任意角的概念

任意角的概念

1. 任意角的概念

(1)角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.

(2)正角:按逆时针方向旋转形成的角.

(3)负角:按顺时针方向旋转形成的角.

(4)零角:一条射线没有做任何旋转,我们称它为零角

(5)注意:

①角度的范围再不限于.360~0??

②角的概念是通过角的终边的运动来推广的,根据角的终边的旋转“方向”,得到正角、负角和零角,由此我们应当意识到角的终边位置的重要性.

③当角的始边相同时,角相等,则终边相同;终边相同,而角不一定相等.

2. 象限角与轴线角

使角α的顶点与原点重合,始边与x 轴正半轴重合,终边落在第几象限,则称α为第几象限角;终边落在坐标轴上的角α被称为轴线角.

3. 终边相同的角

(1)与角α终边相同的角为),(360Z k k ∈+??=αβ连同角α,可构成一个集合}.,360{z k k S ∈+??==αββ

(2)注意:

①α为任意角.

②??360k 与α之间是“+”号,α-??360k 可理解为).(360α-+??k

③相等的角,终边一定相同;终边相同的角不一定相等,终边相同的角有无数个,它们相差?360的整数倍.

④Z k ∈这一条件必不可少.

4. 弧度制

(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角;用弧度作为单位来度量角的单位制叫做弧度制;在弧度制下,1弧度记作1rad .

(2)度量:

①一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是零.

②角α的弧度数的绝对值r l =α(其中l 是以角α作为圆心角时所对的弧的长,r 是圆的半

径).

5. 扇形的弧长与面积公式

若扇形的圆心角为α(α为弧度制),半径为R ,弧长为l ,面积为S ,则有αR l =,

22

121R lR S α==.

任意角的概念与弧度制

任意角的概念与弧度制 1、角的概念的推广: 角可以看作平面内一条射线绕端点从一个位置(始边)旋转到另一个位置(终边)形成的图形.规定按照逆时针方向旋转而成的角叫做正角;按照顺时针方向旋转而成的角叫做负角:射线没有旋转时称零角.任意角的概念与弧度制 1.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 正角:按逆时针方向旋转所形成的角. 负角:按顺时针方向旋转所形成的角. 零角:如果一条射线没有做任何旋转,我们称它形成了一个零角. 要点诠释: 角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义. 2.终边相同的角、象限角 终边相同的角为 角的顶点与原点重合,角的始边与轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角. 要点诠释: (1)终边相同的前提是:原点,始边均相同; (2)终边相同的角不一定相等,但相等的角终边一定相同; (3)终边相同的角有无数多个,它们相差的整数倍. 3、终边相同的角与象限角: 与角终边相同的角构成一个集合,;顶点与坐标原点重合,始边与轴正半轴重合,角的终边在第几象限,就把这个角叫做第几象限的角.知识点二:弧度制 弧度制 (1)长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单

位可以省略不写). (2)弧度与角度互换公式: 1rad=≈°=57°18′,1°=≈(rad) (3)弧长公式:(是圆心角的弧度数), 扇形面积公式:. 要点诠释: (1)角有正负零角之分,它的弧度数也应该有正负零之分,如等等,一般地, 正角的弧度数是 一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定. (2)角的弧度数的绝对值是:,其中,是圆心角所对的弧长,是半径. 3、弧度制的概念及换算: 规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.弧度记作rad.注意在用弧度制时,“弧度”或“rad”可以略去不写. 在半径为的圆中,弧长为的弧所对圆心角为,则 所以,rad,(rad),1(rad). 4、弧度制下弧长公式: ;弧度制下扇形面积公式. 类型一:象限角 1.已知角; (1)在区间内找出所有与角有相同终边的角;

高中数学必修四 任意角与弧度制 知识点汇总(教师版)

任意角与弧度制 知识梳理: 一、任意角和弧度制 1、角的概念的推广 定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。 注意: (1)“旋转”形成角,突出“旋转” (2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。 例1、若ο ο13590<<<αβ,求βα-和βα+的范围。(0,45) (180,270) 2、角的分类: 由于用“旋转”定义角之后,角的范围大大地扩大了。可以将角分为正角、零角和负角。 正角:按照逆时针方向转定的角。 零角:没有发生任何旋转的角。 负角:按照顺时针方向旋转的角。 例2、(1)时针走过2小时40分,则分针转过的角度是 -960 (2)将分针拨快10分钟,则分针转过的弧度数是 3 π . 3、 “象限角” 为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。 角的终边落在第几象限,我们就说这个角是第几象限的角 角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。 例1、30? ;390? ;-330?是第 象限角 300? ; -60?是第 象限角 585? ; 1180?是第 象限角 -2000?是第 象限角。 例2、(1)A={小于90°的角},B={第一象限的角},则A∩B= ④ (填序号).

