铂电阻工作原理

铂电阻工作原理
铂电阻工作原理

铂电阻工作原理及日常检查内容

热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

热电阻工作原理:是基于导体或半导体的电阻值随着温度的变化而变化的特性。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,现在已开始采用镍、锰和铑等材料制造热电阻。热电阻通常需要把电阻信号通过引线传递到计算机控制装置或者其它二次仪表上。

电磁流量计称本规程规定了工业用热电阻的维护、检修、投运及其安全注意事项的具体技术要求和实施程序。本规程使用于在线使用的铂热电阻(简称热电阻),其它型号热电阻亦可参照使用。热电阻基于电物质的电阻值与温度呈一定函数关系的原理工作。基本误差:特A级±(0.10+0.002∣t∣)℃;A

级±(0.15+0.002∣t∣)℃;B级±(0.30+0.005∣t∣)℃

对维修人员的基本要求:1 熟悉本规程及相应的产品说明书等有关技术资料;2.了解工艺流程及该热电阻在

其中的作用;3.掌握数学基础、化工测量仪表及维修等方面的基础理论知识;4.掌握该热电阻的维护、检修、投运及常见故障处理的基本技能;5.掌握常用测试仪器和有关标准仪器的使用方法。

维护时要求:1.铭牌清晰无误;2 零部件完好齐全并规格化;3 禁固件不得松动;4 端子接线牢靠;5 密封件无泄漏。

热电阻运行时要求:热电阻达到规定的性能指标;正常工况下,热电阻工作温度在测量范围的20%~80%。

热电阻检修时要求:1.保护套管清洁、无锈蚀,漆层平整、光亮、无脱落;2.穿线管和软管敷设整齐;3.线路标号应齐全、清晰、准确;4.连接导线不得靠近热源及有强磁场的电气设备。

热电阻校准:1.说明书、合格证、入厂鉴定证书齐全;2.运行记录、故障处理记录、检修记录、效验记录、零部件更换记录准确无误。3.系统原理图和接线图完整、准确。

巡回检查每班至少进行一次巡回检查,内容包括:

1.向当班工艺人员了解热电阻运行情况;

2.检查接线盒是否盖好,保护套管、软管及穿线管是否破损断裂,连接处是否松动;3 发现问题及时处理,并做好巡回检查记录。

定期维护点检每周进行一次热电阻外部清洁工作。定期检定/校准

热电阻故障及处理:

电磁流量计称特殊情况下,可随设备检修进行。检修内容:1.清楚保护套管、接线盒内的灰尘、杂物;2.检查热电阻禁锢件是否松动或损坏;3.检查热电阻与保护套管之间的绝缘电阻;4.检查保护套管是否破损、锈蚀.

热电阻投运前的准备工作:1.检查热电阻线路绝缘;2.检查热电阻接线是否正确、牢固;3.对带联锁或自动调节的二次仪表,应先解除联锁或转入手动。

投运步骤:1.将热电阻与二次仪表连接;2.送电并检查指示或显示设备是否正确。

验收:1.逐条检查检修项目的完成情况。2.检查热电阻是否达到检修质量标准。热电阻正常运行72小时,由有关技术主管签收。

维护安全注意事项1.维护必须由两人以上作业;2.对可能导致工艺参数波动的作业,必须事先取得工艺人员的认可,并采取相应的安全措施。

检修安全注意事项:1.对运行热电阻的检修必须办理检修工作票;2.不得带压拆卸热电阻保护套管;3.不得随意碰撞电阻体,以免损坏电阻元件。

投运安全注意事项:1 投运必须两人以上作业;2.投运前应与工艺人员联系;3.用于带联锁或自动调节仪表的

热电阻,投运时必须切除联锁或转入手动。

热电阻

应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150易被氧化。中国最常用的有R0=10Ω、R0=100Ω和R0=1000Ω等几种,它们的分度号分别为Pt10、Pt100、Pt1000;铜电阻有R0=50Ω和R0=100Ω两种,它们的分度号为Cu50和Cu100。其中Pt100和Cu50的应用最为广泛。

热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测温范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。热电阻虽然在工业中应用也比较广泛,但是由于他的测温范围使他的应用受到了一定的限制,热电阻的测温原理是基于导体或半导体的电阻值随着温度的变化而变化的特性。其优点也很多,也可以远传电信号,灵敏度高,稳定性强,互换性以及准确性都比较好,但是需要电源激励,不能够瞬时测量温度的变化。工业用热电阻一般采用Pt100,Pt10,Cu50,Cu100,铂热电阻的测温的范围一般为零下200-800℃,铜热电阻为零下40到140℃。热电阻和热电偶一样的区分类型,但是他却不需要补偿导线,而且比热电偶便宜。

