动态内存管理在面向嵌入式实时系统中的研究

动态内存管理在面向嵌入式实时系统中的研究
动态内存管理在面向嵌入式实时系统中的研究

动态内存管理在面向嵌入式实时系统中的研究

动态内存管理的基本任务就是有效地对动态内存进行分配、回收,并同时保证系统的快速性、可靠性和稳定性。当系统请求分配内存时,系统需要从所有空闲块中找到一个合适的空闲块进行分配;当用户不再使用而将某块内存释放时,系统需要回收这一内存块,以备在新的请求产生时重新进行分配。为此,系统需要建立一个与内存当前使用情况相对应的内存描述,用来记录所有与内存分配、回收相关的信息。而如何记录这些信息并进行分配与回收,便成为各种算法的最根本区别。

1 嵌入式系统中内存管理技术的特点

实时系统分为硬实时系统和软实时系统。硬实时系统是指系统中各任务不仅要执行无误而且要做到准时;软实时系统是指系统中各任务运行的越快越好,并不要求限定某一任务必须在多长时间内完成。可以看出动态内存分配是绝对不能用于硬实时系统的,因为动态分配具有时间不确定性(分配时间与内存块数量有关),而且动态分配可能产生分配不成功的情况。所以对于硬实时系统,只能采用静态内存分配方式。静态分配是指在编译或链接时将程序所需的内存空间分配好,这样不会出现分配失败的情况。

1.1 静态分配与动态分配

静态分配为系统提供了最好的可靠性与实时性。对于那些对实时性和可靠性要求极高的需求,就只能采用静态分配方式。但采用静态分配就必然会使系统失去灵活性。因此必须在设计阶段考虑所有可能的情况,并对所有的需求做出相应的空间分配。一旦出现没有考虑到的情况,系统就无法处理。此外静态分配方式也必然导致很大的浪费,因为必须按照最坏情况进行最大的配置,而在实际运行中可能只用到其中的一小部分。

动态分配为系统提供了很大的灵活性,而且在内存的利用率和系统功能扩展等方面也都明显地优于静态分配。

大多数系统采用静态分配和动态分配相结合的方式。由于嵌入式系统本身各个任务的可靠性、实时性要求不尽相同,通常会有一部分任务对可靠性与实时性没有特别严格的要求。这些任务对一定的延时与失败是可以接受的。因此对于这样的一部分任务,就可以采用动态分配方式来满足它们部分或全部的内存需求。而对于那些有严格时限要求的任务,为了保证任务的可靠性和实时性,就应采用静态分配方式。

1.2 动态分配的技术要求

(1)快速性:由于嵌入式系统对实时性要求较高,所以内存分配过程要尽可能地快。在嵌入式系统中,由于还不能采用通用操作系统中复杂而完善的内存分配策略,所以一般都采用简单、快速的内存分配方案。

(2)可靠性:由于嵌入式系统对可靠性的要求较高,所以内存分配过程也要具备高可靠性。但由于各个嵌入式系统之间对可靠性的要求不尽相同,对内存分配的可靠性要求也就各不相同。通常,可靠性要求极高的系统不采用动态分配。

(3)高效性:由于在嵌入式系统中内存资源都相对有限,所以为了保证程序的正常运行,内存管理系统要尽可能高效地使用内存,减少不必要的浪费。

2 伙伴系统

2.1 伙伴系统原理

伙伴(buddy)系统的基本原理就是按照2的幂次方大小对内存进行分配,以此得到很高的分配速度和回收速度。例如:对于10KB的空间请求,伙伴系统会分配16KB的空间来满足。因为内存空闲块大小均为2的幂次方,所以需要16KB,这是满足10KB的最小空间;同样对于70KB的空间请求,伙伴系统会分配128KB的空间来满足。

2.2 伙伴系统存在的问题

伙伴系统比那些按大小而不按块的整数倍地址分配的算法有更多的优点。其优点为当一个大小为2的K次幂的块被释放后,存储管理只需要搜索2的K次幂字节大小的块以判定是否需要合并。那些允许内存块以任意形式分割的策略需要搜索所有的空闲块表。相比之下,伙伴系统更快。

但是对于内存利用率来说,伙伴系统是极其低效的。问题出自所有的内存请求都必须以2的幂次方大小的空间来满足,一个35KB的请求需要分配64KB的空间,其余的29KB被浪费了。在极端情况下内存资源有近50%被浪费。

3 连续的内存分配

3.1 问题提出

伙伴系统的内存管理方式对空间的使用存在极大的浪费。在某些情况下还会由于资源的浪费,导致后继的内存请求得不到满足,进而严重地影响程序的正常功能。

试考虑:系统共有1MB内存空间可用,采用伙伴系统进行管理。有如下请求:请求A,300KB;请求B,300KB;请求C,50KB.结果如表1所示。

由表1中可以看出:伙伴系统对空间的浪费是极其严重的,即使在物理内存充足(1MB)的情况下,也会产生请求(650KB)无法满足的情况。

由于在嵌入式系统中,一般都没有虚拟内存的支持,所以当内存请求无法得到满足时,将严重影响程序的正常功能。因此为了保证程序的正常功能,就要提高内存的利用率,尽可能地满足程序的内存请求。所以在对伙伴系统进行分析的基础上,提出了连续的内存分配方式。

3.2 连续的内存分配原理

从上例不难看出,只要采用连续的内存分配方式(即分配与请求大小相等的空间来满足请求),便不难使请求C得到满足,而且还会有很大的剩余空间继续用来满足其他的内存请求。结果如表2所示。

连续的内存分配方式明显不同于其他以块为单位进行分配的内存管理方法。它采用连续分配的方式,按照请求空间的实际大小来进行空间分配。3.3 连续的内存分配实现方法

为了提高内存空间的利用率,采用按请求的实际大小来分配空间,而不是按块的整数倍大小来分配空间。

基本方法就是将所有独立块(空闲块和使用块)按物理地址的先后顺序组织成一个双链表,每个块中存放块本身的一些独立信息。分配空间时,需要查找整个链表以找到最优适配的空闲块,之后再将此空闲块分裂成二块,一块用来满足请求,另一块则作为空闲块插入链表。空间释放时,只需根据链表便可以方便地找到与其相邻的物理块,在空间合并处理完成之后再将新的块插入链表。

但事实上,由于在分配过程中只需要在空闲块中查找最优适配块,所以可以采用一个单独的链表将所有的空闲块链接起来,这样可以极大地加快空间分配时空闲块的查找速度。

另外,从对伙伴系统的分析可知,将所有的内存空闲区保留在一个或多个按空闲区大小排序的链表中将使内存分配很快。所以借鉴伙伴系统的实现方式,可以将单个的空闲分区链组织成多个链表间有序的空闲分区链。在动态内存操作频繁的情况下,这将会提高系统内存分配的效率。

由于以上的方式容易产生许多小的不能继续使用的空闲区,所以在进行空间分配时,如果分配所得的空闲区小于某一特定值,则不再进行空间分配,而是将整个空间作为请求结果返回。

