基于单片机的频率计设计

基于单片机的频率计设计
基于单片机的频率计设计

目录

摘要 (1)

关键词 (1)

1 引言 (1)

1.1研究背景及意义 (2)

1.2国内外发展现状及研究概况 (2)

2 研究内容和要求 (5)

3 频率计的工作原理 (5)

4 硬件电路的设计 (7)

4.1电路工作原理及设计 (7)

4.2放大整形模块 (7)

4.3单片机控制系统模块 (9)

4.3.1 单片机STC89C52引脚说明及主要特性 (10)

4.3.2 定时器/计数器TMOD的工作原理 (12)

4.4液晶显示模块 (13)

4.4.1 1602液晶基本特性及引脚图 (14)

5 系统软件设计 (15)

5.1初始化阶段 (15)

5.2频率计算阶段 (16)

5.3显示阶段 (16)

6 运行和调试 (16)

6.1测量结果 (17)

6.2误差分析及减小误差措施 (17)

7 总结 (18)

参考文献 (19)

致谢 (20)

附件一电路图 (21)

附件二实物图 (22)

附件三程序 (23)

基于单片机的频率计设计

摘要:本文介绍了一款能够实现对信号源进行测量的基于STC89C52RC单片机的数字频率计。系统主要由整形放大模块,单片机控制模块和显示模块组成。待测信号先送入整形放大模块,将信号整形成闸门可识别的方波信号,再经单片机系统,单片机系统通过定时器、计数器对整形后的方波信号进行脉冲计数,将得到的频率数据在液晶显示屏上进行显示。最终能实现对输入幅度在50mV-5V之间频率在20HZ~400KHZ之间的未知信号进行频率计数,并显示在液晶屏上。

关键词:单片机;频率计;液晶显示

The design of frequency meter based on

MCU

Abstract:This article describes a signal source can be measured to achieve STC89C52RC microcontroller based digital frequency meter. System consists of shaping amplifier module, MCU module and display module. Measured signal is first fed into the shaping amplifier module, the whole forming a square wave signal signal gate identifiable, and then by MCU system, MCU system through the timer, counter to a square wave signal shaping the pulse count, the resulting frequency data displayed on the LCD screen. Eventually realize the magnitude of the input frequencies between 50mV-5V between 20HZ ~ 400KHZ unknown signal frequency count, and displayed on the LCD screen.

Key Words: MCU; frequency counter; LCD

1 引言

随着电子信息产业的发展,频率测量是电子学测量中最为基本的测量之一。由

于频率信号抗干扰性强,易于传输,因此可以获得较高的测量精度。随着数字电子技术的发展,频率测量成为一项越来越普遍的工作,测频原理和测频方法的研究正受到越来越多的关注。而信号作为其最基础的元素,其频率的测量在科技研究和实际应用中的作用日益重要,而且需要测频的范围也越来越宽。传统的频率计通常采用组合电路和时序电路等大量的硬件电路构成,产品不但体积较大,运行速度慢,而且测量范围低,精度低。因此,随着对频率测量的要求的提高,传统的测频的方法在实际应用中已不能满足要求。因此我们需要寻找一种新的测频的方法。随着单片机技术的发展和成熟,用单片机来做为一个电路系统的控制电路逐渐显示出其无与伦比的优越性。

因此本论文采用单片机来做为电路的控制系统,设计一个能测量频率的数字频率计。用单片机来做控制电路的数字频率计,能测量到20Hz-400KHz左右的未知信号。

1.1 研究背景及意义

本论文主要研究用单片机来设计的频率计。因为在电子技术中,随着科学技术的快速发展,频率的测量十分重要,这就要求频率计要不断的提高其测量的精度和速度。在科技以日新月异的速度向前发展,经济全球一体化的社会中,简洁、高效、经济成为人们办事的一大宗旨。在电子技术中这一点表现的尤为突出,人们在设计电路时,都趋向于用尽可能少的硬件来实现,并且尽力把以前由硬件实现的功能部分,通过软件来解决。因为软件实现比硬件实现具有易修改的特点,如简单的修改几行源代码就比在印制电路板上改变几条连线要容易的多,故基于微处理器的电路往往比传统的电路设计具有更大的灵活性。

因为数字频率计是计算机、通讯设备、音频视频等科研生产领域必不可少的测量仪器,所以频率的测量就显得更为重要。在数字电路中,频率计属于时序电路,它主要由具有记忆功能的触发器构成。在计算机及各种数字仪表中,都得到了广泛的应用。

因此,基于单片机的数字频率计必将取代传统的频率计。而它的优势也显而易见,小巧轻便、集成度高、操作简单、易于维护和修改。这些优点无不满足着人们追求经济、高效、精准的目标。

1.2 国内外发展现状及研究概况

由于大规模和超大规模数字集成电路技术、数据通信技术与单片机技术的结合,数字频率计发展进入了智能化和微型化的新阶段。其功能进一步扩大,除了测量频率、频率比、周期、时间、相位、相位差等基本功能外,还具有自捡、自校、

自诊断、数理统计、计算方均根值、数据存储和数据通信等功能。此外,还能测量电压、电流、阻抗、功率和波形等。

国际上数字频率计的分类很多。其中较为有名的厂家为泰科,安捷伦,福禄克等公司。

泰科公司的FCA3000和FCA3100系列定时器/计数器/分析仪提供了高达20 GHz 的测量能力,在一台多功能仪器中实现了多种不同功能。由于其前所未有的分辨率,可以捕获非常小的频率和时间变化。由于业内最完善的分析模式,包括测量统计、直方图和趋势图,可以获得所需工具,迅速准确地分析信号。

安捷伦公司最新的频率计为537A 频率计,测量范围为3.7 至 12.5 GHz。

福禄克公司PM6681高性能计时计频计采用了创新的技术,为时间间隔、频率、相位和抖动的测量树立了新的标准。PM 6681不仅仅是一款计时/计频器,其速度和分辨率都可和最精确的时间和频率调制域分析仪相媲美。与运行TimeView 软件的PC相连接,PM 6681更是具有高档调制域分析仪才有的功能、提供任何所需的测量功能。无论任何测量,只要与频率、时间、计数相关, PM6681和PM6680B计时/计频器就有这些功能。这些仪器有不少于8种计数模式,包括同时向上/向下计数,在一段预定时间内计数等。这些仪器不但具有如相位、占空比、最大/最小值、脉宽和上升/下降时间测量能力,同时还具有4位120MHz峰值读数数字电压表功能。频率范围:PM 6681 和 PM 6680B计时/计频器的频率范围达2.7 GHz,可以校准微波链路、卫星通信和雷达设备。不仅能对连续的载波进行精确地测量,而且还能够测量脉冲串信号。分辨率:PM 6681和PM 6689B的频率分辨率分别达11位/秒和10位/秒,对于通讯系统中的频率测量是非常理想的工具。PM 6681的可以进行长达1 ps的时间间隔测量和50 ps的单次采集,而PM 6680B能进行100 ps的平均测量和250 ps的单次采集。测量功能:频率、频率脉冲、周期、比率、时间间隔、脉宽A、上升和下降时间A、相位A-B、占空因数A、计数A/B和交流/直流电压。

国内目前生产频率计的厂家有盛普,远方,国产等公司。

盛普的SP53131高精度频率计测量范围:通道 A, B:DC~225MHz。通道C:100MHz~1.5GHz(15 型)。它测频分频率达到10 位/秒,测时单次分辨达到100ps,机内采用 16位的高性能单片机进行控制。整机方案采用倒数计数技术和数字内插,摸拟扩展技术,实现仪器的高精度测量。它有频率、周期、计数.时间间隔、脉冲宽度、占空比、频率比、相位等测量功能和强大的数学运算、统计(最大、最小、平均、标准偏差、阿仑方差)功能。该机性能可靠,功能齐全,测量精度高,测频、测时范围宽,灵敏度高.动态范围大,性价比高,使用方便。特别适合于航空航天、导弹、武器等领域的时间测量和晶振,元器件等科研、计量领域的时间、频率测量。优点是采用16位微机处理器,数据处理速度极快。大规模集成电路和CPLD器件,

