竹子的力学强度特性及其在机翼上的应用

竹子的力学强度特性及其在机翼上的应用
竹子的力学强度特性及其在机翼上的应用

竹子的力学强度特性及其在机翼上的应用

摘要:本文通过分析竹子的材料和构造,说明竹子的强度特性,并结合机翼部分具体构件的特点,分析机翼的设计是如何运用了竹子的这种特性。

关键词:竹子,强度,机翼,仿生

竹, 禾本科. 秆木质化, 有明显的节, 节间常中空。历代文人骚客对竹子用尽了溢美之词,郑板桥如是说过:“咬定青山不放松, 立根原在破岩中。千磨万击还坚劲,任尔东西南北风。”这其中就说明了竹子异常坚硬的质地。竹子因为其特殊的材料与构造,从而具有很大的抗拉强度,科学家通过仿生学已将该特点运用到了飞机机翼的设计中。本文将对其力学原理以及在机翼方面的运用进行比较分析。

1、竹子强度的特点

竹子体轻, 但质地却异常坚硬. 据测定, 竹材的收缩量非常小, 而弹性和韧性却很高, 顺纹抗拉强度170M Pa, 顺纹抗压强度达80M Pa. 特别是刚竹, 其顺纹抗拉强度最高竟达280M Pa, 几乎相当于同样截面尺寸材的一半. 但若按单位质量计算抗拉强度, 则竹材单位质量的抗拉强度是钢材的2. 5 倍左右。

2、强度大的原因与力学分析

2.1 空心圆截面的强度分析

根据材料力学的弯曲强度理论, 弯曲正应力是控制强度的主要因素, 弯曲强度条件为][W M max max σσ≤=

因此, 要提高杆的强度, 除了合理安排受力, 降低M max 的数值以外, 主要是采用合理的截面形状, 尽量提高抗弯截面模量W 的数值, 充分利用材料.,实心圆截面和空心圆截面的抗弯截面模量分别是

3d 321W π=实 )1(32

1W 43απ-=D 空 式中, d 是实心杆直径, D 是空心杆外径, 1D 是空心杆内径。2

1D D =

α为空心杆内、外径比值, 当空心杆和实心杆的截面积相同时

)(2122D -D 41d 41ππ=

2

12D -D d = 则

11-1-1D 32

1d 32

1W W 22

433>+==αααππ)(空实

因此, 空心圆截面杆的抗弯强度比同样截面积的实心杆要大; 并且空心圆截面杆内、外直径的比值α越大,其抗弯强度也随之增大. 例如, 当α= 0. 7 时, 它的抗弯强度比同样重量的实心圆截面大2 倍. 因为, 杆弯时从正应力的分布规律可知在杆截面上离中性轴越远, 正应力越大, 而中性轴附近的应力很小, 这样其材料的性能未能充分发挥作用. 若将实心圆截面改为空心圆截面, 也就是将材料移置到离中性轴较远处, 却可大大提高抗弯强度. 所以要充分发挥材料的潜力, 唯有空心圆截面. 例如, 汽车传动轴所采用空心圆截面的内、外径比值为0. 944, 若改为实心轴, 要求它与原先的空心轴强度相同, 则空心轴的重量只为实心轴的31% , 可见, 空心轴减轻重量, 节约材料的特性是非常明显的.。

此外,风荷载下,竹子主要抵抗的是弯矩和剪力。对于抗弯,边缘最大正应力与截面截面惯性矩I 成反比,而I 随截面半径增大而增大,故空心结构形成的大半径有利于降低边缘最大正应力提高抗弯能力。

2.2 阶梯状变截面的强度分析

竹子在风载作用下各段抵抗弯曲变形能力基本相同, 相当于阶梯状变截面杆, 是一种近似的“等强度杆”. 因为在风力作用下, 沿杆自上而下各截面的弯矩越来越大. 竹子根部所受弯矩最大, 因而根部最粗, 自下而上各截面弯矩越来越小, 竹子也就越来越细. 另外, 竹节不仅能够增强竹子的抗弯强度, 同时,能大大地提高竹子横向的抗挤压和抗剪切的能力. 所以, 高大的毛竹, 由于这种得天独厚的等强度结构, 在狂风大雨中, 仍能随风摆动, 高而不折.

2.3 材料分布的强度分析

由于边缘的正应力最大,故将优质材料布置在边缘是最优化的结构布置,竹子就做到了这点。竹壁自外而内,分为竹青、竹肉和竹黄三个部分,竹子的表面呈现出青色的叫竹青,由抗拉强度很高的纤维质构成。对于抗剪,竹节又起到了很关键的作用。坚硬实心的竹节将竹身分成小段小段的区格,在每个区格的端部提供可靠的变形约束,从而也能大大提高竹子的抗剪能力。举个例子,农业上小麦减产主要原因之一“倒伏”,就是小麦返青拔节时,由于雨水过多,生长迅速而拔节快,形成节与节之间间距大,减低了麦秆的抗剪能力,头重脚轻杆软倒伏于地。

3 机翼构件的应用分析

3.1 机翼的受力

(1)飞行过程中作用在机翼上有外载荷

(a)分布载荷:它们包括空气动力和自身质量力(重力与惯性力),如图5-8所示,为气动力沿翼展方向的分布,为质量力沿翼展方向的分布

(b)集中载荷:它们是由其它部件通过接头传给机翼结构的,因其一般集中作用在个别连接点上而称为集中载荷,如图5-8所示,其中发动机传给机翼的质量力G和拉力P

以上这些载荷综合起来,使机翼结构上承受弯矩M、剪力Q和扭矩T三种形式的力,如图5-9所示

3.2、翼肋

翼肋是横向受力骨架,用来支撑蒙皮,维持机翼的剖面形状。在有集中载荷的地方,普通翼肋得到加强而成为加强翼肋。翼肋的构造与作用就如同竹节,竹节不仅能够增强竹子的抗弯强度, 同时,能大大地提高竹子横向的抗挤压和抗剪切的能力,翼肋同样如此,其承受了机翼的剪力与扭矩,起到了防止机翼形变的

作用。

3.3、工字型翼梁

翼梁是最有力的纵向构件,它承受了大部分剪力与弯矩。下图工字型翼梁就是仿照竹子的力学特性所设计的。大型民用飞机的机翼, 大都是采用平直的机翼, 这种机翼是一种扁平的空心等强度结构,与竹子的梯杆结构相似,其翼肋也像竹节一样可以提高机翼的抗弯强度, 而空心结构在满足足够的抗弯强度前提下, 大大地减轻了重量。飞机飞行时在风载荷下,此翼梁的抗剪力与弯矩的强度效应与竹子几近相同。