综上所述,可以将内存块组织成二个双链表,即空闲块链表和物理块链表。

(1)空闲块链表:将所有的空闲块按链表间有序的方式组织成多个独立的空闲链表。空

间分配时,根据空间的大小选择相应的链表进行查找。若查找成功,则在空间分配处理完成之后,将已分配空间返回给请求;若查找失败,则在更大空间的链表中继续查找;若直到全部链表查找完成仍未找到合适的空闲块,则认为此次分配操作失败。

(2)物理块链表:将所有独立块(空闲块和使用块)组织成一个双链表,链表中各节点之间是按照物理地址的先后顺序链接的,每个块中存放块本身的一些独立信息。空间释放时,可以不需查找,而直接根据这一链表找到与释放块相邻的块。再根据相邻块中的相关信息就可以方便地进行内存块的合并操作。

具体实现时,可以将这二个链表的控制信息与用户空间独立存放,避免控制信息被意外地破坏。也可以利用物理块本身来存放这些控制信息,得到更好的空间利用率和更好的灵活性。

3.4 连续的内存分配工作方式

首先假定空间不再进行分配的最小值为1KB,即当空间分裂时所得的空闲区小于1KB时,将不再进行空间分配。

分别保留大小为1KB、2KB、4KB、8KB字节等直到大于内存总容量大小的链表。例如对于容量为1 024KB的内存,有从1KB字节到2 048KB字节的12个链表。初始时,所有内存都是空闲的,2 048KB的链表包含一个1 024KB的空闲区(每个链表存放所有小于链表本身字节数、大于等于前一链表的字节数的内存块,2 048KB的链表存放所有小于2 048KB大于等于1 024KB的内存块)。其他的链表均为空,内存最初的情况。为表示方便,图中使用单链表来表示链接关系。实线表示物理块链表指针,短划线表示空闲块链表指针,虚线表示空指针。对于物理块链表,灰色块表示已分配块,白色块表示空闲块。

当有一个300KB的内存请求(用A表示)产生时,系统找到512KB链表的表头。因为这个链表中可能包含满足请求所需的最小空间。之后按照最佳适配(best fit)算法,在链表中搜寻是否有够用的最小空闲区。此时512KB的链表为空,1 024KB的链表也为空,所以最终在2 048KB的链表中找到1 024KB可用空间。将此空间分割成大小分别为300KB和700KB 的块,700KB的块(大于最小块1KB)插入到1 024KB的链表中,300KB的块则返回给请求A.

接着,又有一个300KB(用B表示)和一个50KB(用C表示)的内存请求。结果。

现在块B被释放。此时,根据物理块链表,可以方便地找到与B邻接的物理块A和物理块C.由于块A和块C都未被释放,所以不需要进行合并操作。因为块B的大小介于256KB和512KB之间,所以将块B插入到512KB的空闲链表中,结果。

接着,块C被释放。此时根据物理块链表可知与块C邻接的为块B和块F,并且二块都为空闲状态。将块B和块F从512KB空闲块链表中删除,再将三块合并成一个700KB的块(用F表示)插入到1 024KB的空闲链表中,结果。

最后当块A被释放时,块A与块F合并成1 024KB的块,回到最初只有1 024KB空闲区的情况。

4 结论

动态内存管理一直是计算机领域的一项重要技术。动态内存管理给用户提供了比较大的自由度,用户可以从系统分区中申请内存块,也可以从用户内存区申请内存块。这样增加了系统的灵活性,同时也限制了大量碎片产生的可能(在不频繁删除建立系统内存分区的前提下)。也增加了部分c 代码的可移植性。

操作系统课程设计--连续动态分区内存管理模拟实现

(操作系统课程设计) 连续动态分区内存 管理模拟实现

目录 《操作系统》课程设计 (1) 引言 (3) 课程设计目的和内容 (3) 需求分析 (3) 概要设计 (3) 开发环境 (4) 系统分析设计 (4) 有关了解内存管理的相关理论 (4) 内存管理概念 (4) 内存管理的必要性 (4) 内存的物理组织 (4) 什么是虚拟内存 (5) 连续动态分区内存管理方式 (5) 单一连续分配(单个分区) (5) 固定分区存储管理 (5) 可变分区存储管理(动态分区) (5) 可重定位分区存储管理 (5) 问题描述和分析 (6) 程序流程图 (6) 数据结构体分析 (8) 主要程序代码分析 (9) 分析并实现四种内存分配算法 (11) 最先适应算 (11) 下次适应分配算法 (13) 最优适应算法 (16)

最坏适应算法......................................................... (18) 回收内存算法 (20) 调试与操作说明 (22) 初始界面 (22) 模拟内存分配 (23) 已分配分区说明表面 (24) 空闲区说明表界面 (24) 回收内存界面 (25) 重新申请内存界面..........................................................26. 总结与体会 (28) 参考文献 (28) 引言 操作系统是最重要的系统软件,同时也是最活跃的学科之一。我们通过操作系统可以理解计算机系统的资源如何组织,操作系统如何有效地管理这些系统资源,用户如何通过操作系统与计算机系统打交道。 存储器是计算机系统的重要组成部分,近年来,存储器容量虽然一直在不断扩大,但仍不能满足现代软件发展的需要,因此,存储器仍然是一种宝贵而又紧俏的资源。如何对它加以有效的管理,不仅直接影响到存储器的利用率,而且还对系统性能有重大影响。而动态分区分配属于连续分配的一种方式,它至今仍在内存分配方式中占有一席之地。 课程设计目的和内容: 理解内存管理的相关理论,掌握连续动态分区内存管理的理论;通过对实际问题的编程实现,获得实际应用和编程能力。

嵌入式实时操作系统

嵌入式实时操作系统 嵌入式实时操作系统(Embedded Real-time Operation System,RTOS)。 1 嵌入式实时操作系统概念 当外界事件或数据产生时,能够接受并以足够快的速度予以处理,其处理的结果又能在规定的时间之内来控制生产过程或对处理系统作出快速响应,并控制所有实时任务协调一致运行的嵌入式操作系统。 2 嵌入式实时操作系统特点 1)多任务; 2)有线程优先级 3)多种中断级别 3 嵌入式实时操作系统应用 在工业控制、军事设备、航空航天等领域对系统的响应时间有苛刻的要求,这就需要使用实时系统。 采用嵌入式实时操作系统(简称RTOS)能够支持多任务,使得程序开发更加容易,便于维护,同时能够提高系统的稳定性和可靠性。