提高仪器的可靠性。模块化设计,仪器功能增减自如。打印接口标准配置。20×2大字符液晶显示,直观,清晰。新型小型化机箱,外形美观。高可靠性:MTBF>8000h。

远方公司的PF210/PF210A是一款多功能、宽频率、高精度的数字功率计。除基本电参数测量功能外,还具备谐波分析功能、积分功能、变比功能、平均功能、数据存储/调出功能、通讯功能等。仪器可满足DC和0.5Hz~100kHz的信号测量,工频精度可达0.15%,具有极高的性价比,非常适合于精度要求较高的企业质检、研发部门和第三方检测部门。

国产公司的NY-3100P频率计测量范围:1Hz-1000MHz(Hz),应用单片机控制和运算,采用大规模集成电路完成宽带等精度频率测量和周期测量,采用倒计数实现高分辫率。可测频测周期、累计、保持、10MHz标频输出。100KHz以下设低通滤波器,可改善低龋特性,10Hz以下设有DC、AC耦合功能。以改善l0Hz以下低频特性,合理使用更准确。可实现每秒8位数字的测量和显示。特别适用于教育、科研单位。

目前,测量频率的研究方法有直接测频法、内插法、游标法、频差倍增法等等。直接测频的方法较简单,但精度不高。频差倍增多法和周期法是一种频差倍增法和差拍法相结合的测量方法,这种方法是将被测信号和参考信号经频差倍增使被测信号的相位起伏扩大,再通过混频器获得差拍信号,用电子计数器在低频下进行多周期测量,能在较少的倍增次数和同样的取样时间情况下,得到比测频法更高的系统分辨率和测量精度,但是仍然存在着时标不稳而引入的误差和一定的触发误差。

在电子系统广泛的应用领域中,到处看见处理离散信息的数字电路。供消费用的冰箱和电视、航空通讯系统、交通控制雷达系统、医院急救系统等在设计过程中都用到数字技术。数字频率计是现代通信测量设备系统中必不可少的测量仪器,不但要求电路产生频率的准确度和稳定度都高的信号,也要能方便的改变频率。

数字频率计的实现方法主要有:直接式、锁相式、直接数字式和混合式

(1)直接式

优点:速度快、相位噪声低,但结构复杂、杂散多,一般只应用在地面雷达(2)锁相式

优点:相位同步的自动控制,制作频率高,功耗低,容易实现系列化、小型化、模块化和工程化。

(3)直接数字式

优点:电路稳定、精度高、容易实现系列化、小型化、模块化和工程化。

2 研究内容和要求

本设计以单片机为核心,设计一种数字频率计,应用单片机中的定时器/计数器和中断系统等完成频率的测量。满足以下要求:

(1)测量范围在20Hz~400KHz,可测方波,正弦波,三角波

(2)测量误差正负2Hz

(3)频率大于350KHZ蜂鸣器报警,提示达到高频率

(4)液晶显示

待测信号先送入整形放大模块处理成闸门可识别的方波信号,再进入单片机系统,单片机系统通过定时器/计数器对信号进行脉冲计数,将得到的频率数据在液晶显示屏上进行显示。最终能实现对输入幅度在50mV-5V之间频率在20Hz~400KHz 之间的待测信号进行频率计数,输出采用液晶显示.并且在超过350KHz时蜂鸣器报警提示到达高频。频率计的总体设计框图如图2-1所示。

3 频率计的工作原理

数字频率计是直接用十进制数字来显示被测信号频率的一种测量装置,它可以测量正弦波、方波、三角波信号的频率。

其基本原理是,被测信号fs首先经整形电路变成计数器所要求的脉冲信号,频率与被测信号的频率fx相同。时钟电路产生时间基准信号,分频后控制计数与保持状态。当其低电平时,计数器计数;高电平时,计数器处于保持状态,数据送入锁存器进行锁存显示。然后对计数器清零,准备下一次计数。

测频的原理归结成一句话,就是“在单位时间内对被测信号进行计数”。被测信号,送入主门的输入端。由晶体振荡器产生的基频,按十进制分频得出的分频脉冲,经过基选通门去触发主控电路,再通过主控电路以适当的编码逻辑便得到相应的控制指令,用以控制主门电路选通被测信号所产生的矩形波,至十进制计数电路进行直接计数和显示。若在一定的时间间隔T内累计周期性的重复变化次数N,则频率的表达式为式就是T

N

fx/

常用数字频率测量方法有M法(计频法)、T法(测周期法)和M/T法。M法是

在给定的闸门时间内测量被测信号的脉冲个数,进行换算得出被测信号的频率。这种测量方法的测量精度取决于闸门时间和被测信号频率。当被测信号频率较低时将产生较大误差,除非闸门时间取得很大。所以这种方法比较适合测量高频信号的频率。T 法是通过测量被测信号的周期然后换算出被测信号的频率。这种测量方法的测量精度取决于被测信号的周期和计时精度,当被测信号频率较高时,对计时精度的要求就很高。这种方法比较适合测量频率较低的信号。M/T 法具有以上两种方法的优点,它通过测量被测信号数个周期的时间然后换算得出被测信号的频率,可兼顾低频与高频信号,提高了测量精度。M/T 法虽然结合了M 法和T 法各自的优点,在高、低频测量中都能得到较高精度,但MIT 法在M 法、T 法的切换频率点处存在较大误差,且测量时问波动较大。

由于本次设计的实际测量范围为20Hz ~400KHz 左右,主要是针对在低频段的测量,且由于单片机具有程序运算功能,频率为周期的倒数,这样使得频率测量与周期测量可以互通,故此次设计采用T 法(测周期法)。其原理图如图3-1所示:

图3-1 间接测量法原理图

数字频率计测频率时的流程框图如图3-2。

被测闸门信号

高频基准信号

实际检出已知信号

图3-2 测频率时的流程框图

其中整形电路作用:将被测信号变成脉冲信号,其重复频率等于被测频率fx。时间基准信号发生器提供标准的时间脉冲信号,其周期为1s。

闸门信号由标准秒信号进行控制,当秒信号来到时,闸门开通,被测脉冲信号通过闸门送到计数译码显示电路。秒信号结束时闸门关闭,计数器停止计数。在使用计数器方法实现频率测量时,这时外部的待测信号位定时、计数器的计数源,利用软件延迟程序实现计数闸门。

在使用定时方法实现频率测量时,这时外部的待测信号通过频率计的预处理电路变成宽度等于待测信号周期的方波,该方波同样加至定时/计数器的输入脚。这时频率计的工作过程为:首先定时/计数器的计数寄存器清0,然后检测方波高电平是否加至定时/计数器的输入脚,当判定高电平加至定时/计数器的输入脚,运行控制位TR置1,启动定时/计数器对单片机的机器周期的计数,同时检测方波高电平是否结束;当判定高电平结束时TR清0,停止计数,然后从计数器存期读出测量数据,在完成数据处理后,由显示电路显示测量结果。

4 硬件电路的设计

4.1 电路工作原理及设计

基于STC89C52RC单片机的频率计的测量范围为20Hz到400KHz.采用小数点2位显示以确保其显示精度。频率计由放大整形模块,STC89C52RC单片机模块、1602液晶显示器模块和系统软件构成。整个系统采用模块化思想构建。即简化了硬件电路的设计,又易于理解。频率计基本的工作原理是将输入信号经由放大整形模块处理成单片机可以识别的方波信号。再由单片机采样并测量频率值.最后由1602液晶显示器显示频率值。

4.2 放大整形模块

放大整形模块用来对待测信号的前端处理。它将输入的三角波、方波或者正弦

波等信号整形成同频率等幅方波。由于输入的信号幅度是不确定、可能很大也有可能很小,这样对于输入信号的测量就不方便了,过大可能会把器件烧毁,过小可能器件检测不到,所以在设计中采用集成运放OP07和电压比较器LM393组成调理电路对输入的波形进行阻抗变换、放大限幅和整形。图4-1为LM393以及OP07的引脚图。

图4-1 OP07引脚图

放大整形电路的具体硬件设计如下:

1.信号放大部分:在图4-2中,输入被测量的50mV左右的交流信号由限流R2电阻进入OP07芯片的“-”端进行信号反相放大,在信号的输入端加了一个100K 的电位器RV1,这个电位器主要用来根据不同信号的幅度大小来调整对输入信号的放大倍数,OP07放大后的信号直接送入LM393的“+”端进行波形的整形。此外,集成运放OP07采用了+15V到-15V的输出信号大的动态范围,能够对输入信号进行足够的放大。