3.4、蒙皮骨架

蒙皮的主要功能是承受局部气动载荷,形成和维持机翼的气动外形,同时参与承受机翼的剪力、弯矩和扭矩。蒙皮与翼梁及纵墙的腹板形成盒状封闭剖面,以承受扭矩。这与竹节材料分布强度的特点相同,竹子外表抗拉强度很高的纤维相当于蒙皮,加内部竹节,总体结构与机翼相似,可见蒙皮骨架式机翼的构想设计借鉴了竹子的特性。

总的来说,工字型翼梁就如同竹子的整体结构,其中翼肋起到了竹节的作用,外表竹青相当于蒙皮,翼梁、翼肋和竹青也就构成了简略的工字型翼梁的蒙皮骨架式机翼,其各方面强度也如竹子那般得到了极大的加强。

4、结论

竹子因为其特有的材料、构造,具有了各方面强度加大的力学特性,自然界是神奇的,当人类运用科学的手段了解自然时,我们也通过自己的智慧将自然的美妙运用到了生活之中,正如机翼来自于竹子的奇妙。大自然是最伟大的老师,不论是飞行器设计还是其它科学领域,只要我们怀着探索的心,就能找到科学的价值,创造美好的生活。

参考文献:

[1]孙宁,张立彬 .竹子的力学特性[J] 1996

[2]岑海堂,陈五一,喻懋林,刘雪林 .翼身结合框结构仿生设计 .北京航空航天大学学报[J].2005

[3]谢础,贾玉红等.航空航天技术概论(第二版)[M].北京.北京航空航天大学出版社.2008

[4]王志瑾,姚卫星.飞机结构设计[M].北京.国防工业出版社. 2007

流体力学的应用

重庆理工大学 关于流体力学应用的论文 重庆理工大学 2012年03月01日

流体力学的应用 【摘要】 流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。 流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。 【关键词】流体力学流体阻力牛顿流体涡流 【正文】 流体是气体和液体的总称。在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容。 流体力学在生产生活中的应用很广泛,例如航空航天航海技术、

水利工程、环境保护以及生活中很多不起眼的小物件也利用了流体力学的基础知识。 例如生活中常见的高尔夫球,高尔夫球运动起源于15世纪的苏格兰,不知道大家有没有发现,高尔夫球的表面做成有凹点的粗糙表面,而不是平滑光趟的表面,就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面是做成光滑的,后来发现表面破损的旧球反而打的更远。原来是临界Re数不同的结果。高尔夫球的直径为41.1毫米,光滑球的临界RE数为3.85×E5,相当的自由来流空气的临界速度为135米/秒,实际上由于制造得不可能十分完善,速度要稍微低一些。 一般高尔夫球的速度达不到这么大,因此,空气绕流球的情况属于小于临界Re数的情况,阻力系数Cd较大。将球的表面做成粗糙面,促使流动提早转变为紊流,临界RE数降低到E5,相当的临界速度为35米/秒,一般高尔夫球的速度要大于这个速度。因此,流动属于大于临界Re数的情况,阻力系数Cd较小,球打得更远。 同样在游泳的时候,也受到流体的作用。游泳是在水中进行的周期性运动。人在水中的漂浮能力与身体所持姿势直接相关。身体保持

流体力学的发展现状

流体力学的发展和现状 作为物理的一部分,流体力学在很早以前就得到发展。在19世纪,流体力学沿着两个方面发展,一方面,将流体视为无粘性的,有一大批有名的力学数学家从事理论研究,对数学物理方法和复变函数的发展,起了相当重要的作用; 另一方面,由于灌溉、给排水、造船,及各种工业中管道流体输运的需要,使得工程流体力学,特别是水力学得到高度发展。将二者统一起来的关键是本世纪初边界层理论的提出,其中心思想是在大部分区域,因流体粘性起的作用很小,流体确实可以看成是无粘的。这样,很多理想流体力学理论就有了应用的地方。但在邻近物体表面附近的一薄层中,粘性起着重要的作用而不能忽略。边界层理论则提供了一个将这两个区域结合起来的理论框架。边界层这样一个现在看来是显而易见的现象,是德国的普朗特在水槽中直接观察到的。这虽也是很多人可以观察到的,却未引起重视,普朗特的重大贡献就在于他提出了处理这种把两个物理机制不同的区域结合起来的理论方法。这一理论提出后,在经过约10年的时间,奠定了近代流体力学的基础。 流体力学又是很多工业的基础。最突出的例子是航空航天工业。可以毫不夸大地说,没有流体力学的发展,就没有今天的航空航天技术。当然,航空航天工业的需要,也是流体力学,特别是空气动力学发展的最重要的推动力。就以亚音速的民航机为例,如果坐在一架波音747飞机上,想一下这种有400多人坐在其中,总重量超过300吨,总的长宽有大半个足球场大的飞机,竟是由比鸿毛还轻的空气支托着,这是任何人都不能不惊叹流体力学的成就。更不用说今后会将出现更大、飞行速度更快的飞机。 同样,也不可能想象,没有流体力学的发展,能设计制造排水量超过50万吨的船舶,能建造长江三峡水利工程这种超大规模工程,能设计90万kW汽轮机组,能建造每台价值超过10亿美元的海上采油平台,能进行气候的中长期预报,等等。甚至天文上观测到的一些宇宙现象,如星系螺旋结构形成的机理,也通过流体力学中形成的理论得到了解释。近年来从流体力学的角度对鱼类游动原理的研究,发现了采用只是摆动尾部(指身体大部不动)来产生推进力的鱼类,最好的尾型应该是细长的月牙型。这正是经过几亿年进化而形成的鲨鱼和鲸鱼的尾型,而这些鱼类的游动能力在鱼类中是最好的。这就为生物学进化方面提供了说明,引起了生物学家的很大兴趣。 所以很明显,流体力学研究,既对整个科学的发展起了重要的作用,又对很多与国计民生有关的工业和工程,起着不可缺少的作用。它既有基础学科的性质,又有很强的应用性,是工程科学或技术科学的重要组成部分。今后流体力学的发展仍应二者并重。 本世纪的流体力学取得多方面的重大进展,特别是在本世纪下半叶,由于实验测试技术、数值计算手段和分析方法上的进步,在多种非线性流动以及力学和其他物理、化学效应相耦合的流动等方面呈现了丰富多采的发展态势。 在实验方面,已经建立了适合于研究不同马赫数、雷诺数范围典型流动的风洞、激波管、弹道靶以及水槽、水洞、转盘等实验设备,发展了热线技术、激光技术、超声技术和速度、温度、浓度及涡度的测量技术,流动显示和数字化技术的迅猛发展使得大量数据采集、处理和分析成为可能,为提供新现象和验证新理论创造了条件。 流体力学是在人类同自然界作斗争,在长期的生产实践中,逐步发展起来的。早在几千年前,劳动人民为了生存,修水利,除水害,在治河防洪,农田灌溉,河道航运,水能利用等方面总结了丰富的经验。我国秦代李冰父子根据“深淘滩,低作堰”的工程经验,修建设计的四川都江堰工程具有相当高的科学水平,反映出当时人们对明渠流和堰流的认识已经达