4 实时操作系统的必要性: 首先,嵌入式实时操作系统提高了系统的可靠性。 其次,提高了开发效率,缩短了开发周期。 实时操作系统的优缺点: 在嵌入式实时操作系统环境下开发实时应用程序使程序的设计和扩展变得容易,不需要大的改动就可以增加新的功能。通过将应用程序分割成若干独立的任务模块,使应用程序的设计过程大为简化;而且对实时性要求苛刻的事件都得到了快速、可靠的处理。通过有效的系统服务,嵌入式实时操作系统使得系统资源得到更好的利用。但是,使用嵌入式实时操作系统还需要额外的ROM/RAM 开销,2~5% 的CPU 额外负荷,以及内核的费用。 5 实时系统与非实时系统的根本区别 实时系统与非实时系统的根本区别在于:实时系统具有与外部环境及时交互作用的能力。也就是说实时系统从外部获取信息以及系统得出结论要在很短的限制时间内完成。 它具有嵌入式软件共有的可裁剪、低资源占用、低功耗等特点;实时任务之间可能还会有一些复杂的关联和同步关系,如执行顺序限制、共享资源的互斥访问要求等。 实时操作系统所遵循的最重要的设计原则是:采用各种算法和策略,始终保证系统行为的可预测性(predictability)。可预测性是指在系统运行的任何时刻,在任何情况下,实时操作系统的资源调配策略都能为争夺资源(包括CPU、内存、网络带宽等)的多个实时任务合理地分配资源,使每个实时任务的实时性要求都能得到满足。与通用操作系统不同,实时操作系统注重的不是系统的平均表现,而是要求每个实时任务在最坏情况下都要满足其实时性要求,也就是说,实时操作系统注重的是个体表现。

嵌入式控制系统综合实验

《嵌入式控制系统综合实验》课程 实验报告 项目名称 基于STM32的手机输入法 南京理工大学 2017年6 月

目录 1 设计背景 (2) 2 系统总体方案 (3) 3 系统具体设计 (4) 3.1 手写识别原理 (4) 3.2手写识别程序设计 (6) 3.3手写识别硬件设计 (10) 3.4拼音九键输入原理 (10) 3.5拼音九键软件设计 (11) 3.6拼音九键硬件设计 (13) 4 编译调试 (14) 4.1 手写识别、拼音输入法单项调试 (14) 4.2 手写识别、拼音输入法组合调试 (18) 5总结 (19)

1 设计背景 随着计算机技术和微电子技术的迅速发展,嵌入式系统应用领域越来越广泛。随着IC设计的发展,出现了工业化ARM芯片,ARM微处理器及技术已经深入到各大领域,并取得了很大成功,如无线通信领域、蓝牙技术、网络应用领域、消费类电子产品领域、信息家电领域等。 目前几乎所有带触摸屏的手机都能实现拼音输入和手写识别输入。 Cortex-M3采用ARM V7构架,不仅支持Thumb-2指令集,而且拥有很多新特征。较之ARM7 TDMI,Cortex-M3拥有更强劲的性能、更高的代码密度、位带操作、可嵌套中断、低成本、低功耗等众多优势。 本次嵌入式实验,我们采用基于STM32F103带4.3寸触摸屏的嵌入式开发板来模拟一个手机输入法,该输入法功能主要有手写识别跟拼音九键。嵌入式开发平台如图1所示。 图1 STM32F103嵌入式开发平台

2 系统总体方案 本次嵌入式实验设计了“手机输入法”功能,该输入法功能主要包括两种输入方式——拼音九键+手写识别。下面首先介绍一下本设计的软、硬件基础,然后介绍本设计的总体方案。 软件基础:本次嵌入式综合实验,我们利用MDK软件来开发STM32。MDK 源自德国的KEIL公司,是RealView MDK的简称。在全球MDK被超过10万的嵌入式开发工程师使用。MDK5向后兼容MDK4和MDK3等,以前的项目同样可以在MDK5上进行开发(但是头文件方面得全部自己添加),MDK5同时加强了针对Cortex-M微控制器开发的支持,并且对传统的开发模式和界面进行升级,MDK5由两个部分组成:MDK Core和Software Packs。其中,Software Packs可以独立于工具链进行新芯片支持和中间库的升级。 硬件基础:本次嵌入式综合实验所使用的STM32开发板选择的是STM32F103ZETT6作为MCU,该芯片是STM32F103里面配置非常强大的了,它拥有的资源包括:64KB SRAM、512KB FLASH、2个基本定时器、4个通用定时器、2个高级定时器、2个DMA控制器(共12个通道)、3 个SPI、2个IIC、5 个串口、1个USB、1个CAN、3个12位ADC、1个12位DAC、1个SDIO 接口、1个FSMC接口以及112个通用IO口。该芯片的配置十分强悍,并且还带外部总线(FSMC)可以用来外扩SRAM和连接LCD等,通过FSMC驱动LCD,可以显著提高LCD的刷屏速度, 本设计要完成输入法的界面设计、功能实现以及不同输入方式之间的来回切换,还必须与键盘、LCD等硬件设备结合。总体方案如下: (1)设计输入法的总体要实现的功能,画出功能块图; (2)将整个输入法设计分成两大模块,一是手写识别,二是拼音输入,分别对他们进行程序设计; (3)画出手写识别与拼音输入的程序流程图,并编写相应的程序; (4)最后,将设计好的两个输入法模块整合起来,并编写相应的程序,使之可以完美地进行来回切换。 系统总体设计框图如图2:

嵌入式系统仿真测试平台的体系结构研究

!"##!年第$期 福建电脑注:本文得到广东省科技厅攻关项目资金资助%项目编号"##"&’(&)电子科技大学青年基金项目资助%项目编号*+#"#,#-。 &、 引言目前嵌入式系统开发已经成为了计算机工业最热门的领域之一,嵌入式系统应用渗透到信息家电、工业控制、通信与电子设备、人工智能设备等诸多领域。然而嵌入式系统的软件与目标硬件紧密相关,软件开发周期长,开发成本昂贵,软件质量无法保障.&/."/。特别是嵌入式软件的测试工作,在整个开发周期中通 常占用着大部分时间 (-#01,#0)。软件测试是一个非常重要而又艰苦的过程。软件测试工具用来全部或部分的代替人工进行软件的测试工作。它能极大的节省人力、物力和财力,缩短项目的开发周期。 国际上,许多软件公司致力于开发功能强大的软件测试工具。按获得测试信息的方式分为纯硬件、纯软件、软硬件相结合三种类型的测试工具。纯硬件测试工具如仿真器、逻辑分析仪、开发系统等。纯软件测试工具如234563786的2345938:,是一种软件逻辑分析仪。软硬件相结合的测试工具如以;<公司的=>?938:为代表的虚拟仪器和以@AB 公司的BC58DEFD 为代表的测试工具。这三类测试工具都有一个缺点:没有提供一个集成各种软硬件测试工具的框架,使各类测试工具能紧密协调工作。 为提高测试工作的效率,迫切需要功能强大的嵌入式系统测试工具。 仿真开发在嵌入式系统开发中正在发挥着越来越重要的作用。许多软件公司已经开发出成熟稳定的嵌入式仿真开发工具。但是在嵌入式仿真开发中,仍然缺乏一种嵌入式系统测试工具的集成框架。本文正是基于这个目标,从软件体系结构的角度,研究和设计了一种称为G EFDH G 的嵌入式系统仿真测试平台的集成框架。并基于其上实现了一个嵌入式仿真测试平台3I >EFDH 。 "、 嵌入式系统仿真测试平台的体系结构EFDH 对于大规模复杂软件系统,其总体结构设计远比算法和数据结构的选择更重要.J /.!/。基于这样的认识和背景,本文在对嵌入式测试和嵌入式仿真开发深入研究的基础上,研究和设计了EFDH 的体系结构。"K &EFDH 的结构模型 EFDH 的体系结构主要借鉴了当前流行的嵌入式交叉开发工具的目标服务器L 目标代理结构.’/,分为宿主机端和仿真目标机端两大部分。 EFDH 的结构模型见图&: 图&EFDH 结构模型 EFDH 结构模型的基本特征:&M EFDH 由宿主机端和目标机端两大部分构成,宿主机 端以测试服务器DF (D8NO F86786)为核心;目标机端以测试代理D@P D8NO @Q84O M 为核心。 "M 所有的测试工具不与目标机端交互, 而只与测试服务器DF 进行交互;测试服务器DF 同测试代理D@交互。这样只要更换相应的测试代理D@,即可与不同的仿真开发系统一起工作。 J M 测试服务器DF 与所有测试工具之间通过嵌入式仿真测试工具交换协议EFDDR (ES?85585F3STU>O3C4D8NO DCCU 8RI VW>4Q8X6COCVCU ) 规范接口进行交互。!M 测试服务器DF 和测试代理D@之间通过嵌入式仿真测试协议EFD P ES?85585F3STU>O3C4D8NO X6COCVCU M 规范接口进行交互。 ’M 测试工具以软插件的形式集成到EFDH 中%EFDDR 和EFD 规范定义的接口是公开的和可免费获得的,第三方测试工具非常容易的集成到EFDH 中来。 -M 测试工具多种多样,可以是软件代码测试工具,也可以是硬件诊断测试工具,都可以很容易的集成到EFDH 中来,从而达到各类测试工具的紧密协作。 $M EFDH 中各类测试工具紧密集成到一个图形用户接口中,大大提高了用户的工作效率。 ,M 测试代理D@以一个线程的形式存在于仿真运行环境中,与各类模拟器之间通过固定的接口交互,获取丰富的测试信息。 "K "测试服务器DF 模型 测试服务器DF 是EFDH 的核心结构部件,作为EFDH 的测试管理器,其结构模型如图"。 图"测试服务器DF 结构模型 DF 的主要功能:&M DF 提供相应的EFDDR 协议规范接口,接受来自测试工具的控制命令和状态查询,并提供相应的数据传输接口,向测试工具返回对应的测试结果。 "M DF 提供相应的EFD 协议规范接口,向采集代理发送控制命令信息和状态查询信息,并且根据EFD 协议规范提供的接口收取返回信息。 J M DF 提供测试高速缓冲管理、 测试存储器管理以及流测试协议,管理和控制整个宿主机端。"K J 测试代理D@模型 嵌入式系统仿真测试平台的体系结构研究 邵荣防,罗克露 P 电子科技大学计算机科学与工程学院,四川 成都-&##’!M 【摘要】仿真开发在嵌入式开发中正逐步成为热点,仿真测试工具在仿真开发过程中正发挥着日益重要的作用。本文首先简要分析了当前的嵌入式测试工具,然后给出一种嵌入式仿真测试平台的体系结构EFDH 。基于EFDH 体系结构,实现了一个面向信息家电的嵌入式仿真测试平台3>EFDH 。 【关键词】嵌入式系统仿真开发 仿真测试平台

动态内存管理知识总结

1.标准链接库提供四个函数实现动态内存管理: (1)分配新的内存区域: void * malloc(size_t size); void *calloc(size_t count , size_t size); (2)调整以前分配的内存区域: void *realloc(void *ptr , size_t size); (3)释放以前分配的内存区域: void free(void *ptr); 2.void * malloc(size_t size); 该函数分配连续的内存空间,空间大小不小于size 个字节。但分配的空间中的内容是未知的。该函数空间分配失败则返回NULL。 3.void *calloc(size_t count , size_t size); 该函数也可以分配连续的内存空间,分配不少于count*size个字节的内存空间。即可以为一个数组分配空间,该数组有count个元素,每个元素占size个字节。而且该函数会将分配来的内存空间中的内容全部初始化为0 。该函数空间分配失败则返回NULL。 4. 以上两个分配内存空间的函数都返回void * (空类型指针或无类型指针)返回的指针值是“分配的内存区域中”第一个字节的地址。当存取分配的内存位置时,你所使用的指针类型决定如何翻译该位置的数据。以上两种分配内存空间的方法相比较,calloc()函数的效果更好。原因是它将分配得来的内存空间按位全部置0 。 5. 若使用上述两种分配内存的函数分配一个空间大小为0 的内存,函数会返回一个空指针或返回一个没有定义的不寻常指针。因此绝不可以使用“指向0 字节区域”的指针。 6. void *realloc(void *ptr , size_t size); 该函数释放ptr所指向的内存区域,并分配一个大小为size字节的内存区域,并返回该区域的地址。新的内存区域可以和旧的内存区域一样,开始于相同的地址。且此函数也会保留原始内存内容。如果新的内存区域没有从原始区域的地址开始,那么此函数会将原始的内容复制到新的内存区域。如果新的内存区域比较大,那么多出来部分的值是没有意义的。 7. 可以把空指针传给realloc()函数,这样的话此函数类似于malloc()函数,并得到一块内存空间。如果内存空间不足以满足内存区域分配的请求,那么realloc()函数返回一个空指针,这种情况下,不会释放原始的内存区域,也不会改变它的内容。 8. void free(void *ptr); 该函数释放动态分配的内存区域,开始地址是ptr,ptr的值可以是空指针。若在调用此函数时传入空指针,则此函数不起任何作用。 9. 传入free() 和realloc()函数的指针(若不为空指针时)必须是“尚未被释放的动态分配内存区域的起始地址”。否则函数的行为未定义。Realloc()函数也可以释放内存空间,例如:Char *Ptr = (char *)malloc(20); 如只需要10个字节的内存空间,且保留前十个字节的内容,则可以使用realloc()函数。 Ptr = Realloc(ptr,10); // 后十个字节的内存空间便被释放

单片机系统设计与仿真软件

(此文档为word格式,下载后您可任意编辑修改!) PROTEUS —单片机系统设计与仿真软件 一、Proteus 6.7 Professional 界面简介 安装完Proteus后,运行ISIS 6.7 Professional,会出现以下窗口界面: 为了方便介绍,分别对窗口内各部分进行中文说明(见上图)。下面简单 介绍各部分的功能: 1.原理图编辑窗口(The Editing Window ):顾名思义,它是用来绘制原理图的。蓝色方框内为可编辑区,元件要放到它里面。注意,这个窗口是没有滚动条的,你可用预览窗口来改变原理图的可视范围。 2.预览窗口(The Overview Window ):它可显示两个内容,一个是:当你 在元件列表中选择一个元件时,它会显示该元件的预览图;另一个是,当你的鼠标焦点落在原理图编辑窗口时(即放置元件到原理图编辑窗口后或在原理图编辑窗口