2.信号整形部分:在图4-2中,LM393对OP07送过来的放大信号要与LM393“-”端的参考电压进行比较,本次设计对LM393“-”端的参考电压采用的是OV,也就是直接接地端。如果LM393“+”端的输入信号大于参考电压时,则LM393输出高电平+5V;如果LM393“+”端的输入信号小于参考电压时,则LM393输出低电平0V。这样就完成了信号的整形,输出为高电平+5V,低电压0V的方波信号。此外,由于LM393是开漏输出,所以还要加一3K的上拉电阻R4。

4.3 单片机控制系统模块

本系统单片机控制模块如图4-3所示,主要由STC89C52RC、时钟晶振(12M晶

振)、排阻等构成。

时钟电路:时钟是单片机的心脏,单片机各功能部件的运行都是以时钟频率为基准,有条不紊地一拍一拍地工作。因此,时钟频率直接影响单片机的速度,时钟电路的质量也直接影响单片机系统稳定性。

电路中的电容典型值通常选择30pF左右,该电容大小会影响振荡器频率的高低、振荡器的稳定性、起振的快速性和温度的稳定性。晶振的振荡器频率的范围通常在1.2~12MHz之间,晶体的频率越高,则系统得时钟频率也就变高,单片机的运行速度也就越快。但反过来运行速度快,对存储器的速度要求就高。对印刷电路板的工艺要求也高,即要求浅间的寄生电容要小;晶体和电容应尽可能安装得与单片机芯片靠近,以减少寄生生活,更好的保证振荡器稳定,可靠地工作。本设计采用12MHz晶振,并联两个30pF瓷片电容C1及C2构成时钟电路。

整形后的方波信号从p3.4(单片机13引脚)口进入单片机,由定时器/计数器TMOD对频率进行测量。

4.3.1 单片机STC89C52引脚说明及主要特性

图4-4 STC89C52RC引脚图

VCC(40引脚):电源电压

VSS(20引脚):接地

P0端口(P0.0~P0.7,39~32引脚):P0口是一个漏极开路的8位双向I/O

口。作为输出端口,每个引脚能驱动8个TTL负载,对端口P0写入“1”时,可以作为高阻抗输入。在访问外部程序和数据存储器时,P0口也可以提供低8位地址和8位数据的复用总线。此时,P0口内部上拉电阻有效。在Flash ROM编程时,P0端口接收指令字节;而在校验程序时,则输出指令字节。验证时,要求外接上拉电阻。

P1端口(P1.0~P1.7,1~8引脚):P1口是一个带内部上拉电阻的8位双向I/O口。P1的输出缓冲器可驱动(吸收或者输出电流方式)4个TTL输入。对端口写入1时,通过内部的上拉电阻把端口拉到高电位,这是可用作输入口。P1口作输入口使用时,因为有内部上拉电阻,那些被外部拉低的引脚会输出一个电流。

P2端口(P2.0~P2.7,21~28引脚):P2口是一个带内部上拉电阻的8位双向I/O端口。P2的输出缓冲器可以驱动(吸收或输出电流方式)4个TTL输入。对端口写入1时,通过内部的上拉电阻把端口拉到高电平,这时可用作输入口。P2作为输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流

P3端口(P3.0~P3.7,10~17引脚):P3是一个带内部上拉电阻的8位双向I/O 端口。P3的输出缓冲器可驱动(吸收或输出电流方式)4个TTL输入。对端口写入1时,通过内部的上拉电阻把端口拉到高电位,这时可用作输入口。P3做输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输入一个电流RST(9引脚):复位输入。当输入连续两个机器周期以上高电平时为有效,用来完成单片机单片机的复位初始化操作。看门狗计时完成后,RST引脚输出96个晶振周期的高电平。特殊寄存器AUXR(地址8EH)上的DISRTO位可以使此功能无效。DISRTO默认状态下,复位高电平有效。

ALE/(30引脚):地址锁存控制信号(ALE)是访问外部程序存储器时,锁存低8位地址的输出脉冲。在Flash编程时,此引脚也用作编程输入脉冲。

PSEN(29引脚):外部程序存储器选通信号是外部程序存储器选通信号。当AT89C51RC从外部程序存储器执行外部代码时,在每个机器周期被激活两次,而访问外部数据存储器时,将不被激活。

/VPP(31引脚):访问外部程序存储器控制信号。为使能从0000H到FFFFH的外部程序存储器读取指令,必须接GND。注意加密方式1时,将内部锁定位RESET。为了执行内部程序指令,应该接VCC。在Flash编程期间,也接收12伏VPP电压。XTAL1(19引脚):振荡器反相放大器和内部时钟发生电路的输入端。

XTAL2(18引脚):振荡器反相放大器的输入端。

主要特性如下:

增强型8051单片机,6时钟/机器周期和12时钟/机器周期可以任意选择,指令代码完全兼容传统8051.

?工作电压:5.5V~3.3V(5V单片机)/3.8V~2.0V(3V单片机)

?工作频率范围:0~40MHz,相当于普通8051的0~80MHz,实际工作频率可达48MHz

?用户应用程序空间为8K字节

?片上集成512字节RAM

?通用I/O口(32个),复位后为:P1/P2/P3/P4是准双向口/弱上拉,P0口是漏极开路输出,作为总线扩展用时,不用加上拉电阻,作为I/O口

用时,需加上拉电阻。

?ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器,无需专用仿真器,可通过串口(RxD/P3.0,TxD/P3.1)直接下载用户程序,

数秒即可完成一片

?具有EEPROM功能

?具有看门狗功能

?共3个16位定时器/计数器。即定时器T0、T1、T2

?外部中断4路,下降沿中断或低电平触发电路,Power Down模式可由外部中断低电平触发中断方式唤醒

?通用异步串行口(UART),还可用定时器软件实现多个UART

?工作温度范围:-40~+85℃(工业级)/0~75℃(商业级)

?PDIP封装

4.3.2 定时器/计数器TMOD的工作原理

定时器/计数器TMOD的工作原理。如图4-5所示。

图4-5 TMOD的工作原理图

当控制信号0/=T C 时,定时器工作在定时方式。加1计数器对脉冲f 进行计数,每来一个脉冲计数器加1,直到计数器计满溢出。由上图可以看出,脉冲f 是振荡器时钟频率0f 的12分频,即脉冲频率f 为时钟频率0f 的1/12。显然,一个计数脉冲的周期为一个机器周期。计数器计数的是机器周期脉冲的个数,从而实现定时。可知,定时器的定时时间不仅与加1计数器的初值(计数器中的起始值,即计数长度)有关,而且还与系统振荡器时钟频率0f 有关。

当控制信号1/=T C 时,定时器工作在计数方式。加1计数器对来自输入引脚T0和T1的外部信号脉冲计数。

4.4 液晶显示模块

频率输出采用1602液晶显示器显示,7-14脚为1602数据口,分别接单片机的P0.0-P0.7口;单片机的P2.0口接1602的复位脚RS(4脚);单片机的P2.3口接1602的读/写控制脚RW (5脚);单片机的P2.1口接1602的使能端E (6脚);通过一个10K 的电位器调整VEE 电压改变液晶对比度,对比度调节不当时会产生“鬼影”。通过这种连接方式,就可以实现单片机对1602控制显示测得频率数值。液晶显示模块连接如图4-6所示。

图4-6 1602液晶模块图

4.4.1 1602液晶基本特性及引脚图

工业字符型液晶,能够同时显示16x02即32个字符。(16列2行)

1602液晶也叫1602字符型液晶,它是一种专门用来显示字母、数字、符号等的点阵型液晶模块。它由若干个5X7或者5X11等点阵字符位组成,每个点阵字符位都可以显示一个字符,每位之间有一个点距的间隔,每行之间也有间隔,起到了字符间距和行间距的作用,正因为如此所以它不能很好地显示图形(用自定义CGRAM,显示效果也不好)。

这里介绍常用的字16字X2行的字符型液晶模块的使用方法。这是一种通用模块。与数码管相比该模块有如下优点:

1.位数多,可显示32位,32个数码管体积相当庞大了

2.显示内容丰富,可显示所有数字和大、小写字母

3.程序简单,如果用数码管动态显示,会占用很多时间来刷新显示,而1602自动完成此功能。

1602采用标准的16脚接口,其中:(模块背面有标注)

