极限的求解方法

极限的求解方法
极限的求解方法

求函数极限的方法和技巧

1、运用极限的定义

2、利用极限的四则运算性质

若 A x f x x =→)(lim 0

B x g x x =→)(lim 0

(I)[]=±→)()(lim 0

x g x f x x )(lim 0

x f x x →±B A x g x x ±=→)(lim 0

(II)[]B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0

(III)若 B ≠0 则:

B

A

x g x f x g x f x x x x x x ==→→→)(lim )

(lim )()(lim 0

00

(IV )cA x f c x f c x x x x =?=?→→)(lim )(lim 0

(c 为常数)

上述性质对于时也同样成立-∞→+∞→∞→x x x ,, 3、约去零因式(此法适用于型时0

,0x x →)

例: 求

解:原式=()

()

)

12102(65)

2062(103lim

2

23223

2

+++++--+---→x x x x x

x x x x x

x =)

65)(2()

103)(2(lim 222+++--+-→x x x x x x x

=)

65()

103(lim 222++---→x x x x x =)3)(2()2)(5(lim 2+++--→x x x x x =2

lim

-→x 73

5

-=+-x x 4、通分法(适用于∞-∞型)

12

16720

16lim 23232+++----→x x x x x x x

例: 求 )21

44(

lim 22

x

x x ---→

解: 原式=)2()2()

2(4lim

2x x x x -?++-→

=)2)(2()

2(lim

2x x x x -+-→

=4

1

21lim

2=+→x x

5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质)

设函数f(x)、g(x) 满足: (I )0)(lim 0

=→x f x x

(II) M x g ≤)( (M 为正整数) 则:0)()(lim 0

=→x f x g x x

例: 求 x

x x 1sin

lim 0

?→ 解: 由 0lim 0

=→x x 而 11

sin

≤x

故 原式 =01

sin

lim 0

=?→x

x x 6、利用无穷小量与无穷大量的关系。 (I )若:∞

=)(lim x f 则 0)

(1

lim

=x f (II) 若: 0)(lim =x f 且 f(x)≠0 则 ∞=)

(1

lim x f 例: 求下列极限 ① 51lim

+∞→x x ②1

1

lim 1-→x x

解: 由 ∞=+∞→)5(lim x x 故 05

1

lim =+∞→x x

由 0)1(lim 1=-→x x 故 1

1

lim 1-→x x =∞

7、等价无穷小代换法

设'',,,ββαα 都是同一极限过程中的无穷小量,且有: '

'

~

,~ββαα,

''

lim β

α 存在,

则 βαlim 也存在,且有βαlim = ''

lim β

α

例:求极限2

22

0sin cos 1lim x x x x -→

解: ,~sin 2

2

x x 2

)(~cos 12

22

x x -

∴ 22

20sin cos 1lim x x x x -→=212)(2

22

2=x x x

注: 在利用等价无穷小做代换时,一般只在以乘积形式出现时可以互换,若以和、

差出现时,不要轻易代换,因为此时经过代换后,往往改变了它的无穷小量之比的“阶数”

8、利用两个重要的极限。

1sin lim

)(0=→x x A x e x

B x x =+∞→)1

1(lim )(

但我们经常使用的是它们的变形:

)

)((,))(1

1lim()()0)((,1)

()

(sin lim

)()(''∞→=+→=x e x B x x x A x ??????

例:求下列函数极限

x

a x x 1lim )1(0-→、 bx ax

x cos ln cos ln lim )2(0→、 )

1ln(ln 1 ln )1ln( ,11 u a

u x a a u x u a x x

+=

-+==-于是则)令解:(

a u a

u

u a u a u x a u x u

u u u x x ln )1ln(ln lim )1ln(ln lim )1ln(ln lim 1lim 0

10

000=+=+=+=-→→→→→→故有:时,又当

)]

1(cos 1ln[)]

1(cos 1ln[(lim

)2(0-+-+=→bx ax x 、原式

1

cos 1

cos 1cos )]

1(cos 1ln[1cos )]1(cos 1ln[(lim

0--?--+--+=→ax bx bx bx ax ax x

1

cos 1cos lim 0--=→ax bx x 222

2

22220220)2

()2()2

(2sin )2(2

sin lim 2sin 22sin 2lim a

b x a x b

x b x b x a x

a x

b x x x =?=--=→→α

9、利用函数的连续性(适用于求函数在连续点处的极限)。

)

()](lim [))((lim )()(lim )]([)()

()(lim )()(0

00a f x f x f a u u f a x x f ii x f x f x x x f i x x x x x x x x ======→→→→????处连续,则在且

是复合函数,又若处连续,则在若

例:求下列函数的极限

)

1ln(15

cos lim

)1(20x x x e x x -+++→、 (2) x x x )1l n (lim 0+→

()1ln ))1(lim ln()1ln(lim )1ln(lim )1()1ln()1ln()2(6)0()

1ln(15cos lim )1ln(15

cos )(01

01

001

1

202==+=+=++=+=+==-+++-+++==→→→→e x x x

x x x x x x f x x x e x x x e x f x x x x x x x

x

x x x 故有:

令、由有:故由函数的连续性定义的定义域之内。

属于初等函数解:由于?

