增压(1)engine cranking signal (1)发动机起动信号 (2)camshaft position sensor(2)凸轮轴位置传感器(3)brake light switch signal (3)制动灯开关信号(4)self-diagnostic system(4)自诊断系统(5)vehicle speed sensor(5)汽车速度传感器 (7)Air Conditioning (A/C) switch(7)空调开关 (8)A/C idle-up system(8)空调怠速提升系统 (9)idle air control valve(9)怠速空气控制阀(11)battery signal)

数字转速表-源程序(汇编语言)

DAOT EQU 40H ;定时器T0软件计数器单元 SCNT EQU 41H ;送0832控制输出电压值 CKCH EQU 42H ;电机转速 CKCN EQU 43H SETP EQU 44H TEMP EQU 45H ORG 0000H STRT: LJMP MAIN ORG 0003H ;外部中断0 LJMP PINT0 ORG 000BH ;定时器0 LJMP PTF0 ORG 0013H LJMP LINT1 ;外部中断1 ORG 0030H PTF0: MOV TH0,#0D0H ;以下是计算转速部分 PUSH Acc PUSH PSW SETB PSW.3 DJNZ SCNT,PTFJ MOV SCNT,#64H MOV A,CKCN MOV B,#0AH ;B为十秒 DIV AB ;先除以10秒 MOV 39H,B ;把值给39H MOV B,#0AH ;B为十次 DIV AB ;除以十次 MOV 3AH,B MOV 3BH,A MOV A,CKCN CJNE A,SETP,PTFX ;观察显示几位,3位还是两位 SJMP PTFY PTFX: JC PTFZ DEC DAOT SJMP PTFY PTFZ: CJNE A,#3,$+3 JC PTFR INC DAOT PTFR: INC DAOT PTFY: MOV CKCN,#0 MOV DPTR,#7FFFH MOV A,DAOT MOVX @DPTR,A MOVX @DPTR,A

PTFJ: NOP POP PSW POP Acc RETI MAIN: MOV SP,#06FH ;堆栈指针赋值 MOV DPTR,#5FFFH ;指向8279命令/状态口 MOV A,#0DCH MOVX @DPTR,A ;送显示RAM清零命令字0DCH LP: MOVX A,@DPTR JB Acc.7,LP ;读8279的状态,直到DU不为1 MOV A,#00H MOVX @DPTR,A MOV A,#34H ;分频系数为20 MOVX @DPTR,A CLR 12H NOP MOV R0,#39H MOV R7,#06H MLP0: MOV @R0,#17H INC R0 DJNZ R7,MLP0 LCALL DIR MOV DAOT,#06FH MOV SCNT,#04H MOV CKCH,#00H MOV CKCN,#00H SETB EA ;开总中断 NOP SETB EX1 ;开外部中断1 NOP CLR IT1 ;设置触发方式 NOP MLP1: LCALL KEYI ANL A,#0FH CJNE A,#0AH,$+3 JNC MLP1 MOV 3EH,A LCALL DIR MLP2: LCALL KEYI ANL A,#0FH CJNE A,#0AH,$+3 JNC MLP2 MOV 3DH,A MOV A,3EH

数字转速表设计

数字转速表设计

数字转速表设计 摘要 本文介绍了霍尔转速传感器的原理霍尔效应,简单介绍了转速传感器的常见类型和工作原理,重点描述了本次设计数字转速表所用到电磁式转速传感器的工作原理。经查阅相关资料,结合所学电子技术设计,设计了能产生方波的时基信号发生器,由与非门构成的选通门电路,LED显示组件电路。最终设计出了由装有永久磁铁的磁盘、选通门电路、时基信号电路、电源计数及数码显示电路等组成数字转速器。 关键词:霍尔传感器;电磁式转速传感器;信号发生器

目录 1.霍尔转速传感器的工作原理和应用 (1) 1.1霍尔效应霍尔元件:霍尔传感器 (1) 2.转速传感器的常见种类及工作原理 (3) 2.1转速传感器的常见种类 (3) 2.2电磁式转速传感器的工作原理和性能优点 (4) 3.数字转速表的电路图及工作原理 (5) 总结 (7) 参考文献 (8)