蜂鸣器工作原理介绍及并联电阻原理

蜂鸣器工作原理介绍及并联电阻原理 目前市场上广泛使用的蜂鸣器有电磁式与压电式,我司使用的蜂鸣器以压电式为主。 压电式蜂鸣器主要由多谐振荡器,压电蜂鸣片(以压电陶瓷为主,如下图所示),阻抗匹配器及共鸣箱,外壳等组成。其主要原理是以压电陶瓷的压电效应,来带动金属片的震动而发声。 压电陶瓷其实是一能够将机械能和电能互相转换的功能陶瓷材料。 所谓压电效应是指某些介质在受到机械压力时,哪怕这种压力微小得像声波振动那样小,都会产生压缩或伸长等形状变化,引起介质表面带电,便会产生电位差,这是正压电效应。反之,施加激励电场或电压,介质将产生机械变形,产生机械应力,称逆压电效应。如果压力是一种高频震动,则产生的就是高频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能。压电式蜂鸣器就是运用其将电能转换问机械能的逆压电效应。 压电蜂鸣器的主要应用电路如下图所示,R为阻抗匹配电阻。 当脉冲信号为高电平时,通过三级管导通,则在蜂鸣器两端形成一个VDC的电压,使压电陶瓷产生形变。当脉冲信号为低电平时,通过三极管关断。此时压电陶瓷形变复原,则在其两端产生一个由机械能转换为电能的电压,此时的电压需要通过阻抗匹配电阻进行释放,从而可使蜂鸣器产生一个稳定频率的声音信号。如下图所示,幅值与VDC相等,频率与芯片控制端口频率相等。 压电蜂鸣片

蜂鸣器端口信号主控芯片端口信号 R=1K时蜂鸣器两端信号

蜂鸣器两端,以及当R=1K时,其等效电容的放电时间为46us 蜂鸣器两端,以及当R=100Ω时,其等效电容的放电时间为6.8us

热电阻的测温电路

Pt100热电阻的测温电路 [摘要] 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。 温度测量系统应用广泛,涉及到各行各业的各个方面,在各种不同的领域中都占有重要的位置。从降低开放成本扩大适用范围、系统运行的稳定性、可靠性出发,设计一种以Pt100铂热电阻为温度信号采集元件的传感器温度测量系统。才测量系统不但可以测量室内的温度,还可以测量液体等的温度,在实际应用中,该系统运行稳定、可靠,电路设计简单实用。 [关键字] 传感器 Pt100热电阻温度测量

目录 1 前言 (4) 1.1 传感器概况 (4) 1.2 设计目的 (7) 2 设计要求 (8) 2.1 设计内容 (8) 2.2 设计要求 (9) 3 原器件清单 (10) 4 Pt100热电阻的测温电路 (11) 4.1 总体电路图 (11) 4.2 工作原理 (11) 5 Pt100热电阻测温电路的原理及实现 (12) 5.1 测温电路的工作原理 (12) 5.2 测温电路的实现 (14) 5.3 测量结果及结果分析 (15) 6 制作过程及注意事项 (16) 6.1 制作过程 (16) 6.2 注意事项 (17) 7 总结 (18) 8 致谢 (19) 参考文献 (20)

热电偶热电阻的区别

热电偶/热电阻的区别 热电偶是一种测温度的传感器,与热电阻一样都是温度传感器,但是他和热电阻的区别主要在于: 一、信号的性质,热电阻本身是电阻,温度的变化,使电阻产生正的或者是负的阻值变化;而热耦,是产生感应电压的变化,他随温度的改变而改变。 二、两种传感器检测的温度范围不一样,热阻一般检测0-150度温度范围,最高测量范围可达600度左右(当然可以检测负温度)。 热耦可检测0-1000度的温度范围(甚至更高)所以,前者是低温检测,后者是高温检测。 三、从材料上分,热阻是一种金属材料,具有温度敏感变化的金属材料,热耦是双金属材料,既两种不同的金属,由于温度的变化,在两个不同金属丝的两端产生电势差。 四、PLC对应的热电阻和热电偶的输入模块也是不一样的,这句话是没问题,但一般PLC都直接接入4~20ma信号,而热电阻和热电偶一般都带有变送器才接入PLC。要是接入DCS的话就不必用变送器了!热电阻是RTD信号,热电偶是TC信号! 五、PLC也有热电阻模块和热电偶模块,可直接输入电阻和电偶信号。 六、热电偶有J、T、N、K、S等型号,有比电阻贵的,也有比电阻便宜的,但是算上补偿导线,综合造价热电偶就高了。 热电阻是电阻信号,热电偶是电压信号。 七、热电阻测温原理是根据导体(或半导体)的电阻随温度变化的性质来测量的,测量范围为负00~500度,常用的有铂电阻(Pt100、Pt10)、铜电阻Cu50(负50-150度)。 热电偶测温原理是基于热电效应来测量温度的,常用的有铂铑——铂(分度号S,测量范围0~1300度)、镍铬——镍硅(分度号K,测量范围0~900度)、镍铬——康铜(分度号E,