中点击鼠标后),它会显示整张原理图的缩略图,并会显示一个绿色的方框,绿色 的方框里面的内容就是当前原理图窗口中显示的内容,因此,你可用鼠标在它上面点击来改变绿色的方框的位置,从而改变原理图的可视范围。 3.模型选择工具栏( Mode Selector Toolbar ):主要模型( Main Modes ): 1*选择元件(components)(默认选择的) 2* 放置连接点 3* 放置标签(用总线时会用到) 4* 放置文本 5* 用于绘制总线 6* 用于放置子电路 7* 用于即时编辑元件参数 (先单击该图标再单击要修改的元件) 配件( Gadgets): 1*终端接口( terminals):有VCC、地、输出、输入等接口 2* 器件引脚:用于绘制各种引脚 3* 仿真图表( gra ph ) :用于各种分析,如Noise Analysis 4* 录音机 5* 信号发生器( generators) 6* 电压探针:使用仿真图表时要用到 7* 电流探针:使用仿真图表时要用到 8* 虚拟仪表:有示波器等 2D 图形( 2D Graphics): 1* 画各种直线 2* 画各种方框 3* 画各种圆 4* 画各种圆弧 5* 画各种多边形 6* 画各种文本 7* 画符号 8* 画原点等 4.元件列表( The Object Selector ):用于挑选元件( components)、终端接口 ( terminals)、信号发生器 (generators)、仿真图表(graph)等。举例,当你选择"元件 (components)”,单击"P”按钮会打开挑选元件对话框,选择了一个元件后(单击了“ OK ”后),该元件会在元件列表中显示,以后要用到该元件时,只需在元件列表中选择即可。 5.方向工具栏( Orientation Toolbar ):旋转:旋转角度只能是90 的整数倍。 翻转:完成水平翻转和垂直翻转。使用方法:先右键单击元件,再点击(左击)相应的旋

嵌入式控制系统平时作业

1、什么是嵌入式系统? 答:嵌入式系统(Embedded system),是一种“完全嵌入受控器件内部,为特定应用而设计的专用计算机系统”,根据英国电气工程师协会(U.K. Institution of Electrical Engineer)的定义,嵌入式系统为控制、监视或辅助设备、机器或用于工厂运作的设备。与个人计算机这样的通用计算机系统不同,嵌入式系统通常执行的是带有特定要求的预先定义的任务。由于嵌入式系统只针对一项特殊的任务,设计人员能够对它进行优化,减小尺寸降低成本。嵌入式系统通常进行大量生产,所以单个的成本节约,能够随着产量进行成百上千的放大。 2、举例说明嵌入式的应用。 答: 工业控制 基于嵌入式芯片的工业自动化设备将获得长足的发展,目前已经有大量的8、16、32 位嵌入式微控制器在应用中,网络化是提高生产效率和产品质量、减少人力资源主要途径,如工业过程控制、数字机床、电力系统、电网安全、电网设备监测、石油化工系统。就传统的工业控制产品而言,低端型采用的往往是8位单片机。但是随着技术的发展,32位、64位的处理器逐渐成为工业控制设备的核心,在未来几年内必将获得长足的发展。 交通管理 在车辆导航、流量控制、信息监测与汽车服务方面,嵌入式系统技术已经获得了广泛的应用,内嵌GPS模块,GSM模块的移动定位终端已经在各种运输行业获得了成功的使用。目前GPS设备已经从尖端产品进入了普通百姓的家庭,只需要几千元,就可以随时随地找到你的位置。

信息家电 这将称为嵌入式系统最大的应用领域,冰箱、空调等的网络化、智能化将引领人们的生活步入一个崭新的空间。即使你不在家里,也可以通过电话线、网络进行远程控制。在这些设备中,嵌入式系统将大有用武之地。 家庭智能管理 水、电、煤气表的远程自动抄表,安全防火、防盗系统,其中嵌有的专用控制芯片将代替传统的人工检查,并实现更高,更准确和更安全的性能。目前在服务领域,如远程点菜器等已经体现了嵌入式系统的优势。 POS网络 公共交通无接触智能卡(Contactless Smartcard, CSC)发行系统,公共电话卡发行系统,自动售货机,各种智能ATM终端将全面走入人们的生活,到时手持一卡就可以行遍天下。 环境工程 水文资料实时监测,防洪体系及水土质量监测、堤坝安全,地震监测网,实时气象信息网,水源和空气污染监测。在很多环境恶劣,地况复杂的地区,嵌入式系统将实现无人监测。 3、嵌入式操作系统的作用是什么? 答:嵌入式操作系统的主要好处就是屏蔽了底层硬件的差别,给上层应用提供统一的接口,并管理进程调度和资源(如CPU时间、内存)分配等。就跟windows操作系统一样,不管你是用华硕的电脑还是戴尔的电脑,只要装了windows操作系统,你都可以用office、词霸之类的软件。人机界面(MMI)是上层应用show出来的。 简单的嵌入式应用不需要嵌入式操作系统的支持,如单片机,直接用汇编程序就能实现特定的功能。要跑的应用多了,就需要操作系统来进行管理。

单片机系统设计与仿真软件

(此文档为word格式,下载后您可任意编辑修改!) PROTEUS —单片机系统设计与仿真软件 一、Proteus 6.7 Professional 界面简介 安装完Proteus 后,运行ISIS 6.7 Professional,会出现以下窗口界面: 为了方便介绍,分别对窗口内各部分进行中文说明(见上图)。下面简单 介绍各部分的功能: 1.原理图编辑窗口(The Editing Window):顾名思义,它是用来绘制原理 图的。蓝色方框内为可编辑区,元件要放到它里面。注意,这个窗口是没有滚动条的,你可用预览窗口来改变原理图的可视范围。 2.预览窗口(The Overview Window):它可显示两个内容,一个是:当你 在元件列表中选择一个元件时,它会显示该元件的预览图;另一个是,当你的鼠标焦点落在原理图编辑窗口时(即放置元件到原理图编辑窗口后或在原理图编辑窗口中点击鼠标后),它会显示整张原理图的缩略图,并会显示一个绿色的方框,绿色