①{小于90°的角} ②{0°~90°的角} ③ {第一象限的角} ④以上都不对 (2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B ) A .B=A∩C B .B ∪C= C C .A ?C D .A=B=C 例3、写出各个象限角的集合: 例4、若α是第二象限的角,试分别确定2α,2 α 的终边所在位置. 解 ∵α是第二象限的角, ∴k ·360°+90°<α<k ·360°+180°(k ∈Z ). (1)∵2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k ·180°+45°<2 α <k ·180°+90°(k ∈Z ), 当k =2n (n ∈Z )时, n ·360°+45°< 2 α <n ·360°+90°; 当k =2n +1(n ∈Z )时, n ·360°+225°<2 α <n ·360°+270°. ∴ 2 α 是第一或第三象限的角. 拓展:已知α是第三象限角,问3 α是哪个象限的角? ∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ), 60°+k ·120°< 3 α <90°+k ·120°. ①当k =3m (m ∈Z )时,可得 60°+m ·360°<3 α <90°+m ·360°(m ∈Z ). 故 3 α 的终边在第一象限. ②当k =3m +1 (m ∈Z )时,可得 180°+m ·360°<3 α <210°+m ·360°(m ∈Z ). 故 3 α 的终边在第三象限. ③当k =3m +2 (m ∈Z )时,可得 300°+m ·360°< 3 α <330°+m ·360°(m ∈Z ).

角的概念的推广及弧度制

第一节:角的概念的推广及弧度制 一、基础知识 1、角的定义:平面内一条射线绕着端点从一个位置旋转到另一个位置得到的图形(正角:逆时针;负角:顺时针;零角:没做任何旋转) 2、象限角:以角的顶点为原点,以角的始边为x 轴的非负半轴建立直角坐标系,由角的终边所在位置确定象限角(终边落在坐标轴上的角不属于任何一个象限称为“轴上角”或“象限界角”) 3、与α终边相同的角(连同α在内)可写作{}Z k k x x s ∈+==,360|α 4、弧度的定义:圆周上弧长等于半径的弧所对的圆心角 '18573.571801 ==∏ =rad 1801∏= 5、弧长公式及扇形面积公式 R l l ||||R 22αα=?=∏∏ lR R S S 2 1||21||R 222==?=∏∏αα 二、重要题型剖析 1、常用的角的集合表示法 (1)终边相同的角 例1、当α的终边分别落在x 轴的正半轴上,y 轴的负半轴上时,则α用弧度制表示,分别组成的集合 例2、①终边落在x 轴上的角的集合 ②终边落在y 轴上的角的集合 ③终边落在坐标轴上的角的集合 ④终边落在第一三象限平分线上角的集合 (2)区域角和对顶角 例1、写出阴影区域表示的角α集合(包括边界)

例2、①终边在第一象限角的集合 ②终边在第一四象限角的集合 ③终边在第二象限角的集合 ④终边在第一二象限角的集合 ⑤终边在第三象限角的集合 ⑥终边在第二三象限角的集合 (3)对称角 2、已知角x 所在象限求232x x x 、、所在象限 例1、若θ为第三象限,求 32θθ、所在象限并在该象限表示出来 3、旋转角度的应用题 例1、当12点过4 1小时的时候,时钟的长短针的夹角为多少弧度? 例2、时针走过2小时40分,则分针转过的角为多少?

任意角教学设计

1.1.1 任意角 科目:高一数学授课教师:弥渡二中高路洪 一、教学目标: 1.理解并掌握正角、负角、零角的定义. 2.理解任意角以及象限角的概念. 3.掌握所有与角终边相同的角的表示方法. 二、学情分析: 三、教学重难点: 重点:将0o : 360o范围内的角推广到任意角. 难点:用集合来表示终边相同的 角 四、突破方法:在平面内建立适当的坐标系,通过数形结合来认识 角的几何表示和终边相同的角集合. 五、教学过程: (一)创设情景,引入课题: 1、提问:初中所学的角是如何定义的?角的取值范围如何?(角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;范围:0°~360°) 2.课件出示跳水与体操比赛以及齿轮传动的图片,感受生活中与角有关的现象。(体操:“转体720o”,“转体1080o”。齿轮:被动轮与主动轮的旋转方向(顺、逆时针).) 【设计意图:创设课堂情境,使学生产生认知上的冲突,说明角的概念的推广的必要性,同时激发学生的学习兴趣和主动探究的精神.】 强调:虽然我们过去学习了0°~360°范围内的角,但在上述问题中我们发现了仅有0°~360°范围内的角是不够的,我们必须将角的概念进行推广. (板书课题) (二)探究新知,讲授新课: 1.任意角的相关概念: 角的定义:角可以看成平面内内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 角的名称: 齿轮:被动轮与主动轮的旋转方向(顺、逆时针)】