箱式电阻炉操作、维护规程

1 目的:建立SX2-4-10箱式电阻炉的操作规程及维护保养,确保其操作规范化。 2 适用范围:适用于SX2-4-10箱式电阻炉的操作,维护、保养。 3 责任者:SX2-4-10箱式电阻炉的操作者。 4 正文: 4.1主要技术参数 额定功率:3KW 额定电压:220V 额定温度:1000℃ 相数:1 空炉升温时间:≤80 min 空炉损耗功率:≤1.8 KW 炉膛尺寸(l×b×h):300×200×120 mm 外形尺寸(l×b×h):700×520×550 mm 重量:100 kg 4.2 操作步骤 4.2.1 使用前检查线路连接是否正确,确定无破损线路。打开电源开关,电源指示灯显示工作。把温度调节到要使用的温度。 4.2.2 放入坩埚之前先关闭电源。然后把已经炭化好的坩埚放置到马弗炉中,放置过程要用坩埚钳。关闭马弗炉门,打开电源,等温度指示到要求温度开始计时。 4.2.3 使用完毕后关闭电源,并微微打开马弗炉门。待温度降到200摄氏度以下时,用坩埚钳取出坩埚,并置于干燥器中。关闭马弗炉门,拔掉电源插头。 4.3 注意事项与维护 4.3.1 当电炉在第一次使用或长期停用后再次使用时,必须进行一次烘炉干燥,烘炉时间为:室温―200℃,2小时;200℃―600℃,2小时。使用时炉温不得超过最高温度,以免烧毁电热原件,并禁止向炉膛内灌注各种液体和溶解的金属。 4.3.2 电炉必须在相对湿度不超过85%,没有导电尘埃、爆炸性气体和能够破坏金属绝缘以及对电子原件有害的腐蚀性气体的场所工作。 4.3.3 定期检查电炉及控制器导电系统是否良好。 4.3.4 炉温不得超过最高温度。 4.3.5 电炉不需要特殊安装,只须放在平整的地面上或架子上就可以。控制器应避免震动,放置位置与电炉不宜太近,防止过热而使电子元件不能正常工作。将热电偶由炉后边测温偶孔插入,偶孔与热电偶之间的缝隙用石棉绳填塞,连接热电偶和控制器时注意不要接反正负极。打开控制器外壳,按标准连接电源线、电炉线、热电偶线。在电源线引入处需另外安装电源开关,以便控制总电源。由于

热电阻工作原理

热电阻工作原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。 金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 Rt=Rt0[1+α(t-t0)] 式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为 Rt=AeB/t 式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。 相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。 热电阻材料 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 热电阻种类 (1)精密型热电阻:工业常用热电阻感温元件(电阻体)的结构及特点。从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制。 (2)铠装热电阻:铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2~φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点: ①体积小,内部无空气隙,热惯性上,测量滞后小; ②机械性能好、耐振,抗冲击; ③能弯曲,便于安装; ④使用寿命长。

箱式电阻炉操作规程操作规程

箱式电阻炉操作规程操 作规程 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

集团运营中心中心实验室长安实验室规程 箱式电阻炉操作规程 2011年11月01日发布 2011年11月01日实施集团运营中心中心实验室长安实验室公布

箱式电阻炉操作规程 一、结构及工作原理 SX系列1200℃箱式电阻炉为周期作业式电炉,与KSW型温度控制及镍烙-镍硅热点偶配套使用,从而进行电炉温度的测量、指示及自动控制。 二、安全操作方法 1.使用时切勿超过电阻炉的最高温度。 2.装取试样时一定要切断电源,以防触电。 3.装取试样时炉门开启时间应尽量短,以延长电炉使用寿命。 4.禁止向炉膛内灌注任何液体。 5.不得将沾有水和油的试样放入炉膛;不得用沾有水和油的夹子装取试样。 6.装取试样时要戴专用手套,以防烫伤。 7.试样应放在炉膛中间,整齐放好,切勿乱放。 8.不得随便触摸电炉及周围的试样。 9.使用完毕后应切断电源。 10.非专业操作人员,不得操作电阻炉,严格按照设备的操作规程进行操作。 三、实验步骤 1、通电前,先检查接线有否符合,控制器上等接线螺丝有否松落现象,是否有断电、漏电现象。 2、将绝缘手套戴上双手,并检查确认台面、地面干燥,同时地面已经铺上了橡胶垫,检查并确认所要使用的马弗炉的开关位置后,确认总电源已经关闭、切断电源。 3、称好试样放入炉内,并关闭炉门,打开电炉开关; 4、将控制器上的开关“设定”至目标试验温度;

5、设定完成后电炉开始升温工作,此时仪表由绿指示灯显示; 6、工作时间到后关掉电炉总电源,取出已经灼烧好的试样; 四、保养及注意事项 1、本机专人使用,电炉第一次使用和长时间停用后再次使用时,必须进行烘炉。烘炉温度在200℃时2小时,200-600℃时2小时,使用时炉温不得超过额定温度,以免烧坏电热元件。 2、定期检查电炉、控制器各接线头接触是否良好,指示仪器运动时有无卡滞现象,并用电位差针核对指示仪器刻度误差是否增大。

热电阻的单片机测温系统

摘要 电子温度计是日常生活中最普遍的电子产品之一,常用的转换元件有热电阻、热敏电阻、热电偶等,通常我们将这些转换元件通过非电量转化电量的检测方法,结合电量和温度之间的关系,我们可以计算出其温度值。在本课题中将介绍一种利用电阻电桥失衡输出的电压转换温度的设计。在设计中,利用AT89S系列单片机作为控制器,计算铂电阻(PT100)电量与温度的转换,并在LED显示温度。 关键词:AT89S52 ADC0832 Abstract Electronic thermometer isin daily lifethe mostcommon oneof electronicproducts, and thecommoninterface element havehe at resistance,thermal resistance, thermocouple,etc., usually we will these interface element through the non-electricity into electricity d etection methods, combined with power and the relationshipbetween the temperature, we can calculate the temperature value. In this topicwill introducea kind of makeuse of the resistance br idgeunbalanced output voltage transition temperature design. In the design,the use of AT89S seriesmicrocontrolleras the controller, calculationof platinum resistance(PT100) powe rand temperatureconversion, and intheLEDdisplay temperature. ?Keyword:AT89S52 ADC0832