竹子的力学特性

选题:从力学观点分析竹子的力学特征 徐锴,材料1302,2013012057 【摘要】本文通过分析竹子的材料和构造,说明竹子的强度特性。并通过该种特性进行一些实际应用设计,本文选用建筑中的应用。 【关键词】竹子,强度,建筑,可持续发展 1、收集的常识【1】: (1)竹,禾本科,竹木质化,有明显的节,节间常中空,高大、生长迅速,竹枝杆挺拔,修长。(2)分布于热带、亚热带至温带地区,其中东亚、东南亚和印度洋及太平洋岛屿上分布最集中,种类也最多。 (3)在竹材研究方面,国内外对竹材的物理性质研究的较多,研究重点主要集中在密度、吸水率及干缩性等方面。密度在很大程度上决定着竹材的力学性质,密度主要取决于纤维含量、纤维直径及细胞壁厚度,密度随纤维含量增加而增加。 2、分析竹子强度特性【2】 相比较于钢材,竹子体轻,但是硬度大。根据实验测定, 竹材的形变量非常小, 弹性和韧性却很高, 顺纹抗拉强度170M Pa, 顺纹抗压强度达80M Pa。特别是刚竹, 其顺纹抗拉强度最高竟达280M Pa, 几乎相当于同样截面尺寸材的一半。虽然钢材的抗拉强度为一般竹材的2.5~3倍,但若按单位重量计算抗拉能力,则竹材要比钢材强2~3倍。 3、竹强度大的力学分析 3.1 空心圆截面的强度分析【4】

(1)根据化工设备机械基础的弯曲强度理论【4】, 杆件强度主要指标是弯曲应力。弯曲强度条件为 ][W M max max σσ≤=。 要提高杆件的强度, 除了合理安排受力, 降低M max 的数值以外, 主要是采用合理的截面形状, 尽量提高抗弯截面模量W 的数值, 充分利用材料。,实心圆截面和空心圆截面的抗弯截面模量分别是 3d 321W π=实)1(32 1W 43απ-=D 空 式中, d 是实心杆直径, D 是空心杆外径, 1D 是空心杆内径。2 1D D = α为空心杆内、外径比值, 当空心杆和实心杆的截面积相同时 )(2122D -D 4 1d 41ππ=或212D -D d = 则11-1-1D 32 1d 321W W 22433>+==α ααππ)(空实 (1)根据以上分析, 空心圆截面杆的抗弯强度比同样截面积的实心杆大; 并且空心圆截面杆内、外直径的比值α越大,其抗弯强度也随之增大。 例如, 当α= 0。 7 时, 它的抗弯强度比同样重量的实心圆截面大2倍。 因为, 杆件抗弯时从正应力的分布规律可知在杆截面上离中性轴越远, 正应力越大, 而中性轴附近的应力很小, 这样其材料的性能未能充分发挥作用。 若将实心圆截面改为空心圆截面, 也就是将材料移置到离中性轴较远处, 却可大大提高抗弯强度。 (2)在风荷载下,竹子主要抵抗的是弯矩和剪力。对于抗弯,边缘最大正应力与截面的截面惯性矩I 成反比,而I 随截面半径增大而增大,故空心结构形成的大半径有利于降低边缘最大正应力提高抗弯能力。 3.2 材料分布的强度分析 (1)由于边缘的正应力最大,故将优质材料布置在边缘是最优化的结构布置,竹子就做到了这点:竹壁自外而内,分为竹青、竹肉和竹黄三个部分,竹子的表面呈现出青色的叫竹青,由抗拉强度很高的纤维质构成。 (2)对于抗剪,竹节又起到了关键的作用。坚硬实心的竹节将竹身分成小段的区格,在每个区格的端部提供可靠的变形约束,从而也能大大提高竹子的抗剪力能力。 3.3 阶梯状变截面的强度分析 (1)竹子在风载作用下各段抵抗弯曲变形能力基本相同, 相当于阶梯状变截面杆, 是一种近似的“等强度杆”。 (2)因为在风力作用下, 沿杆自上而下各截面的弯矩越来越大。 竹子根部所受弯矩最大, 因而根部最粗, 自下而上各截面弯矩越来越小, 竹子也就越来越细。 (3)另外, 竹节不仅能够增强竹子的抗弯强度, 同时,能大大地提高竹子横向的抗挤压和抗剪切的能力。 4、竹子最为建筑用材在实际中的应用 4.1 背景: 中国是世界上最大的产竹国。竹子生长快,成材早产量高、用途广。据竹材研究者介绍,竹子的生长速度非常快,比其他木材的生长速度都要快。竹子最快的生长速度是24小时长长