10、变量替换法(适用于分子、分母的根指数不相同的极限类型)特别地有:

nk

m l

x x m

n k

l x =

--→1

1lim

1

m 、n 、k 、l 为正整数。 例:求下列函数极限 ① m x

x m n x (11lim

1

--→ 、n )N ∈ ②1

)1

232(

lim +∞

→++x x x x 解: ①令 t=mn x 则当1→x 时 1→t ,于是

原式=n

m

t t t t t t t t t t n m t n m t =++++-++++-=----→→)1)(1()1)(1(lim 11lim 121211 ②由于1)1232(

lim +∞→++x x x x =1

)1221(lim +∞→++x x x

令:t x 1212=+ 则 2

1

11+=+t x ∴1)1232(

lim +∞→++x x x x =1)1

221(lim +∞→++x x x =2

1

10)1(lim +→+t t t

=e e t t t t t =?=+?+→→1)1(lim )1(lim 2

10

10

11、 利用函数极限的存在性定理

定理: 设在0x 的某空心邻域内恒有 g(x)≤f(x)≤h(x) 且有: A x h x g x x x x ==→→)(lim )(lim 0

则极限 )(lim 0

x f x x → 存在, 且有

A x f x x =→)(lim 0

例: 求 x n

x a

x +∞→lim (a>1,n>0)

解: 当 x ≥1 时,存在唯一的正整数k,使 k ≤x ≤k+1

于是当 n>0 时有:

k

n

x n a k a x )1(+< 及 a

a k a k a x k n k n x n 1

1?=>+

又 当x +∞→时,k +∞→ 有

=++∞→k n k a k )1(lim 00)1(lim 1=?=?+++∞→a a a

k k n k 及 =++∞→1lim k n k a k 01

01lim =?=?+∞→a

a a k k n k

x

n

x a x +∞→lim =0 12、用左右极限与极限关系(适用于分段函数求分段点处的极限,以及用定义求极限等情形)。

定理:函数极限)(lim 0

x f x x →存在且等于A 的充分必要条件是左极限)(lim 0

x f x x -

→及右极限)(lim 0

x f x x +

→都存在且都等于A 。即有:

?=→A x f x x )(lim 0

)(lim 0

x f x x -→=)(lim 0

x f x x +

→=A 例:设)(x f =??

?

??

??≥<<-≤--1,10,0

,212x x x x x

x x e x 求)(lim 0x f x →及)(lim 1

x f x →

1)1(lim )(lim )(lim 1)21(lim )(lim 0

00

-=-=-=-=-=+

+

+

-

-→→→-→→x x

x x x f e x f x x x x

x x 解:

由1)(lim )(lim 0

-==+-→→x f x f x x 1)(lim 0

-=∴→x f x

不存在

由(又)(lim )01()01(1lim )(lim 0)1lim lim )(lim 1

2

111

11

x f f f x x f x x

x x x f x x x x x x →→→→→→∴+≠-===-=-=+

+-

-

-

13、罗比塔法则(适用于未定式极限) 定理:若

A x g x f x g x f A A x g x f iii x g x u x g f ii x g x f i x x x x x x x x x x ==∞∞±=≠==→→→→→)

()(lim )()(lim ()()(lim )(0)()()(0

)(lim ,0)(lim )('''''0000000

),则或可为实数,也可为内可导,且的某空心邻域在与

此定理是对

型而言,对于函数极限的其它类型,均有类似的法则。 注:运用罗比塔法则求极限应注意以下几点: 1、 要注意条件,也就是说,在没有化为

,00时不可求导。 2、 应用罗比塔法则,要分别的求分子、分母的导数,而不是求整个分式的导数。 3、 要及时化简极限符号后面的分式,在化简以后检查是否仍是未定式,若遇到不是

未定式,应立即停止使用罗比塔法则,否则会引起错误。

4、当)

()