角的分类:正角:按逆时针方向旋转所形成的角叫正角负角:按顺时针方向旋转所形成的角零角:一条射线没有作任何旋转所形成的角 强调说明:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;⑵零 角的终边与始边重合,如果α是零角α =0°;⑶角的概念经过推广后,已包括正角、负角和零角. 2、象限角结合上述任意角的定义,教师进一步提出问题:问题 1:度量一个角的大小,既要考虑旋转方向,又要考虑旋转量,通过上述规定,你能用图形表示=210o,= -210o, = -660o这些角吗?你能总结一下作图的要点吗? (教师演示作图,让学生概括作图要点)画图表示一个大小一定的角,先画一条射线作为角的始边,再由角的正负决定旋转方向,再由角的绝对值大小确定角的旋转量,画出角的终边,并用带箭头的螺旋线加以标注. 问题 2:如果把上述角放在直角坐标系中,那么怎样放比较方便、合理?(让学生画图、探究、讨论和交流给出合理的方法)【设计意图:让学生自行尝试培养学生处理数学问题的动手能力及其猜想、探究能力】 (课件出示象限角的概念)定义:若将角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角. (练习:试在坐标系中表示 300 °、 390 °、- 330 °角,并判别在第几象限?)(讨论:角的终边在坐标轴上,属于哪一个象限?) 结论:如果角的终边在坐标轴上 , 就认为这个角不属于任何一个象限 , 称为非象限角(或轴线角). 【设计意图:让学生明确角的概念推广以后,初中的有些相关概念也要发生改变. 使学生进一步理解象限角的概念,培养学生的数形结合能力,为下面引入终边相同的作好铺垫.】 3、终边相同的角(1)请在坐标轴上画出30°,390°,-330°,并找出它们的共同点? (三个角的终边相同,两两之间相差360o的整数倍)结论:具有这样特点的角我们把它称为终边相同的角。

任意角的概念和弧度制

任意角的概念和弧度制 一、选择题(共11小题,每小题5.0分,共55分) 1.如果时钟上的时针、分针和秒针都是匀速地转动,那么从3时整(3∶00)开始,在1分钟的时间, 3根针中,出现一根针与另外两根针所成的角相等的情况有( ) A. 1次 B. 2次 C. 3次 D. 4次 2.若角α,β的终边关于y轴对称,则α与β的关系一定是(其中k∈Z) ( ) A.α+β=π B.α-β=π 2 C.α-β=π 2 +2kπ D.α+β=(2k+1)π 3.已知α为第二象限的角,则π-a 2 所在的象限是 ( ) A.第一或第二象限 B.第二或第三象限 C.第一或第三象限 D.第二或第四象限 4.集合{α|kπ+π 4≤α≤kπ+π 2 ,k∈Z}中的角所表示的围(阴影部分)是( ) A.答案A B.答案B C.答案C D.答案D 5.设扇形的周长为6,面积为2,则扇形的圆心角是(单位:弧度) ( ) A. 1 B. 4 C.Π D. 1或4 6.一扇形的周长为16,则当此扇形的面积取最大时其圆心角为( ) A. 1 B. 2 C. 3 D.1 2 7.已知扇形的周长是10 cm,面积是4 cm2,则扇形的半径是( ) A. 1 cm B. 1 cm或4 cm C. 4 cm D. 2 cm或4 cm 8.一半径为r的圆切于半径为3r、圆心角为α(0<α<a 2 )的扇形,则该圆的面积与该扇形的面积之比为( )

A . 3∶4 B . 2∶3 C . 1∶2 D . 1∶3 9.终边与坐标轴重合的角α的集合是( ) A . {α|α=k ·360°,k ∈Z } B . {α|α=k ·180°+90°,k ∈Z } C . {α|α=k ·180°,k ∈Z } D . {α|α=k ·90°,k ∈Z } 10.已知α是第一象限角,则角a 3 的终边不可能落在( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限 11.如果α是第三象限的角,则下列结论中错误的是( ) A . -α为第二象限角 B . 180°-α为第二象限角 C . 180°+α为第一象限角 D . 90°+α为第四象限角 二、填空题(共4小题,每小题5.0分,共20分) 12.在2时到3时之间,分针和时针成120°角的时刻是________. 13.若角α的终边与角8 5π的终边相同,则在[0,2π]上,终边与角a 4 的终边相同的角是________. 14.在直径为10 cm 的轮上有一长为6 cm 的弦,P 为弦的中点,轮子以每秒5弧度的角速度旋转,则经过5 s 后P 转过的弧长为__________cm. 15.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,则点A 第一次回到点P 的位置时,点A 走过的路径的长度为________. 三、解答题(共15小题,每小题12.0分,共180分) 16.射线OA 绕点O 顺时针旋转100°到OB 位置,再逆时针旋转270°到OC 位置.然后再顺时针方