箱式电阻炉操作规程操作规程

集团运营中心中心实验室长安实验室规程 箱式电阻炉操作规程 2011年11月01日发布 2011年11月01日实施集团运营中心中心实验室长安实验室公布

箱式电阻炉操作规程 一、结构及工作原理 SX系列1200℃箱式电阻炉为周期作业式电炉,与KSW型温度控制及镍烙-镍硅热点偶配套使用,从而进行电炉温度的测量、指示及自动控制。 二、安全操作方法 1.使用时切勿超过电阻炉的最高温度。 2.装取试样时一定要切断电源,以防触电。 3.装取试样时炉门开启时间应尽量短,以延长电炉使用寿命。 4.禁止向炉膛内灌注任何液体。 5.不得将沾有水和油的试样放入炉膛;不得用沾有水和油的夹子装取试样。 6.装取试样时要戴专用手套,以防烫伤。 7.试样应放在炉膛中间,整齐放好,切勿乱放。 8.不得随便触摸电炉及周围的试样。 9.使用完毕后应切断电源。 10.非专业操作人员,不得操作电阻炉,严格按照设备的操作规程进行操作。 三、实验步骤 1、通电前,先检查接线有否符合,控制器上等接线螺丝有否松落现象,是否有断电、漏电现象。 2、将绝缘手套戴上双手,并检查确认台面、地面干燥,同时地面已经铺上了橡胶垫,检查并确认所要使用的马弗炉的开关位置后,确认总电源已经关闭、切断电源。 3、称好试样放入炉内,并关闭炉门,打开电炉开关;

4、将控制器上的开关“设定”至目标试验温度; 5、设定完成后电炉开始升温工作,此时仪表由绿指示灯显示; 6、工作时间到后关掉电炉总电源,取出已经灼烧好的试样; 四、保养及注意事项 1、本机专人使用,电炉第一次使用和长时间停用后再次使用时,必须进行烘炉。烘炉温度在200℃时2小时,200-600℃时2小时,使用时炉温不得超过额定温度,以免烧坏电热元件。 2、定期检查电炉、控制器各接线头接触是否良好,指示仪器运动时有无卡滞现象,并用电位差针核对指示仪器刻度误差是否增大。

推荐使用的热电阻Pt100测温电路

铂电阻温度传感器是利用其电阻和温度成一定函数关系而制成的温度传感器,由于其测量准确度高、测量范围大、复现性和稳定性好等,被广泛用于中温(-200℃~650℃)范围的温度测量中。 PT100是一种广泛应用的测温元件,在-50~600℃℃范围内具有其他任何温度传感器无可比拟的优势,包括高精度、稳定性好、抗干扰能力强等。由于铂电阻的电阻值与温度成非线性关系,所以需要进行非线性校正。校正分为模拟电路校正和微处理器数字化校正,模拟校正有很多现成的电路,其精度不高且易受温漂等干扰因素影响,数字化校正则需要在微处理系统中使用,将Pt电阻的电阻值和温度对应起来后存入EEPROM中,根据电路中实测的AD值以查表方式计算相应温度值。 常用的Pt电阻接法有三线制和两线制,其中三线制接法的优点是将PT100的两侧相等的的导线长度分别加在两侧的桥臂上,使得导线电阻得以消除。常用的采样电路有两种:一为桥式测温电路,一为恒流源式测温电路。其中图1为三线制桥式测温电路,图2为两线制桥式测温电路,图3为恒流源式测温电路。下面分别对桥式电路和恒流源式电路的原理在设计过程中应注意事项进行说明(注:这两个电路本人均有采用及试验,证明可行) 一、桥式测温电路 桥式测温的典型应用电路如图1所示(图1和图2均为桥式电路,分别画出来是为了说明两线制接法和三线制接法的区别)。 测温原理:电路采用TL431和电位器VR1调节产生4.096V的参考电源;采用R1、R2、VR2、Pt100构成测量电桥(其中R1=R2,VR2为100Ω

精密电阻),当Pt100的电阻值和VR2的电阻值不相等时,电桥输出一个mV级的压差信号,这个压差信号经过运放LM324放大后输出期望大小的电压信号,该信号可直接连AD转换芯片。差动放大电路中R3=R4、R5=R6、放大倍数=R5/R3,运放采用单一5V供电。 设计及调试注意点: 1. 同幅度调整R1和R2的电阻值可以改变电桥输出的压差大小; 2. 改变R5/R3的比值即可改变电压信号的放大倍数,以便满足设计者对温度范围的要求 3. 放大电路必须接成负反馈方式,否则放大电路不能正常工作 4. VR2也可为电位器,调节电位器阻值大小可以改变温度的零点设定,例如Pt100的零点温度为0℃,即0℃时电阻为100Ω,当电位器阻值调至109.885Ω时,温度的零点就被设定在了25℃。测量电位器的阻值时须在没有接入电路时调节,这是因为接入电路后测量的电阻值发生了改变。 5. 理论上,运放输出的电压为输入压差信号×放大倍数,但实际在电路工作时测量输出电压与输入压差信号并非这样的关系,压差信号比理论值小很多,实际输出信号为 4.096*(RPt100/(R1+RPt100)- RVR2/(R1+RVR2)) (1) 式中电阻值以电路工作时量取的为准。 6. 电桥的正电源必须接稳定的参考基准,因为如果直接VCC的话,当网压波动造成VCC发生波动时,运放输出的信号也会发生改变,此时再到以VCC未发生波动时建立的温度-电阻表中去查表求值时就不正确