(lim ''x g x f a x → 不存在时,本法则失效,但并不是说极限不存在,此时求极限须用

另外方法。

例: 求下列函数的极限

①)

1ln()21(lim 22

1

0x x e x x ++-→ ②)0,0(ln lim

>>+∞→x a x x

a

x

解:①令f(x)= 2

1

)

21(x e x

+-, g(x)= l )1n(2x +

2

1

')

21()(-+-=x e x f x , 2

'

12)(x x

x g +=

2

22"

2

3

"

)

1()

1(2)(,)

21()(x x x g x e x f x

+-=++=- 由于0)0()0(,0)0()0('

'

====g g f f 但2)0(,2)0("

"

==g f 从而运用罗比塔法则两次后得到

12

2

)1()

1(2)21(lim 12)

21(lim )

1ln()21(lim 2

222

3

02

2

1

022

1

0==

+-++=++-=++--→-→→x x x e x x

x e x x e x

x x

x x

x ② 由∞=∞=+∞

→+∞

→a

x x x x lim ,ln lim 故此例属于

型,由罗比塔法则有: )0,0(01lim 1

lim ln lim 1>>===+∞→-+∞→+∞→x a ax ax x x x a

x a x a x

14、利用泰勒公式

对于求某些不定式的极限来说,应用泰勒公式比使用罗比塔法则更为方便,下列为常用的展开式:

1、)(!

!212n n

x

x o n x x x e +++++= 2、)()!

12()1(!5!3sin 2121

53n n n x o n x x x x x +--+++-=--

3、)()!2()1(!4!21cos 12242++-+++-=n n n x o n x x x x

4、)()1(2)1ln(12n n

n x o n

x x x x +-++-=+- 5、)(!

)

1()1(!

2)

1(1)1(2n n x o x n n x x x ++--+

+-++=+ααααααα

6、

)(x x 1 11

2n n x o x x

+++++=- 上述展开式中的符号)(n

x o 都有:

0)

(lim 0=→n n x x

x o 例:求)0(2lim

>+-+→a x x

a x a x

解:利用泰勒公式,当0→x 有

)(2

11x o x

x ++

=+ 于是 x x

a x a x +-+→2lim

=x

a

x a x a x )121(lim

+-+

=x

x o a x x o a x a x ?

??

???-?--++→)(211)()2(211lim 0

=a

x x o x a x x o a x a x x 21)(21lim )

(2lim

00

=+=+?

→→

15、利用拉格朗日中值定理

定理:若函数f 满足如下条件: (I) f 在闭区间上连续 (II)f 在(a ,b)内可导 则在(a ,b)内至少存在一点ξ,使得

a

b a f b f f --=

)

()()('ξ

此式变形可为:

)10( ))(()

()('<<-+=--θθa b a f a

b a f b f

例: 求 x

x e e x

x x sin lim sin 0--→

解:令x

e x

f =)( 对它应用中值定理得

)1(0 ))sin ((sin )sin ()(sin )('sin <<-+-=-=-θθx x x f x x x f x f e e x x 即:

1)(0 ))sin ((sin sin 'sin <<-+=--θθx x x f x

x e e x

x

x e x f =)(' 连续

1)0())sin ((sin lim ''0

==-+∴→f x x x f x θ

从而有: 1sin lim

sin 0=--→x

x e e x

x x 16、求代数函数的极限方法

(1)有理式的情况,即若:

)0,0(a )()()(001

10110≠≠++++++==--b b x b x b a x a x a x Q x P x R n

n n m

m m (I)当∞→x 时,有

???

?

?

????

?????????>∞<==++++++=--∞→∞→n m n m 0 lim )()(lim 00110110n m b a b x b x b a x a x a x Q x P n n n m m m x x (II)当0→x 时有: ①若0)(0≠x Q 则 )

()

()()(lim

000x Q x P x Q x P x =→

②若0)(0=x Q 而 0)(0≠x P 则∞=→)

()

(lim

0x Q x P x

③若0)(0=x Q ,0)(0=x P ,则分别考虑若0x 为0)(=x P 的s 重根,即:

)()()(10x P x x x P s -= 也为0)(=x Q 的r 重根,即:

)()()(10x Q x x x Q r -= 可得结论如下:

??

?

?

?

??

???????<∞=>=-=-→→r s , r s , )()(P r s , 0)()()(lim )()(lim 010111000x Q x x Q x P x x x Q x P r s x x x x 例:求下列函数的极限

①5030

20)

12()23()32(lim ++-∞→x x x x ②3423lim 431+-+-→x x x x x 解: ①分子,分母的最高次方相同,故

503020)

12()23()32(lim ++-∞→x x x x =305030

20)23(232=?