第1脚:VSS为地电源

第2脚:VDD接5V正电源

第3脚:V0为液晶显示器对比度调整端,接正电源时对比度最弱,接地电源时对比度最高,对比度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整对比度(建议接地,弄不好有的模块会不显示)

第4脚:RS为寄存器选择,高电平时选择数据寄存器、低电平时选择指令寄存器。

第5脚:RW为读写信号线,高电平时进行读操作,低电平时进行写操作。

第6脚:E端为使能端,当E端由高电平跳变成低电平时,液晶模块执行命令。

第7~14脚:D0~D7为8位双向数据线。

第15~16脚:空脚(有的用来接背光)

5 系统软件设计

软件流程主要包括三个部分:初始化阶段、频率计算阶段、最终的显示阶段。各个阶段完成各自的任务.这样模块化处理可以减少出现差错的概率。即使出现差错.也可以准确的找出有问题的模块并进行改进。系统流程框图如5-1所示。

图5-1 系统软件流程总图

5.1 初始化阶段

中断允许总控制位EA=l,CPU开放所有的中断请求;EX0=1允许外部中断0中断,ETI=1,允许T1溢出中断。使ITO=l控制外部中断触发类型为后沿触发:TMOD=0x20定时器工作在模式2下。TRl=1定时器运行控制位.这里使其处于接通工作状态。初始化THl=0xec.TLl=Oxec。每当T1l溢出时,THl中的内容重新装人到TLl中。这样使得每隔lOus重新装入一次。在程序执行过程中.不断地产生外中断和定时器中断,定时器中断每溢出一次为10us,那么溢出100次的时间为1MS.实现了计时的功能。通过两个中断单片机就可以采样频率的个数和时间。获

取这两个数据就可以计算频率。

5.2 频率计算阶段

先取10ms,如果单片机采样信号的个数为n>=1000时,那么频率表达式为:f=100*n。这时的频率大于100KHZ;当取lOOms时.如果单片机采样信号的个数为n>=1000时,那么频率表达式为:f=10*n。这时的频率大于10KHZ;当取1000ms时,如果单片机采样信号的个数为n>=1000时.那么频率表达式为:f=n,这时的频率大于1KHZ。对于高频来说单个脉冲的时间间隔很小,这样的计算误差很小。这种算法对于高频信号处理相当简洁。对于低频信号需采用其它算法来实现频率计算.这里分两部分来处理。当频率大于lOOHz小于1KHz时,在计算频率时多计数两次,这样可提高计算精度。时间部分time=重装次数/100+ms。最终频率表达式为:f=n/time*1000.0。对于低于100Hz的频率。如果再采用上述方法相对来说其精度会受到很大的影响。误差主要产生在计数上.计数是从下降沿开始.而计时部分不能保证总是从下降沿开始。如果还是采用上述的方法来计算频率误差相对很大,这里不宜采用。采用另一种方法,通过单片机采样一个脉宽的时间t,频率f=l/t.这样处理对于低频可以保证精确。频率的计算阶段是整个频率计的核心.运用不同的算法处理不同的频率可以使频率计更精确的测量频率。

5.3 显示阶段

采用1602液晶显示器,先把信号转化成ASCII码,再输入1602液晶显示器.通过显示器程序就可以所测的频率显示在液晶屏上。由于主程序是不断的循环执行.液晶显示器就可以不断地动态的显示所测的频率。

6 运行和调试

经软件的调试—修改—再调试,如此反复,排除各种故障最终基本完成了设计所要求的任务。由单片机内部定时器/计数器构成基本测量电路,由系统软件设计可以测出20HZ-400KHZ的量程范围,使用的动态显示测量时会出现闪烁现象,但显示数值准确,稳定时显示不闪烁,并在350KHZ时蜂鸣器报警。

6.1 测量结果

表格 6-1 Hz档的频率测量数据表(方波)

20 30 40 60 80 100

待测值

(Hz)

19 29 41 58 79 101

测量值

(Hz)

6.2 误差分析及减小误差措施

(1)单片机计数速率的限制引起误差。从表2测量数据可以看出被测信号频率越

高,测量误差越大,且所测信号频率不能超过480 kHz。这是因为采用的是12 MHz

的晶振,单片机最大计数速度为500 kHz,所以当被测信号越接近500 kHz时,测

量结果与实际频率的误差就越大。而当被测信号大于500 kHz时,频率计将测不出

信号频率

(2)晶振的准确度会影响一秒定时的准确度,从而引起测量结果误差。

对以上测量结果进行分析,计算其测量的精确度。并在KHZ档对方波,三角波,正弦波都进行了测量。误差计算大约在±2Hz左右,误差在允许范围内,所设计的电路基本符合要求。根据以上分析,可以采用以下方法来减小误差。

1、选用频率较高和稳定性好的晶振。如选24 kHz的晶振可使测量范围扩大稳定性好的晶振可以减小误差。

2、测量频率较高的信号时,可先对信号进行分频,再进行测量。

7 总结

数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,会被经常使用到。

这个频率计就设计而言相对简单,但其频率的测量范围满足需求,软件编程易于实现,误差是在允许的范围内。此次设计的数字频率计达到了测量频率的目的,但在实际制作和测试过程中,由于自己知识有限,时间短和经验不足等原因,还是出现了一些问题和需要继续改进、完善的地方。例如:在制PCB板时,焊接电路板仍会有虚焊。在编写程序时,对语言的不熟悉也增加了编程的难度,效率低下。由于单片机内部具有丰富的存储资源和强大的数据处理能力,因此采用单片机设计的数字频率计只需要改动很少的硬件部分就可以和其他的自动化仪表组成多功能控制系统,测量速度得到提高,用于连续测量的控制系统是非常有价值和意义的。

参考文献

[1] 谢煌,黄为.基于VHDL语言设计频率计[J].北京现代电子技术,2003,14.

[2] 李吉志.基于单片机的频率计和液晶显示系统设计[J].科技广场,2010(3):163-165.

[3] 张俊谟. 单片机中级教程[M]. 北京:北京航空航天大学出版社,1999.

[4] 张国兴.用单片机制作数字频率计[J].电子制作,2005.

[5] 钱进.基于AT89C2051的高精度数字频率计的设计.机电产品开发与创新,2007.20(1):86-87.

[6]施剑鸣.单片机测频技术及测量精度的提高[A].江苏省计量测试学会2005年论文集

[C],2005.

[7]刘雪根.数字频率计的误差分析[J].自动化与仪表,1996,3:23-24.

[8]顾巨峰,周浩洋,朱建华.基于可编程逻辑器件(Lattice)的多功能数字频率计[J].电子工程师,2002,1:28-32.

[9] Dawei Fan,Centeno,V.Phasor-Based Synchronized Frequency Measurement in Power Systems.Power Delivery,IEEE Transactions Oil,2007.

[10]The measurement of oil consumption on engine[A],Proceedings of 4th International Symposium on Test and Measurement(Volume 2) [C],2001.