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

NTC热敏电阻工作原理

NTC热敏电阻工作原理、参数解释 作者:时间:2010-3-14 5:09:12 ntc负温度系数热敏电阻工作原理 ntc是negative temperature coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓ntc热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。ntc热敏电阻器在室温下的变化范围在10o~1000000欧姆,温度系数-2%~-6.5%。ntc热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 ntc负温度系数热敏电阻专业术语 零功率电阻值 rt(ω) rt指在规定温度 t 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: rt = rn expb(1/t – 1/tn) rt :在温度 t ( k )时的 ntc 热敏电阻阻值。 rn :在额定温度 tn ( k )时的 ntc 热敏电阻阻值。 t :规定温度( k )。 b : nt c 热敏电阻的材料常数,又叫热敏指数。 exp:以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 tn 或额定电阻阻值 rn 的有限范围内才具有一定的精确度,因为材料常数b 本身也是温度 t 的函数。 额定零功率电阻值 r25 (ω) 根据国标规定,额定零功率电阻值是 ntc 热敏电阻在基准温度25 ℃ 时测得的电阻值 r25,这个电阻值就是ntc 热敏电阻的标称电阻值。通常所说 ntc 热敏电阻多少阻值,亦指该值。 材料常数(热敏指数) b 值( k )

箱式电阻炉热处理安全操作规程示范文本

箱式电阻炉热处理安全操作规程示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

箱式电阻炉热处理安全操作规程示范文 本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1.遵守一般热处理工安全操作规程,检查测温仪表、热 电偶、电气设备接地线是否完好。 2.检查炉膛内是否有其它工件,炉底板,电阻丝是否完 好。 3.工件进出炉时应断电操作,并注意工件或工具不得与 电阻丝碰撞和接触。 4.箱式电阻炉使用温度不得超过额定值。

5.电炉通电前应先合闸,再开控制柜电钮,停炉时,应先关控制柜电钮再拉闸。 6.每月定期清理设备各部位(包括炉底板下部)的氧化物和脏物,发现问题应及时修理。 7.热处理干燥箱、保温炉、电溶炉不得超过额定温度,其余均按本规程执行。 8.工作完毕整理工作场地,并填写交接班记录。(铁粉联动线操作工安全操作规程。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

接地电阻测量仪的工作原理【图文】

接地电阻测量仪的工作原理【图文】 ZC-8型接地电阻测量仪是按补偿法的原理制成的,【立创商城提供】内附手摇交流发电机作为电源,其工作原理如图所示。图(a)中,TA是电流互感器,F是手摇交流发电机,Z是机械整流器或相敏整流放大器,S是量程转换开关,G是检流计,Rs是电位器。该表具有3个接地端钮,它们分别是接地端钮E(E 端钮是由电位辅助端钮P2和电流辅助端钮C2在仪表内部短接而成)、电位端钮Py以及电流端钮C)。各端钮分别按规定的距离通过探针插人地中,测量接于E、P)两端钮之间的土壤电阻。为了扩大量程,电路中接有两组不同的分流电阻R1~R3以及R5~R8,用以实现对电流互感器的二次电流I2以及检流计支路的三挡分流。分流电阻的切换利用量程转换开关S完成,对应于转换开关有三个挡位,它们分别是0~1Ω.1~10Ω和10~100Ω。 将图(a)的线路进行简化,画成实际测量时的原理图,如图(b)所示。图中E′为接地体,P′为电位接地极,C′为电流接地极,它们各自连接E、P1、C1端钮,分别插人距离接地体不小于20m和40m的土壤中。

假设手摇交流发电机F在某一时刻输出交流电,其左端为高电位,则此刻电流J经电流互感器的原边→端钮E→接地体E′→大地→电流接地极C′→端钮C1,再回到手摇交流发电机右端,构成一个闭合回路。在E′的接地电阻Rx上形成的压降为IRx,压降IRx随着与E′极距离的增加而急剧下降,在P′极时降为零。同样,两电极P′和C′之间也会产生压降,其值为IRc,电位分布如图(b)所示。 电流互感器的二次电流为KI(K是互感器的变比:I2/I1),该电流经过电位器s点的压降为KIRs。借助调节电位器的活动触点W,使检流计指示为零,此时,P′、s两点间的电位为零,即为 由式(8-2)可见,被测的接地电阻Rx可由电流互感器的变比Κ和电位器的电阻R,所决定,而与电流接地极C′的电阻R,无关。用上述原理测量接地电阻的方法称为补偿法。 需要指出的是,电流接地极C′用来构成接地电流的通路是完全必要的。如果只有一个电极,则测量结果将不可避免地将接地体E′的接地电阻包括进去,这显然是不正确的。还要指出的是,一般都是采用交流电进行接地电阻的测量,这是因为土壤的导电主要依靠地下电解质的作用,如果采用直流电就会引起化学极化作用,以致严重地歪曲测量结果。

Pt100铂电阻测温特性实验.

