单相半控桥式晶闸管整流电路的设计(阻感负载)

单相半控桥式晶闸管整流电路的设计(阻感负载)
单相半控桥式晶闸管整流电路的设计(阻感负载)

1 设计的基本要求

1.1 设计的主要参数及要求:

设计要求:1、电源电压:交流220V/50Hz

2、输出电压范围:20V-50V

3、最大输出电流:10A

4、具有过流保护功能,动作电流:12A

5、具有稳压功能

6、电源效率不低于70%

1.2 设计的主要功能

单相桥式半控整流电路的工作特点是晶闸管触发导通,而整流二极管在阳极电压高于阴极电压时自然导通。单相桥式整流电路在感性负载电流连续时,当相控角α<90°时,可实现将交流电功率变为直流电功率的相控整流;在α>90°时,可实现将直流电返送至交流电网的有源逆变。在有源逆变状态工作时,相控角不应过大,以确保不发生换相(换流)失败事故。

2 系统总体电路的设计

2.1 方案的选择

我们知道,单相整流电路形式是各种各样的,可分为单相桥式相控整流电路和单相桥式半控整流电路,整流的结构也是比较多的。因此在做设计之前我们确定了此方案:

单相桥式半控整流电路

电路简图如下:

图1 单相桥式半控整流电路

对每个导电回路进行控制,相对于全控桥而言少了一个控制器件,用二极管代替,有利于降低损耗!如果不加续流二极管,当α突然增大至180°或出发脉冲丢失时,由于电感储能不经变压器二次绕组释放,只是消耗在负载电阻上,会发生一个晶闸管导通而两个二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud为正弦,另外半周期为ud为零,其平均值保持稳定,相当于单相半波不可控整流电路时的波形,即为失控。所以必须加续流二极管,以免发生失控现象。2.2 主电路的结构及其工作原理

单相半控桥式整流电路带阻感负载且有续流二极管的主电路图如图2所示:

图2 单相半控桥式整流主电路图

图2 有续流二极管的主电路图

对于带阻感负载的单相桥式半控整流电路而言,当负载中电感很大时,在2u 正半周,触发角α处给晶闸管VT1加触发脉冲,2u 经VT1和VD4向负载供电。2u 过零变负时,因电感作用使电流连续,VT1继续导通但因VT1端电位高于VD2端电位,使得电流从VD4转移至VD2,VD4关断,电流不再流经交流源,而是由VT1和VD2续流,在此阶段0d u =。在2u 负半周触发角α时刻触发VT3,VT3导通,则向VT1加反压使其关断,2u 经VT3和VD2向负载供电。2u 过零变正时,VD4导通,VD2关断。VT3和VD4续流,d u 为0 ,此后重复以上过程。

有续流二极管R VD 时,续流过程由R VD 完成,在续流阶段晶闸管关断,这就避免了某一个晶闸管持续导通从而导致失控的现象。同时,续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。

2.3 参数计算

在单相桥式半控整流电路中: 输出电压平均值:

(

)2211cos sin 0.922

d U td t U π

αα

ωω+===

式中,2u 表示交流输入电压有效值,α表示晶闸管触发角。

输出电流平均值:

2

1cos 0.92

d d U U I R R α

+== 流过晶闸管电流有效值:

VT d I I =

计算负载R 值:

当α为0 时,输出电压:()0.45*1001190d U V =+=

由2d U W R

=可得:22

9016.2500d U R W ===Ω

3 硬件电路

3.1 系统总体原理框图

单相半控桥式整流电路的设计,我们首先对电路原理进行分析,通过分析,结合具体的性能指标求出相应的参数,然后在Matlab仿真软件中建立仿真模型,仿真模型采用交流输入电源,使用晶闸管和二极管作为整流器件,通过不断仿真、调试、不断修改参数,知道符合正确的参数要求。其系统原理框图如下图3

图3 原理框图如下

3.2 触发电路

3.2.1 触发电路简介

电力电子器件的驱动电路是电力电子主电路与控制电路之间的接口,是电力电子的重要环节,对整个装置的性能有很大的影响。采用良好的性能的驱动电路。可以使电力电子器件工作在比较理想的开关状态,缩短开关时间,对装置的运行效率,可靠性和安全性都有很大的意义。

对于相控电路这样使用晶闸管的场合,在晶闸管阳极加上正向电压后,还必须在门极与阴极之间加上触发电压,晶闸管才能从截止转变为导通,习惯上称为触发控制。提供这个触发电压的电路称为晶闸管的触发电路。它决定每一个晶闸管的触发导通时刻,是晶闸管装置中不可缺少的一个重要组成部分。晶闸管相控整流电路,通过控制触发角α的大小即控制触发脉冲起始位来控制输出电压的大小,为保证相控电路的正常工作,很重要的一点是应保证触发角α的大小在正确

的时刻向电路中的晶闸管施加有效的触发脉冲。

3.2.2 触发电路设计要求

晶闸管的型号很多,其应用电路种类也很多,不同的晶闸管型号,应用电路

对触发信号都会有不同的要求。但是,归纳起来,晶闸管触发主要有移相触发,

过零触发和脉冲列调制触发等。不管是哪种触发电路,对它产生的触发脉冲都有

如下要求:

1、触发信号为直流、交流或脉冲电压,由于晶闸管导通后,门极触发信号

即失去了控制作用,为了减小门极的损耗,一般不采用直流或交流信号触发晶闸

管,而广泛采用脉冲触发信号。

2、触发信号应有足够的功率(触发电压和触发电流)。触发信号功率大小是

晶闸管元件能否可靠触发的一个关键指标。由于晶闸管元件门极参数的分散性很

大,且随温度的变化也大,为使所有合格的元件均能可靠触发,可参考元件出厂

的试验数据或产品目录来设计触发电路的输出电压、电流值,并有一定的裕量。

3、触发脉冲应有一定的宽度,脉搏冲的前沿尽可能陡,以使元件在触发信

号导通后,阳极电流能迅速上升超过掣住电流而维持导通。普通晶闸管的导通时

μ,故触发电路的宽度至少应有6sμ以上,对于电感性负载,由于电间约法为6s

感会抑制电流的上升,触发脉冲的宽度应更大一些,通常为0.5ms至1ms,此

外,某些具体电路对触发脉冲宽度会有一定的要求,如三相全控桥等电路的触发

脉冲宽度要大于60°或采用双窄脉冲。

为了快速而可靠地触发大功率晶闸管,常在触发脉冲的前沿叠加一个强触发

i可达到最大脉冲,强触发脉冲的电流波形如图4-1所示。强触发电流的幅值gm

触发电流的5倍。前沿

t约为几sμ。

1

图4 强触发电流波形

4、触发脉冲必须与晶闸管的阳极电压同步,脉冲称相范围必须满足电路要

求。为保证控制的规律性,要求晶闸管在每个阳极电压周期都在相同控制角α触发导通,这就要求脉冲的频率必须与阳极电压同步。同时,不同的电路或者相同的电路在不同的负载、不同的用途时,要求的 变化的范围(移相范围)亦即触发脉冲前沿与阳极电压的相位变化范围不同,所用触发电路的脉冲移相范围必须满足实际的需要。单结晶体管触发电路如下图5所示

图5 单结晶体管触发电路图

4 电路元件的选择

4.1 变压器的选择

电源电压:220V/50Hz ,输出电压:20V-50V ,输出电流:10A ,设R=5Ω。 变压器一、二次侧电流:

()/P U d d R =? Ud=50v , P=I ()d d ?R, Id=10A

U1/U2=220/100=11/5, N1/N2=11/5 I2=5id/6=25/3A

变压器容量计算:

S=U1I1=100?25/3=11/5=833.33kv.A

变压器型号的选择:N1:N2=11/5, S=833.33kv.A

4.2 晶闸管元件的选择

1、晶闸管的额定电流

选择晶闸管额定电流的原则是必须使管子允许通过的额定电流有效值TN I 大于实际流过管子电流最大有效值T I ,即

TN I =1.57)(AV T I >T I 或 )(AV T I >57.1T

I

(2-7)

考虑(1.5~2)倍的裕量:

()220.25636

0.32657326.571.57 1.57

T T AV I I A mA ?≥

=== (2-8) 此外,还需注意以下几点:

①当周围环境温度超过+40℃时,应降低元件的额定电流值。 ②当元件的冷却条件低于标准要求时,也应降低元件的额定电流值。 ③关键、重大设备,电流裕量可适当选大些。

2、晶闸管的额定电压

晶闸管实际承受的最大峰值电压乘以(2~3)倍的安全裕量,即可确定晶闸管的额定电压:

220(622933)

TM U V V === (23(23(2~220(622933)U V V === (23(23(2~2TM

(622~933)220(622933)TM U V V ==?= (23(23 (2-9)

取800V。

由以上分析计算知选取晶闸管的型号为18

KP-。

3、18

KP-晶闸管的具体参数

额定通态平均电流(IT(AV)):1A;

断态重复峰值电压(UDRM):500V;

反向重复峰值电压(URRM):1800V;

断态重复平均电流(IDR(AV)):≤6mA;

反向重复平均电流(IRR(AV)):≤6mA;

门极触发电流(IGT):60mA;

门极触发电压(UGT):1.8V;

断态电压临界上升率(du/dt):50V/uS

维持电流(IH):60mA;

额定结温(TjM):110℃

5 仿真波形图

5.1 仿真电路图与仿真波形

仿真电路图如图6所示:

图6 仿真电路图

仿真电路各元件参数设置:

1、单相交流电源。峰值电压设置为141V,频率设置50Hz。

2、二极管和晶闸管为默认的参数。

3、设置触发器的周期与电压周期一致,为0.02S,通过设置触发时间来控制输出电压与电流的波形。

4、设置负载电阻为100欧。

经过以上参数整定后,整个系统的仿真设计已经完成,现给出所有输出结果。其仿真波形如下:

当触发角为30°,波形如图7所示:

当触发角为90°时,波形如图8所示:

图8 触发角为90°的波形

当触发角为120°时,波形如图9所示:

图9 触发角为120°的波形

5.2 仿真结果分析

仿真得到的第一个波形为单相交流输入电压波形,可以看出在触发角不同时,输入电压不变。第二个波形为触发脉冲,在一个周期内有两个相差180°的触发脉冲。第三个波形为流过某一个晶闸管的电流波形,可以看出每个晶闸管都只在半个周期内能导通且电流随触发角不同而不同。第四个波形为输出电流波形。第五个波形为输出电压波形,可以看出输出电流波形与输出电压波形形状一样。单相交流电在经过整流之后变成直流电,输出电压波形与电流波形相同。由于有反电势的存在,使晶闸管提前了点角度δ=30停止导电。

结束语

本文分析了单相半控桥式整流电路的基本原理、工作特性。通过本课程设计,我受益匪浅。熟悉和掌握整流电路基本工作原理及参数计算方法。掌握晶闸管在相关电路中的工作特点,并能根据设计要求,正确计算晶闸管参数,合理选择晶闸管型号。了解常用晶闸管触发电路的特点,并能根据实际电路选择合理的触发电路形式。对常用的晶闸管保护电路具有一定的分析和设计能力。具有初步发现和解决设计中出现的问题的能力。

本文采用simulink仿真,使我对simulink的用法更加熟悉了,为我以后熟练的使用该软件奠定了基础。在这次设计过程中,体现出自己单独设计的能力以及综合运用知识的能力,体会了学以致用、突出自己劳动成果的喜悦心情,从中发现自己平时学习的不足和薄弱环节,从而加以弥补。