基于单片机的简单频率计课程设计报告

《单片机原理与接口技术》课程设计报 告 频率计

1功能分析与设计目标 (1) 2频率计的硬件电路设计 (3) 2.1 控制、计数电路 (3) 2.2 译码显示电路 (5) 3频率计的软件设计与调试 (6) 3.1软件设计介绍 (6) 3.2程序框图 (8) 3.3功能实现具体过程 (8) 3.4测试数据处理,图表及现象描述 (10) 4讨论 (11) 5心得与建议 (12) 6附录(程序及注释) (13)

1功能分析与设计目标 背景: 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。为了实现智能化的计数测频,实现一个宽领域、高精度的频率计,一种有效的方法是将单片机 用于频率计的设计当中。用单片机来做控制电路的数字频率计测量频率精度高,测量频率的范围得到很大的提高。 题目要求: 用两种方法检测(Δm,△ T)要求显示单位时间的脉冲数或一个脉冲的周期。 设计分析: 电子计数式的测频方法主要有以下几种:脉冲数定时测频法(M法),脉冲周期测频法(T法),脉冲数倍频测频法(AM法),脉冲数分频测频法(AT法),脉冲平均周期测频法(M/T法),多周期同步测频法。下面是几种方案的具体方法介绍。 脉冲数定时测频法(M法):此法是记录在确定时间TC内待测信号的脉冲个数MX ,则待测频率为: FX=MXZ TC 脉冲周期测频法(T法):此法是在待测信号的一个周期TX内,记录标准频率信号变化次数MO。这种方法测出的频率是: FX=MOZTX 脉冲数倍频测频法(AM法):此法是为克服M法在低频测量时精度不高的缺陷发展起来的。通过A倍频,把待测信号频率放大A倍,以提高测量精度。其待测频率为: FX=MXZATO 脉冲数分频测频法(AT法):此法是为了提高T法高频测量时的精度形成的。由于T法测量时要求待测信号的周期不能太短,所以可通过A分频使待测信号 的周期扩大A倍,所测频率为: FX=AMO/Tx

单片机简易频率计课程设计

前言 (3) 一、总体设计 (4) 二、硬件设计 (6) AT89C51单片机及其引脚说明: (6) 显示原理 (8) 技术参数 (10) 电参数表 (10) 时序特性表 (11) 模块引脚功能表 (12) 三、软件设计 (12) 四、调试说明 (15) 五、使用说明 (17) 结论 (17) 参考文献 (18)

附录 (19) Ⅰ、系统电路图 (19) Ⅱ、程序清单 (20)

前言 单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录像机、摄像机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。更不用说自动控制领域的机器人、智能仪表、医疗器械以及各种智能机械了。因此,单片机的学习、开发与应用在生活中至关重要。 随着电子信息产业的不断发展,信号频率的测量在科技研究和实际应用中的作用日益重要。传统的频率计通常是用很多的逻辑电路和时序电路来实现的,这种电路一般运行缓慢,而且测量频率的范围比较小.考虑到上述问题,本论文设计一个基于单片机技术的数字频率计。首先,我们把待测信号经过放大整形;然后把信号送入单片机的定时计数器里进行计数,获得频率值;最后把测得的频率数值送入显示电路里进行显示。本文从频率计的原理出发,介绍了基于单片机的数字频率计的设计方案,选择了实现系统得各种电路元器件,并对硬件电路进行了仿真。

一、总体设计 用十进制数字显示被测信号频率的一种测量装置。它以测量周期的方法对正弦波、方波、三角波的频率进行自动的测量. 所谓“频率”,就是周期性信号在单位时间(1s)内变化的次数。若在一定时间间隔T内测得这个周期性信号的重复变化次数N,则其频率可表示为f=N/T。其中脉冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等于被测频率f x。时间基准信号发生器提供标准的时间脉冲信号,若其周期为1s,则门控电路的输出信号持续时间亦准确地等于1s.闸门电路由标准秒信号进行控制,当秒信号来到时,闸门开通,被测脉冲信号通过闸门送到计数译码显示电路。秒信号结束时闸门关闭,计数器停止计数。由于计数器计得的脉冲数N是在1秒时间内的累计数,所以被测频率fx=NHz。 本系统采用测量频率法,可将频率脉冲直接连接到AT89C51的T0端,将T/C1用做定时器。T/C0用做计数器。在T/C1定时的时间里,对频率脉冲进行计数。在1S定时内所计脉冲数即是该脉冲的频率。见图1: 图1测量时序图 由于T0并不与T1同步,并且有可能造成脉冲丢失,所以对计数器T0做一定的延时,以矫正误差。具体延时时间根据具体实验确定。 根据频率的定义,频率是单位时间内信号波的个数,因此采用上述各种方案

单片机课程设计报告——智能数字频率计汇总

单片机原理课程设计报告题目:智能数字频率计设计 专业:信息工程 班级:信息111 学号:*** 姓名:*** 指导教师:*** 北京工商大学计算机与信息工程学院

1、设计目的 (1)了解和掌握一个完整的电子线路设计方法和概念; (2)通过电子线路设计、仿真、安装和调试,了解和掌握电子系统研发产品的一个基本流程。 (3)了解和掌握一些常见的单元电路设计方法和在电子系统中的应用: 包括放大器、滤波器、比较器、计数和显示电路等。 (4)通过编写设计文档与报告,进一步提高学生撰写科技文档的能力。 2、设计要求 (1)基本要求 设计指标: 1.频率测量:0~250KHz; 2.周期测量:4mS~10S; 3.闸门时间:0.1S,1S; 4.测量分辨率:5位/0.1S,6位/1S; 5.用图形液晶显示状态、单位等。 充分利用单片机软、硬件资源,在其控制和管理下,完成数据的采集、处理和显示等工作,实现频率、周期的等精度测量方案。在方案设计中,要充分估计各种误差的影响,以获得较高的测量精度。 (2)扩展要求 用语音装置来实现频率、周期报数。 (3)误差测试 调试无误后,可用数字示波器与其进行比对,记录测量结果,进行误差分析。 (4)实际完成的要求及效果 1.测量范围:0.1Hz~4MHz,周期、频率测量可调; 2.闸门时间:0.05s~10s可调; 3.测量分辨率:5位/0.01S,6位/0.1S; 4.用图形液晶显示状态、单位(Hz/KHz/MHz)等。 3、硬件电路设计 (1)总体设计思路

本次设计的智能数字频率计可测量矩形波、锯齿波、三角波、方波等信号的频率。系统共设计包括五大模块: 主芯片控制模块、整形模块、分频模块、档位选择模块、和显示模块。设计的总的思想是以AT89S52单片机为核心,将被测信号送到以LM324N为核心的过零比较器,被测信号转化为方波信号,然后方波经过由74LS161构成的分频模块进行分频,再由74LS153构成的四选一选择电路控制档位,各部分的控制信号以及频率的测量主要由单片机计数及控制,最终将测得的信号频率经LCD1602显示。 各模块作用如下: 1.主芯片控制模块: 单片机AT89S52 内部具有2个16位定时/计数器T0、T1,定时/计数器的工作可以由编程来实现定时、计数和产生计数溢出时中断要求的功能。利用单片机的计数器和定时器的功能对被测信号进行计数。以AT89S52 单片机为控制核心,来完成对各种被测信号的精确计数、显示以及对分频比的控制。利用其内部的定时/计数器完成待测信号周期/频率的测量。 2.整形模块:整形电路是将一些不是方波的待测信号转化成方波信号,便于测量。本设计使用运放器LM324连接成过零比较器作为整形电路。 3.分频模块: 考虑单片机利用晶振计数,使用11.0592MHz 时钟时,最大计数速率将近500 kHz,因此需要外部分频。分频电路用于扩展单片机频率测量范围,并实现单片机频率测量使用统一信号,可使单片机测频更易于实现,而且也降低了系统的测频误差。本设计使用的分频芯片是74LS161实现4分频及16分频。 4.档位选择模块:控制74LS161不分频、4分频或者 16分频,控制芯片是74LS153。 5.显示模块:编写相应的程序可以使单片机自动调节测量的量程,并把测出的频率数据送到显示电路显示,本设计选用LCD1602。 (2)测频基本设计原理 所谓“频率”,就是周期性信号在单位时间(1s)内变化 的次数。若在一定时间间隔T内测得这个周期性信号的重复变 化次数N,则其频率可表示为f=N/T(右图3-1所示)。其中脉 冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等 。利用单片机的定时/计数T0、T1的定时、计数 于被测频率f x 功能产生周期为1s的时间脉冲信号,则门控电路的输出信号持图3-1

高精度单片机频率计的设计

《综合课程设计》 一.数字频率计的设计 姓名:万咬春学号2005142135 一、课程设计的目的 通过本课程设计使学生进一步巩固光纤通信、单片机原理与技术的基本概念、基本理论、分析问题的基本方法;增强学生的软件编程实现能力和解决实际问题的能力,使学生能有效地将理论和实际紧密结合,拓展学生在工程实践方面的专业知识和相关技能。 二、课程设计的内容和要求 1.课程设计内容 (硬件类)频率测量仪的设计 2.课程设计要求 频率测量仪的设计 要求学生能够熟练地用单片机中定时/计数、中断等技术,针对周期性信号的特点,采用不同的算法,编程实现对信号频率的测量,将测量的结果显示在LCD 1602 上,并运用Proteus软件绘制电路原理图,进行仿真验证。 三.实验原理 可用两种方法测待测信号的频率 方法一:(定时1s测信号脉冲次数) 用一个定时计数器做定时中断,定时1s,另一定时计数器仅做计数器使用,初始化完毕后同时开启两个定时计数器,直到产生1s中断,产生1s中断后立即关闭T0和T1(起保护程序和数据的作用)取出计数器寄存器内的值就是1s内待测信号的下跳沿次数即待测信号的频率。用相关函数显示完毕后再开启T0和T1这样即可进入下一轮测量。 原理示意图如下:

实验原理分析: 1.根据该实验原理待测信号的频率不应该大于计数器的最大值65535,也就是说待测信号应小于65535Hz。 2.实验的误差应当是均与的与待测信号的频率无关。 方法二(测信号正半周期) 对于1:1占空比的方波,仅用一个定时计数器做计数器,外部中断引脚作待测信号输入口,置计数器为外部中断引脚控制(外部中断引脚为“1”切TRx=1计数器开始计数)。单片机初始化完毕后程序等待半个正半周期(以便准确打开TRx)打开TRx,这时只要INTx (外部中断引脚)为高电平计数器即不断计数,低电平则不计数,待信号从高电平后计数器终止计数,关闭TRx保护计数器寄存器的值,该值即为待测信号一个正半周期的单片机机器周期数,即可求出待测信号的周期:待测信号周期T=2*cnt/(12/fsoc) cnt为测得待测信号的一个正半周期机器周期数;fsoc为单片机的晶振。所以待测信号的频率f=1/T。 原理示意图如下: 实验原理分析: 1.根据该实验原理该方法只适用于1:1占空比的方波信号,要测非1:1占空比的方波信号 2.由于有执行f=1/(2*cnt/(12/fsoc))的浮点运算,而数据类型转换时未用LCD 浮点显示,故测得的频率将会被取整,如1234.893Hz理论显示为1234Hz,测 得结果会有一定程度的偏小。也就是说测量结果与信号频率的奇偶有一定关 系。 3.由于计数器的寄存器取值在1~65535之间,用该原理时,待测信号的频率小于单片机周期的1/12时,单片机方可较标准的测得待测信号的正半周期。故用 该原理测得信号的最高频率理论应为fsoc/12 如12MHZ的单片机为1MHz。 而最小频率为f=1/(2*65535/(12/fsoc))如12MHZ的单片机为8Hz。 四.实验内容及步骤 1. 仿真模型的构建 数字方波频率计的设计总体可分为两个模块。一是信号频率测量,二是将测得的频率数据显示在1602液晶显示模块上。因此可搭建单片机最小系统构建构建频率计的仿真模型。原理图,仿真模型的总原理图如下:

单片机课设——频率计的设计——C语言编程

沈阳工程学院 ┊┊ 课程设计 设计题目:频率计程序设计 系别自控系班级测控本091 学生姓名学号 指导教师职称教授 起止日期: 2012 年1月2日起——至2012 年1月13日止

沈阳工程学院 课程设计任务书 课程设计题目:频率计程序设计 系别自控系班级 学生姓名学号 2009308119 指导教师职称教授 课程设计进行地点: F422 任务下达时间: 2012 年 1 月 2 日 起止日期:2012年1月2日起——至2012年1月13日止教研室主任 2012 年1月2日批准

频率计的设计 1.设计主要内容及要求; 编写频率计程序。 要求:1)能够测量频率并显示。 2)能够进行闸门时间选择。 2.对设计论文撰写内容、格式、字数的要求; (1).课程设计论文是体现和总结课程设计成果的载体,一般不应少于3000字。 (2).学生应撰写的内容为:中文摘要和关键词、目录、正文、参考文献等。课程设计论文的结构及各部分内容要求可参照《沈阳工程学院毕业设计(论文)撰写规范》执行。应做到文理通顺,内容正确完整,书写工整,装订整齐。 (3).论文要求打印,打印时按《沈阳工程学院毕业设计(论文)撰写规范》的要求进行打印。 (4). 课程设计论文装订顺序为:封面、任务书、成绩评审意见表、中文摘要和关键词、目录、正文、参考文献。 3.时间进度安排;

沈阳工程学院 C8051F020单片机原理及应用课程设计成绩评定表

中文摘要 在人们的日常生活中,频率的测量无处不在。随着科学技术的发展,尤其是单片机技术和半导体技术的高速发展,频率计的研究及应用越来越受到重视,这样对频率测量设备的要求也越来越高。单片机是一门发展极快应用方式极其灵活的使用技术。他以灵活的设计、微小的功耗、低廉的成本,在数据采集、过程控制、模糊控制、智能仪表等领域得到广泛的应用,极大的提高了这些领域的技术水平和自动化程度。 在电子技术测量中,频率是最基本的参数之一,设计一种快速准确的频率计显得尤为重要。该数字频率计的设计主要实现用数字显示被测信号的频率,该设计是以51单片机作为核心,与传统频率计相比该设计具有更高的测量精度和速度,具有各种中断处理能力,并且具有丰富的数字输入输出口和通信口等。该频率计的设计在软件上编写,并采用计数式测频方法,通过单片机外围电路中由振荡电路产生的闸门信号进行计时,并对整形后的被测信号进行脉冲计数以得到被测信号的频率值。由于低频信号照成了较大的量化误差,可在测量低频信号的时候延长闸门时间信号,以提高测量精度。 数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字显示被测信号频率的数字测量仪器。它的基本功能是测量正弦信号、方波信号及其他单位时间内变化的物理量。在设计中应用单片机的数学运算和控制功能,来实现测量量程的自动切换,既满足测量精度的要求,又满足系统反应时间的要求。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显式、测量迅速、精确度高、显示直观、所以经常用到频率计。 51系列单片机是国内目前应用最广泛的一种8位单片机之一,随着嵌入式系统、片上系统等概念的提出和普遍接受及应用。51系列及其衍生单片机还会在继后很长一段时间占据嵌入式系统产品的低端市场,因此,作为新世纪的大学生,在信息产业高速发展的今天,掌握单片机的基本结构、原理和使用时非常重要的。 总之,频率计的设计是进行更深层次频率测量的基石。 关键词单片机,频率测量,分频器,硬件,软件

基于单片机的数字频率计设计

江阴职业技术学院 毕业论文 课题:基于单片机的数字频率计的设计 专业电子信息工程 学生姓名冯海洋 班级08电子信息工程(1)班 学号20080305107 指导教师张文洁 完成日期

目录 摘要?错误!未定义书签。 前言................................................................................................... 错误!未定义书签。第一章绪论............................................................................................... 错误!未定义书签。 1.1课题背景?错误!未定义书签。 1.2 课题研究的目的和意义 ................................................................. 错误!未定义书签。 1.4数字频率计设计的任务与要求?错误!未定义书签。 第二章数字频率计总体方案设计............................................................... 错误!未定义书签。 1.1方案比较 .......................................................................................... 错误!未定义书签。 1.2方案论证......................................................................................... 错误!未定义书签。 1.3方案选择......................................................................................... 错误!未定义书签。 第三章数字频率计的硬件系统设计........................................................... 错误!未定义书签。 3.1数字频率计的硬件系统框架...................................................... 错误!未定义书签。 3.2 数字频率计的主机电路设计?错误!未定义书签。 3.3数字频率计的信号输入电路设计................................................... 错误!未定义书签。 3.4数字频率计显示电路的设计 ........................................................... 错误!未定义书签。 3.5数字频率计的计数电路的设计?错误!未定义书签。 3.6数字频率计电源模块的设计?错误!未定义书签。 第四章数字频率计软件系统设计?错误!未定义书签。 4.1 软件设计规划................................................................................. 错误!未定义书签。 4.1.1信号处理............................................................................ 错误!未定义书签。 4.1.2中断控制................................................................................. 错误!未定义书签。 4.2.1定时器/计数器?错误!未定义书签。 4.2.2定时工作方式0..................................................................... 错误!未定义书签。 4.3程序流程图设计................................................................................ 错误!未定义书签。