任意角的三角函数公开课说课稿

《1.2.1任意角的三角函数》 尊敬的各位评委、各位老师, 大家好! 今天我说课的容是《1.2.1任意角的三角函数》 下面我将围绕本节从教材分析、教学目标、教学重难点、教法与学法、教学过程设计这几个方面来进行我的说课。 一、教材分析 1、教材的地位和作用 本节课是人教版高中数学必修4中第一章第二节《1.2.1任意角的三角函数》。 在学习本课之前,学生在必修1的学习中对函数有了一定的认识,而三角函数也是基本初等函数之一,它是描述周期现象的重要数学模型,从而本节是学生在锐角三角函数的基础上进行的扩展,是本章教学容的基本概念,是这一章最重要的一节课。 本节课以函数思想为指导,以坐标系和单位圆为定义工具,以初中学过的锐角三角函数为认知的起点,来掌握三角函数新的定义。新的定义可以更好的反应三角函数的本质,使得三角函数反应的数形关系更加的直接,数形结合更加紧密。 它是本章的基础,对三角函数的整体学习至关重要;同时它又是以后学习平面向量、解析几何等容的必要准备,通过这部分容的学习可以进一步的帮助学生理解函数这一基本概念。 2、学情分析 ①、我们的学生在初中学习的时候,是以直角三角形为背景去学习锐角三角函数,并没有从函数角度去认识锐角三角函数。

学生习惯了用直角三角形的比值去定义三角函数,对于用角终边上点的坐标来定义三角函数在认识上就存在着一定的障碍。 ②、我校的学生数学基础相对较差,多数同学对数学的学习没有兴趣和积极性。 ③、学生的学习能力、理解能力较差,学习习惯不好,所以必须在老师的指导下才能进行。 二、教学目标 根据新课标对本节课的教学要求,结合学生已有的认知能力和以上教材分析,我从知识与技能、过程与方法、情感、态度与价值观三个方面来设计本节课的三维目标。 1、知识与技能 掌握任意角的三角函数的定义;会求角α的各三角函数值;理解并掌握三角函数在各象限的符号及终边相同角的诱导公式。 2、过程与方法 体验三角函数概念的产生、发展过程,通过对三角函数值的符号,诱导公式(一)的推导,提高学生分析、探究、解决问题的能力;领悟直角坐标系的工具功能,丰富数形结合的思想。 3、情感态度与价值观 通过概念生成的过程,让学生去感受数学的自然美与简洁美 培养学生通过现象看本质的唯物主义观,培养学生实事的科学态度。 三、教学重、难点 Ⅰ、教学重点:①、正确理解三角函数的定义;②、任意角三角函数在各个象限的符号;③、终边相同角的诱导公式(一) Ⅱ、教学难点:

任意角的三角函数公开课教案(精.选)

任意角的三角函数(第一课时) 教学目标 1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义. 2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验. 3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观. 4.培养学生求真务实、实事求是的科学态度. 一、重点、难点、关键 重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法. 难点:把三角函数理解为以实数为自变量的函数. 关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化). 二、教学过程 [执教线索: 回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)——问题情境:能推广到任意角吗?——它山之石:建立直角坐标系(为何?)——优化认知:用直角坐标系研究锐角三角函数——探索发展:对任意角研究六个比值(与角之间的关

系:确定性、依赖性,满足函数定义吗?)——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)——例题与练习——回顾小结——布置作业] (一)复习引入、回想再认 开门见山,面对全体学生提问: 在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢? 探索任意角的三角函数(板书课题),请同学们回想,再明确一下: (情景1)什么叫函数?或者说函数是怎样定义的? 让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调: 传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域. 现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数 f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作: f(x),x∈A ,其中x叫自变量,自变量x的取值范围A叫做函数的定义域. (情景2)我们在初中通过锐角三角形的边角关系,学习

数学:任意角和弧度制必修

三角函数 1.1任意角和弧度制 一、 教学目标: (1)推广角的概念、引入大于360? 角和负角; (2)理解并掌握正角、负角、零角的定义; (3)理解任意角以及象限角的概念; (4)掌握所有与α角终边相同的角(包括α角)的表示方法; 二、教学重、难点 重点:理解正角、负角和零角的定义,掌握终边相同角的表示法. 难点:终边相同的角的表示. 三、学法与教学用具 之前的学习使我们知道最大的角是周角,最小的角是零角.通过回忆和观察日常生活中实际例子,把对角的理解进行了推广.把角放入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终边相同角的表示方法.我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示.另外还有相同终边角的集合的表示等. 教学用具:电脑、投影机、三角板 四、教学设想 【创设情境】 思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25 小时,你应当如何将它校准?当时间校准以后,分针转了多少度? [取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360?? ~之间,这正是我们这节课要研究的主要内容——任意角. 【探究新知】 1.初中时,我们已学习了0360?? ~角的概念,它是如何定义的呢? [展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1—1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点

O 叫做叫α的顶点. 2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720?” (即转体2周),“转体1080?”(即转体3周)等,都是遇到大于360? 的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360? 的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢? [展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle ),按顺时针方向旋转所形成的角叫负角(negative angle ).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle ). [展示课件]如教材图1.1.3(1)中的角是一个正角,它等于750? ;图1.1.3(2)中,正角210α?=,负角150,660βγ?? =-=-;这样,我们就把角的概念推广到了任意角(any angle ),包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α. 3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念. 角的顶点与原点重合,角的始边与x 轴的非负半轴重合。那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角(quadrant angle ).如教材图1.1—4中的30?角、210?-角分别是第一象限角和第三象限角.要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角. 4.[展示投影]练习: (1)(口答)锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.