在理论联系实际、综合分析、理论计算、归纳整理和实验研究等方面得到综合训练和提高,培养了独立解决实际问题和从事科学研究的初步能力。能够初步建立正确的设计思想,熟悉工程设计的一般顺序、规范和方法,可培养了严肃认真的工作作风,树立正确的全局观点,为后续课程的学习和毕业设计乃至毕业后向工程技术人员过渡打下基础。

致谢

本课题在选题及进行过程中得到了王翠老师的悉心指导以及同学的热心帮助。在这里特意感谢在课程设计中帮助过我的老师和同学。在上课的时候由于王老师的指导才让我现在完成本次课程感觉不那么困难。王老师尽职尽责、踏实坚韧的工作精神,将使我终生受益。再多华丽的言语也显苍白。在此,谨向王老师致以诚挚的谢意和崇高的敬意。

感谢在本次课程设计中给予我很多帮助。同时也感谢刘爽同学,感谢他在制作文档时给予我无私的帮助。感谢我的室友,是他们让我一直坚持不放弃。通过这次课程设计,深刻地认识到学好专业知识的重要性,也理解了理论联系实际的含义,并且检验了我的学习成果。虽然在这次的课程设计中对于知识的运用和衔接还不是很熟练,但是我将在以后的学习中继续努力、不断完善。这将近一个月的课程设计是对过去所学知识的系统提高和扩充的过程,为今后的学习打下了良好的基础。当然由于自身水平有限,设计中一定存在很多不足之处,敬请老师对我提出批评与指正。

参考文献

1.康华光.电子技术基础(第五版).北京:高等教育出版社,2005

2.周克宁.电力电子技术.北京:机械工业出版社,2004

3.陈坚.电力电子学.北京:高等教育出版社,2010

4.王兆安,黄俊.电力电子技术.第四版。北京:机械工业出版社,2000

5.王维平.现代电力电子技术及应用.南京:东南大学出版社,1999

6.王正林,王胜开.MATLAB/Simulink与控制系统仿真,2001

7.林渭勋.现代电力电子电路.杭州:浙江大学出版社,2002

8.贾正春,马志源.电力电子学.北京:中国电力出版社,2001

9.贾周,王金梅.基于MATLAB的单相桥式整流电路研究.内江科技,2009

10.辜欣,MATLAB在整流电路中的应用.江汉大学学报,2002

电力电子课程设计单相交流调压电路

电力电子课程设计单相交流调压电路电力电子 课程设计说明书 题目: 单相交流调压电路课程设计 院系: 水能 专业班级: 学号: 学生姓名: 摘要 交流调压电路广泛用于灯光控制(如调光灯和舞台灯光控制)及异步电动机的软启动,也用于异步电动机调速。在电力系统中,这种电路还常用于对无功功率的连续调节。此外,在高电压小电流或低电压大电流直流电源中,也常采用交流调压电路调节变压器一次电压。在这些电源中如采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联;同样,低电压大电流直流电源需要很多晶闸管并联。这都是十分不合理的。采用交流调压电路在变压器一次侧调压,其电压、电流值都比较适中,在变压器二次侧只要用二极管整流就可以了。这样的电路体积小、成本低、易于设计制造。单相交流调压电路是对单相交流电的电压进行调节的电路。用在电热制、交流电动机速度控制、灯光控制和交流稳压器等合。与自耦变压器调压方法相比,交流调压电路控制简便,调节速度快,装置的重量轻、体积小,有色金属耗也少。 目录

1、电路设计的目的及任 务 .................................................................... 1 1.1课程设计的目的与要 求 (1) 1.2课程设计的内 容 ..................................................................... (1) 1.3仿真软件的使 用 ..................................................................... (2) 1.4设计方案选 择 ..................................................................... ....... 2 2、单相交流调压主电路设计及分 析 (3) 2.1 电阻性负 载 ..................................................................... (3) 2.1.1 电阻性负载的交流调压器的原理分析 (3) 2.1.2 结果分 析 ..................................................................... (6)

单相桥式全控整流电路Matlab仿真

单相桥式全控整流电路 M a t l a b仿真 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

目录( ( (3 4 6 8 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 电路结构 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则==1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,==1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电

单相全控桥式晶闸管整流电路设计(纯电阻负载)

1 单相桥式全控整流电路的功能要求及设计方案介绍 1.1 单相桥式全控整流电路设计方案 1.1.1 设计方案 图1设计方案 1.1.2 整流电路的设计 主电路原理图及其工作波形 图2 主电路原理图及工作波形

主电路原理说明: (1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。因此在0~α区间,4个晶闸管都不导通。 (2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。 (3)在u2负半波的(π~π+α)区间,在π~π+α间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。 (4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。

2 触发电路的设计 2.1 晶闸管触发电路 触发电路在变流装置中所起的基本作用是向晶闸管提供门极电压和门极电流,使晶闸管在需要导通的时刻可靠导通。根据控制要求决定晶闸管的导通时刻,对变流装置的输出功率进行控制。触发电路是变流装置中的一个重要组成部分,变流装置是否能正常工作,与触发电路有直接关系,因此,正确合理地选择设计触发电路及其各项技术指标是保证晶闸管变流装置安全,可靠,经济运行的前提。,开始启动A/D转换;在A/D转换期间,START应保持低电平。 2.1.1 晶闸管触发电路的要求 晶闸管触发主要有移相触发、过零触发和脉冲列调制触发等。触发电路对其产生的触发脉冲要求: (1)触发信号可为直流、交流或脉冲电压。 (2)触发信号应有足够的功率(触发电压和触发电流)。 (3)触发脉冲应有一定的宽度,脉冲的前沿尽可能陡,以使元件在触发导通后,阳极电流能迅速上升超过掣住电流而维持导通。 (4)触发脉冲必须与晶闸管的阳极电压同步,脉冲移相范围必须满足电路要求。 (5)、为使并联晶闸管能同时导通,触发电路应能产生强触发脉冲。强触发电流幅值为出发电流的3~5倍左右,脉冲前沿的陡度取为1~2 晶闸管触发电路应满足下列要求 (1)触发脉冲的宽度应该保证晶闸管的可靠导通,对感性和反电动势负载的变流器采用宽脉冲或脉冲列触发,对变流器的启动,双星型带平衡电抗器电路的触发脉冲应该宽于30°,三相全控桥式电路应小于60°或采用相隔60°的双窄脉冲。 (2)脉冲触发应有足够的幅度,对户外寒冷场合,脉冲电流的幅度应增大为器件最大触发电流的3—5倍,脉冲前沿的陡度也要增加。一般需达1-2A/us (3)所提供的触发脉冲不应超过晶闸管门极的电压、电流和额定功率,且在门极伏安特性的可靠触发区域之内。 (4)应有良好的抗干扰性能、温度稳定性及主电路的电气隔离。