的方框里面的内容就是当前原理图窗口中显示的内容,因此,你可用鼠标在它上面点击来改变绿色的方框的位置,从而改变原理图的可视范围。 3.模型选择工具栏(Mode Selector Toolbar): 主要模型(Main Modes): 1* 选择元件(components)(默认选择的) 2* 放置连接点 3* 放置标签(用总线时会用到) 4* 放置文本 5* 用于绘制总线 6* 用于放置子电路 7* 用于即时编辑元件参数(先单击该图标再单击要修改的元件) 配件(Gadgets): 1* 终端接口(terminals):有VCC、地、输出、输入等接口 2* 器件引脚:用于绘制各种引脚 3* 仿真图表(graph):用于各种分析,如Noise Analysis 4* 录音机 5* 信号发生器(generators) 6* 电压探针:使用仿真图表时要用到 7* 电流探针:使用仿真图表时要用到 8* 虚拟仪表:有示波器等 2D图形(2D Graphics): 1* 画各种直线 2* 画各种方框 3* 画各种圆 4* 画各种圆弧 5* 画各种多边形 6* 画各种文本 7* 画符号 8* 画原点等 4.元件列表(The Object Selector): 用于挑选元件(components)、终端接口(terminals)、信号发生器(generators)、仿真图表(graph)等。举例,当你选择“元件(components)”,单击“P”按钮会打开挑选元件对话框,选择了一个元 件后(单击了“OK”后),该元件会在元件列表中显示,以后要用到该 元件时,只需在元件列表中选择即可。 5.方向工具栏(Orientation Toolbar):

嵌入式实时操作系统之我见

嵌入式实时操作系统之我见 -ARM7TDMI-S 王士莹 -----从基本概念、基本原理、基本常识、基本思维入手阐述嵌入式实时操作系统在单片机开发中,嵌入式实时操作系统的使用近几年比较流行,在具体应用中也有比较好的表现。那么对于一个应用来讲,应该选择那种操作系统呢?目前,可供选择的有uLinux、VxWorks、uCOS-II等。我们当然可以选择其中的一个根据需要移植到自己的设计中。但对于一个工程师来说,能够在设计中使用自己编写的嵌入式实时操作系统岂不是一件“很酷”的事情吗?而且,我认为,若要较好的理解一个嵌入式实时操作系统,首先要能够自己编写,哪怕是一个最简单的。否则,不知道核心原理是怎么回事,仅仅依样画葫芦做做移植,只是隔靴搔痒,只会是门外汉。 这篇文章就是根据我所理解的嵌入式操作系统,就几个问题做一个阐述,以期抛砖引玉。 1、为什么要用嵌入式实时操作系统,嵌入式实时操作系统较前后台结构有什么优势 单片机程序结构发展 任务的驱动方式有两种:时间和事件,所以对一个单片机程序来说它要等待的量也是只有两个:延迟时间到或事件发生。故操作系统只要安排任务等待着这两个标志就好。那么如何产生这两个标志呢,标志产生在中断中,然后在中断中发给需要的任务。 多功能块任务:在一个任务中有等待的时间或事件,等到后再执行后面程序的任务。在任务等待的时候单片机可以离开该任务去执行其他任务,该任务等待

完成后再回来继续运行。这样使用操作系统就提高了系统整体的运行效率。 单片机执行全局的东西,操作系统通过把全局的资源赋值成局部的任务让单片机执行了看似全局的实则是局部的东西,这样就实现了任务的调度和切换对于单功能块任务,即一个任务中没有需要等待的时间或事件,程序连续地从头执行到尾,对于这样的任务操作系统的作用不大。 2、单片机编程有哪些特点、会有哪些问题和需求、操作系统如何根据特点解决问题满足需求 一般单片机系统中不会只运行一个单一的任务,往往有多个方面的工作要做,如对一个仪器仪表来讲,它要做的工作有:测量、显示、存储、通讯、控制等。这些工作需要同一个单片机来完成,那如何对他们进行安排才能使一个单片机执行多个任务呢? 打个比方:单片机就像一支建筑队,在这个建筑队里面有管理、财务、技术、工人、后勤等,他们各司其职、共同协作完成一个建筑工程。正常情况下,一支建筑队在一个时间段只能做一个工程,若再有工程要做,只能等这次的工程完成后才能去。现在的情况是:建筑市场异常火爆,有大量的工程要做,而该地区的建筑队数量只有这1支。那怎么办呢?一般的做法是:给每个工程排好顺序定好工期,做完第一个再做第二个再做第三个及其他。如果这样安排,顺利还好,如果不顺利就会发生这样的事:第三个工程所有的东西都已准备好,而且这个工程的建筑物急等着用,但建筑队却由于第二个工程的资金短缺或其它原因耽误了工期而迟迟不能到来。出现这样的事情是不应该的,那怎样安排工作才能避免这样的事情呢?我们可以这样做:1支建筑队同时承包多个工程,并同建筑单位定好协议:当一个工程由于资金或其他原因不能继续时,建筑队可以暂时离开去其他工地。这样当2号工程资金不到位时,建筑队把该工程的必要信息记录下来并保存起来,然后离开2号工程的工地去3号工程的工地;如果3号工程已经开始了,则建筑队把之前保存的信息取出来按照信息上的说明继续下面的工作,若3号工程也有其他事情需要等待了,则建筑队保存好记录后再去其他工地。这样,建筑队就总是在做工程而不会出现空闲,实现了效率的最大化!这种安排工作的方法就是建筑队版的“嵌入式实时操作系统”!

动态内存分配和回收

实验五可变分区存储管理方式的内存分配和回收 一.实验目的 通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解,熟悉可变分区存储管理的内存分配和回收。 二.实验属性 设计 三.实验内容 1.确定内存空间分配表; 2.采用最优适应算法完成内存空间的分配和回收; 3.编写主函数对所做工作进行测试。 四.实验背景材料 实现可变分区的分配和回收,主要考虑的问题有三个:第一,设计记录内存使用情况的数据表格,用来记录空闲区和作业占用的区域;第二,在设计的数据表格基础上设计内存分配算法;第三,在设计的数据表格基础上设计内存回收算法。 首先,考虑第一个问题,设计记录内存使用情况的数据表格,用来记录空间区和作业占用的区域。 由于可变分区的大小是由作业需求量决定的,故分区的长度是预先不固定的,且分区的个数也随内存分配和回收变动。总之,所有分区情况随时可能发生变化,数据表格的设计必须和这个特点相适应。由于分区长度不同,因此设计的表格应该包括分区在内存中的起始地址和长度。由于分配时空闲区有时会变成两个分区:空闲区和已分分区,回收内存分区时,可能会合并空闲分区,这样如果整个内存采用一张表格记录己分分区和空闲区,就会使表格操作繁琐。分配内存时查找空闲区进行分配,然后填写己分配区表,主要操作在空闲区;某个作业执行完后,将该分区变成空闲区,并将其与相邻的空闲区合并,主要操作也在空闲区。由此可见,内存的分配和回收主要是对空闲区的操作。这样为了便于对内存空间的分配和回收,就建立两张分区表记录内存使用情况,一张表格记录作业占用分区的“己分分区表”;一张是记录空闲区的“空闲区表”。这两张表的实现方法一般有两种:一种是链表形式,一种是顺序表形式。在实验中,采用顺序表形式,用数组模拟。由于顺序表的长度必须提前固定,所以无论是“已分分区表”还是“空闲区表”都必须事先确定长度。它们的长度必须是系统可能的最大项数。 “已分分区表”的结构定义 #define n 10 //假定系统允许的最大作业数量为n struct { float address; //已分分区起始地址 float length; //已分分区长度、单位为字节 int flag; //已分分区表登记栏标志,“0”表示空栏目,实验中只支持一个字符的作业名 }used_table[n]; //已分分区表 “空闲区表”的结构定义 #define m 10 //假定系统允许的空闲区最大为m struct