(1)角的概念·弧度制

1、角的概念·弧度制 一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A .B=A ∩C B .B ∪C=C C .A ?C D .A=B=C 2.下列各组角中,终边相同的角是 ( ) A . π2 k 与)(2Z k k ∈+ ππ B .)(3k 3Z k k ∈± ππ π与 C .ππ)14()12(±+k k 与 )(Z k ∈ D .)(6 6Z k k k ∈± + π πππ与 3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( ) A .2 B . 1 sin 2 C .1sin 2 D .2sin 4.设α角的终边上一点P 的坐标是)5 sin ,5 (cos π π ,则α等于 ( ) A . 5 π B .5 cot π C .)(10 32Z k k ∈+ππ D .)(5 92Z k k ∈- ππ 5.将分针拨慢10分钟,则分钟转过的弧度数是 ( ) A . 3 π B .- 3 π C . 6 π D .-6 π 6.设角α和β的终边关于y 轴对称,则有 ( ) A .)(2 Z k ∈-= βπ α B .)()2 1 2(Z k k ∈-+ =βπα C .)(2Z k ∈-=βπα D .)()12(Z k k ∈-+=βπα 7.集合A={}, 32 2|{},2|Z n n Z n n ∈±=?∈= ππααπαα, B={}, 2 1 |{},3 2|Z n n Z n n ∈+=?∈=ππββπ ββ, 则A 、B 之间关系为 ( ) A .A B ? B .B A ? C .B ?A D .A ?B ≠

任意角与弧度制教案

任意角与弧度制 【基础再现】 1、角的概念的推广 定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角,记作:角或 可以简记成。 注意: (1)“旋转”形成角,突出“旋转” (2)“顶点”“始边”“终边”“始边”往往合于轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。 2、角的分类: 由于用“旋转”定义角之后,角的范围大大地扩大了。可以将角分为正角、零角和负角。 正角:按照逆时针方向转定的角。 零角:没有发生任何旋转的角。 负角:按照顺时针方向旋转的角。 3、 “象限角” 为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于轴的正半轴。 角的终边落在第几象限,我们就说这个角是第几象限的角 角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。 【重点、难点、考点】 ααα∠αx x

一、常用的角的集合表示方法 1、终边相同的角: (1)终边相同的角都可以表示成一个0?到360?的角与个周角的和。 (2)所有与α终边相同的角连同α在内可以构成一个集合 即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和 注意: 1、Z ∈k 2、α是任意角 3、终边相同的角不一定相等,但相等的角的终边一定相同。终边相同的角有无数个,它们相差360°的整数倍。 4、一般的,终边相同的角的表达形式不唯一。 2、终边在坐标轴上的点: 终边在x 轴上的角的集合: {}Z k k ∈?=,180| ββ 终边在y 轴上的角的集合:{}Z k k ∈+?=,90180| ββ 终边在坐标轴上的角的集合:{}Z k k ∈?=,90| ββ 3、终边共线且反向的角: 终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180| ββ 终边在x y -=轴上的角的集合:{}Z k k ∈-?=,45180| ββ )(Z k k ∈{}Z k k S ∈?+==,360| αββ

任意角的概念(老师版)

任意角的概念(A ) 一、选择题。 1、与-457°角终边相同的角的集合是( ) A.{α|α=k ·360°+457°,k ∈Z} B.{α|α=k ·360°+263°,k ∈Z} C.{α|α=k·360°+97°,k ∈Z} D .{α|α=k ·360°-263°,k ∈Z} 2、若α是锐角,则180°-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 ?D .第四象限角 3、若α是第三象限角,则-α是( ) A .第一象限角 ?B.第二象限角 C .第三象限角 D .第四象限角 4、角α的终边经过点C (-1,0),则α是( ) A.第二象限角 B .第三象限角 C .终边落在x 轴非正半轴上的角 D.既是第二象限角又是第三象限角 5、若角α满足α=45°+k ·180°,k∈Z ,则角α的终边落在( ) A .第一或第三象限 B .第一或第二象限 C .第二或第四象限 ?D.第三或第四象限 6、在下列各命题中,真命题为( ) A .1弧度是长度为半径长的弧 B .1弧度是1度的圆心角所对的弧 C .1弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位 D.1弧度是1度的弧长与半径的积 7、将-1485°化成α+2k π(0≤α<2π,k∈Z)的形式是( ) A .-4 π -8π B .- 47π-8π C.-4π-10π D .-4 7π -10π 8、时钟经过一小时,时针转过了( ) A 、 6πra d ?B .-6 π rad C. 12π ra d ?D .-12π rad 9、在直径为4 cm 的圆中,36°的圆心角所对的弧长是( ) A、54π cm ?B. 52π cm C. 3πcm ?D . 2 π cm 10、终边经过点(a ,a)(a≠0)的角α的集合是( ) A .{ 4π} ?B .{4π,45π} C .{α|α=4π+2k π,k ∈Z} D .{α|α=4 π +k π,k ∈Z} 11、已知α=-2 rad ,则角α的终边在第( )象限. A 、第一象限 B、第二象限 C 、第三象限 D 、第四象限 12、17、设扇形的周长为8 cm ,面积为4 cm 2,则该扇形的圆心角的弧度数是( ). A 、1 B 、2 C 、3 D、4