单相交流调压电路

单相交流调压电路 一、工作原理 单相交流调压电路带组感性负载时的电路以及工作波形如下图所示。之所产生的滞后由于阻感性负载时电流滞后电压一定角度,再加上移相控制所产生的滞后,使得交流调压电路在阻感性负载时的情况比较复杂,其输出电压,电流与触发角α,负载阻抗角φ都有关系。当两只反并联的晶闸管中的任何一个导通后,其通态压降就成为另一只的反向电压,因此只有当导通的晶闸管关断以后,另一只晶闸管才有可能承受正向电压被触发导通。由于感性负载本身滞后于电压一定角度,再加上相位控制产生的滞后,使得交流调压电路在感性负载下大的工作情况更为复杂,其输出电压、电流波形与控制角ɑ、负载阻抗角φ都有关系。其中负载阻抗角)arctan(R wL =?,相当于在电阻电感负载上加上纯正弦交流电压时,其电流滞后于电压的角度为φ。为了更好的分析单相交流调压电路在感性负载下的工作情况,此处分φαφαφα<=>,,三种工况分别进行讨论。 (1)φα>情况 图1 电路图(截图) 图2 工作波形图φα>(截图)

上图所示为单相反并联交流调压电路带感性负载时的电路图,以及在控制角 触发导通时的输出波形图,同电阻负载一样,在i u 的正半周α角时, i T 触发导通,输出电压o u 等于电源电压,电流波形o i 从0开始上升。由于是感性负载,电流o i 滞后于电压o u ,当电压达到过零点时电流不为0,之后o i 继续下降,输出电压o u 出现负值,直到电流下降到0时,1T 自然关断,输出电压等于0,正半周结束,期间电流o i 从0开始上升到再次下降到0这段区间称为导通角0θ。由后面的分析可知,在φα>工况下,ο180<φ因此在2T 脉冲到来之前1T 已关断,正负电流不连续。在电源的负半周2T 导通,工作原理与正半周相同,在o i 断续期间,晶闸管两端电压波形如图2所示。 为了分析负载电流o i 的表达式及导通角θ与α、φ之间的关系,假设电压坐标原点如图所示,在αω=t 时刻晶闸管T 1导通,负载电流i 0应满足方程 L 0Ri d d t io +=i u =i U 2sin t ω 其初始条件为: i 0|αω=t =0, 解该方程,可以得出负载电流i 0在α≤t ω≤θα+区间内的表达式为 i 0=])sin()[sin()(2tan /)(2φαωφαφωω-----+t i e t L R U . 当t ω=θα+时,i 0=0,代入上式得,可求出θ与α、φ之间的关系为 sin (θα+-φ)=sin (α-φ)e φθtan /- 利用上式,可以把θ与α、φ之间的关系用下图的一簇曲线来表示。

单相全控桥式晶闸管整流电路的设计

电力电子技术课程设计报告题目:单相全控桥式晶闸管整流电路的设计

目录 第1章绪论 (3) 1.1 电力电子技术的发展 (3) 1.2 电力电子技术的应用 (3) 1.3 电力电子技术课程中的整流电路 (4) 第2章系统方案及主电路设计 (5) 2.1 方案的选择 (5) 2.2 系统流程框图 (6) 2.3 主电路的设计 (7) 2.4 整流电路参数计算 (9) 2.5 晶闸管元件的选择 (10) 第3章驱动电路设计 (12) 3.1 触发电路简介 (12) 3.2 触发电路设计要求 (12) 3.3 集成触发电路TCA785 (13) 3.3.1 TCA785芯片介绍 (13) 3.3.2 TCA785锯齿波移相触发电路 (17) 第4章保护电路设计 (18) 4.1 过电压保护 (18) 4.2 过电流保护 (19) 4.3 电流上升率di/dt的抑制 (19) 4.4 电压上升率du/dt的抑制 (20) 第5章系统仿真 (21) 5.1 MATLAB主电路仿真 (21) 5.1.1 系统建模与参数设置 (21) 5.1.2 系统仿真结果及分析 (22) 5.2 proteus 触发电路仿真 (26) 设计体会 (28) 参考文献 (29) 附录A 实物图 (30) 附录B 元器件清单 (31)