②0)1(,23)(3=∴+-=P x x x P

0)1(,34)(4=∴+-=Q x x x Q

)(),(x Q x P ∴必含有(x-1)之因子,即有1的重根 故有:

2

1

322lim )32()1()2()1(lim 3423lim 212221431=

+++=++-+-=+-+-→→→x x x x x x x x x x x x x x x (2)无理式的情况。虽然无理式情况不同于有理式,但求极限方法完全类同,这里就不再一一详述.在这里我主要举例说明有理化的方法求极限。 例:求)(lim x x x x x -++

+∞

→ 解: )(lim x x x x x -++

+∞

2

1111111lim

lim

lim

3=

+++

+

=++++=+++-++=+∞

→+∞

→+∞

→x

x

x x

x x x x x x

x x x x x x x x x x

二、多种方法的综合运用

上述介绍了求解极限的基本方法,然而,每一道题目并非只有一种方法。因此我们在解题中要注意各种方法的综合运用的技巧,使得计算大为简化。

例:求 2

22

0sin cos 1lim x x x x -→

[解法一]:

22

20sin cos 1lim x x x x -→22220

sin 2cos 2sin 2lim

x x x x x x x x +?=→ 2222

0sin cos sin lim x

x x x x +=→ 2

2222

0sin cos sin lim x x

x x x x +

=→=21 注:此法采用罗比塔法则配合使用两个重要极限法。

[解法二]:

222

0sin cos 1lim x x x x -→=21222sin

sin 122sin lim sin 2sin 2lim 2

2

2

22202222

0=?

?

?=→→x x x x x x x x x x x 注:此解法利用“三角和差化积法”配合使用两个重要极限法。

[解法三]:

21sin 42lim 4sin 2lim cos 1lim sin cos 1lim 22032022202220=?==?-=-→→→→x

x x x x x x x x x x x x x x x x 注:此解法利用了两个重要极限法配合使用无穷小代换法以及罗比塔法则 [解法四]:

21sin 2)(lim sin cos 1lim sin cos 1lim 2242

20224202220=?=?-=-→→→x

x x x x x x x x x x x x x 注:此解法利用了无穷小代换法配合使用两个重要极限的方法。 [解法五]:

2

121lim )()2(2lim sin 2sin 2lim sin cos 1lim 44

022*******

02220====-→→→→x x

x x x x x x x x x x x x x 注:此解法利用“三角和差化积法”配合使用无穷小代换法。

[解法六]:

令2x u =

2

1

sin cos cos cos lim cos sin sin lim sin cos 1lim sin cos 1lim 0002220=-+=+=-=-→→→→u u u u u u

u u u u u u x x x u u u x

注:此解法利用变量代换法配合使用罗比塔法则。 [解法七]:

21

11lim sin cos sin lim sin cos 1lim 2

2

222202220=+=+=-→→→tgx x x x x x x x x x x x 注:此解法利用了罗比塔法则配合使用两个重要极限。

几道经典极限问题

1、设0,01>>a x ,)(211n n n x a x x +=+,证明:}{n x 收敛并求其极限。 证明:显然0>n x ,又a x a x x n n n ≥+= +)(211(中学中不等式) 又1)1(2121≤+=+n n n x a x x ,所以}{n x 单调减少,有下界,故}{n x 收敛,令A x n n =∞→lim ,由 )(21A a A A +=,则a A =。 2、求20cos 2cos cos 1lim x nx x x n x -→。 解答: +-+-=-→→→2 020202cos cos cos lim cos 1lim cos 2cos cos 1lim x x x x x x x nx x x x x n x 2 10cos 2cos cos )1cos(2cos cos lim x nx x x x n x x n n x --+-→,而21cos 1lim 20=-→x x x , 2020202cos 1lim 2cos 1cos lim 2cos cos cos lim x x x x x x x x x x x x -=-=-→→→, 因为22~cos 1x a x a -,所以22)2(41~2cos 1x x x =-,于是12cos 1lim 2 0=-→x x x , 同理 ,233cos 2cos cos 2cos cos lim 230=-→x x x x x x x , 2cos 2cos cos )1cos(2cos cos lim 2 10n x nx x x x n x x n n x =---→ , 所以原式4 )1(22221+=+++= n n n 。 3、设0,0>>b a ,求][lim 0x b a x x ?+→。 解答:令θ+=n x b ,其中10<<θ,当+→0x 时,+∞→n ,则θ+=n b x , 于是a b n n a b x b a x n x =?+=?∞→+→)(lim ][lim 0θ。 4、⑴证明:当x 充分小时,不等式422tan 0x x x ≤-≤成立。