《角的概念的推广与弧度制》1

《角的概念的推广与弧度制》 、复习要求: 1. 理解正角、负角、零角这三个概念,关键是终边的旋转方向。 2. 象限角、区间角、终边相同的角和轴线角这几个概念的区别与联系。 3. 正确理解几个有特殊含义的角,如: “ 00到 900的角”、“第一象限的角”、“锐角” 和“小于900的角”。 4. 角度制与弧度制的区别与联系(角度与弧度的相互转化) 。 二、 复习重点: 1. 识别、理解并能正确表示各种角,理解弧度制概念的建立及弧度与角度的换算。 2. 能按不同的要求写出符合条件的角的集合和有符号语言正确地表示它们。 三、 复习过程: 1 ?知识及重要方法落列: 正角、负角、零角;象限角、区间角、终边相同的角和轴线角;角度与弧度的相互 转化。 方法:例举法,特殊值法,分类讨论,几何法,数形结合。 2 ?典型例题分析: 例1 .若时针走过2小时40分,则分针走过的角是多少? 解:2小时40分=8 小时,dJ 6 - 3 ' P 3 3 练习1: 将钟表上的时针作为角的始边,分针作为角的终边,那么当钟表上显示 8点5分时,时 针与分针构成的最小正角是 ________ (逆时针旋转为正,顺时针旋转为负) 例2.自行车大链轮有48个齿,小链轮有20个齿,当大链轮转过一周时,求小链转 过的弧度 数。 解:当大链轮转过一周,即转过 48个齿时,小链轮也必须同步转过 48个齿, 故小链轮转过了 兰=12周。 20 5 所以,小链轮转过的弧度数为 空2二二空二。 5 5 练习2: 直径为10cm 的 滑轮上有提条长为 6cm 的弦,P 是此弦的中点,若滑轮以每秒5弧度的 角速度旋 转,则 经过5秒钟后,点P 经过的弧长等于 __________________ 。 例3?弧度为2的圆心所对的弦长为 2,则这个圆心角所对的弧长是多少?这个圆心 角所夹 的扇形的面积是多少? 解:如图,过 O 作OD_AB 于D 。有垂径定理知 D 为AB 的中点, 所以,扇形的半径 :OA — si n1 有弧长公式l=|a|r ,得| =2 — sin1 .AD =丄 AB =1, 2 AOD g "Ed 故分针走过的角为 16 2 sin 1 O

高中数学人教版B必修4练习——1任意角的概念和弧度制

练习一 任意角的概念和弧度制 一、选择题 1.下列角中终边与330°相同的角是( ) Α.30° B.-30° C.630° D.-630° 2.下列命题正确的是( ) Α.终边相同的角一定相等。 B.第一象限的角都是锐角。 C.锐角都是第一象限的角。 D.小于?90的角都是锐角。 3.如果一扇形的弧长为2πcm ,半径等于2cm ,则扇形所对圆心角为( ) A.π B.2π C. π2 D.3π2 4.若α是第四象限角,则180°+α一定是( ) Α.第一象限角 B. 第二象限角 C.第三象限角 D. 第四象限角 5.一个半径为R 的扇形,它的周长为4R ,则这个扇形所含弓形的面积为( ) A.2 11 2sin 222R ? ?- ??? B.21 sin 22 R C.21 2 R D.22 1sin 2 2 R R - 6.若α角的终边落在第三或第四象限,则2 α 的终边落在( ) A .第一或第三象限 B .第二或第四象限 C .第一或第四象限 D .第三或第四象限 二、填空题 7.若三角形的三个内角的比等于2:3:7,则各内角的弧度数分别为 . 8.将时钟拨快了10分钟,则时针转了 度,分针转了 弧度. 9.若角α的终边为第二象限的角平分线,则α的集合为______________________. 10.已知α是第二象限角,且,4|2|≤+α则α的范围是 . 三、解答题 11. 在0 与360 范围内,找出与下列各角终边相同的角,并判断它们是第几象限角? (1)120- (2)640 (3)95012'- 12.写出角的终边在下图中阴影区域内角的集合(这括边界)