第1章绪论 1.1 电力电子技术的发展 晶闸管出现前的时期可称为电力电子技术的史前期或黎明时期。晶闸管由于其优越的电气性能和控制性能,使之很快就取代了水银整流器和旋转变流机组。并且,其应用范围也迅速扩大。电力电子技术的概念和基础就是由于晶闸管及晶闸管变流技术的发展而确立的。晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对晶闸管电路的控制方式主要是相位控制式,简称相控方式。晶闸管的关断通常依靠电网电压等外部条件来实现。这就使得晶闸管的应用受到了很大的局限。70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。在80年代后期,以绝缘栅极双极型晶体管(IGBT)为表的复合型器件异军突起。它是MOSFET和BJT的复合,综合了两者的优点。与此相对,MOS控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)复合了MOSFET和GTO。 1.2 电力电子技术的应用 电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,在电气自动化专业中已成为一门专业基础性强且与生产紧密联系的不可缺少的专业基础课。本课程体现了弱电对强电的控制,又具有很强的实践性。能够理论联系实际,在培养自动化专业人才中占有重要地位。它包括了晶闸管的结构和分类、晶闸管的过电压和过电流保护方法、可控整流电路、晶闸管有源逆变电路、晶闸管无源逆变电路、PWM控制技术、交流调压、直流斩波以及变频电路的工作原理。 在电力电子技术中,可控整流电路是非常重要的内容,整流电路是将交流电变为直流电的电路,其应用非常广泛。工业中大量应用的各种直流电动机的调速均采用电力电子装置;电气化铁道(电气机车、磁悬浮列车等)、电动汽车、

单相交流调压电路课程设计完整版

单相交流调压电路课程 设计 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

《电力电子技术》课程设计设计题目: 单相交流调压电路 院(系): 能源工程学院 专业年级: 13级电气二班 姓名: 徐刚刚 学号: 指导教师: 荆红莉 2015年12月 28日

课程设计(论文)任务及评语 院(系):能源工程学院教研室:电气工程及其自动化 : 成 绩 : 平 时 20% 论 文 质 量 60% 答 辩 20% 以 百 分 制 计 算 前 言 电 力 电 子 技 术 是研究采用电力电子器件实现对电能的交换和控制的科学,是20世纪50年代诞生, 70年代迅速发展起来的一门多学科互相渗透的综合性技术学科。这些技术包括以节约 能源、提高照明质量为目的的绿色照明技术;以节约能源、提高运行可靠性并更好地 满足产要求为目的的交流变频调速技术,以提高电力系统运行的稳定性、可控制性为

目的,并可有效节能的灵括(柔性)交流输电技术等等。随着电力半导体制造技求、徽电子技术、汁算机技术,以及控制理论的不断进步。电力电子技求向着大功率、高频化及智能化方向发展,应用的领域将更加广阔。 交流调压电路广泛应用于灯光控制,如调光台灯和舞台灯光控制及其异步电动机的软启动,也应用于异步电机调速。在电力系统中,这种电路也用于对无功功率的调节。 目录

1 单相交流调压电路的设计 设计目的和要求分析 =210伏。要求分设计一个单相交流调压电路,要求触发角为60度。输入交流U 2 析: 1. 单相交流调压主电路设计,原理说明; 2.触发电路设计,每个开关器件触发次序与相位分析; 3.保护电路设计,过电流保护,过电压保护原理分析; 4.参数设定与计算(包括触发角的选择,输出平均电压,输出平均电流,输出有功功率计算,输出波形分析,器件额定参数确定等可自己添加分析的参数); 5. 相关仿真结果。 由以上要求可知该系统设计可分为四个部分:交流调压主电路设计、触发电路设计、保护电路设计及相关计算和波形分析部分。 2 设计方案选择 本系统主要设计思想是:采用两个晶闸管反向并联加负载为主电路,外加触发电路;触发电路控制晶闸管的导通,从而控制输出。其系统框图如下所示: 3 控制电路。在每半个周波内通过对晶间管开通相位的控制,以方便地调节输出电压的有效值,这种电路称为交流调压电路。这种电路还用干对无功功率的连续调节。此外,在高电压小电流或低电压大电流直流电源中,也常采用交流调压电路调节变压器一次电压。采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联;同样,低电压大电流直流电源需要很多晶闸管并联,这都是十分不经济的。采用交流调压电路在变压器一次侧调压,其电压电流值都不太大也不太小,在变压器二次侧只要用二极管整流就可以了。但这种交流调压电路控制方便,体积小、投资省计制造简单。因此广泛应用于需调温的工频加热、灯光调节及风机、泵类负载的异步电

单相半控桥式晶闸管整流电路电阻负载

电气工程学院 电力电子课程设计 设计题目:单相半控桥式晶闸管整流电路(电阻负载)学号: 姓名: 同组人: 指导教师: 设计时间: 设计地点:

电力电子课程设计成绩评定表 指导教师签字: 年月日

电力电子课程设计任务书 学生姓名:指导教师: 一、课程设计题目: 单相半控桥式晶闸管整流电路(电阻负载) 二、课程设计要求 1. 根据具体设计课题的技术指标和给定条件,独立进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整; 2. 查阅有关参考资料和手册,并能正确选择有关元器件和参数,对设计方案进行仿真; 3. 完成预习报告,报告中要有设计方案,设计电路图,还要有仿真结果; 4. 进实验室进行电路调试,边调试边修正方案; 5. 撰写课程设计报告——最终的电路图、调试过程中遇到的问题和解决问题的方法。 三、进度安排 2.执行要求 课程设计共5个选题,每组不得超过2人,要求学生在教师的指导下,独力完成所设计的详细电路(包括计算和器件选型)。严禁抄袭,严禁两篇设计报告雷同。