关于损伤力学的建议与看法

关于损伤力学的建议与看法 在别的论坛看到关于损伤力学的讨论,想起来几年前毕业的一位师兄在其论文中对损伤力学的讨论,现在发出来大家探讨一下 原文如下: 1.3 材料疲劳分析的损伤力学方法 目前,对汽轮机转子破坏过程的研究,基本采用的是线弹性断裂力学方法,其研究的是转子结构中具有明确几何边界的宏观裂纹问题。它从整体出发,对裂纹前沿的应力、应变、位移和能量场的分析,以确定控制裂纹行为的力学参数,来实现对裂纹扩展和转子安全性进行预测。而对裂纹萌生的宏观位置往往根据经验进行人为的假定。 事实上,实际转子服役过程中裂纹的萌生寿命往往很长,有的占总寿命的80%~90%。在这个阶段,材料内部微细观结构逐渐劣化,并逐步发展成为宏观裂纹[25,26,27],况且有些损伤现象并不导致断裂力学所描述的临界开裂,而且崩溃、失稳等。因此,对上述转子损伤现象进行定量的数学描述,对于转子结构的裂纹萌生及寿命预估是非常重要的。也是断裂力学无法解决的。目前,对于无裂纹转子虽能大致估计其致裂寿命,但不能定量描述裂纹的形成发展过程及确切位置和形貌,而且由于往往采用线性损伤累积理论,不能正确地反映转子材料的实际损伤发展情况,因此,其分析结果往往与实际偏差较大。 近三十年发展起来的连续介质损伤力学[28],它采用唯象学方法,引入表征损伤的内部状态变量,将损伤纳入热力学框架,重点研究微观缺陷对材料宏观整体平均力学特性的影响,因此,用损伤力学理论导得的结果,既能反映材料微观结构的变化,又能说明材料宏观力学性能的实际变化情况。可用于分析微裂纹的演化,宏观裂纹形成直至构件的完全破坏的整个过程,弥补了微观研究和断裂力学研究的不足。因此,损伤力学对于研究汽轮机转子结构在各种载荷环境条件下的灾变事故的产生和发展,进而对其进行复现与防治,有着极其重要的意义。 1.3.1 损伤力学发展概况 损伤力学的发端被公认为是1958年Kachanov 在研究金属蠕变时所做的工作,他在当时提出了连续性因子与有效应力的概念,并利用后者给出了前者的演化方程。1963年Rabotnov又定义了损伤因子的概念。在其后的一二十年当中,以Lemaitre,Chaboche,Hult,Lechie,Krajcinovic,Rousselier等为代表的一批学者,针对损伤力学的基本概念、方法等做了大量开创性的工作,这不仅使其框架渐渐明晰充实,而且还把它的适用领域从最初的蠕变分析,推广到对于弹性、塑性、粘塑性、脆性及疲劳等损伤现象的分析[29,30,31];而其所描述的材料,也从金属扩展到复合材料、陶瓷、混凝土等非(纯)金属材料。由于损伤力学已表现出可观的理论价值与应用前景,这使其逐步上升为固体力学的一个新兴分支,并已成为目前国内外力学界所关注的一个十分活跃的研究领域。 然而,从损伤力学发展的现状来看,其相当一部分工作是关于基本理论的,而关于损伤力学算法的研究则显得相对薄弱。目前,关于构件损伤分析的算例,一部分是针对简单受力情形的(如控制应力或控制应变的一维拉伸或纯剪),而对于复杂的问题则采用的是损伤耦合的有限元法。对含裂纹体的损伤力学分析也是该领域中特别引人注目的一个专题。已有的一些工作表明:无论是对于蠕变、塑性、脆性,还是对于疲劳,计及损伤的裂纹性质都显著有别于经典断裂力学中的理想情形。 这些工作虽然已将损伤力学从理论研究向实际应用朝前推进了一大步,但已有的进展还显得不够充分,尚有待于人们进一步的努力。 1.3.2损伤力学研究方法 用损伤力学方法对材料的力学特性进行研究,首先要对材料变形过程进行宏观和微观的实验观察,根据材料损伤演变的微观现象及其宏观表现,采用唯象方法,选择适当的损伤参数,作为本构关系中的内变量建立方程。如何建立能够正确反映材料的损伤本质的损伤演化方程,是未来工作的核心。 ----------------------------------------------------------------------------------- 请问损伤力学如何学习? 前面有热力学的东西,头都大了! 张量也很令人费解! 有没有大侠指一条明路,谢谢!

最新2-5有限元法在流体力学中的应用

2-5有限元法在流体力学中的应用

第五章有限元法在流体力学中的应用 本章介绍有限元法在求解理想流体在粘性流体运动中的应用。讨论了绕圆柱体、翼型和轴对称物体的势流,分析了求解粘性流动的流函数—涡度法流函数法和速度—压力法,同时导出粘性不可压流体的虚功原理。 §1 不可压无粘流动 真实流体是有粘性和可压缩的,理想不可压流体模型使数学问题简化,又能较好地反映许多流动现象。 1. 圆柱绕流 本节详细讨论有限无法的解题步骤。考虑两平板间的圆柱绕流.如图5—1所示。为了减小计算工作量,根据流动的对称性可取左上方的l/4流动区域作为计算区域。 选用流函数方法,则流函数 应满足以下Laplace方程和边界条件

22220(,)0(,)2(,)(,)0(,)x y x y x y aec x y bd y x y ab x y cd n ψψ ψψ ???+=-∈Ω?????-----∈???=-----∈????-----∈????=-----∈???流线流线流线 流线 (5-1) 将计算区域划分成10个三角形单元。单元序号、总体结点号和局部结点号都按规律编排.如图5—2所示。 从剖分图上所表示的总体结点号与单元结点号的关系,可以建立联缀表于下 元素序号 1 2 3 4 5 6 7 8 9 10 总体 结点 号 n1 1 4 4 4 2 2 6 6 5 5 n2 4 5 9 8 6 5 7 10 10 9 n3 2 2 5 9 3 6 3 7 8 10 表5-1

各结点的坐标值可在图5—2上读出。如果要输入计算机运算必须列表。本质边界结点号与该点的流函数值列于下表 表5-2 选用平面线性三角形元素,插值函数为(3—15)式。对二维Laplace 方程进行元素分析,得到了单元系数矩阵计算公式(3—19)和输入向量计算公式(3—20)。现在对全部元素逐个计算系数矩阵。 例如元素1,其结点坐标为1x =0, 1y =2; 2x =0, 2y =1; 3x =2.5, 3y =2. 由(3—15)式可得 132 2.5a x x =-=; 213 2.5a x x =-=- 3210a x x =-=, 1231b y y =-=-; 2310b y y =-=; 3121b y y =-=; 0 1.25A = 从(3—19)式可计算出1K 1 1.45 1.250.21.2500.2K ?? ? ? = ? ? ? ? --对称 依次可计算出全部子矩阵 20.20.201.45 1.251.25K ?? ? ? = ? ? ? ? --

流体力学在土木工程中的应用

流体力学在土木工程中的应用 摘要:流体力学作为土木工程的重要学科,对于土木工程中的一些建筑物的工程设计,施工与维护有着重要作用,不仅是在工程时间上降低了成本,还在材料等物质方面降低了成本。对于实现科学,合理施工有这很高的地位。 关键词:高层渗流地基稳定风荷载给排水路桥高铁风炮隧道 流体力学是力学的一个分支,是研究以水为主体的流体的平衡和运动规律及其工程应用的一门学科, 土木工程是建造各类工程设施的科学技术的统称。它既指所应用的材料、设备和所进行的勘测、设计、施工、保养维修等技术活动;也指工程建设的对象,即建造在地上或地下、陆上或水中,直接或间接为人类生活、生产、军事、科研服务的各种工程设施,例如房屋、道路、铁路、运输管道、隧道、桥梁、运河、堤坝、港口、电站、飞机场、海洋平台、给水和排水以及防护工程等。 土木建构物的建筑环境不可避免会有地下及地表流水的影响,对于高层,或者高出建筑物,风对建筑物的影响也是不可小觑的。在建