实验三十Pt100铂电阻测温特性实验 一、实验目的:在实验二十九的基础上了解P t100热电阻—电压转换方法及P t100热电阻 测温特性与应用。 二、基本原理:利用导体电阻随温度变化的特性,可以制成热电阻,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用的热电阻有铂电阻(500℃以内)和铜电阻(150℃以内)。铂电阻是将0.05~0.07mm的铂丝绕在线圈骨架上封装在玻璃或陶瓷内构成,图30—1是铂热电阻的结构。 在0~500℃以内,它的电阻R t与温度t的关系为: R t=R o(1+At+Bt2),式中: R o系温度为0℃时的电阻图30—1铂热电阻的结构 值(本实验的铂电阻R o=100Ω)。A=3.9684×10-3/℃,B=-5.847×10-7/℃2。铂电阻一般是三线制,其中一端接一根引线另一端接二根引线,主要为远距离测量消除引线电阻对桥臂的影响(近距离可用二线制,导线电阻忽略不计)。实际测量时将铂电阻随温度变化的阻值通过电桥转换成电压的变化量输出,再经放大器放大后直接用电压表显示,如图30—2所示。 图30—2热电阻信号转换原理图 图中△V=V1-V2;V1=[R3/(R3+R t)]V c;V2=[R4/(R4+R1+R W1)]V c; -V2={[R3/(R3+R t)]-[R4/(R4+R1+R W1)]}V c; △V=V1 所以Vo=K△V= K{[R3/(R3+R t)]-[R4/(R4+R1+R W1)]}V c。 式中R t随温度的变化而变化,其它参数都是常量,所以放大器的输出Vo与温度(R t)有一一对应关系,通过测量Vo可计算出R t: Rt=R3[K(R1+R W1)V c-(R4+R1+R W1)V o]/[KV c R4+(R4+R1+R W1)V o]。 P t100热电阻一般应用在冶金、化工行业及需要温度测量控制的设备上,适用于测量、控制<600℃的温度。本实验由于受到温度源及安全上的限制,所做的实验温度值<160℃。

热电阻与热电偶的测量原理及区别

热电阻与热电偶的测量原理及区别 热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50——+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端

PTC热敏电阻工作原理

PTC热敏电阻工作原理 PTC热敏电阻(正温度系数热敏电阻)是一种具温度敏感性的半导体电阻,一旦超过一定的温度(居里温度)时,它的电阻值随着温度的升高几乎是呈阶跃式的增高.PTC热敏电阻本体温度的变化可以由流过PTC热敏电阻的电流来获得,也可以由外界输入热量或者这二者的叠加来获得. 陶瓷材料通常用作高电阻的优良绝缘体,而陶瓷PTC热敏电阻是以钛酸钡为基,掺杂其它的多晶陶瓷材料制造的,具有较低的电阻及半导特性.通过有目的的掺杂一种化学价较高的材料作为晶体的点阵元来达到的:在晶格中钡离子或钛酸盐离子的一部分被较高价的离子所替代,因而得到了一定数量产生导电性的自由电子. 对于PTC热敏电阻效应,也就是电阻值阶跃增高的原因,在于材料组织是由许多小的微晶构成的,在晶粒的界面上,即所谓的晶粒边界(晶界)上形成势垒,阻碍电子越界进入到相邻区域中去,因此而产生高的电阻.这种效应在温度低时被抵消:在晶界上高的介电常数和自发的极化强度在低温时阻碍了势垒的形成并使电子可以自由地流动.而这种效应在高温时,介电常数和极化强度大幅度地降低,导致势垒及电阻大幅度地增高,呈现出强烈的PTC效应. PTC是一种半导体发热陶瓷,当外界温度降低,PTC的电阻值随之减小,发热量反而会相应增加。 PTC 的工作原理PTC热敏电阻(正温度系数热敏电阻)是一种具温度敏感性的半导体电阻,一旦超过一定的温度(居里温度)时,它的电阻值随着温度的升高几乎是呈阶跃式的增高.PTC热敏电阻本体温度的变化可以由流过PTC热敏电阻的电流来获得,也可以由外界输入热量或者这二者的叠加来获得.陶瓷材料通常用作高电阻的优良绝缘体,而陶瓷PTC热敏电阻是以钛酸钡为基,掺杂其它的多晶陶瓷材料制造的,具有较低的电阻及半导特性.通过有目的的掺杂一种化学价较高的材料作为晶体的点阵元来达到的:在晶格中钡离子或钛酸盐离子的一部分被较高价的离子所替代,因而得到了一定数量产生导电性的自由电子.对于PTC热敏电阻效应,也就是电阻值阶跃增高的原因,在于材料组织是由许多小的微晶构成的,在晶粒的界面上,即所谓的晶粒边界(晶界)上形成势垒,阻碍电子越界进入到相邻区域中去,因此而产生高的电阻.这种效应在温度低时被抵消:在晶界上高的介电常数和自发的极化强度在低温时阻碍了势垒的形成并使电子可以自由地流动.而这种效应在高温时,介电常数和极化强度大幅度地降低,导致势垒及电阻大幅度地增高,呈现出强烈的PTC效应. PTC热敏电阻是开发早、种类多、发展较成熟的敏感元器件.PTC 热敏电阻由半导体陶瓷材料组成,利用的原理是温度引起电阻变化.若电子和空穴的浓度分别为n、p,迁移率分别为μn、μp,则半导体的电导为:σ=q(nμn+pμp)因为n、p、μn、μp都是依赖温度T的函数,所以电导是温度的函数,因此可由测量电导而推算出温度的高低,并能做出电阻-温度特性曲线.这就是半导体热敏电阻的工作原理.热敏电阻包括正温度系数(PTC)和负温度系数(NTC)热敏电阻,以及临界温度热敏电阻(CTR).它们的电阻-温度特性如图1所示.PTC热敏电阻的主要特点是:①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;②工作温度范围宽,常温器件适用于- 55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~55℃;③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;④使用方便,电阻值可在0.1~100kΩ间任意选择;⑤易加工成复杂的形状,可大批量生产;⑥稳定性好、过载能力强. PTC热敏电阻 PTC(Positive Temperature Coeff1Cient)是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻现象或材料,可专门用作恒定温度传感器.该材料是以BaTiO3或 SrTiO3或PbTiO3为主要成分的烧结体,其中掺入微量的Nb、Ta、Bi、Sb、Y、La等氧化物进行原子价控制而使之半导化,常将这种半导体化的BaTiO3等材料简称为半导(体)瓷;同时还添加增大其正电阻温度系