摘要 本次课程设计的题目为:单相半控桥式晶闸管整流电路,其中负载为纯电阻负载。电路设计的主要参数及要求:1、电源电压:交流100V/50Hz;2、输出功率:500W;3、移相范围:0o-180o。 对于单相半控桥式晶闸管整流电路(电阻负载),其电路设计的主要功能为:单相桥式半控整流电路的工作特点是晶闸管触发导通,而整流二极管在阳极电压高于阴极电压时自然导通。 单相桥式半控整流电路在纯电阻负载电流连续时,当相控角α<180°时,可实现将交流电功率变为直流电功率的相控整流,同时,调节触发电路,可改变触发角进行调压;在α>180°时,由于二极管的单相导电性,电路无法实现逆变,输出电压为零。 关键词:单相半控桥式晶闸管整流电路、纯电阻负载、相控角调节 Abstract ABSTRACT:Curriculum design topics: single-phase half-controlled bridge thyristor rectifier circuit, where the load is purely resistive load. The main parameters and requirements of the circuit design: 1, the power supply voltage: AC 100V/50Hz, output power: 500W; 2; 3, the phase shift range: 0 o ~180 o. For the single phase half controlled bridge thyristor rectifier circuit (resistive load), the main function of the circuit design: Characteristics of single phase bridge half controlled rectifier circuit is triggered thyristor turn-on, and rectifier diode is higher than that of cathode voltage in the anode voltage natural conduction. Single phase bridge half controlled rectifier circuit load current is continuous in the pure resistance, while the mouldings α <180 °, c an realize the phase control rectifier, AC power into DC power at the same time, adjusting trigger circuit, which can change the trigger angle regulator; when α >180 °, because the phase conductivity diode, the circuit can not be achieved inverter, output voltage to zero. KEYWORDS:S ingle phase half controlled bridge thyristor rectifier circuit, pure resistive load, adjust phase mouldings

单相半波晶闸管整流电路

电力电子技术课程设计说明书单相半波晶闸管整流电路 院部:电气与信息工程学院 学生姓名:李忠 指导教师:王翠职称副教授 专业:自动化 班级:自本1001班 完成时间:2013年5月20日

摘要 电力电子学,又称功率电子学(Power Electronics)。它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。 随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。 由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。故其学习方法与电子技术和控制技术有很多相似之处,因此要学好这门课就必须做好课程设计,因而我们进行了此次课程设计。因为整流电路非常重要,所以我此次课程设计做的是单相半波整流电路。 关键字电子学;整流器;开关器件

ABSTRACT Power electronics, and power electronics (Power Electronics). It is mainly on the various power electronic devices, and is composed , and is composed of the power electronic devices of every kind of circuit or device, to complete the transfer and control of electric power. It is not only in power electronics (high voltage, high current) to a branch or electrical engineering, and electrical engineering in a weak (low voltage, low current) to a branch or electronic field, or is a new scientific power combining. Power electronics is across the "electronic", "power" and "control" three areas of an emerging engineering discipline. With the development of science and technology, people on the circuit is also more and more high, due to the need of DC power supply with adjustable size in the actual production, and phase controlled rectifier circuit is simple in structure, convenient control, stable performance, it can be easily obtained in large and medium-sized, small capacity of various DC power, is currently the main method of DC electric energy, has been widely applied. Because the power electronic technology is the technology of power electronic technology and control technology into the traditional, composed of a variety of power conversion circuits to achieve energy and transform and control using semiconductor power switch device, consisting of an integrated discipline. The learning method and electronic technology and control technology has many similarities, so to learn this course we must do a good job in curriculum design, we carried out the curriculum design. Because the rectifier circuit is very important, so I designed a single-phase half-wave rectifier circuit this curriculum. Keywords electronics; rectifier; switching device

单相交流调压电路课程设计

新疆工业高等专科学校电气系课程设计说明书 题目:单项交流调压电路(反并联)设计(纯电阻负载) 专业班级: 学生姓名: 指导教师: 完成日期:2012-6-8

新疆工业高等专科学校 电气系课程设计任务书 2012学年2学期2012年6月6日专业供用电技术班级课程名称电力电子应用技术 设计题目单项交流调压电路(反并联)设计(纯电阻 负载) 指导教师 起止时间2012-6-4至2012-6-8周数一周设计地点新疆工程学校设计目的: 设计任务或主要技术指标: 设计进度与要求: 主要参考书及参考资料: 教研室主任(签名)系(部)主任(签名)年月日

新疆工业高等专科学校电气系 课程设计评定意见 设计题目:单相交流调压(反并联)设计(纯电阻负载) 学生姓名:专业班级供电 评定意见: 评定成绩: 指导教师(签名):年月日 评定意见参考提纲: 1.学生完成的工作量与内容是否符合任务书的要求。 2.学生的勤勉态度。 3.设计或说明书的优缺点,包括:学生对理论知识的掌握程度、实践工作能力、表现出的创造性和综合应用能力等。

前言 电力电子线路的基本形式之一,即交流—交流变换电路,它是将一种形式的交流电能变换成另一种形式交流电能电路。在进行交流—交流变换时,可以改变交流电的电压、电流、频率或相位等。用晶闸管组成的交流电压控制电路,可以方便的调节输出电压有效值。可用于电炉温控、灯光调节、异步电动机的启动和调速等,也可用作调节整流变压器一次侧电压,其二次侧为低压大电流或高压小电流负载常用这种方法。采用这种方法,可使变压器二次侧的整流装置避免采用晶闸管,只需要二极管,而且可控级仅在一侧,从而简化结构,降低成本。交流调压器与常规的交流调压变压器相比,它的体积和重量都要小得多。交流调压器的输出仍是交流电压,它不是正弦波,其谐波分量较大,功率因数也较低。

单相半控桥式整流电路设计

单相半控桥式整流电路 设计 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

摘要随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定。整流的基础是整流电路。由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。整流电路的应用十分广泛。广泛的应用于直流电动机、电镀、电解电源、同步发电机励磁、通信系统电源灯。 本设计研究了单相半控桥式整流电路,对整流电路的原理及特点进行了分析,对整流元件进行了参数计算并选择出了合适的器件。本设计选择KJ004集成触发器做为晶闸管的触发电路,详细的介绍了KJ004的工作原理。本设计还设计了合理的保护电路。最后利用simulink搭建仿真模型。 关键词:半控整流,驱动电路,保护电路,simulink仿真 单相半控桥式整流电路设计 1 主电路的设计 设计目的 (1)、把从电力电子技术课程中所学到的理论和实践知识,在课程设计实践中全 综合的加以运用,使这些知识得到巩固、提高,并使理论知识与实践技能密切结合起来。 (2)、初步树立起正确的设计思想,掌握一般电力电子电路设计的基本方法和技 能,培养观察、分析和解决问题及独立设计的能力,训练设计构思和创新能力。 (3)、培养具有查阅参考文献和技术资料的能力,能熟悉或较熟悉地应用相关手 册、图表、国家标准,为今后成为一名合格的电气工程技术人员进行必须的基本技能和基本素质训练。 整流电路的选择 整流电路是电力电子电路中出现最早的一种,整流电路是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。20