1.霍尔转速传感器的工作原理和应用 霍尔传感器的工作原理:霍尔电流传感器是根据霍尔原理制成的。它有两种工作方式,即磁平衡式和直式。霍尔电流传感器一般由原边电路、聚磁环、霍尔器件、(次级线圈)和放大电路等组成。霍尔传感器是一种磁传感器。用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔传感器以霍尔效应为其工作基础,是由霍尔元件和它的附属电路组成的集成传感器。霍尔传感器在工业生产、交通运输和日常生活中有着非常广泛的应用。 1.1霍尔效应霍尔元件:霍尔传感器 霍尔效应:如图1-1示,在半导体薄片两端通以控制电流I ,并在薄片的垂直方向施加磁感应强度为B 的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为UH 的霍尔电压, 它们之间的关系为H IB U K d =? 。式中d 为薄片的厚度,k 称为霍尔系数,它的大小与薄片的材料有关。上述效应称为霍尔效应,它是德国物理学家霍尔于1879年研究载流导体在磁场中受力的性质时发现的。 图1-1 霍尔效应 霍尔传感器 :由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。 霍尔传感器也称为霍尔集成电路,其外形较小,如图1-2所示,是其中一种型外形图。

奔驰宝马仪表英文与术语翻译

奔驰宝马仪表英文与术语翻译 奔驰: 1 boot lid open 后行李箱敞开 2 trunk lid open 后行李箱敞开 3 check back-up lights 检查倒车灯 4 check brake fluid 检查制动液 5 check brake lights 检查刹车灯 6 check brake linings 检查制动摩擦片7 check coolant level 检查冷却液液位8 check engine oil level 检查发动机油位9 check front foglamps 检查前雾灯10 check highbeam lights 检查远光灯11 check lowbeam lights 检查近光灯12 check number plate light 检查牌照灯13 check park lights 检查停车灯14 check rear foglights 检查后雾灯15 check reverse lights 检查倒车灯16 check tail lights 检查尾灯17 check tyre/tire pressure 检查轮胎压力18 coolant temperature 冷却液温度19 door open 请关好门20 engine fail safe program 发动机应急运行模式21 fasten seat belts 请系好安全带22 key in ignition lock 钥匙在点火开关内23 lights on 车灯亮着24 outside temperature 室外温度25 owner book/manual 请参考用户手册26 release parking brake 松开驻车制动器27 remote key battery 请更换遥控器电池28 self level susp inact 自标高悬架未激活29 speed limit 限速30 stop engine oil pressure 机油压力低, 请停车31 trans fail safe program 变速箱应急模式32 tyre/tire control inactive 轮胎压力监控功能未激活33 tyre/tire defect 轮胎失压34 washer fluid low

数字转速表中英文翻译

Multifunctional applications to several tables On the rotational speed table design has many available, but mostly by mechanical or simulated digital circuits to achieve.there are large in size,precision low,not visual,electronics large, less functional and sampling time,it is difficult to detect instantaneous rotational speed. as Chanpianji with both small and control functions such strong characteristics,so it widely in control applications.we want multifunctional rotational speed control system is designed to shanpianji as the core to achieve intelligent meters. It is more functional,small electronics,and visual accuracy,showing time,speed warning systems,printing,such as instant rotational speed advantage.in computer hardware and software technology development efforts, and to present such functional single,low precision,size and price of high rotational speed tables are upgrading equipment.currently rotational speed table as a common measurement tool has many coming to market,such as:mechanical,electrical anmech- anical style, electromagnetic-type, photoelectric type.although they are precise Measurements,the use of safe,operate,but the prevailing question is a single function In the current hardware and software to improve the precision and functions on the Basis of achieving a comprehensive equipment upgrading and improving pilot skills. The introduction of new technology developed multifunctional rotational speed table, With general rotational speed table functions,but also with other special functions. From the 1970s, the human acrospace ,transport and weapons industry problems Encountered difficulty in the traditional theory to solve. The need to promote the Development of the productive forces in computer systems technology to develop. Accompanied by computer hardware and software rapid development of technology, Master degrees in multifunctional rotational speed table,function ,performance,and Have a rapid development architecture,has been able to master a complete powerful, Performance quality laser systems. Now Europe and the United States and other Developed countries,laser system technology has been successfully applied to Acrospace ,transportation,ordnance industry,mechanical design,and many other areas, Has atremendous benefit,but also for traditional design testing methods have changed Dramatically. this is the modern market demand for products that do not , how to Improve the success rate of the initial design of the traditional design methodology is a Difficult question.because of its high Chanpianji master degrees,both small and anti- Interference capability and affordable, unique control functions,it has become an im- Portant member of the computer world,applications in one ,only one chanpianji,which Is currently the largest application form,the main application areas are: (1). Monitoring system .shanpianji may constitute a variety of industrial control systems, adaptive systems,data acquisition systems

相关文档
最新文档