单片机数字频率计设计

目录 第一章摘要 (2) 第二章系统总体方案设计 (2) 2.1 总体思路设计 (2) 2.2 测频原理 (3) 第三章系统硬件设计 (4) 3.1 AT89S51单片机引脚的介绍 (4) 3.2 锁存器74HC573引脚的介绍 (6) 3.3 译码器74HC138引脚介绍 (7) 3.4 放大整形模块 (7) 3.5 显示模块设计 (8) 3.6 键盘电路设计 (9) 3.7 复位电路和时钟产生电路设计 (10) 3.8 +5V电源设计 (11) 3.9 系统整体原理图 (13) 第四章系统软件设计 (13) 4.1 主程序流程图 (13) 4.2子程序流程图 (14) 4.2.1中断服务子程序 (14) 4.2.2 显示子程序设计 (15) 4.2.3量程转换程序 (16) 第五章设计总结与心得体会 (17) 参考文献 (19) 附录 (20) 1、源程序 (20) 2、硬件电器总原理图 (25)

第一章摘要 在单片机技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此,频率计的测量就显得更为重要,测量频率的方法有多种,其中基于单片机的数字频率计时器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。本次课程设计以AT89S51单片机为控制核心,应用AT89S51单片机、单片机的I/O端口外扩驱动器74HC573和74HC138、LED动态显示等实现对外部信号频率进行准确计数的设计。电路图设计使用protel绘图软件完成,软件设计方面使用单片机汇编或C语言对各个模块进行编程,最后通过综合测试,实现满足要求的设计方案。频率测量有两种方法:一是直接测频法,即在一定时间内测量被测信号的个数;而是测周法。直接测频法适用于高频信号的频率测量,测周法适用于低频信号的频率测量。 关键词:单片机;频率计;测量 第二章系统总体方案设计 设计要求: 使用单片机的定时器/计数器功能,设计频率测量装置。 (1)直接采用AT89S51单片机的I/O端口外扩驱动器,实现LED动态扫描驱动。(2)采用6位数码管显示输入单片机的外部脉冲频率。 (3)当被测频率fx<100Hz时,采用测周法,显示频率XXX.XXX;当被测频率fx>100Hz 时,采用测频法,显示频率XXXXXX。 (4)利用键盘分段测量和自动分段测量。 (5)完成单脉冲测量,输入脉冲宽度范围是100μs-0.1s,低四位显示脉冲宽度,单位为μs。 2.1 总体思路设计 以单片机AT89S51为核心,利用单片机AT89S51的计数/定时器(T1和T0)的功能来实现频率的计数,并且利用单片机的动态扫描把测出的数据送到数字显示电路显示。利用74HC573驱动数码管,显示电路共由六位LED数码管组成,总体原理框图如图2.1所示。

单片机频率计课程设计

贵州大学课程设计 任务要求 运用所学单片机原理、、模拟和数字电路等方面的知识,设计出一个数字频率计。数字频率计要求如下: 1)能对0~50kHz的信号频率进行计数; 2)频率测量结果通过4位数码管显示(十进制)。 二、课程设计应完成的工作 1)硬件部分包括微处理器(MCU)最小系统(供电、晶振、复位)、频率测量和数码管显示部分; 2)软件部分包括初始化、频率计算、显示等; 3)用PROTEUS软件仿真实现; 4)画出系统的硬件电路结构图和软件程序框图; 内容摘要 1.数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字显示被测信号频率的数字测量仪器。 2.采用12 MHz的晶体振荡器的情况下,一秒的定时已超过了定时器可提供的最大定时值。为了实现一秒的定时,采用定时和计数相结合的方法实现。选用定时/计数器TO作定时器,工作于方式1产生50 ms的定时,再用软件计数方式对它计数20次,就可得到一秒的定时。

贵州大学课程设计 第1节引言 本应用系统设计的目的是通过在“单片机原理及应用”课堂上学习的知识,以及查阅资料,培养一种自学的能力。并且引导一种创新的思维,把学到的知识应用到日常生活当中。在设计的过程中,不断的学习,思考和同学间的相互讨论,运用科学的分析问题的方法解决遇到的困难,掌握单片机系统一般的开发流程,学会对常见问题的处理方法,积累设计系统的经验,充分发挥教学与实践的结合。全能提高个人系统开发的综合能力,开拓了思维,为今后能在相应工作岗位上的工作打下了坚实的基础。 1.1数字频率计概述 数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字显示被测信号频率的数字测量仪器。它的基本功能是测量正弦信号,方波信号及其他各种单位时间内变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。 1.2任务分析与设计思路 频率的测量实际上就是在1s时间内对信号进行计数,计数值就是信号频率。在本次设计使用的AT89C51单片机,本身自带有定时器和计数器,单片机的T0、T1两个定时/计数器,一个用来定时,另一个用来计数,定时/计数器的工作由相应的运行控制位 TR 控制 ,当 TR 置 1 ,定时/ 计数器开始计数 ;当 TR 清 0 ,停止计数。在定时1s里,计数器计的脉冲数就是频率数,但是由于1s超过了A T89C51的最大定时,因此我们采用50ms定时,在50ms 内的脉冲数在乘以14就得到了频率数,在转换为十进制输出就可。

基于51单片机的数字频率计课程设计

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月 关于毕业论文使用授权的声明

本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据 库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

基于5单片机的数字频率计设计

基于5单片机的数字频率计设计

毕业论文基于51单片机的数字频率计 基于51单片机的数字频率计 目录 第1节引言 (2) 1.1数字频率计概 述…………………………………………… (2) 1.2频率测量仪的设计思路与频率的计 算…………………………………………… (2) 1.3基本设计原 理…………………………………………… (3) 第2节数字频率计(低频)的硬件结构设计 (4) 2.1系统硬件的构成 (4) 2.2系统工作原理图 (4) 2.3AT89C51单片机及其引脚说明…………………………………………………

(5) 2.4信号调理及放大整形模块 (7) 2.5时基信号产生电路 (7) 2.6显示模块 (8) 第3节软件设计 (12) 3.1 定时计数 (12) 3.2 量程转换 (12) 3.3 BCD转换 (12) 3.4 LCD显示…………………………………………………

(12) 第4节结束语 (13) 参考文献 (14) 附录汇编源程序代码 (15) 基于51单片机的数字频率计 第1节引言 本应用系统设计的目的是通过在“单片机原理及应用”课堂上学习的知识,以及查阅资料,培养一种自学的能力。并且引导一种创新的思维,把学到的知识应用到日常生活当中。在设计的过程中,不断的学习,思考和同学间的相互讨论,运用科学的分析问题的方法解决遇到的困难,掌握单片机系统一般的开发流程,学会对常见问题的处理方法,积累设计系统的经验,充分发挥教学与实践的结合。全能提高个人系统开发的综合能力,开拓了思维,为今后能在相应工作岗位上的工作打下了坚实的基础。 1.1数字频率计概述 数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字显示被测信号频率的数字测量仪器。它的基本功能是测量正弦信号,方波信号及其他各种单位时间内变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。 本数字频率计将采用定时、计数的方法测量频率,采用一个1602A LCD显示器动态显示6位数。测量范围从1Hz—10kHz的正弦波、方波、三角波,时基

基于AT89C52单片机的简易频率计设计说明书

单片机系统开发与应用工程实习报告 选题名称:基于AT89C52单片机的简易频率计设计 系(院): 专业:计) 班级: 姓名:学号: 指导教师: 学年学期: 2009 ~ 2010 学年第 2 学期 2010 年 5 月 30 日

摘要: 在电子技术中,频率是一个经常用到的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。本项目主要阐述了以AT89C52单片机作为核心器件,采用模块化布局,设计一个简易数字频率计,以达到测量频率并进行显示的目的。本项目利用单片机的内部定时器溢出产生中断来实现定时,把单片机内部的定时/计数器0作为定时器,实现2.5ms定时。外部待测脉冲从单片机的TI(第15引脚)输入,以定时/计数器1作为计数器,利用中断方式来达到间接测量的目的。最后采用四位数码管显示。本设计采用C语言进行软件编程,用keil软件进行调试。最后把调试成功后的程序固化到AT89C52单片机中,接到预先焊好的电路板上,接上待测脉冲,通电运行,数码管成功显示待测脉冲频率。 关键词:单片机;频率计;AT89C52