单相桥式全控整流电路Matlab仿真

目录 单相桥式全控整流电路仿真建模分析 0 (一)单相桥式全控整流电路(纯电阻负载) (1) 1.电路的结构与工作原理 (1) 2.建模 (2) 3仿真结果与分析 (4) 4小结 (6) (二)单相桥式全控整流电路(阻-感性负载) (7) 1.电路的结构与工作原理 (7) 2.建模 (8) 3仿真结果与分析 (10) 4.小结 (11) (三)单相桥式全控整流电路(反电动势负载) (13) 1.电路的结构与工作原理 (12) 2.建模 (14) 3仿真结果与分析 (16) 4小结 (18) 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 1.1电路结构 R 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 1.2工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,u T2.3=u T1.4=1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。晶闸管VT1、

单相双半波晶闸管整流电路主电路设计..

电力电子课程设计 班级: 学号: 姓名: 指导老师:

目录 摘要 (1) 1单相双半波晶闸管整流电路主电路设计 (2) 1.1晶闸管的介绍 (2) 1.1.1晶闸管的结构 (2) 1.1.2晶闸管的工作原理 (2) 1.1.3晶闸管的伏安特性 (4) 1.2总电路的设计 (5) 1.2.1 总电路的原理框图 (5) 1.2.2 主电路原理图 (6) 1.3 相控触发电路设计 (7) 1.3.1 相控触发电路工作原理 (7) 1.3.2相控触发芯片的选择 (8) 1.4保护电路设计 (9) 2电路参数及元件选择 (10) 2.1主电路电路参数计算 (10) 2.2电路元件的选择 (11) 2.2.1整流元件的选择 (11) 2.2.2保护元件的选择 (11) 3 MATLAB仿真 (12) 3.1 MATLAB软件介绍 (12) 3.2系统建模及电路仿真 (12) 3.3系统仿真结果及分析 (15) 4设计总结 (16) 参考文献 (17)

摘要 电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,在电气自动化专业中已成为一门专业基础性强且与生产紧密联系的不可缺少的专业基础课。本课程体现了弱电对强电的控制,又具有很强的实践性。它包括了晶闸管的结构和分类、晶闸管的过电压和过电流保护方法、可控整流电路、晶闸管有源逆变电路、晶闸管无源逆变电路、PWM控制技术、交流调压、直流斩波以及变频电路的工作原理。 晶闸管出现前的时期可称为电力电子技术的史前期或黎明时期。晶闸管由于其优越的电气性能和控制性能,使之很快就取代了水银整流器和旋转变流机组。并且,其应用范围也迅速扩大。电力电子技术的概念和基础就是由于晶闸管及晶闸管变流技术的发展而确立的。晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对晶闸管电路的控制方式主要是相位控制式,简称相控方式。晶闸管的关断通常依靠电网电压等外部条件来实现。 整流电路按组成的器件不同,可分为不可控、半控与全控三种,利用晶闸管半导体器件构成的主要有半控和全控整流电路;按电路接线方式可分为桥式和零式整流电路;按交流输入相数又可分为单相、多相(主要是三相)整流电路。正是因为整流电路有着如此广泛的应用,因此整流电路的研究无论在是从经济角度,还是从科学研究角度上来讲都是很有价值的。本设计正是结合了Matlab仿真软件对单相双半波晶闸管整流电路在阻感负载下进行分析。 关键词:晶闸管,整流电路,Matlab,仿真,阻感负载,相控方式 1

单相半控桥式晶闸管整流电路的设计样本

学号: 课程设计 题目单相半控桥式晶闸管整流电路设计 (带续流二极管)(阻感负载) 学院自动化 专业自动化 班级100...班 姓名 指引教师许湘莲 年12 月29 日

一课程设计性质和目 性质:是电气信息专业必修实践性环节。 目: 1、培养学生综合运用知识解决问题能力与实际动手能力; 2、加深理解《电力电子技术》课程基本理论; 3、初步掌握电力电子电路设计办法。 二课程设计内容: 单相半控桥式晶闸管整流电路设计(带续流二极管)(阻感负载) 设计条件: 1、电源电压:交流100V/50Hz 2、输出功率:500W 3、移相范畴0o~180o 三课程设计基本规定 1、两人一种题目,按学号组合; 2、依照课程设计题目,收集有关资料、设计主电路、控制电路; 3、用MATLAB/Simulink对设计电路进行仿真; 4、撰写课程设计报告——画出主电路、控制电路原理图,阐明主电路工作原理、选取元器件参数,阐明控制电路工作原理、绘出主电路典型波形,绘出触发信号(驱动信号)波形,阐明仿真过程中遇到问题和解决问题办法,附参照资料; 5、通过答辩。

电力电子技术课程设计是在教学及实验基本上,对课程所学理论知识深化和提高。本次课程设计要完毕单相桥式半控整流电路设计,对电阻负载供电,并使输出电压在0到180伏之间持续可调,由于是半控电路,因而会用到晶闸管与电力二极管。此外,还要用MATLAB 对设计电路进行建模并仿真,得到电压与电流波形,对成果进行分析。 核心词:半控整流晶闸管