任意角的概念

1. 任意角的概念 (1)角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. (2)正角:按逆时针方向旋转形成的角. (3)负角:按顺时针方向旋转形成的角. (4)零角:一条射线没有做任何旋转,我们称它为零角 (5)注意: ①角度的范围再不限于.360~0?? ②角的概念是通过角的终边的运动来推广的,根据角的终边的旋转“方向”,得到正角、负角和零角,由此我们应当意识到角的终边位置的重要性. ③当角的始边相同时,角相等,则终边相同;终边相同,而角不一定相等. 2. 象限角与轴线角 使角α的顶点与原点重合,始边与x 轴正半轴重合,终边落在第几象限,则称α为第几象限角;终边落在坐标轴上的角α被称为轴线角. 3. 终边相同的角 (1)与角α终边相同的角为),(360Z k k ∈+??=αβ连同角α,可构成一个集合}.,360{z k k S ∈+??==αββ (2)注意: ①α为任意角. ②??360k 与α之间是“+”号,α-??360k 可理解为).(360α-+??k ③相等的角,终边一定相同;终边相同的角不一定相等,终边相同的角有无数个,它们相差?360的整数倍. ④Z k ∈这一条件必不可少. 4. 弧度制 (1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角;用弧度作为单位来度量角的单位制叫做弧度制;在弧度制下,1弧度记作1rad . (2)度量: ①一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是零. ②角α的弧度数的绝对值r l =α(其中l 是以角α作为圆心角时所对的弧的长,r 是圆的半 径). 5. 扇形的弧长与面积公式 若扇形的圆心角为α(α为弧度制),半径为R ,弧长为l ,面积为S ,则有αR l =, 22 121R lR S α==.

高中数学必修四之知识讲解_任意角和弧度制_基础

任意角和弧度制 【学习目标】 1.理解任意角的概念.掌握象限角、终边相同的角、终边在坐标轴上的角及区间角的表示方法。 2.了解弧度制的意义;掌握角的不同度量方法,能对弧度制和角度制进行正确的换算. 3.掌握弧度制下扇形的弧长和面积的计算公式,并能结合具体问题进行正确地运算。 【要点梳理】 要点一:任意角的概念 1.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 正角:按逆时针方向旋转所形成的角. 负角:按顺时针方向旋转所形成的角. 零角:如果一条射线没有做任何旋转,我们称它形成了一个零角. 要点诠释: 角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义. 2.终边相同的角、象限角 终边相同的角为{} |360k k Z βββα∈=+∈, 角的顶点与原点重合,角的始边与x 轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角. 要点诠释: (1)终边相同的前提是:原点,始边均相同; (2)终边相同的角不一定相等,但相等的角终边一定相同; (3)终边相同的角有无数多个,它们相差360?的整数倍. 3.常用的象限角

α是第一象限角,所以(){}|36036090,k k k Z αα<<+∈ α是第二象限角,所以(){}|36090360180,k k k Z αα+<<+∈ α是第三象限角,所以(){}|360180360270,k k k Z αα+<<+∈ α是第四象限角,所以(){}|360270360360,k k k Z αα+<<+∈ 要点二:弧度制 1.弧度制的定义 长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写). 2.角度与弧度的换算 弧度与角度互换公式: 180rad π? = 1rad=0 180π?? ??? ≈57.30°=57°18′,1°=180π≈0.01745(rad) 3.弧长公式:r l ||α=(α是圆心角的弧度数), 扇形面积公式:2||2 1 21r r l S α==. 要点诠释: (1)角有正负零角之分,它的弧度数也应该有正负零之分,如2ππ--, 等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定. (2)角α的弧度数的绝对值是:r l =α,其中,l 是圆心角所对的弧长,r 是半径. 【典型例题】 类型一:角的概念的理解 例1.下列结论: ①第一象限角都是锐角;②锐角都是第一象限角;③第一象限角一定不是负角;④第二象限角是钝角;⑤小于180°的角是钝角、直角或锐角。 其中正确的结论为________。 【思路点拨】比较锐角和第一象限角的关系,比较负角和第一象限角的关系,这种问题可以通过列举出特殊角来得到结论. 【答案】② 【解析】①390°角是第一象限角,可它不是锐角,所以①不正确。 ②锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,所以②正确。 ③-330°角是第一象限角,但它是负角,所以③不正确。 ④480°角是第二象限角,但它不是钝角,所以④不正确。 ⑤0°角小于180°,但它既不是钝角,也不是直角或锐角,故⑤不正确。