关于计算极限的几种方法

目录 摘要 (1) 引言 (2) 一.利用导数定义求极限 (2) 二.利用中值定理求极限 (2) 三.利用定积分定义求极限 (3) 四.利用施笃兹公式 (4)

五.利用泰勒公式 (5) 六.级数法 (5) 七.结论 (6) 参考文献 (6)

内容摘要

引言: 极限是分析数学中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态。早在中国古代,极限的朴素思想和应用就已在文献中有记载。例如,3世纪中国数学家刘徽的割圆术,就是用圆内接正多边形周长的极限是圆周长这一思想来近似地计算圆周率 的。随着微积分学的诞生,极限作为数学中的一个概念也就明确提出。但最初提出的这一概念是含糊不清的,因此在数学界引起不少争论甚至怀疑。直到19世纪,由A.-L.柯西、K. (T.W.)外尔斯特拉斯等人的工作,才将其置于严密的理论基础之上,从而得到举世一致的公认。 数学分析中的基本概念的表述,都可以用极限来描述。如函数()x f y =在 0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。 一.利用导数定义求极限 据文[]1定理1导数的定义:函数)(x f 在0x 附近有定义,对于任意的x ?, 则)()(00x f x x f y -?+=? 如果x x f x x f x x ?-?+=→?→? ) ()(lim lim 000 0存在,则此极限值就 称函数)(x f 在点0x 的导数记为 )('0x f .即x x f x x f x f x ?-?+=→?) ()(lim )('0000在这 种方法的运用过程中。首先要选好)(x f ,然后把所求极限。表示成)(x f 在定点0x 的导数。 例1:求a x x a a x x a a a a x --→lim 解:原式0)(lim lim 1lim 0---?=---=-→→→a x x a a x a a x a x x a a a x x a a a a x a a a a a x x a x x ,令a x x a y -=, 当a x →时,0→y ,故原式a a a a a a a y y a ln |)'(0=?== 一般地,能直接运用导数定义求的极限就直接用导数定义来求,值得注意的是许

经典求极限解题方法

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ

3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第 一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 +,最后凑指数部分。 【解】2 2 2 12 1 2112111lim 121lim 11lim e x x x x x x x x x x x =???? ????? ???? ? ?-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =?? ? ??-++∞ →x x a x a x ,求a 。

求极限方法

求极限方法 1.利用极限的四则运算法则(只适用于有限项数): 令 加减: 数乘:(其中c是一个常数) 乘除: ( 其中B≠0 ) 幂运算: 极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。方能利用极限四则运算法则进行求之。不满足条件者,不能直接利用极限四则运算法则求之。但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。 2.利用洛必达法则 洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。一般用在求导后为零比零或无穷比无穷的类型。 利用洛必达求极限应注意以下几点: 设函数f(x)和F(x)满足下列条件: (1)x→a时,lim f(x)=0,lim F(x)=0; (2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0; (3)x→a时,lim(f'(x)/F'(x))存在或为无穷大则 x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x)) 3.利用两个重要极限: 1、 2、或 应用第一重要极限时,必须同时满足两个条件: ○1分子、分母为无穷小,即极限为 0 ; ②分子上取正弦的角必须与分母一样。 应用第二重要极限时,必须同时满足四个条件:①带有“1”; ②中间是“+ ”号;

大学数学经典极限方法(最全)

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1

3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第 一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 +,最后凑指数部分。 【解】22 212 12112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =??? ??-++∞ →x x a x a x ,求a 。

极限的求解方法

求函数极限的方法和技巧 1、 运用极限的定义 2、 利用极限的四则运算性质 lim f (x) = A lim g(x) = B ■v ->x (l -v->.v 0 上述性质对于X T T T* YO 时也同样成立 3、约去零因式(此法适用于xf °时,#型) 例: x' — — 16x — 20 求 lim — --- ; -------- 丫+2疋 +7工 +16x + 12 解:原式二 lim 化一弘:-10”+(2¥-6龙_20) Z (/ + 5疋 + 6x)+ (22 +1OX+12) ..(x + 2)(x~ — 3x — 10) =lim ------ ---------- 3-2 (兀 + 2)(人亠 +5x + 6) r (x* — 3x —10) (x — 5)(x + 2) =Inn - -------- = lim ----------- —(屮 + 5x + 6) —2 (x + 2)(x + 3) 二 lim 1 = -7 ?Z x + 3 ⑴ lim|/(x)±^(x)] = lim f(x) ± lim g(x) = A±B .v->x 0 ?f 切 (II) lim [/(x)? g(x)] = lim /(x)? lim g(x) = A ? B ?f5 (III)若 BHO ?XT" -v->.r o 则: lim /(x) XT.? A g(x) lim g(x) B XT% (IV) lim c ? f(x) = c - lim f(x) = cA (c 为常数) NT 曲 AT %?