目录 1 项目综述 (1) 1.1 设计要求 (1) 1.2 系统设计 (1) 2硬件设计 (2) 2.1 电路原理图 (2) 2.2 元件清单 (2) 2.3 主要芯片引脚说明 (3) 3 软件设计 (4) 3.1 程序流程图 (4) 3.2 软件设计简述 (5) 3.3 程序清单 (6) 4 系统仿真及调试 (10) 4.1 硬件调试 (10) 4.2 软件调试 (10) 5 结果分析 (10) 总结 (11) 参考文献 (12)

基于单片机的频率计的设计

摘要 本方案主要以单片机为核心,主要分为时基电路,逻辑控制电路,放大整形电路,闸门电路,计数电路,锁存电路,译码显示电路七大部分,设计以单片机为核心,被测信号先进入信号放大电路进行放大,再被送到波形整形电路整形,把被测的正弦波或者三角波整形为方波。利用单片机的计数器和定时器的功能对被测信号进行计数。编写相应的程序可以使单片机自动调节测量的量程,并把测出的频率数据送到显示电路显示。 本设计以89C51单片机为核心,应用单片机的算术运算和控制功能并采用LED数码显示管将所测频率显示出来。系统简单可靠、操作简易,能基本满足一般情况下的需要。既保证了系统的测频精度,又使系统具有较好的实时性。本频率计设计简洁,便于携带,扩展能力强,适用范围广。 关键词:单片机,运算,频率计,LED数码管

Abstract The program mainly microcontroller as the core, are divided into time-base circuit, the logic control circuit, amplifier shaping circuit, the gate circuit, the counting circuit, latch circuit, decoding circuit most of the seven shows, design a microcontroller as the core, the measured signal the first amplifier to amplify the incoming signal, and then was sent to the waveform shaping circuit surgery, the measured sine wave or triangle wave shaping as a square wave. Counter and timer microchip features of the signal count. Write the corresponding program can automatically adjust the measurement range of SCM, and the frequency of the measured data to the display circuit displays. The design of the 89C51 microcontroller core, microcontroller applications and control functions and arithmetic operations with LED digital display tube to the measured frequency is displayed. System is simple, reliable, easy to operate and can basically meet the general needs. Both to ensure the accuracy of the system frequency measurement, but also the system has good real-time. The frequency meter design is simple and easy to carry, expansion capability, wide application. Key words:microcontroller, operation, frequency meter, LED digital tube

AT89C51简单频率计课程设计

目录 1功能分析与设计目标 (1) 2 频率计的硬件电路设计 (3) 2.1 控制、计数电路 (3) 2.2 译码显示电路 (5) 3 频率计的软件设计与调试 (6) 3.1 软件设计介绍 (6) 3.2 程序框图 (8) 3.3 功能实现具体过程 (8) 3.4 测试数据处理,图表及现象描述 (10) 4 讨论 (11) 5 心得与建议 (12) 6 附录 (13)

1功能分析与设计目标 背景: 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。为了实现智能化的计数测频,实现一个宽领域、高精度的频率计,一种有效的方法是将单片机用于频率计的设计当中。用单片机来做控制电路的数字频率计测量频率精度高,测量频率的范围得到很大的提高。 题目要求: 用两种方法检测(Δm ,ΔT )要求显示单位时间的脉冲数或一个脉冲的周期。 设计分析: 电子计数式的测频方法主要有以下几种:脉冲数定时测频法(M法),脉冲周期测频法(T法),脉冲数倍频测频法(AM法),脉冲数分频测频法(AT法),脉冲平均周期测频法(M/T法),多周期同步测频法。下面是几种方案的具体方法介绍。 脉冲数定时测频法(M法):此法是记录在确定时间Tc内待测信号的脉冲个数Mx,则待测频率为: Fx=Mx/ Tc 脉冲周期测频法(T法):此法是在待测信号的一个周期Tx内,记录标准频率信号变化次数Mo。这种方法测出的频率是: Fx=Mo/Tx 脉冲数倍频测频法(AM法):此法是为克服M法在低频测量时精度不高的缺陷发展起来的。通过A倍频,把待测信号频率放大A倍,以提高测量精度。其待测频率为: Fx=Mx/A To 脉冲数分频测频法(AT法):此法是为了提高T法高频测量时的精度形成的。由于T法测量时要求待测信号的周期不能太短,所以可通过A分频使待测信号

基于51单片机的简易频率计设计lsy

毕业设计 题目:基于51单片机的简易频率计设计专业: 班级: 姓名:学号: 指导老师:

目录 第1节引言 (2) 1.1频率计概述 (2) 1.2频率度量仪的设计思路与频率的计算 (2) 1.3基本设计原理 (3) 第2节频率计(低频)的硬件结构设计 (4) 2.1系统硬件的构成 (4) 2.2系统工作原理图 (4) 2.3AT89C51单片机及其引脚说明 (5) 2.4信号调理及放大整形模块 (7) 2.5时基信号产生电路 (7) 2.6显示模块 (8) 第3节软件设计 (12) 3.1 定时计数 (12) 3.2 量程转换 (12) 3.3 BCD转换 (12) 3.4 LCD显示 (12) 第4节结束语 (13) 参考文献 (14)

摘要 我的这个毕业作品简易频率计开发目的是要把上课中学到的专业知识与一些实践,提高我自己的能力水平。用这些方法让我自己有更好的思维逻辑,可以做出更好的设计,活学活用把知识变成现实。在我的毕业设计中通过自己的发觉、老师的帮助、同学之间的讨论,最后要通过科学的方法来排除设计过程中的坎坷,提高自己能够快速判断问题故障、排除问题、修复问题,积累各方面的开发设计系统的经验,充分发挥出教学与实践的结合。全面提高自身对系统开发的综合能力,开拓设计思维,为今后能在相应工作岗位上的工作打下了坚实的基础。 关键字:单片机、开发、开拓思维 Abstract My graduate work that the aim is to develop secondary school knowledge, as well as read the relevant literature to strengthen the capacity of my own self. I have a guide through the efforts of innovative thinking ideas, the classroom teacher to impart knowledge to our daily lives. Design aspects of my work, the continuous learning, thinking and interactive discussion between the students learn from each other, analyze problems using scientific methods to solve the difficulties encountered, master SCM system design and development related to the production process, allow yourself to understand that for treatment of common problems, the accumulation of experience in all aspects of the development and design of the system, give full play to the combination of teaching and practice. Comprehensively improve their overall capacity of the system development, development of design thinking for the future work on the corresponding work has laid a solid foundation. Keywords: SCM, development, pioneering thinking

单片机课程设计----数字频率计

电子课程设计报告 设计课题: 数字频率计 作者:李成赞≦ 专业: 08信息工程 班级: (2)班 学号: 3081231201 日期 2009年6月5日——2009年6月17日 指导教师: 廖东进 设计小组其他成员:叶昕瑜史海镔陈福青姚闽梁芳芳 衢州职业技术学院信息与电力工程系

前言 一、频率计的基本原理: 频率计又称为频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器。其最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N时,则被测信号的频率f=N/T。 频率计主要由四个部分构成:时基(T)电路、输入电路、计数显示电路以及控制电路。在一个测量周期过程中,被测周期信号在输入电路中经过放大、整形、微分操作之后形成特定周期的窄脉冲,送到主门的一个输入端。主门的另外一个输入端为时基电路产生电路产生的闸门脉冲。在闸门脉冲开启主门的期间,特定周期的窄脉冲才能通过主门,从而进入计数器进行计数,计数器的显示电路则用来显示被测信号的频率值,内部控制电路则用来完成各种测量功能之间的切换并实现测量设置。 二、频率计的应用范围: 在传统的电子测量仪器中,示波器在进行频率测量时测量精度较低,误差较大。频谱仪可以准确的测量频率并显示被测信号的频谱,但测量速度较慢,无法实时快速的跟踪捕捉到被测信号频率的变化。正是由于频率计能够快速准确的捕捉到被测信号频率的变化,因此,频率计拥有非常广泛的应用范围。 在传统的生产制造企业中,频率计被广泛的应用在产线的生产测试中。频率计能够快速的捕捉到晶体振荡器输出频率的变化,用户通过使用频率计能够迅速的发现有故障的晶振产品,确保产品质量。 在计量实验室中,频率计被用来对各种电子测量设备的本地振荡器进行校准。 在无线通讯测试中,频率计既可以被用来对无线通讯基站的主时钟进行校准,还可以被用来对无线电台的跳频信号和频率调制信号进行分析。

相关文档
最新文档