热处理电阻炉安全操作规程

热处理电阻炉安全操作规程 1、箱式电阻炉 1、1作业前检查: 1、1、1测温仪表、热电偶、电气设备接地线等是否完好; 1、1、2炉膛内是否有遗留工件,炉底板电阻是否完好。 1、2工件进出炉时应断电操作,不允许工件或工具与电阻丝相碰撞或接触。 1、3箱式电阻护使用温度不允许超过额定值。 1、4电炉通电前应首先合闸,再开控制柜电钮。停炉时应先关控制柜电钮,再拉闸。 1、5每日清理设备各部位(包括炉底板下部)的氧化物和杂物。 1、6工作完毕应整理工作场地,并向下一班次操作负责人交待设备情况。 2、井式电阻炉 2、1管理者应指定炉前操作负责人。 2、2使用前检查设备及炉盖提升装置、工件吊具是否缺损,设备接地、风扇是否良好。 2、3装、出炉工件时应切断电源,不允许带电操作。吊装工件时应注意不应碰撞或接触电阻丝,工件重量不允许超过吊具规定负荷。 2、4开炉过程中,温度不允许超过额定值。 2、5吊装工件时,炉子平台上、下不允许站人。 3、气体渗碳炉 3、1 指定炉前操作负责人。 3、2工作前准备: 3、2、1检查设备的接地情况,并将测量仪表按工艺规范调整正确; 3、2、2 检查炉盖的升降机构是否正常; 3、2、3风扇转动平稳、无噪音,风扇的冷却水管应完好无堵塞,工作中的冷却出水温度不允许大于60℃;

3、2、4输油管道应完好畅通无渗漏,排气管、滴油器应畅通; 3、2、5炉罐内应无碳黑之类杂物,炉子应密封良好; 3、2、6检查吊车的吊放工具是否良好,工件起吊后吊钩下不允许站人。 3、3先给风扇轴迷宫装置通冷却水,然后给设备通电。 3、4温度在3600℃以上时不允许关掉风扇。 3、5温度在750℃以下时不允许向炉内滴注煤油,以防爆炸。 3、6 RJJ 系列气体渗碳炉最高工作温度不允许超过950℃。各设备装置量及最大工件尺寸应符合设备的技术要求。 3、7工件进出炉时设备应断电;吊车的升降速度应缓慢,起吊工件时应将吊钩对中。 3、8在渗碳过程中应点燃从炉内排出的废气。 3、9渗碳工作完毕应立即用辅助炉盖将渗碳炉罐盖好。 3、10液体渗碳剂、甲醇等均属易燃易爆物品,应严格保管,注意防火防爆。 3、11定期检查设备,清洁环境卫生。 4、气体氮化炉 4、1指定炉前操作负责人。 4、2氨瓶应放置在阴凉通风的地方,距离工作场地5m 以上,不允许靠近热、电源,或受日光曝晒,以防气体受热膨胀爆炸。 4、3氨瓶应在指定地点立放,不准用吊车运送,不准摔碰、涂油脂和卧放。 4、4冬季存放氨瓶,环境气温应保持在20℃左右。如液氨冻结,只能用水冲淋化冻,不允许用火或电炉烘烤。 4、5液氨用完后,应在瓶上标注“已用完”,并集中堆放。 4、6氮化炉装好料后,应仔细检查氨气管道、炉盖是否有泄漏,以免污染环境,氨气中毒;严防氨分解出来的氢气遇火自燃,引至氮化包内引起爆炸。

取样电阻的工作原理

一,电流检测电阻的基本原理: 根据欧姆定律,当被测电流流过电阻时,电阻两端的电压与电流成正比.当1W的电阻通过的电流为几百毫安时,这种设计是没有问题的.然而如果 电流达到10-20A,情况就完全不同,因为在电阻上损耗的功率(P=I2xR)就 不容忽视了.我们可以通过降低电阻阻值来降低功率损耗,但电阻两端的电压也会相应降低,所以基于取样分辨率的考虑,电阻的阻值也不允许太低。 二,长期稳定性 对于任何传感器来说,长期稳定性都非常重要.甚至在使用了一些年后,人们都希望还能维持早期的精度.这就意味着电阻材料在寿命周期内一定要抗腐蚀,并且合金成分不能改变.要使测量元件满足这些要求,可以使用同 质复合晶体组成的合金,通过退火和稳定处理的生产制程,以达到基本热力学状态.这样的合金的稳定性可以达到ppm/年的数量级,使其能用于标准电阻。 表面贴装电阻在140℃下老化1000小时后阻值只有大约-0.2%的轻 微漂移,这是由于生产过程中轻微变形而导致的晶格缺损造成的.阻值漂移很大程度上由高温决定,因此在较低的温度下比如+100℃,这种漂移实际是检测不出来的。