4、通分法(适用于oo-oc型)

求极限的方法总结

学号:0 学年论文 求极限的方法总结 Method of Limit 学院理学院专业班级 学生指导教师(职称) 完成时间年月日至年月日

摘要 极限的概念是高等数学中最重要、最基本的概念之一。许多重要的概念如连续、导数、定积分、无穷级数的和及广义积分等都是用极限来定义的。因此掌握好求极限的方法对学好高等数学是十分重要的。但求极限的方法因题而异,变化多端,有时甚至感到变幻莫测无从下手,通过通过归纳和总结,我们罗列出一些常用的求法。本文主要对了数学分析中求极限的方法进行一定的总结,以供参考。 关键词:极限洛必达法则泰勒展开式定积分无穷小量微分中值定理

Abstract The concept of limit is the most important mathematics,one of the most basic important concepts such as continuity,derivative,definite integral,infinite series and generalized integrals and are defined by the mater the methods the Limit learn mathematics integrals and are defined by the limit varies by title,varied,anf sometimes even impossible to start very unpredictable,and summarized through the adoption,we set out the requirements of some commonly used this paper,the mathematical analysis of the method of seeking a certain limit a summary for reference. Keyword:Limit Hospital's Rule Taylor expansion Definite integral Infinitesimal Mean Value Theorem

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

高等数学求极限的常用方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候)

求极限的几种方法

一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明: 12 23lim 22=-+-→x x x x 证: 由 2 4 4122322-+-= --+-x x x x x x ()2 2 22 -=--= x x x 0>?ε 取 εδ= 则当δ <-<20x 时,就有 ε<--+-12 2 32x x x 由函数极限 δε-定义有: 12 23lim 22=-+-→x x x x 2、利用极限的四则运算性质 若 A x f x x =→)(lim 0 B x g x x =→)(lim 0 (I) []=±→)()(lim 0 x g x f x x )(lim 0 x f x x →±B A x g x x ±=→)(lim 0 (II) []B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则: B A x g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 0 00 (IV ) cA x f c x f c x x x x =?=?→→)(lim )(lim 0 (c 为常数) 上述性质对于 时也同样成立-∞→+∞→∞→x x x ,,

例:求 4 5 3lim 22+++→x x x x 解: 4 53lim 22+++→x x x x =254252322=++?+ 3、约去零因式(此法适用于 型时0 ,0x x → 例: 求12 16720 16lim 23232+++----→x x x x x x x 解:原式= () () ) 12102(65) 2062(103lim 223 2232 +++++--+---→x x x x x x x x x x x =)65)(2() 103)(2(lim 222+++--+-→x x x x x x x =)65()103(lim 222++---→x x x x x =) 3)(2()2)(5(lim 2+++--→x x x x x =2 lim -→x 73 5 -=+-x x 4、通分法(适用于∞-∞型) 例: 求 )21 44(lim 22x x x ---→ 解: 原式=) 2()2() 2(4lim 2x x x x -?++-→ =) 2)(2() 2(lim 2x x x x -+-→ =4 1 21lim 2=+→x x 5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质) 设函数f(x)、g(x) 满足:

求极限的常用方法

毕业论文 题目:求极限的方法 学院:数学与统计学院 专业:数学与应用数学 毕业年限:2013 学生姓名:俞琴 学号:200971010249 指导教师:伏生茂

求极限的方法 俞 琴 (数学与应用数学 200971010249) 摘要:在数学分析中,极限思想始终贯穿于其中,求极限的方法也显得至关重 要,求数列和函数的极限是数学分析的基本运算.求极限的主要方法有用定义、四则运算法则、迫敛性、两个重要极限、定积分、函数连续性等,除了这些常用方法外,还有许多相关技巧.本文结合自己对极限求解方法的总结,通过一些典型的实例,对求极限的各种方法的很多细节作了具体分析,使方法更具针对性、技巧性,因此,克服了遇到问题无从下手的缺点,能够做到游刃有余. 关键词:极限 单调性 定积分 洛必达法则 函数连续性 一、极限的定义及性质 自然界中有很多量仅仅通过有限次的算术运算是计算不出来的,而必须通过分析一个无限变化过程的变化趋势才能求得结果,这正是极限概念和极限方法产生的客观基础. 极限概念是数学分析中最基本的概念,因为数学分析的其它基本概念均可用极限概念来表达,且解析运算(微分法、积分法) 都可用极限概念来描述,如函数)(x f y =在0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分、三重积分的定义,无穷级数收敛的定义,这些数学分析中最重要的概念都是用极限来定义的.极限是贯穿数学分析的一条主线,它将数学分析的各个知识点连在了一起.所以,极限概念与极限运算非常重要,学好极限便为学习数学分析打好了基础. (一)定义 定义1 设}{n a 为数列,a 为定数,若对任给的正数ε,总存在正整数N ,使得当N n >时有 ε<-a a n ,则称数列}{n a 收敛于a ,定数a 称为数列}{n a 的极限,并记作