常见的四种嵌入式操作系统

(一)VxWorks VxWorks操作系统是美国WindRiver公司于1983年设计开发的一种嵌入式实时操作系统(RTOS),是Tornado嵌入式开发环境的关键组成部分。良好的持续发展能力、高性能的内核以及友好的用户开发环境,在嵌人式实时操作系统领域逐渐占据一席之地。 VxWorks具有可裁剪微内核结构;高效的任务管理;灵活的任务间通讯;微秒级的中断处理;支持POSIX 1003.1b实时扩展标准;支持多种物理介质及标准的、完整的TCP/IP网络协议等。 然而其价格昂贵。由于操作系统本身以及开发环境都是专有的,价格一般都比较高,通常需花费10万元人民币以上才能建起一个可用的开发环境,对每一个应用一般还要另外收取版税。一般不通供源代码,只提供二进制代码。由于它们都是专用操作系统,需要专门的技术人员掌握开发技术和维护,所以软件的开发和维护成本都非常高。支持的硬件数量有限。 (二)Windows CE Windows CE与Windows系列有较好的兼容性,无疑是Windows CE推广的一大优势。其中WinCE3.0是一种针对小容量、移动式、智能化、32位、了解设备的模块化实时嵌人式操作系统。为建立针对掌上设备、无线设备的动态应用程序和服务提供了一种功能丰富的操作系统平台,它能在多种处理器体系结构上运行,并且通常适用于那些对内存占用空间具有一定限制的设备。它是从整体上为有限资源的平台设计的多线程、完整优先权、多任务的操作系统。它的模块化设计允许它对从掌上电脑到专用的工业控制器的用户电子设备进行定制。操作系统的基本内核需要至少200KB的ROM。由于嵌入式产品的体积、成本等方面有较严格的要求,所以处理器部分占用空间应尽可能的小。系统的可用内存和外存数量也要受限制,而嵌入式操作系统就运行在有限的内存(一般在ROM或快闪存储器)中,因此就对操作系统的规模、效率等提出了较高的要求。从技术角度上讲,Windows CE作为嵌入式操作系统有很多的缺陷:没有开放源代码,使应用开发人员很难实现产品的定制;在效率、功耗方面的表现并不出色,而且和Windows一样占用过的系统内存,运用程序庞大;版权许可费也是厂商不得不考虑的因素。 (三)嵌入式Linux 这是嵌入式操作系统的一个新成员,其最大的特点是源代码公开并且遵循GPL协议,在近一年多以来成为研究热点,据IDG预测嵌入式Linux将占未来两年的嵌入式操作系统份额的50%。 由于其源代码公开,人们可以任意修改,以满足自己的应用,并且查错也很容易。遵从GPL,无须为每例应用交纳许可证费。有大量的应用软件可用。其中大部分都遵从GPL,是开放源代

嵌入式控制系统随堂练习

1.最早的单片机是Intel公司的(),它出现在1976年。 A.8088 B.8048 C.8058 D.8068 答题: A. B. C. D. (已提交) 参考答案:B 问题解析: 2.下面哪种操作系统不属于商用操作系统。() A. Windows 7 B. Linux C. VxWorks D. WinCE 答题: A. B. C. D. (已提交) 参考答案:B 问题解析: 3.下面哪点不是嵌入式操作系统的特点。() A. 内核精简 B. 专用性强 C. 功能强大 D. 高实时性 答题: A. B. C. D. (已提交) 参考答案:C 问题解析: 4.迄今为止,()系列的单片机仍然是最为成功的单片机芯片之一,在各种产品中有着非常广泛的应用。A.8088 B.8048 C.8058 D.8051 答题: A. B. C. D. (已提交) 参考答案:D 问题解析: 5.嵌入式系统的核心是()和嵌入式操作系统。 A.嵌入式微处理器B.存储器C.单片机D.内部总线 答题: A. B. C. D. (已提交) 参考答案:A 问题解析: 6.下面哪种嵌入式系统是属于软实时系统。() A.WinCE B.VxWorks C.Nucleus D.eCOS 答题: A. B. C. D. (已提交) 参考答案:A 问题解析: 7.下面哪种嵌入式系统是属于硬实时系统。() A.WinCE B.RTLinux C.Windows XP D.eCOS 答题: A. B. C. D. (已提交) 参考答案:D 问题解析: 8.Embedded Visual Studio是()

参考答案:B 问题解析: 9.下面哪些不属于嵌入式控制系统的典型应用。() A.智能家居 B. 智能手机 C. 智能控制 D. 智能数据挖掘 答题: A. B. C. D. (已提交) 参考答案:D 问题解析: 10.下面哪个系统属于嵌入式系统()。 A.“天河一号”计算机系统B.IBMX200笔记本电脑 C.联想S10上网本D.Iphone手机 答题: A. B. C. D. (已提交) 参考答案:D 问题解析: 当前页有10题,你已做10题,已提交10题,其中答对10题。 11.一个完整的嵌入式系统由()两大部分组成。 A.系统软件和应用软件B.硬件系统和软件系统 C.通用机和专用机D.基本缓存和硬盘 答题: A. B. C. D. (已提交) 参考答案:B 问题解析: 12.HAL是指() Α.嵌入式微控制器B.硬件抽象层 C.嵌入式数字信号处理器D.嵌入式片上系统 答题: A. B. C. D. (已提交) 参考答案:B 问题解析: 13.BSP是指() Α.嵌入式操作系统B.板级支持包 C.嵌入式微处理D.应用软件包 答题: A. B. C. D. (已提交) 参考答案:B 问题解析: 14.EMPU是指() Α.嵌入式微控制器B.嵌入式微处理器 C.嵌入式数字信号处理器D.嵌入式片上系统 答题: A. B. C. D. (已提交) 参考答案:B