1 设计基本规定 (1) 1.1设计重要参数及规定:........................................................................................ 错误!未定义书签。 1.2 设计重要功能 (1) 2总体系统 (2) 2.1主电路构造及其工作原理 (2) 2.2 参数计算 (2) 3硬件电路 (4) 3.1 系统总体原理框图 (4) 3.2 驱动电路 (5) 3.2.1 驱动电路方案 (5) 3.2.2 驱动电路设计 (5) 3.3 保护电路 (8) 3.3.1 变压器二次侧熔断器 (8) 3.3.2 晶闸管保护电流 (9) 3.4 触发电路 (10) 4 元器件选取 (11) 4.1 晶闸管 (11) 4.1.1 晶闸管构造与工作原理 (11) 4.1.2 晶闸管选取 (13) 4.2 电力二极管 (13) 5 MATLAB建模与仿真 (14) 6 心得体会 (18) 参照文献 (19)

单相桥式半控整流电路实验报告

课程名称:电力电子技术指导老师:成绩: 实验名称:单相桥式半控整流电路实验实验类型:同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.加深单相桥式半控整流电路带电阻性、电阻电感性、反电势负载时工作情况的理解 2.了解续流二极管在单相器哦啊是半控整流电路中的作用;学会对实验中出现的问题加以分析和解决 3.进一步掌握双踪示波器在电力电子线路实验中的使用特点与方法 二、实验内容和原理 1.实验内容 (1)锯齿同步触发电路的调试 (2)单相桥式半控整流电路带电阻性负载 (3)单相桥式半控整流电路带电阻电感性负载 (4)单相桥式半控整流电路带反电势负载 2.实验原理 (1)单相桥式半控整流电路实验原理 实验电路图如下图所示 由2组锯齿波同步移相触发电路给共阴极的2个晶闸管提供触发脉冲,整流电路的负载可根据要求选择电阻性、电阻电感性负载。 在电源电压正半周时,VT1导通,VT2关断电源,通过VT1和VD4供电。电压过零时,因为电感作用,VT1继续导通,VD3续流 在电源电压负半周时,VT2导通,VT1关断,电源通过VT2和VT3供电。电压过零时,因为电感作用,VT2继续导通,VD4续流。 (2)锯齿波同步移相出发电路实验原理 锯齿波同步移相触发电路的电路图如下图所示

它是由同步检测和锯齿波形成环节、移相控制环节、脉冲形成和放大环节、强触发环节、双窄脉冲形成电路环节组成。 同步锯齿波环节如下图所示: 负半周下降段,VD1导通,C1充电,上负下正,O点接地,R负电位,Q也负电位,VT2反偏截止。 负半周上升段,经过R1给C1充电,上升速度比R点同步电压慢,所以VD1截止,Q点电位1.4V,VT2导通,UQ钳制在1.4V。 VT2截止时,IC1对C2充电,UC线性增长,为锯齿波上升段。 VT2饱和导通,R4较小,C2通过R4、VT2很快放电,形成锯齿波下降段 移相控制环节如下图所示: 利用叠加原理,UT锯齿波电压、UK控制电压、UP初始调整电压如上图所示。 UP的作用就是改变VT4开始导通的时刻,UK的作用就是可以改变输出脉冲相位。

晶闸管单相交流调压及调功电路课程设计

目录 绪论 (1) 1 调压调功原理简介 (2) 2 交流调压电路波形及相控特性分析 (3) 2.1 带电阻性负载 (3) 2.1.1 原理 (3) 2.1.2 计算与分析 (3) 2.2 带阻感性负载 (4) 2.2.1 原理分析 (4) 2.2.2 计算与分析 (4) 2.2.3 α<φ的情况 (6) 3 方案设计 (7) 3.1 主电路的设计 (7) 3.1.1 主电路图 (7) 3.1.2 参数计算 (7) 3.1.3 调功电路的设计 (8) 3.2 触发电路的设计 (9) 3.2.1 芯片介绍 (9) 3.2.2 触发电路图 (10) 3.3 保护电路的设计 (11) 3.3.1 原理 (11) 3.3.2 计算 (12) 3.3.3 保护电路图 (13) 4 电阻炉负载过零控制特性分析 (14) 5 MATLAB仿真 (15) 6个人小结 (17) 参考文献 (18)

绪论 交流-交流变流电路,即把一种形式的交流变成另一种形式交流的电路。在进行交流-交流变流时,可以改变相关的电压(电流)、频率和相数等。交流-交流变流电路可以分为直接方式(无中间直流环节方式)和间接方式(有中间直流环节方式)两种。而间接方式可以看做交流-直流变换电路和直流-交流变换电路的组合,故交-交变流主要指直接方式。其中,只改变电压、电流或对电路的通断进行控制,而不改变频率的电路称为交流电力控制电路,改变频率的电路称为变频电路。采用相位控制的交流电力控制电路,即交流调压电路;采用通断控制的交流电力控制电路,即交流调功电路和交流无触点开关。 交流调压电路广泛用于灯光控制(如调光台灯和舞台灯光控制)及异步电动机的软启动也用于异步电动机调速。在电力系统中,这种电路还常用于对无功功率的连续调节。此外,在高电压小电流或低电压大电流直流电源中,也常采用交流调压电路调节变压器一次电压。在这些电源中如果采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联,低电压大电流直流电源需要很多晶闸管并联,十分不合理。采用交流调压电路在变压器一次侧调压,其电压、电流值都比较适中,在变压器二次侧只要用二极管整流就可以了。这样的电路体积小、成本低、易于设计制造。其分为单相和三相交流调压电路,前者是后者基础,这里只讨论单相问题。 交流调功电路常用于电炉的温度控制,其直接调节对象是电路的平均输出功率。像电炉温度这样的控制对象,其时间常数往往很大,没有必要对交流电源的每个周期进行频繁的控制,只要以周波数为单位进行控制就足够了。通常控制晶闸管导通的时刻都是在电源电压过零的时刻,这样,在交流电源接通期间,负载电压电源都是正弦波,不对电网电压电流造成通常意义的谐波污染。

相关文档
最新文档