弧度制与角度制的换算关系

课题:弧度制和弧度制与角度制之间的换算(1) 教学目的:要求学生掌握弧度制的定义,学会弧度制与角度制互化,并进 而建立角的集合与实数集R 一一对应关系的概念。 教学重点:使学生理解弧度的意义,正确地进行角度与弧度的换算. 教学过程: 一、回忆(复习)度量角的大小第一种单位制—角度制的定义。 二、提出课题:弧度制—另一种度量角的单位制 它的单位是rad 读作弧度 定义:长度等于半径长的弧所对的圆心角称为1弧度的角。 如图:AOB=1rad AOC=2rad 周角=2rad 1.正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0 2.角的弧度数的绝对值 r l =α(l 为弧长,r 为半径) 3.用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同。 三、角度制与弧度制的换算 1、 360=2 rad ∴180= rad ∴ 1=rad rad 01745.0180≈π '185730.571801 =≈?? ? ??=πrad 2.今后在具体运算时,“弧度”二字和单位符号“rad ”可以省如:3 表示3rad sin 表示rad 角的正弦 3.一些特殊角的度数与弧度数的对应值应该记住 4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都 能在角的集合与实数的集合之间建立一种一一对应的关系。 o r C 2rad 1rad r l=2 r o A A B 正角 零角 负角 正实数 零 负实数

任意角的集合 实数集R 四、例题讲解 例1把'3067 化成弧度,把rad 5 3化成度 注意:常用特殊角的角度制与弧度制之间的转化 角度 0° 30° 45° 60° 90° 120° 135° 150° 180° 弧度 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 角度 210° 225° 240° 270° 300° 315° 330° 360° 弧度 7π/6 5π/4 4π/3 3π/2 5π/3 7π/4 11π/6 2π 例2用弧度制表示: 1 终边在x 轴上的角的集合 2 终边在y 轴上的角的集合 3 终边在坐标轴上的角的集合 例3.求图中公路弯道处弧AB 的长l (精确到1m )图中长度单位为:m 例4已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积 小结:1.弧度制定义 2.与弧度制的互化 小结:本节课我们学习了:弧度制定义、角度制与弧度制的互化、特殊角的弧度数、用弧度制表示的弧长公式、扇形面积公式. 课堂练习:第12页练习A 、B 课后作业:第13页习题1-1A :3、4、5,习题1-1B:3 课堂检测:

最新5.1任意角的概念(1)教案

5.1课题:任意角的度量(1)教案 教学目的:1、初步懂得用运动的观点观察角的形成过程,知道存在0°到360°间的角。 2、理解任意角和象限角的概念,会判断一个角所在象限。 3、掌握终边相同的角的一般形式和集合表示方法。 教学重点:任意角概念的理解 教学过程: (一)、引入 一、回顾角的定义: 是有公共端点的两条射线组成的图形叫做角。 二、角的范围是: 0°到360° (二)、新课 一、我们在观看高台跳水时,会听到解说员说:刚才一个动作是向前翻腾两周半。那么 这个运动员旋转了多少度?如果向后翻腾两周半呢? 答:转一周是360°,转两周是720°半周呢?180°。即共旋转了900°。 为区分向前向后翻腾,我们可以用正负角表示。若向前翻腾两周半为+900°,则向后翻腾两周半为-900°。 看来角不仅限于0°到360°。初中学的角的概念有局限性。有必要对角从新定义。 二、角的有关概念: 1、角的定义: 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。 2、角的名称: 3、角的分类: (1)正角:射线按逆时针方向旋转形成的角。 (2)负角:射线按顺时针方向旋转形成的角。 (3)零角:射线没有旋转(始边与终边重合)形成的角。 4、注意: ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. 5、练习:请说出角α、β、γ各是多少度? 顶点 A O

三、象限角的概念: 1、定义:若将角顶点与原点重合,角的始边与x 轴的正半轴重合,那么角的终边(端 点除外)在第几象限,我们就说这个角是第几象限角。 2、终边相同的角的表示: 所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360 ° k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和。 注意: ⑴ k ∈Z ⑵ α是任一角; ⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍; ⑷ 角α + k ·720 °与角α终边相同,但不能表示与角α终边相同的所有角。 四、典型例题(3个,基础的或中等难度) 例1、如图⑴⑵中的角分别属于第几象限角? 终边O 1B 的角在第一象限; 终边O 2B 的角在第四象限; 终边O 3B 的角在第三象限。 例2、在直角坐标系中,作出下列各角,并指出它们是第几象限的角. ⑴60°;⑵120°;⑶240°;⑷300°;⑸420°;⑹480°; 答:分别为1、2、3、4、1、2象限角. 例3、在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限 角。⑴-120°;⑵640 °;⑶-950°12'. 答:⑴240°;第三象限角;⑵280°;第四象限角;⑶129°48';第二象限角; 例4、⑴写出与-1840°角终边相同的角的集合M ; ⑵把-1840°角写成k ·360°+ α (0°≤α < 360°)的形式; ⑶若角α∈M ,且α∈[-360°,360°],求角α. 解:⑴ M ={α | α = k ·360°-1840°,k ∈Z}. ⑵ -1840°=-6×360°+320°. ⑶∵α∈M ,且-360°≤α≤360°, ∴-360°≤k ·360°-1840°≤360°. ∴1840°≤k ·360°≤2200°,9 55937≤≤k ∵k ∈Z ,∴k =5,6故α =-40°或α =320°。

相关文档
最新文档