求二元函数极限的几种方法

11 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125.x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 .

22 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解: 00 x y →→ 00 x y →→= 00 x y →→= 00 1. 4 x y →→==-例4 ()() 2 2220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( )) () () ,0,02 211lim 231x y x y →+= + ()( 22 ,0,0lim x y →= + 11022 = +=.

求极限的常用方法(精髓版)考试必备

求极限的常用方法(精髓版) 初等数学的研究对象基本上是不变的量,而高等数学的研究对象则是变动的量。极限方法就是研究变量的一种基本方法。极限分为数列的极限和函数的极限,下文研究的是函数的极限,这些方法对于数列的极限同样适用。 1.直接代入数值求极限 例1 求极限1lim(21)x x →- 解 1lim(21)2111 x x →-=?-= 2.约去不能代入的零因子求极限 例2 求极限11lim 41--→x x x 解 4221111(1)(1)(1) lim lim lim(1)(1)4 11x x x x x x x x x x x →→→--++==++=-- 3.分子分母同除最高次幂求极限 例3 求极限13lim 3 2 3+-∞→x x x x 解 3131lim 13lim 11323=+-=+-∞→∞→x x x x x x x 注:一般地,分子分母同除x 的最高次幂有如下规律 ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 4.分子(母)有理化求极限 例4 求极限) 13(lim 22+-++∞ →x x x 解 1 3) 13)(13(lim )13(lim 2222222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x 例5 求极限 x →解 01)2x x x →→→=== 5.应用两个重要极限的公式求极限 两个重要极限是1sin lim 0=→x x x 和1lim(1)x x e x →∞+=,下面只介绍第二个公式的例子。 例6 求极限 x x x x ??? ??-++∞→11lim

求极限的常用方法Word版

求极限的常用方法 摘要 极限思想是大学课程中微积分部分的基本原理,这显示出极限在高等数学中的重要地位。同时,极限的计算本身也是一个重要内容。 关键词 极限;计算方法 初等数学的研究对象基本上是不变的量,而高等数学的研究对象则是变动的量。极限方法就是研究变量的一种基本方法。极限分为数列的极限和函数的极限,下文研究的是函数的极限,这些方法对于数列的极限同样适用。 1.直接代入数值求极限 例1 求极限1lim(21) x x →- 解 1 lim(21)2111 x x →-=?-= 2.约去不能代入的零因子求极限 例2 求极限11 lim 41--→x x x 解 4221111(1)(1)(1)lim lim lim(1)(1)4 11x x x x x x x x x x x →→→--++==++=-- 3.分子分母同除最高次幂求极限 例3 求极限13lim 3 2 3+-∞→x x x x 解 3131lim 13lim 3 11323=+-=+-∞→∞→x x x x x x x 注:一般地,分子分母同除x 的最高次幂有如下规律 ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 4.分子(母)有理化求极限 例4 求极限) 13(lim 22+-++∞ →x x x 解 1 3) 13)(13(lim )13(lim 2222222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x

高数求极限的16种方法(超经典)高彦辉总结

L .+'''+.+'''+. + 天天快乐+ '+. .+' "+.+" 爱 爱爱 爱祝爱 爱愿爱 爱你爱 爱永爱 爱远爱 爱被爱 爱爱爱 爱包爱 爱围爱 爱爱 爱爱 爱爱 爱 漂亮吧!送给你,希望你会幸福一生,梦想成真! 高数中求极限的16种方法 假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。首先,对极限的总结如下: 极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。 1 .极限分为一般极限,数列极限(区别在于数列极限时发散的,是一般极限的一种) 2.解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小) 2 LHopital 法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是X趋近而不是N 趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0LHopital 法则分为3中情况 1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开sina 展开cos 展开ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。这两个很重要!!!!!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(地2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法,非常方便的方法 就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方快于x!快于指数函数快于幂数函数 快于对数函数(画图也能看出速率的快慢)!!!!!!当x趋近无穷的时候他们的比值的极限一眼就能看出来了12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换