筑物设计之初不但要考虑这些流体对施工的影响,在建成后,也得防范流体的长期作用对建构物的负面影响。怎么认识这些影响正如兵家所言,知己知彼,百战不殆,流体力学作为土木工程一门重要学科,通过对流体力学的学习,会使我们对流体形成一种客观正确的认识。 流体力学在工业民用建筑中的应用: 工业民用建筑是常见建筑,对于低层建筑,地下水是最普遍的结构影响源,集中表现为对地基基础的影响。 如果设计时对建筑地点的地下基地上水文情况了解不到位,地下水一旦渗流会对建筑物周围土体稳定性造成不可挽救的破坏,进而严重影响地基稳定,地基的的破坏对整个建筑主体来说是寿命倒计时的开始。一些人为的加固可能及耗材费力,又收效甚微。地下水的浮力对结构设计和施工有不容忽视的影响,结构抗浮验算与地下水的性状、水压力和浮力、地下水位变化的影响因素及意外补水有关。对于这些严重影响建筑物寿命和甚至波及人生安全的有水的流动性造成问题可以通过水力学知识在建筑物的实际和施工之前给以正确的设计与施工指导。避免施工时出现基坑坍塌等重大问题,也能避免施工结束后基地抵抗地下水渗流能力差的问题。 现在建筑越来越趋向于高层,高层节约了土地成本,提供了更多的使用空间,但也增加了设计施工问题。因为随着高度的增加,由于

人体软组织损伤力学浅说

人体软组织损伤力学浅说 人体软组织损伤力学是生物力学的一个主要分支,是医学领域里出现和成长的一门新兴科学。人体软组织损伤力学是从力学的观点,分析和研究人体软组织损伤现象的发生,发展和内在联系,进而探索人体软组织损伤的生理和病理的现象的规律,为诊断和治疗人体软组织损伤服务的科学。 凡肌肉,筋膜,神经,血管,韧带,椎间盘,关节囊,肌腱等损伤,都是人体软组织损伤的范围。 医学的发展有许多涉及生物力学的理论,探索人体软组织损伤的规律也离不开力学,因此必须从研究人体软组织运动损伤而产生的各种症状入手。软组织损伤的病理变化是多变的,但也不是孤立的,静止的。例如,对腰腿痛病因的认识,有的是急性损伤,有的是慢性损伤,有的是无菌性炎症,有的是风湿等等,不尽一致,而且其发病部位和疼痛性质也不尽同,有时腰痛剧烈,有时腿疼严重,有时腰腿串痛,由于腰痛可以反射或放射下肢疼痛。又由于下肢疼痛,可导致脊柱平衡失调,又致使腰痛。以腰椎间盘突出症来说,腰腿痛多数是并存的。如果治疗后下肢放射痛减轻或消除,可以认为突出的髓核也基本还纳或突出物与神经根的位置有了改变,那么腰痛也同样可以得到缓解或消失。因此,软组织损伤性腰腿痛在病因、发病机制及其转归中具有深刻的哲理性,是相互联系、相互制约、又相互影响的。 值得注意的是,软组织损伤对局部产生的各种变化,如移位、偏歪、紊乱、断裂、脱出、挤压、隆起、凹陷等,都具有一定的关联,尽管各种软组织损伤的形态不同,性质不一,但都是因为在外力的作用下,或使人体局部形成离心、向心、旋转等内应力值超过其软组织强度极限,而产生病变的。 软组织的形变主要取决于外力的作用和局部组织两个因素的相互作用,但三者都不是均一相等的,即不是有多大的外力,就可使软组织产生多大的形变。在外力的作用下,人体内应力的集中处往往是产生病变的地方,因为人体软组织受力的方式、条件、及其物理性质的不同,产生的病变、表现的形式也不同。最常见的表现形式是:紧张、痉挛、扭转、弯曲、剪切等。这些表现形式可以有一种或两种同时出现,如紧张和痉挛,是一个部位组织痉挛,相应部位组织必然紧张。而紧张的部位常是由于两个方向相反的作用力拉伸,痉挛部位常是由于两个相同的作用力压缩。拉伸和压缩是一个运动的两种形式,但他们又因发病时间,部位和外力条件而有不同的表现。因此,无论是推拿按摩、或是手法治疗,都必须依其相反的作用力大小和不同方向来进行治疗。 人体软组织损伤力学在研究方法上,强调用力学作用机制的观点,与人体软组织损伤的病理、症状相结合,从中找出内在的联系,得出规律性得认识。 在研究过程中要通过观察、实验、抽象、假说等研究方法,并通过实践得检验而建立起来。观察和实验是理论的基础,观察是对人体中所发生的某些症状,在不改变自然条件的情况下,按照它原来的样子加以观测研究。例如,对人体腰椎间盘突出症的症状,是不能用人为方法造成,而是要采用动物观察的方法,实验是在人工控制的条件下,使现象反复出现,进行观察研究。又如,对肌肉力学的测定,使截取一块肌组

定性分析竹子的力学特性(红色推荐)