三,端子连接 在低阻值电阻中,端子的阻值和温度系数的影响往往是不能忽略的,实际设计中应充分考虑这些因素,可以使用附加的取样端子直接测量金属材料两端的电压。 由电子束焊接的铜-锰镍铜电阻实际上具有这样低的端子阻值,通过合理的布线可以作为两端子电阻使用而接近四端子连接的性能.但是在设计时一定要注意取样电压的信号连线不能直接连接取样电阻的电流通道上,如果可能的话,最好能够从取样电阻下面连接到电流端子并设计成微带线。

四,低阻值 四引线设计推荐用于大电流和低阻值应用.通常的做法使用锰镍铜合金带直接冲压成电阻器,但这不是最好的办法.尽管四引线电阻有利于改进温 度特性和热电压,但总阻值有时高出实际阻值2到3倍,这会导致难以接受 的功率损耗和温升.此外,电阻材料很难通过螺丝或焊接与铜连接,也会增 加接触电阻以及造成更大的损耗。 康铜丝电阻 说到电流/电压的采样电路,就像上图中万用表中所使用的那样,那么,什么是康铜丝电阻呢? 简单地说,康铜丝电阻是选用高精密合金丝并经过特殊工艺处理,其 阻值低,精度高,温度系数低,具有无电感,高过载能力。 正是因为康铜丝具备以上这些优良的电气特性,所以它被广泛用于通 讯系统,电子整机,自动化控制的电源等回路作限流,均流或取样检测电 路连接等。

热电偶、热电阻工作原理及特点

热电偶、热电阻工作原理及特点 热电偶工作原理 将两种不同的金属导体焊接在一起,构成闭合回路,如在焊接端(即测量端)加热产生温差,则在回路中就会产生热电动势,此种现象称为塞贝克效应(Seebeck-effect)。如将另一端(即参考端)温度保持一定(一般为0℃),那么回路的热电动势则变成测量端温度的单值函数。这种以测量热电动势的方法来测量温度的元件,即两种成对的金属导体,称为热电偶。 热电偶产生的热电动势,其大小仅与热电极材料及两端温差有关,与热电极长度、直径无 关。 热电偶工作原理图 热电阻工作原理 工业用热电阻分铂热电阻和铜热电阻两大类。 热电阻是利用物质在温度变化时自身电阻也随着发生变化的特性来测量温度的。热电阻的受热部份(感温元件)是用细金属丝均匀地双绕在绝缘材料制成的骨架上。当被测介质中有温度发生变化时,所测得的温度是感温元件所在范围内介质中的平均温度。 热电偶、热电阻特点 热电偶热电阻 热电偶同其它种温度计相比具有如下特点: a、优点 ·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便, ·结构简单,制造容易, ·价格便宜, ·惰性小,热电阻同其它种温度计相比具有如下特点:a、优点 ·准确度高。在所有常用温度计中,准确度最高,可达1mk。 ·输出信号大,灵敏度高。如在0℃用Pt100铂热电阻测温,当温度变化1℃时,其电阻值约变化0.4Ω,如果通过电流为2mA,则其电压输出量变化为800μV。在相同条件下,即使灵敏度比较高的K型热电偶,其热电动势变化也只有

热电偶热电阻 热电偶同其它种温度计相比具有如下特点: a、优点 ·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便, ·结构简单,制造容易, ·价格便宜, ·惰性小, ·准确度高, ·测温范围广, ·能适应各种测量对象的要求(特定部位或狭小场所),如点温和面温的测量,·适于远距离测量和控制。 b、缺点 ·测量准确度难以超过0.2℃, ·必须有参考端,并且温度要保持恒定。·在高温或长期使用时,因受被测介质影响或气氛腐蚀作用(如氧化、还原)等而发生劣化。热电阻同其它种温度计相比具有如下特点:a、优点 ·准确度高。在所有常用温度计中,准确度最高,可达1mk。 ·输出信号大,灵敏度高。如在0℃用Pt100铂热电阻测温,当温度变化1℃时,其电阻值约变化0.4Ω,如果通过电流为2mA,则其电压输出量变化为800μV。在相同条件下,即使灵敏度比较高的K型热电偶,其热电动势变化也只有40μV左右。由此可见,热电阻的灵敏度较热电偶高一个数量级。 ·测温范围广,稳定性好。在振动小而适宜的环境下,可在很长时间内保持0.1℃以下的稳定性。 ·无需参考点。温度值可由测得的电阻值直接求出。 ·输出线性好。只用简单的辅助回路就能得到线性输出,显示仪表可均匀刻度。 b、缺点 ·采用细金属丝的热电阻元件抗机械冲击与振动性能差。 ·元件结构复杂,制造困难大,尺寸较大,因此,热响应时间长。·不适宜测量体积狭小和温度瞬变区域。

相关文档
最新文档