Proteus与单片机实时动态仿真

0.引言 Proteus 是由英国Labcenter electronics 公司开发的EDA 工具软件。它从1989 年出现到现在已经有十多年的历史,在全球广泛使用。Proteus 安装以后,主要由两个程序组成:Ares和Isis。前者主要用于PCB 自动或人工布线及其电路仿真,后者主要采用原理布图的方法绘制电路并进行相应的仿真。除了上述基本应用之外,Proteus 革命性的功能在于它的电路仿真是互动的,针对微处理器的应用,可以直接在基于原理图的虚拟原型上编程,并实现软件代码级的调试,还可以直接实时动态地模拟按钮、键盘的输入,LED、液晶显示的输出,同时配合虚拟工具如示波器、逻辑分析仪等进行相应的测量和观测。 Proteus 软件的应用范围十分广泛,涉及PCB 制版、spice 电路仿真、单片机仿真,在最新的6.9 版本中又加入了对ARM7/LPC2000 的仿真。本文主要以单片机的仿真为例,使大家初步了解该软件的强大功能及其在工程实践和实验教学中的重要作用。 1.Proteus 仿真功能简介 作为一款EDA 仿真软件,Proteus 与同类软件有着很多的相似之处。相比之下,其主要的特点有两个:一是对动态元件的实时仿真,它对“人机对话”的模拟增强了系统的真实性;二是虚拟工具箱的功能,它能与仿真同时进行,测量方便而准确。下面着重介绍一下该软件的这两个突出特点。 1.1.实时动态仿真 与多数仿真软件相似,Proteus 有着数量庞大的元件库。Labcenter 公司与相关的第三方软件阵容共同开发了6000 多个模拟和数字电路中常用的spice 模型以及各种动态元件,基本元件如电阻、电容、各种二极管、三极管、MOS 管、555 定时器等;74 系列TTL 元件和4000 系列CMOS 元件;存储芯片包括各种常用的ROM, RAM,EEPROM, 还有常见I2C 器件等。在丰富的库元件的支持下,原理布图时只要进行相应的调用和连线,通过对每个元件的属性设置完成绘图,然后即可进行仿真和虚拟测量。关于原理图的具体绘制方法不是本文讨论的重点,请参考软件提供的帮助教程。 与Multisim 等仿真软件的一大不同,在于Proteus 支持微处理器的仿真。这些仿真的实现是基于Labcenter 公司提出的VSM 的概念。 VSM,Virtual System Modelling,直接译作“虚拟系统模型”,官方的定义是:将spice电路模型、动态外设以及微处理器的仿真结合起来,在物理原型调试之前用于仿真整个单片机系统的一种设计方法[1]。对动态外设的支持是Proteus在区别于其他等仿真软件最直接的地方。VSM为用户提供了一个实时交互的环境,在仿真的过程中,你可以用鼠标去点击开关和按钮,微处理器根据输入的信号做出相应的中断响应,同时输出运算的结果到显示终端。整个过程与真实的硬件调是极其相似的,在动态外设支持下的实时输入和输出为实验者呈现了一个最接近现实的调试环境。官方资料显示,一个300 MHz Pentium II CPU可以以12MHz的时钟频率仿真一个基本的8051 系统。

嵌入式实时操作系统中实时调度算法综述

嵌入式实时操作系统中实时调度算法综述 摘要:实时调度是指在有限的系统资源下,为一系列任务决定何时运行,并分配任务运 行除CPU之外的资源,以保证其时间约束、时序约束和资源约束得到满足。一个实时系统可以由单处理器系统来实现,也可以用多处理器系统来实现。实时调度算法是保障实时系统时限性和高可靠性的最重要手段之一。 关键词:嵌入式;实时操作系统;实时调度算法;RTOS;RMS 引言 嵌入式系统在当今的生产和生活中得到了广泛的应用,鉴于嵌入式实时系统的特点,要求任务调度等实时内核功能精简和高效。综合了EDF 和RM调度策略的CSD 调度策略,更加适合嵌入式系统的特点,满足其内核的要求。任务调度策略是实时系统内核的关键部分,如何进行任务调度,使得各个任务能在其期限之内得以完成是实时操作系统的一个重要的研究领域。它的精简和高效,对提高低处理能力,小内存系统整体性能具有重大的意义。 RTOS概述 RTOS,即:实时系统(Real-time operating system),实时系统能够在指定或者确定的时间内完成系统功能和外部或内部、同步或异步时间做出响应的系统。它的正确性不仅依赖系统计算的逻辑结果,还依赖于产生这个结果的时间。因此实时系统应该在事先先定义的时间范围内识别和处理离散事件的能力;系统能够处理和储存控制系统所需要的大量数据。对一般的程序来说,大多数是考虑指令执行的逻辑顺序,指令何时执行并不重要。而对实时应用系统的程序就不一样,当外部某激励出现时,系统必须以一定的方式和在限定的时间内响应它,如果已超时,那怕执行结果是正确的,系统也认为是失效的。实时操作系统通常被分为软实时操作系统和硬实时操作系统。前者意味着偶尔错过时限是可以容忍的;后者意味着执行过程不但必须正确而且必须准时。在实时操作系统中,系统将程序分成许多任务(或进程),而每个任务的行为都预先可知,或者是有明确的功能,系统根据一定的调度原则,决定谁可取得执行权,这就是RTOS的核心所在。 实时调度算法 实时调度算法可以分为4类:单处理器静态调度算法、多处理器静态调度算法、单处理器动态调度算法、多处理器动态调度算法。下面分别分析嵌入式操作系统中采用的各种调度方法,以及这些调度方法是如何满足实时性应用的实时要求的。 1 速率单调算法 速率单调算法是一个经典的算法,它是针对那些响应和处理周期性事件的实时任务的,它事先为每个这样的实时任务分配一个与事件频率成正比的优先级。 实现时,就绪队列中的所有任务按照优先级Priority排队,优先级最高的任务排在队首,当处于运行态的任务,由于某种原因挂起时,只要把就绪队列的首元素从就绪队列中取下,使运行任务指针pRunTask指向该元素即可,如果是处于其他状态的任务变为就绪状态,而挂

Matlab/RTW实时仿真与嵌入式系统开发

Matlab/RTW实时仿真与嵌入式系统开发 引言在日益激烈的竞争中,系统的开发周期显得尤为重要,但开发时间 与系统安全性、可靠性又有一定冲突,如果仍然使用传统的编写代码的模式, 显然有些不妥。本文介绍一种基于Matlab/RTW 实现实时仿真与嵌入式系统 开发的方法。方法所涉及的开发环境如下:◆Microsoft Windows XP SP3:◆Matlab Version 7.5.0.342(R2007b);◆Keil uVersion2V 2.30;◆Proteus 7.1SP2。先借助Matlab/RTW 建立模型并生成RTW(Real-Time Workshop) 代码(C 语言),再使用Keil 编译、调试Matlab 生成的C 语言代码,并且生成HEX 文件。之后,利用Proteus 观察代码生成的效果,以验证代码的正确性。 基本流程如图1 所示。 1 构建Simulink 模型并生成RTW 代码以较为简单的模型为例,用 2 个开关 同时控制一个报警灯模型。当开关1、2 同时闭合时,报警灯亮,逻辑真值表 如表1 所列。在Simulink 中构建对应模型,只有当开关1、2 同时闭合时,报 警灯才亮,故选择如下模型实现上述功能。模型连接如图2 所示。 模型连接好之后,打开参数配置选项卡调整参数。具体修改项及其对应值 如表2 所列。 至此生成模型代码的前期准备已经完成,保存模型,取名Matlab_Test。下 一步就是点击Real_Time Work-shop 选项中的Build 按钮,Matlab 将自动生成模型代码。tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

相关文档
最新文档