定性分析竹子的力学特性 结12,高鸣,2001010132 初次见到竹子的人大概都为竹子如此之细却能长那么高而感到惊讶,尤其是竹子多生长在南方,而且最茂密的季节是夏季,很难想象竹子在南方夏天的狂风骤雨中如何屹立不倒。笔者试图通过自己有限的一点知识,从竹子的结构出发浅谈竹子的受力优点。 先看一下竹子的结构有哪些特点。竹子的断面是圆环形,中空,一般直径6厘米,壁厚0.5厘米,大约每隔15厘米有一个实心坚硬的竹节。 对于空心固体的受力性能,意大利科学家伽利略曾经做过专门的研究,这里摘录如下:“人类的技艺(技术)和大自然都在尽情地利用这种空心的固体。这种物质可以不增加重量而大大增加它的强度,这一点不难在鸟的骨头上和芦苇上看到,它们的重量很小,但是有极大的抗弯力和抗断力,麦秆所支持的麦穗重量,要超过整株麦茎的重量,假如与麦秆同样重量的物质却生成实心的而不是空心的,它的抗弯和抗断力就要大大减低。”“实际上也曾经发现并且用实验证实了,空心的棒以及木头和金属的管子,要比同样长短同样重量的实心物体更加牢固,当然,实心的要比空心的细一些。人类的技艺就把这个观察到的结果应用到制造各种东西上,把某些东西制成空心的,使它们又坚固又轻巧。” 竹子在自然界中主要受自重荷载和风荷载。在自重荷载下(无风时),竹子相当于一根受压杆,根据欧拉公式,临界荷载:2 2)(l EI F Pcr μπ= ,对于竹子,E 是它的材料性能, 取决于竹纤维的强度,生长在土地上长度系数2=μ, 这些都是常数。除去长度因素外,还和截面抗弯刚度Pcr F EI 成正比。显然,在同样的重量下,把截面作成空心圆环对于提高抗弯刚度EI 是最有利的。计算表明,假如把竹子做成实心的,则其抗弯能力是原来的1/10。因此,竹子特有的空心圆环形的截面保证了它的受压整体稳定性,从而能提高其生长高度。那么竹子如何保证受压局部稳定性呢?竹节的作用此时就体现了。竹节所起到的作用与箱形截面柱中横向加劲肋是一样的,从而保证了竹子的受压局部稳定性。同时,竹节的存在也保证了竹子的抗扭能力,避免竹子发生扭转失稳。 在风荷载下,竹子主要抵抗的是弯矩和剪力。对于抗弯,边缘最大正应力与截面截面惯性矩I 成反比,而I 随截面半径增大而增大,故空心结构形成的大半径有利于降低边缘最大正应力提高抗弯能力。同时,由于边缘的正应力最大,故将优质材料布置在边缘是最优化的结构布置,竹子就做到了这点。竹壁自外而内,分为竹青、竹肉和竹黄三个部分,竹子的表面呈现出青色的叫竹青,由抗拉强度很高的纤维质构成。对于抗剪,竹节又起到了很关键的作用。坚硬实心的竹节将竹身分成小段小段的区格,在每个区格的端部提供可靠的变形约束,从而也能大大提高竹子的抗剪能力。举个例子,农业上小麦减产主要原因之一“倒伏”,就是小麦返青拔节时,由于雨水过多,生长迅速而拔节快,形成节与节之间间距大,减低了麦秆的抗剪能力,头重脚轻杆软倒伏于地。 从上面的分析可以看出,竹子的结构特点十分符合它在自然界中的受力需要。自然界中的许多动植物身上都有许多这样的特点,这些都是生物在进化过程中逐渐产生的有利于其生存的特点,受力优越性便是其中之一。

钢材力学性能标准一览表

钢材力学性能指标汇总表 钢筋的公称横截面积与公称重量 公称直径,mm 公称横截面积mm 2 公称重量,Kg/m 6.5 33.18 8 50.27 0.395 10 78.54 0.617 12 113.1 0.888 14 153.9 1.21 16 201.1 1.58 18 254.5 2.00 20 314.2 2.47 22 380.1 2.98 25 490.9 3.85 28 615.8 4.83 32 804.2 6.31 36 1018 7.99 40 1257 9.87 50 1964 15.42 注:表中公称重按密度为7.85g/cm3计算。 一、钢筋混凝土用热轧带肋钢精GB1499-1998 1、力学性能 牌号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 不小于 HRB335 6~25 28~50 335 490 16 HRB400 6~25 28~50 400 570 14 HRB500 6~25 28~50 500 630 12 2、弯曲性能(按下表规定的弯心直径弯曲180°后,钢筋受弯曲部位表面不得产生裂纹) 牌号公称直径mm 弯曲试验弯心直径 HRB335 6~25 28~50 3a 4a HRB400 6~25 28~50 4a 5a HRB500 6~25 28~50 5a 7a 二、钢筋混凝土用热轧光圆钢筋GB13013-91 表面形状钢筋级别强度等级代号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯d弯心直径a公称直径 不小于 光圆Ι R235 8~20 235 370 25 180°d=a 三、低碳钢热轧圆盘条GB/T701-1997 牌号屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯180°d弯心直径a公称直径 不小于 Q215 215 375 27 d=0 Q235 235 410 23 d=0.5a 四、冷轧扭钢筋JG3046-1999

岩石的损伤力学及断裂力学综述

岩石的断裂力学及损伤力学综述 摘要:论述了国内外断裂力学及损伤力学的学科发展历程,总结了岩体断裂力学损伤力学的研究内容、研究特点以及岩石力学专家们一些年来所取得的主要成果,并简单介绍了断裂力学损伤力学在岩土工程中的实际应用。最后,通过对岩石破坏的断裂-损伤理论的阐述,指出了综合考虑损伤与断裂的破坏理论是能更好地反映岩石实际破坏过程的一种新的理论, 可在以后的理论研究和实际工程中得以更为广泛的应用。 关键词:岩石 断裂力学 损伤力学 应用 1 引 言 岩石的破坏过程总是伴随着损伤(分布缺陷)和裂纹(集中缺陷)的交互扩展, 这种耦合效应使得裂纹尖端附近区域材料必然具有更严重的分布缺陷。岩石的破坏, 如脆性断裂和塑性失稳, 虽然有突然发生的表面现象, 但是, 从材料损伤的发生、发展和演化直到出现宏观的裂纹型缺陷, 伴随着裂纹的稳定扩展或失稳扩展, 是作为过程而展开的。 经典的断裂力学广泛研究的是裂纹及其扩展规律问题。物体中的裂纹被理想化为一光滑的零厚度间断面。在裂纹的前缘存在着应力应变的奇异场,而裂纹尖端附近的材料假定同尖端远处的材料性质并无区别。象裂纹这样的缺陷可称它为奇异缺陷,因此经典断裂力学中物体的缺陷仅仅表现为有奇异缺陷的存在。 而损伤力学所研究的是连续分布的缺陷, 物体中存在着位错、微裂纹与微孔洞等形形色色的缺陷,这些统称为损伤。从宏观来看, 它们遍布于整个物体。这些缺陷的发生与发展表现为材料的变形与破坏。损伤力学就是研究在各种加载条件下, 物体中的损伤随变形而发展并导致破坏的过程和规律。 事实上, 物体中往往同时存在着奇异缺陷和分布缺陷。在裂纹(奇异缺陷)附近区域中的材料必然具有更严重的分布缺陷, 它的力学性质必然不同于距离裂纹尖端远处的材料。因此, 为了更切合实际, 就必须把损伤力学和断裂力学结合起来, 用于研究物体更真实的破坏过程。 2 断裂力学 2.1 断裂力学学科发展 “断裂力学”指的是固体力学的一个重要分支,该学科要在假定裂纹存在的条件下,寻求裂纹长度、材料抗裂纹增长的固有阻力、以及能使裂纹高速扩展从而导致结构失效的应力之间的定量关系[]1。 断裂力学最早是在1920年提出的。当时格里菲斯为了研究玻璃、陶瓷等脆性材料的实际强度比理论强度低的原因,提出了在固体材料中或在材料的运行过程中存在或产生裂纹的设想,计算了当裂纹存在时,板状构件中应变能变化进而得出了一个十分重要的结果:常数≡a c δ。 1949年,奥罗万在分析了金属构件的断裂现象后对格里菲斯的公式提出了修正,他认为产生裂纹所释放的应变能不仅能转化为表面能,也应转化为裂纹前沿