求极限的方法总结

求极限的方法总结 1.约去零因子求极限 例1:求极限11lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】4)1)(1(lim 1) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x 习题:2 33 lim 9x x x →-- 22121lim 1x x x x →-+- 2.分子分母同除求极限 例2:求极限13lim 3 2 3+-∞→x x x x 【说明】∞∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323=+-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除........x .的最高次方;......且一般...x .是趋于无穷的...... ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 习题 3232342 lim 753x x x x x →∞+++- 2324n 1lim n n n n n →∞+++- 1+13l i m 3n n n n n +→∞++(-5)(-5) n n n n n 323)1(lim ++-∞→

3.分子(母)有理化求极限 例1:求极限) 13(lim 22+-++∞→x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】 1 3) 13)(13(lim )13(lim 2222222 2+++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x 例2:求极限30 sin 1tan 1lim x x x x +-+→ 【解】 x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 习题:2 lim 1 x x x x →∞ +-+ 12 13lim 1 --+→x x x 4.用函数的连续求极限(当函数连续时,它的函数值就是它的极限值................... ) 22 034lim 2x x x x →+++ 【其实很简单的】 5.利用无穷小与无穷大的关系求极限 例题 3 3lim 3x x x →+- 【给我最多的感觉,就是:当取极限时,分子不为 0而分母为0时 就取倒数!】 6. 有界函数与无穷小的乘积为无穷小 例题 s i n l i m x x x →∞ , arctan lim x x x →∞

求极限的常用方法典型例题

求极限的常用方法典型例题 掌握求简单极限的常用方法。求极限的常用方法有 (1) 利用极限的四则运算法则; (2) 利用两个重要极限; (3) 利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量); (4) 利用连续函数的定义。 例 求下列极限: (1)x x x 33sin 9lim 0-+→ (2)1)1sin(lim 21--→x x x (3)x x x 1 0)21(lim -→ (4)2 22)sin (1cos lim x x x x x +-+∞→ (5))1 1e (lim 0-+→x x x x 解(1)对分子进行有理化,然后消去零因子,再利用四则运算法则和第一重要极限计算,即 x x x 33sin 9lim 0-+→ =) 33sin 9()33sin 9)(33sin 9(lim 0++++-+→x x x x x =3 3sin 91lim 3sin lim 00++?→→x x x x x =2 1613=? (2)利用第一重要极限和函数的连续性计算,即 )1)(1()1sin(lim 1 )1sin(lim 121-+-=--→→x x x x x x x 11lim 1)1sin(lim 11+?--=→→x x x x x 2 11111=+?= (3)利用第二重要极限计算,即 x x x 1 0)21(lim -→=2210])21[(lim --→-x x x 2e -=。 (4)利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量)计算,即

222222222)sin 1(lim ]1cos 1[lim )sin 1(1cos 1lim )sin (1cos lim x x x x x x x x x x x x x x x x +-+=+-+=+-+∞→∞→∞→∞→= 1 注:其中当∞→x 时,x x x x sin 1sin =,)1(cos 11cos 2222-=-x x x x 都是无穷小量乘以有界变量,即它们还是无穷小量。 (5) 利用函数的连续性计算,即 )11e (lim 0-+→x x x x =11 01e 00-=-+?

求极限的几种方法

求函数极限的方法和技巧 摘要: 本文就关于求函数极限的方法和技巧作了一个比较全面的概括、综合。 关键词:函数极限 引言 在数学分析与微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。 主要内容 一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明: 12 2 3lim 22=-+-→x x x x 证: 由 2 4 4122322-+-= --+-x x x x x x

()2 2 22 -=--= x x x 0>?ε 取εδ= 则当δ <-< 20x 时,就有 ε<--+-12 2 32x x x 由函数极限δε-定义有: 12 23lim 22=-+-→x x x x 2、利用极限的四则运算性质 若 A x f x x =→)(lim B x g x x =→)(lim 0 (I)[]=±→)()(lim 0 x g x f x x )(lim 0 x f x x →±B A x g x x ±=→)(lim 0 (II)[]B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则: B A x g x f x g x f x x x x x x ==→→→)(lim ) (lim )()(lim 0 00 (IV )cA x f c x f c x x x x =?=?→→)(lim )(lim (c 为常数) 上述性质对于时也同样成立 -∞→+∞→∞→x x x ,,

相关文档
最新文档