流体力学与传热学

1、对流传热总是概括地着眼于壁面和流体主体之间的热传递,也就是将边界层的(热传导)和边界层外的(对流传热)合并考虑,并命名为给热。 2、在工程计算中,对两侧温度分别为 t1,t2 的固体,通常采用平均导热系数进行热传导计算。平均导热系数的两种表示方法是或。答案;λ = 3、图 3-2 表示固定管板式换热器的两块管板。由图可知,此换热器为或。体的走向为 管程,管程流 1 1 4 2 2 3 3 5 图 3-2 3-18 附图答案:4;2 → 4 → 1 → 5 → 3;3 → 5 → 1 → 4 → 2 4、4.黑体的表面温度从 300℃升至 600℃,其辐射能力增大到原来的(5.39)倍. 答案: 5.39 分析: 斯蒂芬-波尔兹曼定律表明黑体的辐射能力与绝对温度的 4 次方成正比, ? 600 + 273 ? 摄氏温度,即 ? ? =5.39。 ? 300 + 273 ? 5、 3-24 用 0.1Mpa 的饱和水蒸气在套管换热器中加热空气。空气走管内, 20℃升至 60℃,由则管内壁的温度约为(100℃) 6、热油和水在一套管换热器中换热,水由 20℃升至 75℃。若冷流体为最小值流体,传热效率 0.65,则油的入口温度为 (104℃)。 7、因次分析法基础是 (因次的一致性),又称因次的和谐性。 8、粘度的物理意义是促使流体产生单位速度梯度的(剪应力) 9、如果管内流体流量增大 1 倍以后,仍处于滞流状态,则流动阻力增大到原来的(2 倍) 10、在滞流区,若总流量不变,规格相同的两根管子串联时的压降为并联时4 倍。 11、流体沿壁面流动时,在边界层内垂直于流动方向上存在着显著的(速度梯度),即使(粘度)很小,(内摩擦应力)仍然很大,不容忽视。 12、雷诺数的物理意义实际上就是与阻力有关的两个作用力的比值,即流体流动时的(惯性力)与(粘性力)之比。 13、滞流与湍流的本质区别是(滞流无径向运动,湍流有径向运动) 二、问答题:问答题: 1、工业上常使用饱和蒸汽做为加热介质而不用过热蒸汽,为什么?答:使用饱和蒸汽做为加热介质的方法在工业上已得到广泛的应用。这是因为饱和蒸汽与低于其温度的壁面接触后,冷凝为液体,释放出大量的潜在热量。虽然蒸汽凝结后生成的凝液覆盖着壁面,使后续蒸汽放出的潜热只能通过先前形成的液膜传到壁面,但因气相不存在热阻,冷凝传热的全部热阻只集中在液膜,由于冷凝给热系数很大,加上其温度恒定的特点,所以在工业上得到日益广泛的应用。如要加热介质是过热蒸汽,特别是壁温高于蒸汽相应的饱和温度时,壁面上就不会发生冷凝现象,蒸汽和壁面之间发生的只是通常的对流传热。此时,热阻将集中在靠近壁面的滞流内层中,而蒸气的导热系数又很小,故过热蒸汽的对流传热系数远小于蒸汽的冷凝给热系数,这就大大限制了过热蒸汽的工业应用。 2、下图所示的两个 U 形管压差计中,同一水平面上的两点 A、或 C、的压强是否相等? B D P1 A P2 p 水 B C 空气 C 水银图 1-1 D 水 P1 1-1 附图 P2 A B D p h1 。 答:在图 1—1 所示的倒 U 形管压差计顶部划出一微小空气柱。空气柱静止不动,说明两侧的压强相等,设为 P。由流体静力学基本方程式: p A = p + ρ空气 gh1 + ρ水 gh1 p B = p + ρ空气 gh1 + ρ空气 gh 1 Q ρ水 > ρ空气 p C = p + ρ空气 gh1 ∴ p A> pB 即 A、B 两点压强不等。而

土体抗拉张力学特性研究现状与展望

土体抗拉张力学特性研究现状与展望 : 传统非饱和土力学认为来源于土壤学或土壤物理学中的基质吸力就是非饱和土的粒间吸力,下面是小编搜集整理的一篇探究抗拉张力学特性试验的论文范文,供大家阅读参考。 1、引言 在传统工程地质环境及土力学性质的研究中,土体通常不主动作为抗拉材料使用,认为土的抗拉强度很小或几乎视为零[1,2],实际工程中土体的抗拉强度常常被忽略,多侧重于抗压和抗剪,对抗拉张的研究较少[3,4].然而,许多工程问题中的土体会发生开裂现象,诸如红色问题土中常见的崩岗[5]、滑坡以及黄土中常见的滑塌[6]等地质灾害孕育过程中坡顶几乎都产生的张拉裂缝[7,8],其破坏模式是拉张和剪切的耦合,都与其抗拉张力学特性密切相关。 抗拉张强度是评价非饱和土的崩岗、崩塌及土坝、堤防、路基、垃圾填埋场等边坡的稳定性的重要参数,黄文熙[9]早就指出抗拉张是黏性土的一个比较重要的力学 性质。试验研究表明[4,10] 天然非饱和黏性土的抗拉强度一般可达到十几到几十千帕,从抗拉力学角度,土体的抗拉强度几乎相当于同等面积内2m×3m间距锚杆的抗拔力。可见,抗拉强度在 土体稳定性中起着相当重要的作用,忽略土的抗拉张强度显然是对土的强度认识上的不全面。 本文从土体抗拉张力学特性的实验研究和理论分析2个角度出发,介绍并对比分析了国内外土体抗拉张力学特性的试验以及理论方面的最新研究,通过总结分析历史上大量的岩土破坏试验抽象概括出了土体的8种破坏模式,随后认为土体变形破坏的实质是拉剪耦合的渐进性发展过程,并指出研究非饱和土抗拉特性的核心问题就是要弄清土体抗议与粒间吸力之间的关系,最后总结了研究现状中存在的主要问题,展望了今后的研究与发展方向。 2、抗拉张力学特性试验研究 土体的抗拉张力学特性的测试主要在室内进行,分2类:一类是直接测定法,即单轴拉伸试验和三轴拉伸试验方法;另一类是间接测定方法,包括径向压裂试验、弯 曲梁试验和环状试样法等。比较土体抗剪特性及理论的研究,土体抗拉张特性的研究程度无论从试验手段还是从理论方面都还是远远落后的。例如,至今仍没有统一规范并获得业界普遍认同的土体抗张特性测试仪器。不过,当前抗拉张的新型试验

流体力学的应用

流体力学在航空航天工程中的应用 (洪渊,西安科技大学,能源学院采矿工程卓越1301班,1303110113) 摘要:航天航空工程综合了最新最高的现代科学与技术,是一个国家科技实力和国防现代化的重要标志之一,更是目前世界各国之间争相研究发展的顶尖科技产业,它直接关系到国家的安全和经济的发展。随着科学技术的进步和航天器的发展,遥远而深邃的宇宙已不再可望而不可及,飞天早已不再是无稽之谈。在20世纪对人类影响最大的20项技术中就包括航空航天技术,流体力学的发展对航空航天科技的发展起到了关键性的作用,而这些看似离我们非常遥远的高薪技术其实其基本原理无时无刻不伴随我们。因为我们身边有各种流体的存在。 关键词:航空航天技术、流体、流体力学 Application of fluid mechanics in Aerospace Engineering (Hong Yuan, Xi'an University of Science And Technology, the Institute of mining engineering excellence 1301, 1303110113) Aerospace Engineering integrated the latest modern science and technology, is a national science and technology strength and the important symbol of the modernization of national defense, but also the world's top scientific and technological industry, which is directly related to the national security and economic development. With the development of science and technology and the progress of the spacecraft, as remote and profound universe is no longer inaccessible and, flying already no longer is nonsense. In twentieth Century the greatest impact on human beings in the 20 technologies, including aerospace technology, the development of fluid mechanics to the development of Aerospace Science and technology has played a key role, and these seemingly away from us very far from the high paying technology in fact its basic principles are not accompanied by us. Because we have all kinds of fluid in the presence of. Key words: aerospace technology, fluid, fluid mechanics

荔枝果核力学特性分析及试验

万方数据

万方数据

万方数据

荔枝果核力学特性分析及试验 作者:程红胜, 李长友, Cheng Hongsheng, Li Changyou 作者单位:华南农业大学,工程学院,广州,510642 刊名: 农机化研究 英文刊名:JOURNAL OF AGRICULTURAL MECHANIZATION RESEARCH 年,卷(期):2009,31(12) 被引用次数:1次 参考文献(12条) 1.刘燕群中国荔枝产业发展现状、问题及对策[期刊论文]-世界农业 2008(03) 2.徐秉业;罗学富接触力学 1992 3.Mohsenin N N Physical properties of plant and animal materials 1970 4.王泽南;单明彻水果机械特性及损伤的研究 1986(03) 5.吴德光;蒋小明农产品压缩试验研究及其应用(Ⅰ)-压缩试验方法 1990(03) 6.周祖锷农业物料学 1994 7.戴晓红荔枝加工机结构设计原理分析[期刊论文]-包装与食品机械 1997(02) 8.王旭东荔枝去核机的设计[期刊论文]-农业机械学报 2005(09) 9.张林泉荔枝剥壳设备的研制[期刊论文]-包装与食品机械 2004(06) 10.陈震荔枝力学特性参数测试研究[期刊论文]-农机化研究 2008(09) 11.王旭东;朱立学;刘江清荔枝物理参数和机械特性的试验研究[期刊论文]-农机化研究 2007(12) 12.袁沛元;蔡长河荔枝加工现状与技术探讨[期刊论文]-中国热带农业 2005(25) 本文读者也读过(10条) 1.贾彦丽.温陟良.吕瑞江.段玉春.智福军.JIA Yan-li.WEN She-liang.LU Rui-jiang.DUAN Yu-chun.ZHI Fu-jun 无核小枣果核发育的解剖学研究[期刊论文]-华北农学报2007,22(z2) 2.陈震.徐凤英.李长友.卢顺成.CHEN Zhen.XU Feng-ying.LI Chang-you.LU Shun-cheng荔枝力学特性参数测试研究[期刊论文]-农机化研究2008(9) 3.陈震.李长友.洪英荔枝力学特性分析与测试[会议论文]- 4.宋慧芝.王俊.陈琦峰.严志权.Song Huizhi.Wang Jun.CHEN Qifeng.Yan Zhiquan梨动力学特性有限元分析[期刊论文]-农业机械学报2005,36(6) 5.徐永春.陈震农业物料力学测试平台系统设计[期刊论文]-现代农业装备2004(9) 6.张洋.王德成.王光辉.刘德旺.王书茂牧草种子机械化加工工艺的分析[会议论文]- 7.刘建军.宋建农.陆建伟.彭樟林.彭何欢.LIU Jian-jun.SONG Jian-nong.LU Jian-wei.PENG Zhang-lin.PENG He-huan大蒜物理力学特性的试验研究[期刊论文]-农机化研究2008(2) 8.杨晨升.马小愚.Yang Chensheng.Ma Xiaoyu农业物料动态力学特性的试验研究[期刊论文]-农机化研究2009,31(4) 9.刘圣勇.王淮东.康艳.李文雅.苏超杰.袁超.朱长河.LIU Sheng-yong.WANG Huai-dong.KANG Yan.LI Wen-ya.SU Chao-jie.YUAN Chao.ZHU Chang-he玉米秸秆成型燃料结渣特性试验与分析[期刊论文]-河南农业大学学报2006,40(6) 10.刘圣勇.李文雅.苏超杰玉米秸秆成型燃料结渣特性实验与分析[会议论文]-2006 引证文献(1条) 1.陈燕.蔡伟亮.邹湘军.徐凤英荔枝整果压缩力学特性试验[期刊论文]-安徽农业科学 2010(29)

计算流体力学中有限差分法、有限体积法和有限元法的区别

有限元法,有限差分法和有限体积法的区别 1. FDM 1.1 概念 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 1.2 差分格式 (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 1.3 构造差分的方法 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2. FEM 2.1 概述 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 2.2 原理 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。(1)从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法;(2)从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格;

相关文档
最新文档